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Preface  

 
Welcome to ISMIR 2018! 

 

Dear ISMIR 2018 Attendees, 

 

Sixteen years after its first venue in Paris in 2002, it is our great pleasure to welcome you 

back in the City of Lights for the 19th International Society for Music Information Retrieval 

Conference (ISMIR). This year’s conference is organized by Télécom ParisTech and 

IRCAM. 

 

ISMIR is the world's leading research forum on processing, searching, organizing and 

accessing music-related data. The success of ISMIR is continuously growing, as evidenced 

by the regular increase of its audience and the variety of its main program and satellite 

events. We have tried our best, with the invaluable help of our colleagues of the organizing 

committees and ISMIR board to maintain the tradition and spirit of previous editions while 

experimenting some new ideas for the scientific program, presentations and surrounding 

events.  

 

We are excited to present this year’s program. A total of 235 complete and well-formatted 

papers entered the review process. Special care was taken to assemble an experienced and 

interdisciplinary review panel comprising people from many different academic and 

industrial institutions worldwide. As in previous years, reviews were double-blind (i.e., both 

the authors and the reviewers were anonymous) with a two-tier review model involving a 

pool of 269 reviewers, including a program committee (PC) of 60 members. Each paper was 

assigned to a PC member and three reviewers. The reviewers’ assignments were based on 

topic preferences, bidding on papers, and PC member assignments. Following the review 

phase, PC members and reviewers entered a discussion phase aiming to homogenize 

acceptance versus rejection decisions. Handling four submissions on average, each PC 

member was asked to adopt an active role in the review process by partaking inan intensive 

discussion phase with the other reviewers and providing a detailed meta-review. Final 

acceptance decisions were based on 940 reviews and meta-reviews. Of the 235 reviewed 

papers, 104 were accepted, resulting in an acceptance rate of 44.2%. The table shown on the 

next page summarizes the ISMIR publication statistics over the history of the conference. A 

very special thanks goes to our technical program chairs for their extensive efforts to ensure a 

fair and efficient paper selection.  

 

For the first time at ISMIR, all papers will be presented both orally and as posters.  

 

A number of other changes in the main program have also been implemented, in particular to 

have a specific and novel “Meetup with industry” event, which is organized at Station F, a 

large and emblematic business incubator for startups; and to host a dedicated exhibition of 

selected installations of Interactive Machine-Learning for Music. 

 

Along with the main ISMIR program, we are happy to host a tutorial day and a number of 

satellite events including hackathons, workshops and web seminars.  

 

We would like to thank the whole organizing committee for their dedication and invaluable 

help in setting up all the details of the conference. We are particularly grateful to all our 
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sponsors who provided a considerable support to the conference - many thanks to them! And 

a very warm thanks to Blair Kaneshiro for her sustained efforts and actions towards our 

sponsors. 

 

In short, welcome to Paris and have a fantastic ISMIR2018!  

 

Geoffroy Peeters, Slim Essid and Gaël Richard, General Chairs  

 

 

 

 

Year Location Oral Poster 
Total 

Papers 

Total 

Pages 

Total 

Authors 

Unique 

Authors 

Pages/ 

Paper 

Authors/ 

Paper 

Unique 

Authors/ 

Paper 

2000 Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 

2001 Indiana 25 16 41 222 100 86 5.4 2.4 2.1 

2002 Paris 35 22 57 300 129 117 5.3 2.3 2.1 

2003 Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 

2004 Barcelona 61 44 105 582 252 214 5.5 2.4 2 

2005 London 57 57 114 697 316 233 6.1 2.8 2 

2006 Victoria 59 36 95 397 246 198 4.2 2.6 2.1 

2007 Vienna 62 65 127 486 361 267 3.8 2.8 2.1 

2008 Philadelphia 24 105 105 630 296 253 6 2.8 2.4 

2009 Kobe 38 85 123 729 375 292 5.9 3 2.4 

2010 Utrecht 24 86 110 656 314 263 6 2 2.4 

2011 Miami 36 97 133 792 395 322 6 3 2.4 

2012 Porto 36 65 101 606 324 264 6 3.2 2.6 

2013 Curitiba 31 67 98 587 395 236 5.9 3 2.4 

2014 Taipei 33 73 106 635 343 271 6 3.2 2.6 

2015 Málaga 24 90 114 792 370 296 7 3.2 2.6 

2016 New York 25 88 113 781 341 270 6.9 3.0 2.4 

2017 Suzhou 24 73 97 716 324 248 7.4 3.3 2.6 

2018 Paris 104 104 786 337 265 7.5 3.2 2.5 
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Tutorials 
 

Eight tutorials will take place on Sunday, September 23rd 2018. There will be four parallel 

tutorials in the morning, and another four parallel tutorials in the afternoon. All tutorials will 

take place at Télécom ParisTech. 

 

Morning Sessions: 

 

Tutorial 1: Open Source and Reproducible MIR Research 

Brian McFee, New York University 

Thor Kell, Spotify 

 

Tutorial 2: Computational Approaches for Analysis of Non-Western Music Traditions 

Xavier Serra, Universitat Pompeu Fabra 

Martin Clayton, Durham University 

Barış Bozkurt, Universitat Pompeu Fabra 

 

Tutorial 3: Statistical Analysis of Results in Music Information Retrieval: Why and How 

Julián Urbano, Delft University of Technology 

Arthur Flexer, Austrian Research Institute for Artificial Intelligence 

 

Tutorial 4: Music Separation with DNNs: Making It Work 

Antoine Liutkus, Inria 

Fabian-Robert Stöter, Inria 

 

Afternoon Sessions: 

 

Tutorial 5: Deep Learning for MIR  

Alexander Schindler, Austrian Institute of Technology 

Thomas Lidy, Musimap 

Sebastian Böck, Austrian Research Institute for Artificial Intelligence 

 

Tutorial 6: Fundamental Frequency Estimation in Music 

Rachel Bittner, Spotify 

Alain de Chevigne, CNRS 

Johanna Devaney, City University of New York 

 

Tutorial 7: Optical Music Recognition for Dummies 

Jorge Calvo-Zaragoza, McGill University 

Jan Hajič jr., Charles University 

Alexander Pacha, TU Wien 

Ichiro Fujinaga, McGill University 

 

Tutorial 8: Overview and New Challenges of Music Recommendation Research in 2018 

Markus Schedl, Johannes Kepler University Linz 

Peter Knees, TU Wien 

Fabien Gouyon, Pandora   
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Keynote Speakers 
 

We are honored to have two distinguished keynote speakers: 

 

Drawing sounds: Fourier, Kœnig, and Scott 

Patrick Flandrin 

Physics Department 

École Normale Supérieure de Lyon 

 

Using Data and Machine Learning to Support Human Musical Practices 

Rebecca Fiebrink 

Department of Computing 

Goldsmiths, University of London 

 

 

 

WiMIR Annual Meeting 
 

Women in MIR (WiMIR) is a group of people in the MIR community dedicated to promoting 

the role of, and increasing opportunities for, women in the field. We meet to network, share 

information, and discuss in an informal setting the goal of building a community that 

supports women – and more broadly, diversity – in the field of MIR. 

 

WiMIR has held annual meetings at the ISMIR conference since 2012, garnering a high 

turnout of both female and male attendees. Since 2016, WiMIR has also organized a 

mentoring program connecting female students, postdocs, and early-stage researchers to more 

senior females and male allies in the field. 

 

At this year's ISMIR, we will have a special WiMIR cocktail during Tuesday, September 

25th lunch followed by a special WiMIR session. 

 

 

Unconference Evening 
 

As in previous years, we will have a special “Unconference” in which participants break up 

into smaller groups to discuss Music-IR issues of particular interest. This is an informal and 

informative opportunity to get to know peers and colleagues from around the world. This 

year, the “Unconference” will last a whole evening, on Tuesday, September 25th at Télécom 

ParisTech. 

 

 

Late-Breaking/Demo session & Unconference Debriefing 
 

Thursday morning is dedicated to late-breaking papers and Music-IR system demonstrations. 

Abstracts for these presentations are available online. After this session, the results of the 

discussions held during the unconference will be debriefed in a plenary session.  
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Meetup with Industry afternoon 

 

The annual ISMIR (International Society for Music Information Retrieval) Conference is the 

world’s leading R&D forum for music tech since 2000. For the first time, the 2018 edition in 

Paris will include a Meetup with Industry, organized by Antescofo with support from Deezer 

and Pandora. This will be a unique networking platform, and a perfect opportunity to:  

● Discover and shape the future of music technology  
● Connect with and recruit top talent from the MIR community 
● Meet world-class experts and explore the current state-of-the-art in music tech. 

applications 
● Connect with and learn from leading music tech. companies 
● Discover music startups leveraging latest technologies in a variety of music 

applications 
● Exchange with other players and startups in the music industry 
● Showcase and market latest products and services 

 

This will be a half-day event with networking activities and Industry talks, taking place on 

Thursday September 27, 2018, from 2PM to 6PM, at Station F, the biggest startup campus in 

the world, in the heart of Paris. 

 

 

Satellite Events 
 

This year, six satellite workshops will take place around ISMIR in various places (IRCAM, 

CNAM and Télécom ParisTech). 

 

● Hacking Audio and Music Research (HAMR) will take place at the Deezer 

headquarters in Paris immediately before ISMIR on 21-22/09/2018 
● 1st Workshop on Music Reading Systems (WoRMS) will be held at the CNAM 

Thursday 2018/09/20 
● Workshop on “The New Shape of Audio Branding” will be held at IRCAM 

Thursday 2018/09/20 
● 5th International Conference on Digital Libraries for Musicology will be held at 

IRCAM Friday 2018/09/28 
● WiMIR 1st Annual Workshop will be held at Télécom ParisTech Friday 2018/09/28 
● Radio 2.0 Webinar Series: From music date to value creation will be held at 

Vivendi headquarters Friday 2018/09/28 
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Social Events 
 

In addition to the academic focus of ISMIR, we are offering a number of unique social 

events. The social program provides participants with an opportunity to relax after meetings, 

to experience Paris, and to network with other ISMIR participants. The social program 

includes: 

 

Welcome Reception 

The welcome reception will happen at the Balajo on Sunday September 23rd. The Balajo is a 

historical dancing-hall in the Bastille neighborhood opened in 1936. It has welcomed many 

famous artists such as Mistinguett, Marlene Dietrich and Django Reinhardt. There, we will 

have a private concert of Gipsy Jazz music with hors d’oeuvres and drinks. 

 

ISMIR Banquet and Jam Session 

The banquet will happen Wednesday September 26th as a Seine river cruise buffet(with 

views over all the most famous Paris buildings). The cruise dock will be at the root of the 

Eiffel tower. The cruise will be concluded with the first ever ISMIR Jam Session on a boat. 
 

 

Host City 
 

Paris is the capital and most populous city of France. Situated on the river Seine in the north 

of the country, it is in the center of the Île-de-France region, also known as the région 

parisienne, "Paris Region". It is home for the most visited art museum in the world, the 

Louvre, as well as the Musée d'Orsay, noted for its collection of French Impressionist art, and 

the Musée National d'Art Moderne, a museum of modern and contemporary art. The notable 

architectural landmarks of Paris include Notre Dame Cathedral (12th century); the Sainte-

Chapelle (13th century); the Eiffel Tower (1889); and the Basilica of Sacré-Cœur on 

Montmartre (1914). In 2014 Paris received 22.4 million visitors, making it one of the world's 

top tourist destinations. Paris is also known for its fashion, particularly the twice-yearly Paris 

Fashion Week, and for its haute cuisine, and three-star restaurants.  

 

 

Acknowledgments 
 

We are very proud to present to you the proceedings of ISMIR 2018. The conference 

program was made possible thanks to the hard work of many people including the members 

of the organizing committee, the many reviewers and meta-reviewers from the program 

committee.  

 

Special thanks go to this year’s sponsors: 

 

Platinum Partners: 

● CNRS 
● Deezer 
● Gracenote 
● Native Instruments 
● Pandora 
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● Shazam 
● Smule 
● Spotify 
● Yousician 

 

Gold Partners: 
● iZotope 
● Jukedeck 
● Steinberg 

 

Silver Partners: 

● ACRCloud 
● Adobe 
● FeedForward AI 

 
Bronze Partners: 

● Google 
 

 

We also gratefully acknowledge the sponsors who contributed specifically to Women in 

Music Information Retrieval (WiMIR) initiatives and Student Travel awards: 

● Smule 
● Spotify 
● CCRMA 
● Gracenote 
● iZotope 
● Native Instruments 
● Shazam 
● Steinberg 

 

 

Last but not least, the ISMIR program is possible only thanks to the excellent contributions of 

our community in response to our Call for Participation. The biggest acknowledgment goes 

to you, the authors, reviewers, researchers, and participants of this conference. We wish you a 

productive and memorable stay in Paris. 

 

 

 

 

Emilia Gómez, Universitat Pompeu Fabra, Spain  

Xiao Hu, University of Hong Kong, Hong Kong 

Eric Humphrey, Spotify, USA 

Emmanouil Benetos, Queen Mary University of London, UK 

Program Chairs 

 

Slim Essid, Télécom ParisTech, France 

Geoffroy Peeters, IRCAM, France 
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Keynote Talks 

 





Keynote Talk 1  

 

Drawing sounds: Fourier, Kœnig, and Scott 
 

Patrick Flandrin 

Physics Department 

École Normale Supérieure de Lyon 

 

Abstract 

In his seminal work, first published in 1811, Joseph Fourier was primarily concerned with the 

building of an analytic theory of heat, but it was realized soon after that the expansion 

methods he developed for this purpose had potential applications far beyond, in physics as 

well as in mathematics. This was in particular the case for sounds with, in the middle of the 

XIXth century, a quest for graphical representations in time and/or in frequency, thanks to 

dedicated devices. One apparatus designer, Rudolph Kœnig, was particularly instrumental in 

such studies, in the two domains. On the one hand, he built an actual Fourier analyzer based 

on resonators, manometric flames and mirrors. On the other hand, he collaborated with 

Édouard-Léon Scott de Martinville on his project of a « phonautograph » that, in 1857, 

permitted the first ever recording of a human voice in the form of a graph on a paper sheet. 

Whereas Scott’s objective was transcription and not restitution, some of his sound graphs 

have been recently scanned and digitized, allowing us to actually hear him singing. 

 

Beyond celebrating this year the 250th birthday of Fourier and reviving the forgotten memory 

of Scott, intertwining those complementary approaches via Kœnig is believed to offer a way 

of revisiting issues such as the physical significance of Fourier modes, or the questionable 

necessity of their use as features in modern recognition systems. 

 

Biography 

Patrick Flandrin received the engineer degree from ICPI Lyon, France, in 1978, and the 

Doct.-Ing. and Docteur d’État degrees from INP Grenoble, France, in 1982 and 1987, 

respectively. He joined CNRS in 1982, where he is currently Research Director. Since 1991, 

he has been with the Signals, Systems and Physics Group, within the Physics Department at 

ENS de Lyon, France. He is currently President of GRETSI, the French Association for 

Signal and Image Processing. His research interests include mainly nonstationary signal 

processing (with emphasis on time-frequency and time-scale methods), scaling stochastic 

processes and complex systems. He authored two monographs in those areas, the most recent 

one being Explorations in Time-Frequency Analysis (Cambridge University Press, 2018). Dr. 

Flandrin was awarded the Philip Morris Scientific Prize in Mathematics (1991), the SPIE 

Wavelet Pioneer Award (2001), the Prix Michel Monpetit from the French Academy of 

Sciences (2001), the Silver Medal from CNRS (2010), and the Technical Achievement 

Award from the IEEE Signal Processing Society (2017). Past Distinguished Lecturer of the 

IEEE Signal Processing Society (2010-2011), he is a Fellow of the IEEE (2002) and of 

EURASIP (2009), and he has been elected member of the French Academy of Sciences in 

2010. 
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Keynote Talk 2  

 

Using Data and Machine Learning to Support Human 

Musical Practices 
 

Rebecca Fiebrink  

Department of Computing 

Goldsmiths, University of London 

 

Abstract 

It’s 2018, and machine learning seems to suddenly be everywhere: playing Go, driving cars, 

serving us targeted advertising. Machine learning can compose new folk tunes and synthesise 

new sounds. What does this mean for those of us who compose or perform new music, or 

who create new interactions with sound? What does our future hold, besides sitting at home 

all day listening to algorithmically generated music after robots take our jobs? 

 

In this talk, I’ll invite you to consider what I believe to be a more important and interesting 

question: How can we instead use machine learning to better support human creative 

activities? I’ll describe some highlights from my own research and others', including using 

machine learning and related techniques to support new approaches to musical instrument 

design, to enable latency-free networked musical performance and personalised audience 

experiences, and to enable a much broader range of people—from software developers to 

children to music therapists—to build new musical and sonic interactions. I’ll discuss how 

machine learning can support human creative practices, for instance by enabling faster 

prototyping and exploration of new technologies (including by non-programmers), by 

supporting greater embodied engagement in design, and by changing the ways that creators 

are able to think about the design process and about themselves. I’ll discuss how these 

findings inform new ways of thinking about what machine learning is good for, how to make 

more useful and usable creative machine learning tools, how to teach creative practitioners 

about machine learning, and what the future of human creative practice might look like. 

 

Biography 

Dr. Rebecca Fiebrink is a Senior Lecturer at Goldsmiths, University of London. Her research 

focuses on designing new ways for humans to interact with computers in creative practice. As 

both a computer scientist and a musician, much of her work focuses on applications of 

machine learning to music: for example, how can machine learning algorithms help people to 

create new musical instruments and interactions? How does machine learning change the 

type of musical systems that can be created, the creative relationships between people and 

technology, and the set of people who can create new technologies? Much of Fiebrink’s work 

is also driven by a belief in the importance of inclusion, participation, and accessibility. She 

works frequently with human-centred and participatory design processes, and she is currently 

working on projects related to creating new accessible technologies with people with 

disabilities, designing inclusive machine learning curricula and tools, and applying 

participatory design methodologies in the digital humanities. 

 

Fiebrink is the developer of the Wekinator, open-source software for real-time interactive 

machine learning whose current version has been downloaded over 10,000 times. She is the 

creator of a MOOC titled “Machine Learning for Artists and Musicians,” which launched in 
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2016 on the Kadenze platform. She was previously an Assistant Professor at Princeton 

University, where she co-directed the Princeton Laptop Orchestra. She has worked with 

companies including Microsoft Research, Sun Microsystems Research Labs, Imagine 

Research, and Smule. She has performed with a variety of musical ensembles, including as a 

laptopist in Sideband and Squirrel in the Mirror, the principal flutist in the Timmins 

Symphony Orchestra, and the keyboardist in the University of Washington computer science 

rock band "The Parody Bits.” She holds a PhD in Computer Science from Princeton 

University. 
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Tutorial 1 

 

Open Source and Reproducible MIR Research 
 

Brian McFee and Thor Kell 
 

Abstract 

The goal of this tutorial is to provide hands-on, practical training for MIR researchers to learn 

modern tools for improving the quality of their research software. 

 

We will provide a project template repository, which we will use as scaffolding to 

demonstrate practices and techniques including version control, continuous integration, 

automatic documentation, environments & software dependency tracking, and packaging & 

distribution. While many of the techniques we will cover are independent of language or 

programming environment, the practices are best demonstrated by example, and we expect 

Python to be the most accessible and generally useful language for the expected attendees. 

 

The tutorial will begin with a brief introduction to version control with git and GitHub. We 

will only cover the basics: creating an account, cloning, pushing, and pulling. We will walk 

attendees through the process of making their own copy of the repository, verifying that tests 

and documentation work, implementing some simple functionality, and working with 

automatic testing. The goal of this exercise is to expose attendees to modern development 

practices, so that their software is continuously tested during development. Attendees will 

then learn how to create documentation with Sphinx and automate the process with the 

ReadTheDocs service. We will teach standard documentation style, and provide an exercise 

in which attendees write documentation for a previously undocumented function. We will 

also discuss how to write README files and how to make a package easy for others to use. 

We note that many of the tools we will demonstrate are provided by web services (Travis, 

GitHub, etc.), which have freely available counterparts that can run on local servers (Jenkins, 

8 GitLab, 9 etc.). We will provide pointers to these alternative implementations, but for ease 

of exposition and simplicity, we will stick to the web-based services for the tutorial. 

 

Finally, we will close with a tour of the Python/MIR ecosystem. This part of the tutorial will 

give an overview of the available packages commonly used in MIR research, such as the 

scipy stack, pandas, librosa, mir eval, and jupyter. We will spend some extra time on Jupyter, 

including plotting and sonification, as well as discussing how to save and iterate on 

notebooks. 

 

Brian McFee is a Moore-Sloan Fellow at New York University's Center for Data Science 

and Music and Audio Research Lab (MARL). He received the B.S. degree (2003) in 

Computer Science from the University of California, Santa Cruz, and M.S. (2008) and Ph.D. 

(2012) degrees in Computer Science and Engineering from the University of California, San 

Diego. His work touches on various topics at the intersection of machine learning, 

information retrieval, and audio analysis. He is an active open source software developer, and 

the principal maintainer of the librosa package for music and audio signal processing. His 

favorite genre is "chip-tune", and he likes dogs. 
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Thor Kell earned his B.Sc in Computer Science & Music from the University of Victoria in 

2011, and an M.A. in Music Technology from McGill in 2015. He has worked for 

SoundCloud, The Echo Nest, and is currently an engineer at Spotify. His interests include 

algorithmic music creation as well as track ordering and automatic mixing for DJ sets. His 

favorite genre is “post”, and he likes cats.   
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Tutorial 2 

 

Computational Approaches for Analysis of Non-Western 

Music Traditions 
 

Xavier Serra, Martin Clayton, and Barış Bozkurt 
 

Abstract 

The main goal of this tutorial is to present an overview for computational analysis applied on 

non-Western music traditions and within this context, also discuss the role of musicology 

perspective in Music Information Retrieval. The target audience is researchers and students 

interested in MIR and computational musicology. The tutorial comprises of three parts. 

 

The first two parts are dedicated to critical overview of recent studies with engineering and 

musicology perspective. We will start by presenting some of the relevant problems and 

challenges for analysis of non-Western music traditions that have been studied from an MIR 

perspective. In the second part we discuss some current and potential challenges posed by 

musicological research in diverse musical genres, including in rhythmic analysis. 

 

The last part will present resources created during the CompMusic project, that are openly 

available to the community. It will include demonstrations for accessing non-Western music 

data and processing these data (focusing on intonation and rhythm analysis) with publicly 

available tools. We will consider research corpora from various music traditions: Hindustani 

(North India), Carnatic (South India), Turkish-makam (Turkey), Arab-Andalusian (Maghreb), 

and Beijing Opera (China). While we will focus on a few culture-specific MIR tasks for our 

demonstrations, we will also discuss open research problems that can be studied using these 

datasets. This session would serve as a quick start for students and researchers without prior 

experience in analysis of non-Western music and will provide them a good entry point for 

further investigation. 

 

Xavier Serra is a Professor of the Department of Information and Communication 

Technologies and Director of the Music Technology Group at the Universitat Pompeu Fabra 

in Barcelona. After a multidisciplinary academic education he obtained a PhD in Computer 

Music from Stanford University in 1989 with a dissertation on the spectral processing of 

musical sounds that is considered a key reference in the field. His research interests cover the 

analysis, description and synthesis of sound and music signals, with a balance between basic 

and applied research and approaches from both scientific/technological and 

humanistic/artistic disciplines. Dr. Serra is very active in promoting initiatives in the field of 

Sound and Music Computing at the local and international levels, being involved in the 

editorial board of a number of journals and conferences and giving lectures on current and 

future challenges of the field. He has been awarded an Advanced Grant of the European 

Research Council to carry out the project CompMusic aimed at promoting multicultural 

approaches in music computing research which produced the resources this tutorial will 

present. 

 

Martin Clayton is Professor in Ethnomusicology in Durham University. He studied at the 

School of Oriental and African Studies (SOAS) in London, where he obtained degrees in 

Music and Hindi (BA, 1988) and Ethnomusicology (PhD, 1993). His research interests 
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include Hindustani (North Indian) classical music, rhythmic analysis, musical entrainment 

and embodiment, comparative musicology and early field recordings, British-Asian music 

and Western music in India. He currently directs the research project Interpersonal 

Entrainment in Music Performance, a collaborative, multidisciplinary effort to understand 

ensemble sychronisation and coordination cross-culturally. 

 

Barış Bozkurt is a Post-doctoral researcher in the Music Technology Group at the 

Universitat Pompeu Fabra in Barcelona. In the first phase of his research career, he dedicated 

to development of signal processing algorithms for speech analysis and synthesis. He has 

obtained his PhD degree in 2005 from Faculte Polytechnique De Mons, Belgium and also 

worked in speech industry after his PhD. Since 2007, he has been teaching in Electrical 

Engineering and Computer Science departments, and carrying research in the fields of audio 

signal processing and computational musicology. 
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Tutorial 3 
 

Statistical Analysis of Results in Music Information 

Retrieval: Why and How 
 

Julián Urbano and Arthur Flexer 
 

Abstract 

Nearly since the beginning, the ISMIR and MIREX communities have promoted rigor in 

experimentation through the creation of datasets and the practice of statistical hypothesis 

testing to determine the reliability of the improvements observed with those datasets. In fact, 

MIR researchers have adopted a certain way of going about statistical testing, namely non-

parametric approaches like the Friedman test and multiple comparisons corrections like 

Tukey’s. In a way, they have become a standard of reporting and judging results for 

researchers, reviewers, committees, journal editors, etc. It is nowadays more frequent to 

require statistically significant improvements over a baseline with a well-established dataset. 

 

But hypothesis testing can be very misleading if not well understood. To many researchers, 

especially newcomers, even the simpler analyses and tests are seen as a black box where one 

puts performance scores and gets a p-value which, as they are told, must be smaller than 0.05. 

Therefore, significance tests are in part responsible of determining what gets published, what 

research lines to follow, and what project to fund, so it is very important to understand what 

they really mean and how they should be carried out and interpreted. We will also focus on 

experimental validity, and will show how a lack of internal or external validity, even if 

experiments are reliable and repeatable and hypothesis testing is done correctly, can render 

even your best results invalid. Problems discussed include adversarial examples or the lack of 

inter-rater agreement when annotating ground truth data. 

 

The goal of this tutorial is to help MIR researchers and developers get a better understanding 

of how these statistical methods work and how they should be interpreted. Starting from the 

very beginning of the evaluation process, it will show that statistical analysis is always 

required, but that too much focus on it, or the incorrect approach, is just harmful. The tutorial 

will attempt to provide better insight into statistical analysis of results, present better 

solutions and guidelines, and point the attendees to the larger but ignored problems of 

evaluation and reproducibility in MIR. 

 

The work presented in this tutorial was supported by the Vienna Science and Technology 

Fund (WWTF, project MA14-018). 

 

The work presented in this tutorial was supported by the European Commission H2020 

project TROMPA (770376-2). 

 

Julián Urbano is an Assistant Professor at Delft University of Technology, The Netherlands. 

His research is primarily concerned with evaluation in IR, working in both the music and text 

domains. Current topics of interest are the application of statistical methods for the 

construction of datasets, the reliability of evaluation experiments, statistical significance 

testing for IR, low-cost evaluation and stochastic simulation for evaluation. He has published 

over 50 research papers in related venues like Foundations and Trends in IR, the IR Journal, 
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the Journal of Multimedia IR, ISMIR, CMMR, ACM SIGIR, ACM CIKM and ECIR, 

winning two best paper awards and a best reviewer award. He has been active in the ISMIR 

community since 2010, both as author and PC member, and is also co-organizer of the 

MediaEval AcousticBrainz task. He is reviewer for other conferences and journals, such as 

ACM CIKM, HCOMP, IEEE TASLP, IEEE MM, ACM TWEB, IEEE TKDE or the 

Information Sciences journal. 

 

Arthur Flexer is a senior researcher, project manager and vice-head at the `Intelligent Music 

Processing and Machine Learning Group’ of the Austrian Research Institute for Artificial 

Intelligence (OFAI). He has twenty-five years of experience in basic research on machine 

learning with an emphasis on applications to music in the last twelve years. He holds a PhD 

in psychology which provides him with the necessary background concerning design and 

evaluation of experiments. He has published comprehensively on the role of experiments and 

on problems of ground truth and inter-rater agreement, all in the field of MIR. He is author 

and co-author of more than 80 peer-reviewed articles. He has been active in the ISMIR 

community since 2005 and has also published in related venues like DAFx, SMC, ECIR, 

Journal of Machine Learning Research and Journal of New Music Research. He is a member 

of the editorial board of the Transactions of the International Society for Music Information 

Retrieval (TISMIR).  
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Tutorial 4 
 

Music Separation with DNNs: Making It Work 
 

Antoine Liutkus and Fabian-Robert Stöter 
 

Abstract 

This tutorial concerns music source separation, that we also call music demixing, with a 

resolute focus on methods using DNN. 

• In an introductory part, we will motivate the tutorial by explaining how music separation 

with DNN emerged with data-driven methods coming from machine-learning or image 

processing communities. This comes with machine-learning tricks to make methods 

work in practice. Meanwhile, many audio processing good practices are often forgotten 

or not correctly applied, although they are mandatory for good performance. 

• In a second part, we present and discuss the few concepts that are mandatory to design a 

source separation method. Each point will firstly be the focus of screencasting from an 

interactive notebook session that all the audience will be invited to, and then will also be 

explained with a theoretical presentation when appropriate. The whole tutorial will be 

thus split into practical hands-on sessions using online interactive Python sessions and 

more classical theoretical insights. 

• The third part of the tutorial provides some feedback on what seems to be important to 

get good performance in practice, with a focus on the training stage. On the one hand, 

many of the tricks discussed there are not often discussed in papers because a lot of them 

are negative results that are hard to publish: some interesting ideas that turn out 

ineffective yet. On the other hand, we also show how some very simple things make a 

huge difference in practice. 

• In the following part, we pick one single system, resulting from the previous discussion, 

and show how its performance can be dramatically improved by using just a few simple 

tricks at test time, including resynthesis methods, filtering tricks, and how to go stereo. 

 

This tutorial is first targeted at PhD students and at engineers, that want to implement audio 

demixing methods in practice and to achieve state of the art performance while keeping 

highly readable code. Second, by showing how pytorch enables easy design and debugging, 

including new cost functions, architectures, etc., it will hopefully be of interest to researchers 

wondering how to do actual investigations on audio with DNNs, without being just users of 

high-level black-box systems. 

 

Antoine Liutkus received the State Engineering degree from Télécom ParisTech, France, in 

2005, and the M.Sc. degree in acoustics, computer science and signal processing applied to 

music (ATIAM) from the Université Pierre et Marie Curie (Paris VI), Paris, in 2005. He 

worked as a research engineer on source separation at Audionamix from 2007 to 2010 and 

obtained his PhD in electrical engineering at Télécom ParisTech in 2012. He is currently 

researcher at Inria, France. His research interests include audio source separation and 

machine learning. 

 

Fabian-Robert Stöter received the diploma degree in electrical engineering in 2012 from 

the Leibniz Universität Hannover and worked towards his Ph.D. degree in audio signal 

processing in the research group of B. Edler at the International Audio Laboratories Erlangen, 
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Germany. He is currently researcher at Inria, France. His research interests include 

supervised and unsupervised methods for audio source separation and signal analysis of 

highly overlapped sources.   
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Tutorial 5 
 

Deep Learning for MIR 
 

Alexander Schindler, Thomas Lidy, and Sebastian Böck   
 

Abstract 

Deep Learning has become state of the art in visual computing and continuously emerges into 

the Music Information Retrieval (MIR) and audio retrieval domain. To bring attention to this 

topic we provide an introductory tutorial on deep learning for MIR. Besides a general 

introduction to neural networks, the tutorial covers a wide range of MIR relevant deep 

learning approaches. Convolutional Neural Networks are currently a de-facto standard for 

deep learning based audio retrieval. Recurrent Neural Networks have proven to be effective 

in onset detection tasks such as beat or audio-event detection. Siamese Networks have shown 

to be effective in learning audio representations and distance functions specific for music 

similarity retrieval. We introduce these different neural network layer types and architectures 

on the basis of standard MIR tasks such as music classification, similarity estimation and 

onset detection. We will incorporate both academic and industrial points of view into the 

tutorial. The tutorial will be accompanied by a Github repository for the presented content as 

well as references to state of the art work and literature for further reading. This repository 

will remain public after the conference. 

 

Alexander Schindler is member of the Music Information Retrieval group at the Technical 

University since 2010 where he actively participates in research, various international 

projects and currently finishes his Ph.D on audio-visual analysis of music videos. He 

participates in teaching MIR, machine learning and DataScience. Alexander is currently 

employed as scientist at the AIT Austrian Institute of Technology where he is responsible for 

establishing a deep learning group. In various projects he focusses on deep-learning based 

audio-classification, audio event-detection and audio-similiarity retrieval tasks. 

 

Thomas Lidy has been a researcher in music information retrieval in combination with 

machine learning at TU Wien since 2004. Since 2015, he has been focusing on how Deep 

Learning can further improve music & audio analysis, winning 3 international benchmarking 

contests. He is currently the Head of Machine Learning at Musimap, a company that uses 

Deep Learning to analyze styles, moods and emotions in the global music catalog, in order to 

create emotion-aware search & recommender engines that empower music supervisors to find 

the music for their needs and music streaming platforms to deliver the perfect playlists 

according to people's mood. 

 

Sebastian Böck received his diploma degree in electrical engineering from the Technical 

University in Munich in 2010 and his PhD in computer science from the Johannes Kepler 

University Linz. He continued his research at the Austrian Research Institute for Artificial 

Intelligence (OFAI) and recently also joined the MIR team at the Technical University of 

Vienna. His main research topic is the analysis of time event series in music signals, with a 

strong focus on artificial neural networks. 
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Tutorial 6 
 

Fundamental Frequency Estimation in Music  
 

Rachel Bittner, Alain de Cheveigné, and Johanna Devaney  
 

Abstract 

This tutorial will cover the core concepts in fundamental frequency estimation, starting with 

the monophonic case and building up to the polyphonic case. Topics will include pitch 

perception, common algorithms, data and annotation, and evaluation metrics. This tutorial 

aims to provide the audience with an understanding of the challenges, the common 

approaches, and the open problems in f0 estimation, as well as the potential applications of f0 

estimation to transcription, music performance analysis, and source separation problems. 

 

Rachel Bittner is a Research Scientist at Spotify in New York City, and recently completed 

her Ph.D. at the Music and Audio Research Lab at New York University under Dr. Juan P. 

Bello. Previously, she was a research assistant at NASA Ames Research Center working with 

Durand Begault in the Advanced Controls and Displays Laboratory. She did her master’s 

degree in math at NYU’s Courant Institute, and her bachelor’s degree in music performance 

and math at UC 2 Irvine. Her research interests are at the intersection of audio signal 

processing and machine learning, applied to musical audio. Her dissertation work applied 

machine learning to various types of fundamental frequency estimation. 

 

Alain de Cheveigné trained in physics, maths and neuroscience at Université Pierre et Marie 

Curie, and is currently Senior Scientist with the Centre National de la Recherche Scientifique 

(CNRS) in France, affiliated with Ecole normale supérieure (Paris) and UCL (London). He is 

active in psychophysics and modeling of auditory perception, and data processing for audio 

and electrophysiological signals. He is author of the widely used YIN method for f0 

estimation, and of several widely cited chapters on pitch perception. He currently heads a 

H2020 project on the cognitive control of hearing aids. 

 

Johanna Devaney is an Assistant Professor of Music Technology at Brooklyn College, City 

University of New York and the speciality chief editor for the Digital Musicology section of 

Frontiers in Digital Humanities. Previously she taught in the Music Technology program at 

NYU Steinhardt and the Music Theory and Cognition program at Ohio State University. 

Johanna completed her post-doc at the Center for New Music and Audio Technologies 

(CNMAT) at the University of California at Berkeley and her PhD in music technology at the 

Schulich School of Music of McGill University. She also holds an MPhil degree in music 

theory from Columbia University, as well as an MA in composition from York University in 

Toronto. Johanna’s research seeks to understand how humans engage with music, primarily 

through performance, with a particular focus on intonation in the singing voice, and how 

computers can be used to model and augment our understanding of this engagement. 
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Tutorial 7 
 

Optical Music Recognition for Dummies 
 

Jorge Calvo-Zaragoza, Jan Hajič jr, Alexander Pacha, and Ichiro Fujinaga 
 

Abstract 

Optical Music Recognition (OMR) is a field of research that investigates how to 

computationally decode music notation in documents. As most musical compositions in the 

Western tradition have been written rather than recorded, bringing this music into the digital 

domain can significantly diversify the sources for MIR, digital musicology, and more broadly 

lower the costs of introducing previously unheard works to audiences worldwide. While 

OMR has been regarded as a largely unsolved problem, this situation has recently shifted: 

new large-scale datasets and tools have been released, methods based on deep learning are 

successfully dealing with musical symbol detection and partial end-to-end recognition, and 

applications of OMR such as retrieval have started migrating from article introductions to the 

Results sections. 

Our tutorial will present this new and rather exciting state of the art in OMR. We will 

demonstrate recent methods and results, introduce the audience to the tools and datasets used 

to achieve them, and showcase the opportunities for using OMR. Finally, we will introduce 

the current challenges in OMR. 

After the tutorial, the participants should be familiar with state-of-the-art OMR research, and 

should be able to start using existing tools to integrate OMR into their own work, whether in 

MIR or (digital) musicology. For those interested in working on OMR themselves, the 

tutorial should provide a head start. The tutorial will be hands-on: if you wish to get the most 

out of it, be ready to follow jupyter notebooks. 

 

Jorge Calvo-Zaragoza received his PhD degree in computer science from the University of 

Alicante (Spain) in 2016. He joined the Single Interface for Music Score Searching and 

Analysis (SIMSSA) project as Postdoctoral Fellow in 2017. He is currently the recipient of a 

Juan de la Cierva postdoctoral grant from the Spanish government. His scientific contribution 

has focused so far on ancient manuscripts, in notations like neumatic or mensural. He has 

also made important contributions to the pre-processing of music score images such as the 

development of algorithms to separate the elementary graphic layers of the document (i.e., 

staff, notes, text, or background). He has authored more than 20 papers about Optical Music 

Recognition in peer-reviewed journals and international conferences. 

 

Jan Hajič jr. is a Ph.D. student at Charles University (Czech Republic), where he is working 

on Optical Music Recognition and Deep Learning since 2016 at the Center of Excellence for 

Multimodal Data Interpretation project. He has especially contributed to infrastructure for 

OMR, creating e.g. the first full-pipeline OMR dataset (MUSCIMA++). He also has a strong 

musical background, having studied composition at the Janáček Academy of Music and 

Performing Arts. 
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Alexander Pacha received his M.Sc. with honors in computer science from the TUM, 

University of Augsburg and LMU Munich (Germany) in 2013. He is a professional software 

engineer, trainer for clean code programming and a passionate musician and composer. Since 

2017 he is a PhD student at the TU Wien (Austria) working on Optical Music Recognition 

and Deep Learning. 

 

Ichiro Fujinaga is an Associate Professor and the Chair of the Music Technology Area at the 

Schulich School of Music at McGill University. He has Bachelor's degrees in 

Music/Percussion and Mathematics from University of Alberta and a Master's degree in 

Music Theory and a Ph.D. in Music Technology from McGill. He is currently directing a 

large optical music recognition and analysis project called Single Interface for Music Score 

Searching and Analysis (SIMSSA). 
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Tutorial 8 
 

Overview and New Challenges of Music Recommendation 

Research in 2018 
 

Markus Schedl, Peter Knees, and Fabien Gouyon   
 

Abstract 

The current revolution in the music industry represents great opportunities and challenges for 

music recommendation systems. Recommendation systems are now central to music 

streaming platforms, which are rapidly increasing in listenership and becoming the top source 

of revenue for the music industry. It is increasingly more common for a music listener to 

simply access music than to purchase and own it in a personal collection. In this scenario, 

recommendation calls no longer for a one-shot recommendation for the purpose of a track or 

album purchase, but for a recommendation of a listening experience, comprising a very wide 

range of challenges, such as sequential recommendation, or conversational and contextual 

recommendations. Recommendation technologies now impact all actors in the rich and 

complex music industry ecosystem (listeners, labels, music makers and producers, concert 

halls, advertisers, etc.). 

To acknowledge these developments, we give an introductory tutorial providing an overview 

of music recommendation research, as well as the challenges it faces today. We focus on 

three use cases: automatic playlist generation, context-aware music recommendation, and 

recommendation in the creative process of music making. 

 

Markus Schedl is an Associate Professor at the Johannes Kepler University Linz / 

Department of Computational Perception. He graduated in Computer Science from the 

Vienna University of Technology and earned his Ph.D. from the Johannes Kepler University 

Linz. Markus further studied International Business Administration at the Vienna University 

of Economics and Business Administration as well as at the Handelshögskolan of the 

University of Gothenburg, which led to a Master's degree. His main research interests include 

web and social media mining, information retrieval, multimedia, and music information 

research. He has been an active member of the MIR community since 14 years and since then 

co-authored almost 200 peer-reviewed research articles. 

Peter Knees is Assistant Professor of the Faculty of Informatics, TU Wien, Austria. For over 

a decade he has been an active member of the ISMIR community, reaching out to the related 

areas of multimedia, text IR, and recommender systems. Apart from serving on the program 

committees of major conferences in the field, he has organized several workshops on topics 

of media retrieval. He is an experienced teacher of graduate-level courses on recommender 

systems and information retrieval and has given tutorials on music information retrieval at 

RecSys, SIGIR, ECIR, RuSSIR, and the Indonesian Summer School on MIR. 

The presenter Peter Knees was supported by the Austrian Research Promotion Agency (FFG) 

under Bridge 1 grant number 858514 (SmarterJam). 
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Fabien Gouyon is Principal Scientist at the music streaming service Pandora, where he does 

applied research on personalized music recommendation, and works with the Music Genome 

Project. Before joining Pandora, he received a PhD in Computer Science while working in 

the Music Technology Group in the University Pompeu Fabra in Barcelona, and was a co-

founder of Barcelona Music and Audio Technologies (BMAT), worked in the Austrian 

Research Institute for Artificial Intelligence in Vienna, and started and led the Sound and 

Music Computing Group while teaching at the University of Porto. He was President of 

ISMIR in 2016-2017. 
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A CONFIDENCE MEASURE FOR KEY LABELLING

Roman B. Gebhardt
Audio Communication Group,

TU Berlin
r.gebhardt@campus.

tu-berlin.de

Athanasios Lykartsis
Audio Communication Group,

TU Berlin
athanasios.lykartsis@

tu-berlin.de

Michael Stein
Native Instruments GmbH
michael.stein@

native-instruments.de

ABSTRACT

We present a new measure for automatically estimat-
ing the confidence of musical key classification. Our ap-
proach leverages the degree of harmonic information held
within a musical audio signal (its “keyness”) as well as the
steadiness of local key detections across the its duration
(its “stability”). Using this confidence measure, musical
tracks which are likely to be misclassified, i.e. those with
low confidence, can then be handled differently from those
analysed by standard, fully automatic key detection meth-
ods. By means of a listening test, we demonstrate that our
developed features significantly correlate with listeners’
ratings of harmonic complexity, steadiness and the unique-
ness of key. Furthermore, we demonstrate that tracks
which are incorrectly labelled using an existing key detec-
tion system obtain low confidence values. Finally, we in-
troduce a new method called “root note heuristics” for the
special treatment of tracks with low confidence. We show
that by applying these root note heuristics, key detection
results can be improved for minimalistic music.

1. INTRODUCTION

A major commercial use case of musical key detection is
its application in DJ software programs including Native
Instruments’ Traktor 1 and Pioneer’s rekordbox 2 . It rep-
resents the basis for harmonic music mixing [9], a DJing
technique which is mostly bounded to electronic dance
music (EDM). However, the concept of musical key is
not universally applicable to all styles of music, especially
those of a minimalistic nature, which is often the case in
(EDM) [7, 10, 21]. A particular challenge of key detec-
tion in EDM is that the music often does not follow clas-
sic Western music standards in terms of its harmonic com-
position and progression. This applies to a broad range
of contemporary EDM music which can be composed in

1 https://www.native-instruments.com/de/
products/traktor/

2 https://rekordbox.com/de/
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a chromatic space or, if following classic characteristics,
uses more “exotic” modes such as e.g. Phrygian [19],
which is actually predominant for certain genres such as
Acid House, Electronic Body Music (EBM) and New Beat,
which, since the 1980s represent a prominent source of in-
spiration for contemporary EDM. A further difficulty is the
tendency of certain electronic music to be strongly percus-
sive and very minimalistic in terms of its harmonic content
[5]. In fact, following pioneering groups like Kraftwerk,
melodic minimalism is a main characteristic of techno mu-
sic [13]. Today, a wide range of EDM productions are
exclusively percussion-based. The lack of harmonic in-
formation clearly leads to problems in assigning an unam-
biguous key label, which is still the most widely used way
to describe a track in its harmonic composition [21].

In the recent years, confidence measures have gained
interested in the field of MIR, namely related to tempo es-
timation [8,17]. The described scenario motivates to estab-
lish such measure for key detection tasks. Crucial factors
to consider are the degree to which a musical audio signal
conforms to the concept of musical key, and furthermore to
explore where a single key persists throughout a recording.
Being able to capture this information automatically could
therefore serve as an indicator to predict potential misclas-
sifications. It may also be used to define a threshold to
decide whether to label a track with a key or alternatively
simply with a root note [10], within a genre-specific frame-
work [21] or in spatial coordinates [2,3,12]. Alternatively,
multiple key labels could be assigned for tracks contain-
ing key changes [16]. We collate this information to derive
a key detection confidence measure and present an alter-
native means for handling music where a traditional key
assignment is not be possible. The remainder of this paper
is structured as follows: in Section 2, we present the de-
velopment of the confidence features as well as a special
key detection method for tracks of a minimalistic nature.
Section 3 outlines our evaluation of the developed features
and the special treatment of low confidence scoring tracks.
Finally, we conclude our work and provide an outlook for
future work in Section 4.

2. METHOD

To establish the confidence measure, we follow two hy-
potheses and for each we develop a feature: First, there
must be sufficient harmonic information within the signal
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to reliably determine a key, i.e., it would be inappropriate
to label a track consisting exclusively of percussive con-
tent with a meaningful key. Consequently, we denote our
first confidence feature as keyness to indicate the amount
of harmonic content within a musical piece. Second, we
state that any local key changes throughout the duration
of a track will inevitably lead to a discrepancy between a
given global label and at least some regions. Our second
confidence feature, which measures the steadiness of key
information, will be referred to as stability. The develop-
ment of both features is discussed in the following subsec-
tions.

2.1 Keyness

Various approaches have been taken to the problem of as-
signing a musical key designation based on the information
retrieved from an audio signal. A straightforward method
would be to follow the well-known key template approach
introduced by Krumhansl et al. [15], where the correlation
of an input signal’s chroma distribution with the chosen
key’s template could be used as a keyness measure. Of-
ten, these templates are not needed, for instance when the
key detection is handled within a tonal space model like
Chew’s Spiral Array [3] or Harte et al.’s Tonal Centroid
Space [12]. To avoid the necessity of computing the corre-
lations and to keep our approach most simple, we bypass
this option and retrieve keyness information directly from
the chromagram. For this, we use a chromagram represen-
tation which empahsizes tonal content, based on a percep-
tually inspired filtering process in [10]. This procedure re-
moves energy in the chromagram evoked by noisy and/or
percussive sounds, which are especially present in EDM.
We then apply Chuan et al.’s fuzzy analysis technique [4]
to further “clean” the chromagram. Figure 1 shows the
resulting chromagram of an EDM track 3 with a tempo-
ral resolution of 250ms and below it, the curve resulting
from the sum of the frame-wise individual chroma energies
E(c, t) ranging from 0 to 1 for each chroma c at time-frame
t:

Ec(t) =
12∑
c=1

E(c, t). (1)

We denote Ec(t), the chroma energy. By inspection of
the resulting curve, a raw subdivision of the track into
three partly recurring harmonic structures can be observed:
The first with a chroma energy equal (or close to) zero is
present in the purely percussive regions which accord to
our represent regions of low keyness. The second structure
describes the G# power chord (where G# is the root and
D# the fifth), which reaches chroma energy values of 1 to
approximately 1.75 for Ec(t). The power chord is widely
used in EDM productions and is ambiguous in terms of
the mode of its tonic’s key due to the third missing. Fi-
nally, the third structure in the middle of the track holds a

3 Praise You 2009 (Fatboy Slim vs. Fedde Le
Grand Dub): https://www.discogs.com/de/
Fatboy-Slim-vs-Fedde-Le-Grand-Praise-You-2009/
release/1967533
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Figure 1. Chromagram (upper plot) and local keyness
curve (lower plot) of an EDM track derived from the
framewise energies of the chromagram.

chroma energy level of approximately 4 which far exceeds
the other regions. In fact, it is the only region that contains
a sufficient number of notes present to use as the basis for
detecting the key. As this representative example demon-
strates, the straightforward calculation of chroma energy
can be informative about how much harmonic information
is contained in a musical audio signal.

To obtain a global keyness measure, we average the
chroma energy vector Ec(t) over the full duration T of the
track and obtain the keyness value, K:

K =
1

T
·

T∑
t=0

Ec(t). (2)

2.2 Stability

The second confidence feature, stability, is derived from
the steadiness of key classifications throughout the full
duration of the track. For this purpose, we take into ac-
count the vector of local key detections using a template-
based approach on temporal frames with 250ms length
and 125ms hop-size. In DJ software which was the
framework of our research, the 24 key classes are usu-
ally displayed in the 12-dimensional subspace of so-called
“Camelot numbers” [6] each of which corresponds to a cer-
tain “hour” on the circle of fifths. This implies that a major
key and its relative minor are considered equivalent. The
middle plot of Figure 2 shows the progression of Camelot
classifications over time. It is important to note that both
the vertical axis of the middle plot and the horizontal axis
of the lower histogram plot are circular i.e. the chroma has
been “wrapped”. In our example, the most frequently de-
tected Camelot number is 1 (B/G# m) which is followed
by its direct neighbour one fifth above, 2 (F# / Ebm). The
right tail of the distribution fades out with small counts
for numbers 3 (Db/Bbm) and 4 (Ab/Fm), whereas the left
tail’s only present value is 11 (A/F# m). For a high de-
gree of stability, we would expect a low angular spread of
camelot detections throughout, which we compute in terms
of the circular variance V (cam) of the distribution accord-
ing to [1] . In terms of a numeric measure for the stability
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C#
F#
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G#

Figure 2. Local camelot decisions (middle plot) and his-
togram of absolute camelot counts (lower plot). The num-
ber describes the “hour” on the circle of fifths.

of the whole track, we define the confidence feature of sta-
bility, S, as:

S = 1− V (cam), (3)

with V (cam) depicting the circular variance of the camelot
vector. Thus, the stability of a track will be 0 for a uniform
histogram and 1 for maximum stability (where only one
camelot number is detected throughout). In more com-
plex compositions in classical music, we can expect key
changes throughout musical pieces. However, these key
changes are usually small moves on the circle of fifths and
consequently small steps on the Camelot wheel (e.g. just
one “hour” for a fifth). When using the circular histogram,
these key changes would not have a strong impact on the
variance of the distribution and would therefore exert only
a small influence on the stability feature. In the special
case of pop or EDM, key modulation is mostly absent [7].

2.3 An Overall Confidence Feature

In the two previous subsections, we discussed the develop-
ment of two features to measure the keyness and stability of
musical audio, both representing independent approaches
to find a quantitative measure for the overall confidence
of a key detection. As discussed, the two features focus
on different characteristics of the music signal. While the
keyness measure describes the amount of harmonic infor-
mation held by a track, the stability feature focusses on the
steadiness of key detections throughout a whole track. Col-
lectively these features will penalise the presence of key
changes within a track as well as “random” labels from
a key classification system caused by harmonic structures
which don’t conform to the classic major / minor distri-
bution. We state that, for a “trustworthy”’ key detection

which is informative for harmonic mixing, a given track
should score high for both of these features. Thus, we de-
fine an overall confidence feature as the linear combina-
tion, C, of the subfeatures K and S with variable weight-
ing parameters κ and σ. We quantise K and S and dis-
cretise them individually to evenly distributed percentiles,
resulting in Ck for K and Cs for S. As a result, the lowest
percentile of 1 comprises tracks scoring lower in K (or S
respectively) than 99% of the database which is discussed
in Section 3.2. This is done to ensure an even distribution
of the subfeature values over all tracks as well as to map
both to a range from 1 to 100:

C =
κ · Ck + σ · Cs

κ+ σ
(4)

We consider the choice of κ and σ to be genre-
dependent. For minimalistic music such as EDM, where
we do not expect highly complex harmonic structure or key
changes that would eventually lead to a low score for Cs,
we believe greater emphasis should be given to Ck to filter
e.g. purely percussive tracks. However, for the analysis
of classical music, more importance should be attributed
to the stability feature Cs. Here, we should not expect a
lack of harmonic information, but frequent and “far” key
changes would lead to less clarity about the key the piece
is composed in. In this paper, we set the values of κ = 5
and σ = 2 for the evaluation of a database mainly contain-
ing EDM tracks, however we intend to explore the effect
of modifying these values and genre-specific parameteri-
sations in future work.

2.4 Root Note Heuristics

With the proposed confidence feature, C, it is possible to
determine a threshold below which a key detection should
not be considered reliable. This raises an important ques-
tion of how to treat problematic (i.e. low confidence) tracks
in terms of assigning a key label. One option could be the
use of multiple key labels for tracks with low stability [16]
or to use root note labelling for tracks with low keyness
[10]. Alternatively, for EDM, minimalistic tracks could be
labelled as the root note’s minor key due to the strong bias
towards minor mode in this genre [7,14]. We call this pro-
cedure “root note heuristics” and apply it to tracks whose
keyness falls below a certain threshold. For the case of
root note detection, we first accumulate the chroma ener-
gies E(c, t) over time to obtain a global chroma energy
vector E(c):

E(c) =

T∑
t=0

E(c, t). (5)

To detect the most predominant chroma, and hence root
note, we apply a simple binary template T (c) in which
the referenced chroma and its dominant are given an equal
weight of 1, with all pitch classes set to 0. Consideration
of the fifth interval is made to explicitly take power chords
into account and allow them to point towards their root. We
shift this template circularly by one step for each chroma
value accordingly and calculate the inner product per shift.
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This results in the likelihood R(c) of the chroma c to be
the root of the track:

R(c) =< T (c), E(c) > (6)

Finally, the minor mode of the chroma with the highest
value of R(c) is assigned to the track as a whole.

3. EVALUATION

For an extensive analysis of our developed confidence fea-
tures, we undertook two separate evaluation procedures.
First, to examine the validity of our subfeatures keyness
and stability, we conducted a listening test where we asked
participants to rate a set of musical audio examples accord-
ing to three questions concerning their harmonic content.
Second, we evaluated the degree to which the calculated
confidence score for each single track would be associated
with a given genre label and whether it was detected cor-
rectly by a key detection system and - if not - whether
the error was close to the ground truth key label or not.
Hence, we would then be able to use the confidence score
as a prediction measure for the potential rejection of a key
decision and eventually the special treatment of the cor-
responding tracks. Both approaches are discussed in the
following subsections.

3.1 Listening Test for Subfeature Evaluation

The listening experiment was performed as an online
survey, in which we presented 12 different representative
excerpts 4 of length 120 s which we considered sufficient
to allow the perception of any potential key changes.
These 12 excerpts could be characterised by the following
four properties A - D:

A: Clear and unique key throughout (Track IDs 1, 8, 12)
B: Change in key structure (Track IDs 2, 7, 10)
C: Non-Western melodic content (Track IDs 3, 4, 6)
D: No or little melodic content (Track IDs 5, 9, 11)

After listening to the audio samples, participants were
asked to rate them on a 10-point Likert scale in terms of
their harmonic complexity, i.e. whether the tracks fol-
lowed the major/minor scheme and how clearly they ad-
hered to one unique key throughout. In order to prevent
any bias in the participant ratings, no information about the
developed features was provided. However, a short train-
ing phase was set up before the test to ensure participants
understood the questions they were going to be asked. In
total, we recruited 29 participants (22 male, 7 female) who
self-reported as musically trained. The participants’ ages
ranged from 23 to 66 with an average of 10 years of mu-
sical training. In the following sections, the relatedness of
the ratings with the computed subfeatures Ck, Cs as well
as the overall confidence C will be discussed.

4 A link to the examples will be provided in the camera ready copy.

3.1.1 Keyness

To assess the subfeature of keyness, we asked participants
to rate the audio excerpts according to two questions. With
the first, we aimed to test if the concept of the keyness fea-
ture as a general measure for tonal density or complexity
(not necessarily relating to a key) would prove appropriate:

Q1: “To which degree do you find the presented audio
harmonically complex?”

We hypothesised a positive correlation between the ratings
and the computed values of Ck, however we made no
assumption about the coherence of the ratings with Cs

as harmonically complex excerpts could still be unstable
in harmony or key. The mean ratings as well as the
corresponding feature values C, Ck and Cs are displayed
in the leftmost column of Figure 3. For a measure of
relatedness, we calculated Spearman’s rho correlation
measure for the ratings’ means across participants and
the feature values. With a choice of α = 0.05 as the
level of significance, the observed strong positive corre-
lation (rs = 0.63, p < 0.05) between the ratings and
computed values for the keyness feature Ck supports
our initial hypothesis. However, some outliers can be
identified, for which the formulation of the question
might have been misleading: Excerpt 7 (second rated
from category B) exhibits strong break beat percussion
and a rather chaotic melodic progression with a short
minor mode piano passage, which would contribute to
a low score for Ck. Feedback from some participants
revealed the excerpt was considered as rather challenging,
which caused it to be rated high in terms of complexity.
Excerpt 9 (the highest rated excerpt from category D)
is also mostly percussive with pitched voice samples
and sounds. Its relatively unusual composition might
also have caused some participants to rate it “complex”.
The excerpts from category A consist of quite common,
repetetive chord structures which therefore may not have
been perceived as particularly complex in a musical sense.
However, they all feature a high amount of harmonic
content, and therefore represent “complex” musical
excerpts in line with our keyness definition. As discussed
in 2.1, the keyness feature is derived from the average
amount of tonal information throughout the analysed
signal. We argued that in the case of Western music,
a high amount of tonal information usually indicates
the presence of a major or minor scheme as harmonic
layerings of notes deviating from Western scales rarely
appear [20] and thus a higher density of tonal information
should point towards the clear presence of a musical
key. To examine the validity of this assumption, the
second question of the listening test focussed on whether
the keyness feature could in fact be used as an indicator
for the presence of a major/minor scheme within the audio:

Q2: “To which degree does the presented audio fit the
major/minor scheme?”
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Figure 3. Mean ratings on the questions Q1, Q2 and Q3 for the 12 stimuli and their corresponding feature values C, Ck

and Cs with the respective Spearman correlation coefficients r.

Again, we hypothesised a positive correlation between the
ratings and Ck, but again, not Cs. The results are pre-
sented in the subplots in the middle column of Figure 3.
Our hypothesis regarding Ck was supported with a very
strong positive correlation of rs = 0.90, p < 0.01. Re-
markably, it even exceeds the correlation of the stronger
hypothesis we explored in Q1 regarding its relatedness to
the complexity ratings, as discussed in 3.1.1: Of the four
outliers discussed above, namely one excerpt from cate-
gory D and all the excerpts from category A, all agree
much more strongly with the Ck value. As with Q1, no
significant correlation between the ratings and the values
of Cs was observed.

3.1.2 Stability

To evaluate the stability subfeature Cs, participants were
asked to rate the stimuli according to the question:

Q3: “To which certainty does the audio correspond to one
unique and distinct key?”

We expected the ratings for Q3 to be correlated with the
computed values of Cs, as key changes should results in
lower the ratings and stability. In addition, we also hy-
pothesised a positive correlation to Ck as a lack of har-
monic information could complicate a clear assignment
to one unique key. The subplots in the rightmost col-
umn of Figure 3 show the outcomes of the third ques-
tion. As can be seen, both subfeatures exhibit a signifi-
cant correlation with the mean ratings. While Ck shows
a strong positive correlation with a Spearman coefficient
of rs = 0.77, p < 0.01, the correlation of Cs is even
stronger (rs = 0.81, p < 0.01). The combination of
both in the overall confidence feature C results in an even
higher correlation rs = 0.84, p < 0.01, which fortifies
our choice to combine both features in order to explain the
certainty of a unique key decision and therefore the confi-
dence of a key assignment.

3.2 Evaluation on an annotated dataset

In the second part of our evaluation progress, we tested
how the computed confidence scores relate to genre la-
bels and whether a track’s key classification was correct
or not. We based our analysis on a private commercial
database comprised of 834 tracks consisting mainly of
EDM (697 total) as well as 137 tracks from Harte’s [11]
Beatles dataset with key labels forming the ground truth.
A subset of 101 of the EDM tracks were labelled “Inhar-
monic” and represented tracks that were considered am-
biguous or unclassifiable by musical experts.

3.2.1 Genre Specific Differences

For a first observation, we compare the means of Ck and
Cs for the three different subsets, namely the Beatles, the
“Inharmonic” labelled EDM subset, and the remainder of
the EDM tracks. According to our model, Ck should
be high for the Beatles dataset, since it contains mostly
melodic music. However, we should expect lower values
for the EDM set, following the hypothesis that EDM is of-
ten of a more minimalistic melodic nature. For the subset
of EDM tracks labelled “Inharmonic” we shouldn’t expect
much harmonic information, and hence lows score for Ck.
Alternatively, a lack of clarity about the label might occur
due to the use of a non-Western scale, and would there-
fore result in a low value for Cs. We hypothesised Cs to
reach higher scores for the remaining EDM tracks as we
expected a more stable melodic structure for these than the
Beatles tracks which inherit a number of key changes and
sometimes unconventional harmonic content. The results
in table 1 show that our expectations are confirmed. The
“Inharmonic” subset scores substantially lower in all (sub)-
features, while the Beatles dataset scores high in keyness
whereas the remainder of the EDM dataset achieves high
values in stability.
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Subset Ck Cs C

EDM 49.4 55.8 51.2
EDM Inharmonic 14.3 30.6 19.0
Beatles 82.0 42.1 70.6

Table 1. Confidence score means for the different subsets,
in the range 1 - 100.

3.2.2 Prediction of Misclassification

We aimed to assess whether the the confidence feature
would be an appropriate indicator of the degree to which
an automatic key detection could be considered trustwor-
thy, primilary for the application of harmonic mixing. To
provide automatic estimates of musical key, we used a
key-template based system built into a state-of-the-art DJ
software, which was modified by incorporating the pre-
processing stage as proposed in [10]. Given our equali-
sation of relative keys to equal Camelot numbers as dis-
cussed in 3.1.2, we defined three different labelling cat-
egories: Match for key detections matching the ground
truth label, Fifth for fifth related errors and thus, one
Camelot number away from the ground truth and Other
for detections greater than one Camelot number apart.
Across the 834 tracks, we counted 627 Matches, 117
Fifths and 90 Others. Three hypotheses were put for-
ward: We expected tracks for which our key detection
result matched the ground truth to score higher in con-
fidence than those from both other categories. We were
less sure about the tracks from the Fifth category, but in-
tuitively expected them to score higher than those from
Other. Figure 4 shows the distributions of the confidence
scores C within the three groups. We performed a Welch-
ANOVA which supported this hypothesis with high signif-
icance, F (2, 170.41) = 64.16, p < .001. To test the
mean differences between the three groups, we conducted
a Games-Howell post-hoc analysis which showed signifi-
cant differences between all three pairs for α = 0.01.
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Figure 4. Distributions of the confidence scores C within
the three different labelling categories.

3.2.3 Root Note Heuristics

Finally, we evaluated the special treatment of the “root note
heuristics” introduced in 2.4. For this, we took into consid-
eration the counts of the three labelling categories between

Subset Match Fifth Other

EDM 469 / 468 86 / 85 41 / 43
EDM Inharmonic 50 / 59 17 / 17 34 / 25
Beatles 108 / 108 14 / 14 15 / 15

Table 2. Counts of labelling categories for the three sub-
sets without / with the application of the root note heuris-
tics method.

the different subsets. As a preliminary investigation, we
applied the heuristics to the lowest sixth quantile scoring
tracks. The resulting absolute counts for the labelling cate-
gories are shown in Table 2. While the Beatles and normal
EDM subsets are barely affected, a clear improvement is
achieved within the “Inharmonic” subset. Using the root
note heurestics, the number of correctly detected tracks
could be increased by 18%. Furthermore, we were able
to reduce the number of Other classified errors by 26%.

4. CONCLUSIONS

In this paper, we described the development of a confi-
dence feature for key labelling, as a means to measure the
likelihood of an automatic key classification being correct.
For this, we developed two subfeatures, keyness and stabil-
ity, to estimate the amount of tonal content of musical au-
dio as well as the steadiness of key detections throughout
the full duration of the track respectively. Both subfeatures
were evaluated by means of a listening test. Our analysis
demonstrated high correlations for harmonic complexity,
accordance to the major/minor scheme and the uniqueness
of one key between the participants’ ratings and the de-
veloped features. Furthermore, we showed that our con-
fidence feature can be helpful indicator of cases where an
automatic estimated key label can be trusted. Our confi-
dence measure may also be used as a threshold to switch
between different key detection approaches. To this end,
we introduced a root note heuristics method that can be
used as a special key detection approach for tracks of har-
monically minimalistic nature, and we showed that the ap-
plication of this procedure could positively affect key de-
tection performance. However, the presented root note
heuristics approach is still at an early stage of develop-
ment, therefore these promising results motivate continued
research towards adjusting the threshold and further devel-
opment of alternative key detection methods. This work
has mostly been focussed on EDM. A major area of future
work would therefore be to generalise the key confidence
concept for other genres, where it would be neccessary to
also take into account relative errors instead of considering
only in the Camelot subspace. Also, other possible ways
to use the developed features can be considered: Since the
keyness feature is sequentially analysed over time, this al-
lows inference about individual segments of a track. In
the context of harmonic mixing, this information could be
extremely useful by allowing a DJ to locate appropriate re-
gions for executing the transition between two tracks, thus
avoiding harmonic clashes [9, 18].
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ABSTRACT

Chord recognition systems typically comprise an acoustic
model that predicts chords for each audio frame, and a tem-
poral model that casts these predictions into labelled chord
segments. However, temporal models have been shown to
only smooth predictions, without being able to incorporate
musical information about chord progressions. Recent re-
search discovered that it might be the low hierarchical level
such models have been applied to (directly on audio frames)
which prevents learning musical relationships, even for ex-
pressive models such as recurrent neural networks (RNNs).
However, if applied on the level of chord sequences, RNNs
indeed can become powerful chord predictors. In this paper,
we disentangle temporal models into a harmonic language
model—to be applied on chord sequences—and a chord
duration model that connects the chord-level predictions of
the language model to the frame-level predictions of the
acoustic model. In our experiments, we explore the impact
of each model on the chord recognition score, and show that
using harmonic language and duration models improves the
results.

1. INTRODUCTION

Chord recognition methods recognise and transcribe mu-
sical chords from audio recordings. Chords are highly de-
scriptive harmonic features that form the basis of many
kinds of applications: theoretical, such as computational
harmonic analysis of music; practical, such as automatic
lead-sheet creation for musicians 1 or music tutoring sys-
tems 2 ; and finally, as basis for higher-level tasks such as
cover song identification or key classification. Chord recog-
nition systems face the two key problems of extracting
meaningful information from noisy audio, and casting this
information into sensible output. These translate to acoustic
modelling (how to predict a chord label for each position or
frame in the audio), and temporal modelling (how to create

1 https://chordify.net/
2 https://yousician.com

© Filip Korzeniowski and Gerhard Widmer. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Filip Korzeniowski and Gerhard Widmer. “Improved Chord
Recognition by Combining Duration and Harmonic Language Models”,
19th International Society for Music Information Retrieval Conference,
Paris, France, 2018.

meaningful segments of chords from these possibly volatile
frame-wise predictions).

Acoustic models extract frame-wise chord predictions,
typically in the form of a distribution over chord la-
bels. Originally, these models were hand-crafted and split
into feature extraction and pattern matching, where the
former computed some form of pitch-class profiles (e.g.
[26, 29, 33]), and the latter used template matching or Gaus-
sian mixtures [6, 14] to model these features. Recently,
however, neural networks became predominant for acoustic
modelling [18, 22, 23, 27]. These models usually compute a
distribution over chord labels directly from spectral repre-
sentations and thus fuse both feature extraction and pattern
matching. Due to the discriminative power of deep neural
networks, these models achieve superior results.

Temporal models process the predictions of an acous-
tic model and cast them into coherent chord segments.
Such models are either task-specific, such as hand-designed
Bayesian networks [26], or general models learned from
data. Here, it is common to use hidden Markov mod-
els [8] (HMMs), conditional random fields [23] (CRFs),
or recurrent neural networks (RNNs) [2, 32]. However,
existing models have shown only limited capabilities to
improve chord recognition results. First-order models are
not capable of learning meaningful musical relations, and
only smooth the predictions [4, 7]. More powerful mod-
els, such as RNNs, do not perform better than their first-
order counterparts [24]. In addition to the fundamental flaw
of first-order models (chord patterns comprise more than
two chords) both approaches are limited by the low hier-
archical level they are applied on: the temporal model is
required to predict the next symbol for each audio frame.
This makes the model focus on short-term smoothing, and
neglect longer-term musical relations between chords, be-
cause, most of the time, the chord in the next audio frame
is the same as in the current one. However, exploiting these
longer-term relations is crucial to improve the prediction
of chords. RNNs, if applied on chord sequences, are capa-
ble of learning these relations, and become powerful chord
predictors [21].

Our contributions in this paper are as follows: i) we de-
scribe a probabilistic model that allows for the integration
of chord-level language models with frame-level acoustic
models, by connecting the two using chord duration models;
ii) we develop and apply chord language models and chord
duration models based on RNNs within this framework;
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and iii) we explore how these models affect chord recogni-
tion results, and show that the proposed integrated model
out-performs existing temporal models.

2. CHORD SEQUENCE MODELLING

Chord recognition is a sequence labelling task, i.e. we need
to assign a categorical label yt ∈ Y (a chord from a chord
alphabet) to each member of the observed sequence xt (an
audio frame), such that yt is the harmonic interpretation of
the music represented by xt. Formally,

ŷ1:T = argmax
y1:T

P (y1:T | x1:T ) . (1)

Assuming a generative structure as shown in Fig. 1, the
probability distribution factorises as

P (y1:T | x1:T ) ∝
∏
t

1

P (yt)
PA (yt | xt)PT (yt | y1:t−1) ,

where PA is the acoustic model, PT the temporal model,
and P (yt) the label prior which we assume to be uniform
as in [31].

y1 y2 y3 · · · yT

x1 x2 x3 xT

Figure 1. Generative chord sequence model. Each chord
label yt depends on all previous labels y1:t−1.

The temporal model PT predicts the chord symbol of
each audio frame. As discussed earlier, this prevents both
finite-context models (such as HMMs or CRFs) and unre-
stricted models (such as RNNs) to learn meaningful har-
monic relations. To enable this, we disentangle PT into a
harmonic language model PL and a duration model PD,
where the former models the harmonic progression of a
piece, and the latter models the duration of chords.

The language model PL is defined as PL (ȳk | ȳ1:k−1),
where ȳ1:k = C (y1:t), and C (·) is a sequence compression
mapping that removes all consecutive duplicates of a chord
(e.g. C ((C,C, F, F,G)) = (C,F,G)). The frame-wise
labels y1:t are thus reduced to chord changes, and PL can
focus on modelling these.

The duration model PD is defined as PD (st | y1:t−1),
where st ∈ {c, s} indicates whether the chord changes
(c) or stays the same (s) at time t. PD thus only predicts
whether the chord will change or not, but not which chord
will follow—this is left to the language model PL. This
definition allows PD to consider the preceding chord labels
y1:t−1; in practice, we restrict the model to only depend on

PD(s | y1:t)

PL

( ȳ
| ȳ

1:
k
−
1

) ·

PD
(c
| y

1:
t
)

t− 1 t t + 1

ȳk−1

ȳk

ȳk+1

Audio Frames

C
ho

rd
Se

qu
en

ce

Figure 2. Chord-time lattice representing the temporal
model PT , split into a language model PL and duration
model PD. Here, ȳ1:K represents a concrete chord se-
quence. For each audio frame, we move along the time-axis
to the right. If the chord changes, we move diagonally to
the upper right. This corresponds to the first case in Eq. 2.
If the chord stays the same, we move only to the right. This
corresponds to the second case of the equation.

the preceding chord changes, i.e. PD (st | s1:t−1). Explor-
ing more complex models of harmonic rhythm is left for
future work.

Using these definitions, the temporal model PT fac-
torises as

PT (yt | y1:t−1) = (2){
PL (ȳk | ȳ1:k−1)PD (c | y1:t−1) if yt 6= yt−1

PD (s | y1:t−1) else
.

The chord progression can then be interpreted as a path
through a chord-time lattice as shown in Fig. 2.

This model cannot be decoded efficiently at test-time be-
cause each yt depends on all predecessors. We will thus use
either models that restrict these connections to a finite past
(such as higher-order Markov models) or use approximate
inference methods for other models (such as RNNs).

3. MODELS

The general model described above requires three sub-
models: an acoustic model PA that predicts a chord distri-
bution from each audio frame, a duration model PD that
predicts when chords change, and a language model PL
that predicts the progression of chords in the piece.

3.1 Acoustic Model

The acoustic model we use is a VGG-style convolutional
neural network, similar to the one presented in [23]. It uses
three convolutional blocks: the first consists of 4 layers of
32 3×3 filters (with zero-padding in each layer), followed
by 2× 1 max-pooling in frequency; the second comprises
2 layers of 64 such filters followed by the same pooling
scheme; the third is a single layer of 128 12×9 filters. Each
of the blocks is followed by feature-map-wise dropout with
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h0 h1 h2 · · · hK

v(z0) v(z1) v(zK−1)

P (z1 | h1) P (z2 | h2) P (zK | hK)

Figure 3. Sketch of a RNN used for next step prediction,
where zk refers to an arbitrary categorical input, v(·) is a
(learnable) input embedding vector, and hk the hidden state
at step k. Arrows denote matrix multiplications followed
by a non-linear activation function. The input is padded
with a dummy input z0 in the beginning. The network then
computes the probability distribution for the next symbol.

probability 0.2, and each layer is followed by batch normal-
isation [19] and an ELU activation function [10]. Finally, a
linear convolution with 25 1×1 filters followed by global
average pooling and a softmax produces the chord class
probabilities PA(yt | xt).

The input to the network is a 1.5 s patch of a quarter-
tone spectrogram computed using a logarithmically spaced
triangular filter bank. Concretely, we process the audio at
a sample rate of 44 100 Hz using the STFT with a frame
size of 8192 and a hop size of 4410. Then, we apply to
the magnitude of the STFT a triangular filter bank with 24
filters per octave between 65 Hz and 2 100 Hz. Finally, we
take the logarithm of the resulting magnitudes to compress
the input range.

Neural networks tend to produce over-confident pre-
dictions, which in further consequence could over-rule
the predictions of a temporal model [9]. To mitigate
this, we use two techniques: first, we train the model
using uniform smoothing (i.e. we assign a proportion
of 1 − β to other classes during training); second, dur-
ing inference, we apply the temperature softmax function
στ (z)j = e

zj/τ/
∑K
k=1 e

zk/τ instead of the standard softmax
in the final layer. Higher values of τ produce smoother
probability distributions. In this paper, we use β = 0.9 and
τ = 1.3, as determined in preliminary experiments.

3.2 Language Model

The language model PL predicts the next chord, regardless
of its duration, given the chord sequence it has previously
seen. As shown in [21], RNN-based models perform bet-
ter than n-gram models at this task. We thus adopt this
approach, and refer the reader to [21] for details.

To give an overview, we follow the set-up introduced
by [28] and use a recurrent neural network for next-chord
prediction. The network’s task is to compute a probability
distribution over all possible next chord symbols, given the
chord symbols it has observed before. Figure 3 shows an
RNN in a general next-step prediction task. In our case, the
inputs zk are the chord symbols given by C (y1:T ).

We will describe in detail the network’s hyper-
parameters in Section 4, where we will also evaluate the

effect the language models have on chord recognition.

3.3 Duration Model

The duration model PD predicts whether the chord will
change in the next time step. This corresponds to modelling
the duration of chords. Existing temporal models induce
implicit duration models: for example, an HMM implies an
exponential chord duration distribution (if one state is used
to model a chord), or a negative binomial distribution (if
multiple left-to-right states are used per chord). However,
such duration models are simplistic, static, and do not adapt
to the processed piece.

An explicit duration model has been explored in [4],
where beat-synchronised chord durations were stored
as discrete distributions. Their approach is useful for
beat-synchronised models, but impractical for frame-wise
models—the probability tables would become too large,
and data too sparse to estimate them. Since our approach
avoids the potentially error-prone beat synchronisation, the
approach of [4] does not work in our case.

Instead, we opt to use recurrent neural networks to model
chord durations. These models are able to adapt to charac-
teristics of the processed data [21], and have shown great
potential in processing periodic signals [1] (and chords
do change periodically within a piece). To train an RNN-
based duration model, we set up a next-step-prediction
task, identical in principle to the set-up for harmonic lan-
guage modelling: the network has to compute the proba-
bility of a chord change in the next time step, given the
chord changes it has seen in the past. We thus simplify
PD(st | y1:t−1)=̂PD(st | s1:t−1), as mentioned earlier.
Again, see Fig. 3 for an overview (for duration modelling,
replace zk with st).

In Section 4, we will describe in detail the hyper-
parameters of the networks we employed, and compare the
properties of various settings to baseline duration models.
We will also assess the impact on the duration modelling
quality on the final chord recognition result.

3.4 Model Integration

Dynamic models such as RNNs have one main advantage
over their static counter-parts (e.g. n-gram models for
language modelling or HMMs for duration modelling): they
consider all previous observations when predicting the next
one. As a consequence, they are able to adapt to the piece
that is currently processed—they assign higher probabilities
to sub-sequences of chords they have seen earlier [21], or
predict chord changes according to the harmonic rhythm of
a song (see Sec. 4.3). The flip side of the coin is, however,
that this property prohibits the use of dynamic programming
approaches for efficient decoding. We cannot exactly and
efficiently decode the best chord sequence given the input
audio.

Hence we have to resort to approximate inference. In par-
ticular, we employ hashed beam search [32] to decode the
chord sequence. General beam search restricts the search
space by keeping only the Nb best solutions up to the cur-
rent time step. (In our case, the Nb best paths through
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all possible chord-time lattices, see Fig. 2.) However, as
pointed out in [32], the beam might saturate with almost
identical solutions, e.g. the same chord sequence differing
only marginally in the times the chords change. Such patho-
logical cases may impair the final estimate. To mitigate
this problem, hashed beam search forces the tracked solu-
tions to be diverse by pruning similar solutions with lower
probability.

The similarity of solutions is determined by a task-
specific hash function. For our purpose, we define the
hash function of a solution to be the last Nh chord sym-
bols in the sequence, regardless of their duration; formally,
the hash function fh (y1:t) = ȳ(k−Nh):k. (Recall that
ȳ1:k = C (y1:t).) In contrast to the hash function originally
proposed in [32], which directly uses y(t−Nh):t, our formu-
lation ensures that sequences that differ only in timing, but
not in chord sequence, are considered similar.

To summarise, we approximately decode the optimal
chord transcription as defined in Eq. 1 using hashed beam
search, which at each time step keeps the best Nb solutions,
and at most Ns similar solutions.

4. EXPERIMENTS

In our experiments, we will first evaluate harmonic language
and duration models individually. Here, we will compare
the proposed models to common baselines. Then, we will
integrate these models into the chord recognition framework
we outlined in Section 2, and evaluate how the individual
parts interact in terms of chord recognition score.

4.1 Data

We use the following datasets in 4-fold cross-validation. Iso-
phonics 3 : 180 songs by the Beatles, 19 songs by Queen,
and 18 songs by Zweieck, 10:21 hours of audio; RWC Pop-
ular [15]: 100 songs in the style of American and Japanese
pop music, 6:46 hours of audio; Robbie Williams [13]: 65
songs by Robbie Williams, 4:30 of audio; and McGill Bill-
board [3]: 742 songs sampled from the American billboard
charts between 1958 and 1991, 44:42 hours of audio. The
compound dataset thus comprises 1125 unique songs, and
a total of 66:21 hours of audio.

Furthermore, we used the following data sets (with dupli-
cate songs removed) as additional data for training the lan-
guage and duration models: 173 songs from the Rock [11]
corpus; a subset of 160 songs from UsPop2002 4 for which
chord annotations are available 5 ; 291 songs from Weimar
Jazz 6 , with chord annotations taken from lead sheets of
Jazz standards; and Jay Chou [12], a small collection of 29
Chinese pop songs.

We focus on the major/minor chord vocabulary, and
following [7], map all chords containing a minor third to
minor, and all others to major. This leaves us with 25
classes: 12 root notes×{major,minor} and the ‘no- chord’
class.

3 http://isophonics.net/datasets
4 https://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
5 https://github.com/tmc323/Chord-Annotations
6 http://jazzomat.hfm-weimar.de/dbformat/dboverview.html

GRU-512 GRU-32 4-gram 2-gram

log-P −1.293 −1.576 −1.887 −2.393

Table 1. Language model results: average log-probability
of the correct next chord computed by each model.

4.2 Language Models

The performance of neural networks depends on a good
choice of hyper-parameters, such as number of layers, num-
ber of units per layer, or unit type (e.g. vanilla RNN, gated
recurrent unit (GRU) [5] or long short-term memory unit
(LSTM) [17]). The findings in [21] provide a good start-
ing point for choosing hyper-parameter settings that work
well. However, we strive to find a simpler model to re-
duce the computational burden at test time. To this end,
we perform a grid search in a restricted search space, us-
ing the validation score of the first fold. We search over
the following settings: number of layers ∈ {1, 2, 3}, num-
ber of units ∈ {256, 512}, unit type ∈ {GRU,LSTM},
input embedding ∈ {one-hot,R8,R16,R24}, learning rate
∈ {0.001, 0.005}, and skip connections ∈ {on, off}. Other
hyper-parameters were fixed for all trials: we train the net-
works for 100 epochs using stochastic gradient descent with
mini-batches of size 4, employ the Adam update rule [20],
and starting from epoch 50, linearly anneal the learning rate
to 0.

To increase the diversity in the training data, we use two
data augmentation techniques, applied each time we show a
piece to the network. First, we randomly shift the key of the
piece; the network can thus learn that harmonic relations
are independent of the key, as in roman numeral analysis.
Second, we select a sub-sequence of random length instead
of the complete chord sequence; the network thus has to
learn to cope with varying context sizes.

The best model turned out to be a single-layer network
of 512 GRUs, with a learnable 16-dimensional input embed-
ding and without skip connections, trained using a learning
rate of 0.005 7 . We compare this model and a smaller, but
otherwise identical RNN with 32 units, to two baselines:
a 2-gram model, and a 4-gram model. Both can be used
for chord recognition in a higher-order HMM [25]. We
train the n-gram models using maximum likelihood estima-
tion with Lidstone smoothing as described in [21], using
the key-shift data augmentation technique (sub-sequence
cropping is futile for finite context models). As evaluation
measure, we use the average log-probability of predicting
the correct next chord. Table 1 presents the test results. The
GRU models predict chord sequences with much higher
probability than the baselines.

When we look into the input embedding v(·), which was
learned by the RNN during training from a random initiali-
sation, we observe an interesting positioning of the chord
symbols (see Figure 4). We found that similar patterns de-
velop for all 1-layer GRUs we tried, and these patterns are
consistent for all folds we trained on. We observe i) that

7 Due to space constraints, we cannot present the complete grid search
results.
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Figure 4. Chord embedding projected into 2D using PCA
(left); Tonnetz of triads (right). The “no-chord” class resides
in the center of the embedding. Major chords are upper-case
and orange, minor chords lower-case and blue. Clusters in
the projected embedding and the corresponding positions in
the Tonnetz are marked in color. If projected into 3D (not
shown here), the chord clusters split into a lower and upper
half of four chords each. The chords in the lower halves are
shaded in the Tonnetz representation.

chords form three clusters around the center, in which the
minor chords are farther from the center than major chords;
ii) that the clusters group major and minor chords with the
same root, and the distance between the roots are minor
thirds (e.g. C, E[, F], A); iii) that clockwise movement
in the circle of fifths corresponds to clockwise movement
in the projected embedding; and iv) that the way chords
are grouped in the embedding corresponds to how they are
connected in the Tonnetz.

At this time, we cannot provide an explanation for these
automatically emerging patterns. However, they warrant a
further investigation to uncover why this specific arrange-
ment seems to benefit the predictions of the model.

4.3 Duration Models

As for the language model, we performed a grid search
on the first fold to find good choices for the recurrent unit
type ∈ {vanilla RNN,GRU,LSTM}, and number of recur-
rent units ∈ {16, 32, 64, 128, 256} for the LSTM and GRU,
and {128, 256, 512} for the vanilla RNN. We use only one
recurrent layer for simplicity. We found networks of 256
GRU units to perform best; although this indicates that even
bigger models might give better results, for the purposes of
this study, we think that this configuration is a good balance
between prediction quality and model complexity.

The models were trained for 100 epochs using the Adam
update rule [20] with a learning rate linearly decreasing
from 0.001 to 0. The data was processed in mini-batches of
10, where the sequences were cut in excerpts of 200 time
steps (20 s). We also applied gradient clipping at a value of
0.001 to ensure a smooth learning progress.

We compare the best RNN-based duration model with
two baselines. The baselines are selected because both are
implicit consequences of using HMMs as temporal model,
as it is common in chord recognition. We assume a single
parametrisation for each chord; this ostensible simplifica-
tion is justified, because simple temporal models such as
HMMs do not profit from chord information, as shown
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Figure 5. Probability of chord change computed by differ-
ent models. Gray vertical dashed lines indicate true chord
changes.

GRU-256 GRU-16 Neg. Binom. Exp.

log-P −2.014 −2.868 −3.946 −4.003

Table 2. Duration model results: average log-probability of
chord durations computed by each model.

by [4, 7]. The first baseline we consider is a negative bi-
nomial distribution. It can be modelled by a HMM us-
ing n states per chord, connected in a left-to-right manner,
with transitions of probability p between the states (self-
transitions thus have probability 1 − p). The second, a
special case of the first with n = 1, is an exponential distri-
bution; this is the implicit duration distribution used by all
chord recognition models that employ a simple 1-state-per-
chord HMM as temporal model. Both baselines are trained
using maximum likelihood estimation.

To measure the quality of a duration model, we consider
the average log-probability it assigns to a chord duration.
The results are shown in Table 2. We further added results
for the simplest GRU model we tried—using only 16 recur-
rent units—to indicate the performance of small models of
this type. We will also use this simple model when judg-
ing the effect of duration modelling on the final result in
Sec. 4.4. As seen in the table, both GRU models clearly
out-perform the baselines.

Figure 5 shows the reason why the GRU performs so
much better than the baselines: as a dynamic model, it
can adapt to the harmonic rhythm of a piece, while static
models are not capable of doing so. We see that a GRU with
128 units predicts chord changes with high probability at
periods of the harmonic rhythm. It also reliably remembers
the period over large gaps in which the chord did not change
(between seconds 61 and 76). During this time, the peaks
decay differently for different multiples of the period, which
indicates that the network simultaneously tracks multiple
periods of varying importance. In contrast, the negative
binomial distribution statically yields a higher chord change
probability that rises with the number of audio frames since
the last chord change. Finally, the smaller GRU model with
only 16 units also manages to adapt to the harmonic rhythm;
however, its predictions between the peaks are noisier, and
it fails to remember the period correctly in the time without
chord changes.

14 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



Model Root Maj/Min Seg.

2-gram / neg. binom. 0.812 0.795 0.804
GRU-512 / GRU-256 0.821 0.805 0.814

Table 3. Results of the standard model (2-gram language
model with negative binomial durations) compared to the
best one (GRU language and duration models).

4.4 Integrated Models

The individual results for the language and duration models
are encouraging, but only meaningful if they translate to
better chord recognition scores. This section will thus eval-
uate if and how the duration and language models affect the
performance of a chord recognition system.

The acoustic model used in these experiments was
trained for 300 epochs (with 200 parameter updates per
epoch) using a mini-batch size of 512 and the Adam up-
date rule with standard parameters. We linearly decay the
learning rate to 0 in the last 100 epochs.

We compare all combinations of language and duration
models presented in the previous sections. For language
modelling, these are the GRU-512, GRU-32, 4-gram, and
2-gram models; for duration modelling, these are the GRU-
256, GRU-16, and negative binomial models. (We leave out
the exponential model, because its results differ negligibly
from the negative binomial one). The models are decoded
using the Hashed Beam Search algorithm, as described in
Sec. 3.4: we use a beam width of Nb = 25, where we
track at most Ns = 4 similar solutions as defined by the
hash function fh, where the number of chords considered
is set to Nh = 5. These values were determined by a small
number of preliminary experiments.

Additionally, we evaluate exact decoding results for the
n-gram language models in combination with the negative
binomial duration distribution. This will indicate how much
the results suffer due to the approximate beam search.

As main evaluation metric, we use the weighted chord
symbol recall (WCSR) over the major/minor chord alpha-
bet, as defined in [30]. We thus compute WCSR = tc/ta,
where tc is the total duration of chord segments that have
been recognised correctly, and ta is the total duration of
chord segments annotated with chords from the target al-
phabet. We also report chord root accuracy and a measure
of segmentation (see [16], Sec. 8.3). Table 3 compares the
results of the standard model (the combination that implic-
itly emerges in simple HMM-based temporal models) to the
best model found in this study. Although the improvements
are modest, they are consistent, as shown by a paired t-test
(p < 2.487× 10−23 for all differences).

Figure 6 presents the effects of duration and language
models on the WCSR. Better language and duration models
directly improve chord recognition results, as the WCSR
increases linearly with higher log-probability of each model.
As this relationship does not seem to flatten out, further
improvement of each model type can still increase the score.
We also observe that the approximate beam search does
not impair the result by much compared to exact decoding
(compare the dotted blue line with the solid one).
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Figure 6. Effect of language and duration models on the
final result. Both plots show the same results from different
perspectives.

5. CONCLUSION AND DISCUSSION

We described a probabilistic model that disentangles three
components of a chord recognition system: the acoustic
model, the duration model, and the language model. We
then developed better duration and language models than
have been used for chord recognition, and illustrated why
the RNN-based duration models perform better and are
more meaningful than their static counterparts implicitly
employed in HMMs. (For a similar investigation for chord
language models, see [21].) Finally, we showed that im-
provements in each of these models directly influence chord
recognition results.

We hope that our contribution facilitates further research
in harmonic language and duration models for chord recog-
nition. These aspects have been neglected because they did
not show great potential for improving the final result [4, 7].
However, we believe (see [24] for some evidence) that this
was due to the improper assumption that temporal models
applied on the time-frame level can appropriately model
musical knowledge. The results in this paper indicate that
chord transitions modelled on the chord level, and con-
nected to audio frames via strong duration models, indeed
have the capability to improve chord recognition results.
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ABSTRACT

Recent research on Automatic Chord Extraction (ACE)
has focused on the improvement of models based on ma-
chine learning. However, most models still fail to take
into account the prior knowledge underlying the labeling
alphabets (chord labels). Furthermore, recent works have
shown that ACE performances have reached a glass ceil-
ing. Therefore, this prompts the need to focus on other
aspects of the task, such as the introduction of musical
knowledge in the representation, the improvement of the
models towards more complex chord alphabets and the de-
velopment of more adapted evaluation methods.

In this paper, we propose to exploit specific properties
and relationships between chord labels in order to improve
the learning of statistical ACE models. Hence, we ana-
lyze the interdependence of the representations of chords
and their associated distances, the precision of the chord
alphabets, and the impact of performing alphabet reduc-
tion before or after training the model. Furthermore, we
propose new training losses based on musical theory. We
show that these improve the results of ACE systems based
on Convolutional Neural Networks. By analyzing our re-
sults, we uncover a set of related insights on ACE tasks
based on statistical models, and also formalize the musical
meaning of some classification errors.

1. INTRODUCTION

Automatic Chord Extraction (ACE) is a topic that has been
widely studied by the Music Information Retrieval (MIR)
community over the past years. However, recent results
seem to indicate that the rate of improvement of ACE per-
formances has diminished over the past years [20].

Recently, a part of the MIR community pointed out the
need to rethink the experimental methodologies. Indeed,
current evaluation methods do not account for the intrinsic
relationships between different chords [10]. Our work is
built on these questions and is aimed to give some insights
on the impact of introducing musical relationships between
chord labels in the development of ACE methods.

c© Tristan Carsault, Jérôme Nika, Philippe Esling. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Tristan Carsault, Jérôme Nika, Philippe
Esling. “Using musical relationships between chord labels in Automatic
Chord Extraction tasks”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

Most ACE systems are built on the idea of extracting
features from the raw audio signal and then using these
features to construct a chord classifier [4]. The two major
families of approaches that can be found in previous re-
search are rule-based and statistical models. On one hand,
the rule-based models rely on music-theoretic rules to ex-
tract information from the precomputed features. Although
this approach is theoretically sound, it usually remains brit-
tle to perturbations in the spectral distributions from which
the features were extracted. On the other hand, statistical
models rely on the optimization of a loss function over an
annotated dataset. However, the generalization capabilities
of these models are highly correlated to the size and com-
pleteness of their training set. Furthermore, most training
methods see musical chords as independent labels and do
not take into account the inherent relations between chords.

In this paper, we aim to target this gap by introducing
musical information directly in the training process of sta-
tistical models. To do so, we propose to use prior knowl-
edge underlying the labeling alphabets in order to account
for the inherent relationships between chords directly in-
side the loss function of learning methods. Due to the
complexity of the ACE task and the wealth of models avail-
able, we choose to rely on a single Convolutional Neural
Network (CNN) architecture, which provides the current
best results in ACE [19]. First, we study the impact of
chord alphabets and their relationships by introducing a
specific hierarchy of alphabets. We show that some of the
reductions proposed by previous researches might be inad-
equate for learning algorithms. We also show that relying
on more finely defined and extensive alphabets allows to
grasp more interesting insights on the errors made by ACE
systems, even though their accuracy is only marginally bet-
ter or worse. Then, we introduce two novel chord distances
based on musical relationships found in the Tonnetz-space
or directly between chord components through their cate-
gorical differences. These distances can be used to define
novel loss functions for learning algorithms. We show that
these new loss functions improve ACE results with CNNs.
Finally, we perform an extensive analysis of our approach
and extract insights on the methodology required for ACE.
To do so, we develop a specifically-tailored analyzer that
focuses on the functional relations between chords to dis-
tinguish strong and weak errors. This analyzer is intended
to be used for future ACE research to develop a finer un-
derstanding on the reasons behind the success or failure of
ACE systems.
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2. RELATED WORKS

Automatic Chord Extraction (ACE) is defined as the task
of labeling each segment of an audio signal using an alpha-
bet of musical chords. In this task, chords are seen as the
concomitant or successive combination of different notes
played by one or many instruments.

2.1 Considerations on the ACE task

Whereas most MIR tasks have benefited continuously from
the recent advances in deep learning, the ACE field seems
to have reached a glass ceiling. In 2015, Humphrey and
Bello [10] highlighted the need to rethink the whole ACE
methodology by giving four insights on the task.

First, several songs from the reference annotated chord
datasets (Isophonics, RWC-Pop, McGill Billboard) are not
always tuned to 440Hz and may vary up to a quarter-tone.
This leads to multiple misclassifications on the concomi-
tant semi-tones. Moreover, chord labels are not always
well suited to describe every song in these datasets.

Second, the chord labels are related and some subsets of
those have hierarchical organizations. Therefore, the one-
to-K assessment where all errors are equivalently weighted
appears widely incorrect. For instance, the misclassifica-
tion of a C:Maj as a A:min or C#:Maj, will be considered
equivalently wrong. However, C:Maj and A:min share two
pitches in common whereas C:Maj and C#:Maj have to-
tally different pitch vectors.

Third, the very definition of the ACE task is also not
entirely clear. Indeed, there is a frequent confusion be-
tween two different tasks. First, the literal recognition of
a local audio segment using a chord label and its precise
extensions, and, second, the transcription of an underlying
harmony, taking into account the functional aspect of the
chords and the long-term structure of the song. Finally, the
labeling process involves the subjectivity of the annotators.
For instance, even for expert annotators, it is hard to agree
on possible chord inversions.

Therefore, this prompts the need to focus on other as-
pects such as the introduction of musical knowledge in the
representation of chords, the improvement of the models
towards more complex chord alphabets and the develop-
ment of more adapted evaluation methods.

2.2 Workflow of ACE systems

Due to the complexity of the task, ACE systems are usually
divided into four main modules performing feature extrac-
tion, pre-filtering, pattern matching and post-filtering [4].

First, the pre-filtering usually applies low-pass filters
or harmonic-percussive source separation methods on the
raw signal [12, 26]. This optional step allows to remove
noise or other percussive information that are irrelevant
for the chord extraction task. Then, the audio signal is
transformed into a time-frequency representation such as
the Short-Time Fourier Transform (STFT) or the Constant-
Q Transform (CQT) that provides a logarithmically-scaled
frequencies. These representations are sometimes summa-
rized in a pitch class vector called chromagram. Then, suc-

cessive time frames of the spectral transform are averaged
in context windows. This allows to smooth the extracted
features and account for the fact that chords are longer-
scale events. It has been shown that this could be done
efficiently by feeding STFT context windows to a CNN in
order to obtain a clean chromagram [13].

Then, these extracted features are classified by relying
on either a rule-based chord template system or a statistical
model. Rule-based methods give fast results and a decent
level of accuracy [21]. With these methods, the extracted
features are classified using a fixed dictionary of chord pro-
files [2] or a collection of decision trees [12]. However,
these methods are usually brittle to perturbations in the in-
put spectral distribution and do not generalize well.

Statistical models aim to extract the relations between
precomputed features and chord labels based on a train-
ing dataset in which each temporal frame is associated
to a label. The optimization of this model is then per-
formed by using gradient descent algorithms to find an ad-
equate configuration of its parameters. Several probabilis-
tic models have obtained good performances in ACE, such
as multivariate Gaussian Mixture Model [3] and convolu-
tional [9, 14] or recurrent [1, 25] Neural Networks.

Finally, post-filtering is applied to smooth out the clas-
sified time frames. This is usually based on a study of
the transition probabilities between chords by a Hidden
Markov Model (HMM) optimized with the Viterbi algo-
rithm [17] or with Conditional Random Fields [15].

2.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a statistical
model composed of layers of artificial neurons that trans-
form the input by repeatedly applying convolution and
pooling operations. A convolutional layer is characterized
by a set of convolution kernels that are applied in parallel
to the inputs to produce a set of output feature maps. The
convolution kernels are defined as three-dimensional ten-
sors h ∈ RM×U×V where M is the number of kernels, U
is the height and V the width of each kernel. If we note the
input as matrix X , then the output feature maps are defined
by Y = X ∗hm for every kernels, where ∗ is a 2D discrete
convolution operation

(A ∗B)i,j =

(T−1)∑
r=0

(F−1)∑
s=0

Ar,sBi−r,j−s (1)

for A ∈ RT×F and B ∈ RU×V with 0 ≤ i ≤ T +U−1
and 0 ≤ j ≤ F + V − 1.

As this convolutional layer significantly increases the
dimensionality of the input data, a pooling layer is used
to reduce the size of the feature maps. The pooling opera-
tion reduces the maps by computing local mean, maximum
or average of sliding context windows across the maps.
Therefore, the overall structure of a CNN usually consists
in alternating convolution, activation and pooling layers.
Finally, in order to perform classification, this architecture
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Figure 1. Hierarchy of the chord alphabets (blue: A0, or-
ange: A1, green: A2)

is typically followed by one or many fully-connected lay-
ers. Thus, the last layer produces a probability vector of
the same size as the chord alphabet. As we will rely on the
architecture defined by [9], we redirect interested readers
to this paper for more information.

3. OUR PROPOSAL

3.1 Definition of alphabets

Chord annotations from reference datasets are very precise
and include extra notes (in parenthesis) and basses (after
the slash) [7]. With this notation, we would obtain over
a thousand chord classes with very sparse distributions.
However, we do not use these extra notes and bass in our
classification. Therefore, we can remove this information

F : maj7(11)/3→ F : maj7 (2)

Even with this reduction, the number of chord qualities (eg.
maj7, min, dim) is extensive and we usually do not aim for
such a degree of precision. Thus, we propose three alpha-
bets named A0, A1 and A2 with a controlled number of
chord qualities. The level of precision of the three alpha-
bets increases gradually (see Figure 1). In order to reduce
the number of chord qualities, each one is mapped to a par-
ent class when it exists, otherwise to the no-chord class N .

The first alphabet A0 contains all the major and minor
chords, which defines a total of 25 classes

A0 = {N} ∪ {P ×maj,min} (3)

where P represents the 12 pitch classes.
Here, we consider the interest of working with chord

alphabets larger than A0. Therefore, we propose an alpha-
bet containing all chords present in the harmonization of
the major scale (usual notation of harmony in jazz music).
This corresponds to the orange chord qualities and their
parents in Figure 1. The chord qualities without heritage
are included in the no-chord class N , leading to 73 classes

A1 = {N}∪ {P ×maj,min, dim,maj7,min7, 7} (4)

Finally, the alphabet A2 is inspired from the large vo-
cabulary alphabet proposed by [19]. This most complete
chord alphabet contains 14 chord qualities and 169 classes

A2 = {N} ∪ {P ×maj,min, dim, aug,maj6,min6,

maj7,minmaj7,min7, 7, dim7, hdim7, sus2, sus4}
(5)

3.2 Definition of chord distances

In most CNN approaches, the model does not take into ac-
count the nature of each class when computing their differ-
ences. Therefore, this distance which we called categorical
distance D0 is the binary indicator

D0(chord1, chord2) =

{
0 if chord1 = chord2
1 if chord1 6= chord2

(6)
However, we want here to include the relationships be-

tween chords directly in our model. For instance, a C:maj7
is closer to an A:min7 than a C#:maj7. Therefore, we in-
troduce more refined distances that can be used to define
the loss function for learning.
Here, we introduce two novel distances that rely on the
representation of chords in an harmonic space or in a pitch
space to provide a finer description of the chord labels.
However, any other distance that measure similarities be-
tween chords could be studied [8, 18].

3.2.1 Tonnetz distance

A Tonnetz-space is a geometric representation of the tonal
space based on harmonic relationships between chords.
We chose a Tonnetz-space generated by three transforma-
tions of the major and minor triads [5] changing only one
of the three notes of the chords: the relative transforma-
tion (transforms a chord into his relative major / minor),
the parallel transformation (same root but major instead
of minor or conversely), the leading-tone exchange (in a
major chord the root moves down by a semitone, in a mi-
nor chord the fifth moves up by a semitone). Representing
chords in this space has already shown promising results
for classification on the A0 alphabet [11].

We define the cost of a path between two chords as the
sum of the succesive transformations. Each transformation
is associated to the same cost. Furthermore, an extra cost is
added if the chords have been reduced beforehand in order
to fit the alphabet A0. Then, our distance D1 is:

D1(chord1, chord2) = min(C) (7)

with C the set of all possible path costs from chord1 to
chord2 using a combination of the three transformations.

3.2.2 Euclidean distance on pitch class vectors

In some works, pitch class vectors are used as an inter-
mediate representation for ACE tasks [16]. Here, we use
these pitch class profiles to calculate the distances between
chords according to their harmonic content.

Each chord from the dictionary is associated to a 12-
dimensional binary pitch vector with 1 if the pitch is
present in the chord and 0 otherwise (for instance C:maj7
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becomes (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1)). The distance be-
tween two chords is defined as the Euclidean distance be-
tween the two binary pitch vectors.

D2(chord1, chord2) =

√√√√ 11∑
i=0

(chordi1 − chordi2)2 (8)

Hence, this distance allows to account for the number
of pitches that are shared by two chords.

The D0, D1 or D2 distance is used to define the loss
function for training the CNN classification model.

3.3 Introducing the relations between chords

To train the model with our distances, we first reduce the
original labels from the Isophonics dataset 1 so that they fit
one of our three alphabets A0, A1, A2. Then, we denote
ytrue as the one-hot vector where each bin corresponds to
a chord label in the chosen alphabet Ai. The output of
the model, noted ypred, is a vector of probabilities over all
the chords in a given alphabet Ai. In the case of D0, we
train the model with a loss function that simply compares
ypred to the original label ytrue. However, for our proposed
distances (D1 and D2), we introduce a similarity matrix M
that associates each couple of chords to a similarity ratio.

Mi,j =
1

Dk(chordi, chordj) + K
(9)

K is an arbitrary constant to avoid division by zero. The
matrix M is symmetric and we normalize it with its max-
imum value to obtain M̄ . Afterwards, we define a new

¯ytrue which is the matrix multiplication of the old ytrue
and the normalized matrix M̄ .

¯ytrue = ytrueM̄ (10)

Finally, the loss function for D1 and D2 is defined by
a comparison between this new ground truth ¯ytrue and the
output ypred. Hence, this loss function can be seen as a
weighted multi-label classification.

4. EXPERIMENTS

4.1 Dataset

We perform our experiments on the Beatles dataset as it
provides the highest confidence regarding the ground truth
annotations [6]. This dataset is composed by 180 songs
annotated by hand. For each song, we compute the CQT
by using a window size of 4096 samples and a hop size
of 2048. The transform is mapped to a scale of 3 bins
per semi-tone over 6 octaves ranging from C1 to C7. We
augment the available data by performing all transpositions
from -6 to +6 semi-tones and modifying the labels accord-
ingly. Finally, to evaluate our models, we split the data into
a training (60%), validation (20%) and test (20%) sets.

1 http://isophonics.net/content/
reference-annotations-beatles

4.2 Models

We use the same CNN model for all test configurations,
but change the size of the last layer to fit the size of the se-
lected chord alphabet. We apply a batch normalization and
a Gaussian noise addition on the inputs layer. The archi-
tecture of the CNN consists of three convolutional layers
followed by two fully-connected layers. The architecture
is very similar to the first CNN that has been proposed for
the ACE task [9]. However, we add dropout between each
convolution layer to prevent over-fitting.

For training, we use the ADAM optimizer with a learn-
ing rate of 2.10−5 for a total of 1000 epochs. We reduce the
learning rate if the validation loss has not improved during
50 iterations. Early stopping is applied if the validation
loss has not improved during 200 iterations and we keep
the model with the best validation accuracy. For each con-
figuration, we perform a 5-cross validation by repeating a
random split of the dataset.

5. RESULTS AND DISCUSSION

The aim of this paper is not to obtain the best classification
scores (which would involve pre- or post-filtering meth-
ods) but to study the impact on the classification results of
different musical relationships (as detailed in the previous
section). Therefore, we ran 9 instances of the CNN model
corresponding to all combinations of the 3 alphabets A0,
A1, A2 and 3 distances D0, D1, D2 to compare their re-
sults from both a quantitative and qualitative point of view.
We analyzed the results using the mireval library [22] to
compute classification scores, and a Python ACE Analyzer
that we developed to reveal the musical meaning of classi-
fication errors and, therefore, understand their qualities.

5.1 Quantitative analysis: MIREX evaluation

Regarding the MIREX evaluation, the efficiency of ACE
models is assessed through classification scores over dif-
ferent alphabets [22]. The MIREX alphabets for evalua-
tion have a gradation of complexity from Major/Minor to
Tetrads. In our case, for the evaluation on a specific al-
phabet, we apply a reduction from our training alphabet
Ai to the MIREX evaluation alphabet. Here, we evaluate
on three alphabet : Major/Minor, Sevenths, and Tetrads.
These alphabets correspond roughly to our three alphabets
(Major/Minor ∼ A0, Sevenths ∼ A1, Tetrads ∼ A2).

5.1.1 MIREX Major/minor

Figure 2 depicts the average classification scores over all
frames of our test dataset for different distances and alpha-
bets. We can see that the introduction of the D1 or D2

distance improves the classification compared to D0. With
these distances, and even without pre- or post-filtering, we
obtain classification scores that are superior to that of sim-
ilar works (75.9% for CNN with post-filtering but an ex-
tended dataset in [10] versus 76.3% for A2 − D1). Sec-
ond, the impact of working first on large alphabets (A1 and
A2), and then reducing on A0 for the test is negligible on
Maj/Min (only from a quantitative point of view, see 5.2).
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Figure 2. Results of the 5-folds: evaluation on MIREX
Maj/Min (∼ reduction on A0).
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Figure 3. Results of the 5-folds: evaluation on MIREX
Sevenths (∼ reduction on A1).

5.1.2 MIREX Sevenths

With more complex alphabets, the classification score is
lower than for MIREX Maj/Min. This result is not surpris-
ing since we observe this behavior on all ACE systems.
Moreover, the models give similar results and we can not
observe a particular trend between the alphabet reductions
or the different distances. The same result is observed for
the evaluation with MIREX tetrads (∼ reduction on A2).
Nonetheless, the MIREX evaluation uses a binary score to
compare chords. Because of this approach, the qualities of
the classification errors cannot be evaluated.

5.2 Qualitative analysis: understanding the errors

In this section, we propose to analyze ACE results from
a qualitative point of view. The aim here is not to intro-
duce new alphabets or distances in the models, but to in-
troduce a new type of evaluation of the results. Our goal
is twofold: to understand what causes the errors in the first
place, and to distinguish “weak” from “strong” errors with
a functional approach.

In tonal music, the harmonic functions qualify the roles
and the tonal significances of chords, and the possible
equivalences between them within a sequence [23, 24].
Therefore, we developed an ACE Analyzer including two
modules discovering some formal musical relationships

Model Tot. ⊂ Maj ⊂ min
A0-D0 34.93
A0-D1 36.12
A0-D2 35.37
A1-D0 52.40 23.82 4.37
A1-D1 57.67 28.31 5.37
A1-D2 55.17 25.70 4.21
A2-D0 55.28 26.51 4.29
A2-D1 60.47 31.61 6.16
A2-D2 55.45 25.74 4.78

Table 1. Left: total percentage of errors corresponding to
inclusions or chords substitutions rules, right: percentage
of errors with inclusion in the correct triad (% of the total
number of errors).

Model rel. M rel. m T subs. 2 m→M M→m
A0-D0 4.19 5.15 2.37 7.26 12.9
A0-D1 4.40 5.20 2.47 7.66 13.4
A0-D2 5.13 4.87 2.26 8.89 10.89
A1-D0 2.63 3.93 1.53 4.46 8.83
A1-D1 3.05 3.36 1.58 5.53 7.52
A1-D2 3.02 4.00 1.62 5.84 8.07
A2-D0 2.54 4.15 1.51 4.96 8.54
A2-D1 2.79 2.97 1.54 5.29 7.46
A2-D2 3.11 4.26 1.63 5.34 7.59

Table 2. Left: percentage of errors corresponding to usual
chords substitutions rules, right: percentage of errors “ma-
jor instead of minor” or inversely (% of the total number
of errors).

between the target chords and the chords predicted by ACE
models. Both modules are generic and independent of the
classification model, and are available online. 2

5.2.1 Substitution rules

The first module detects the errors corresponding to hierar-
chical relationships or usual chord substitutions rules: us-
ing a chord in place of another in a chord progression (usu-
ally substituted chords have two pitches in common with
the triad that they are replacing).

Table 1 presents: Tot., the total fraction of errors that
can be explained by the whole set of substitution rules we
implemented, and⊂Maj and⊂ min, the errors included in
the correct triad (e.g. C:maj instead of C:maj7, C:min7 in-
stead of C:min). Table 2 presents the percentages of errors
corresponding to widely used substitution rules: rel. m and
rel. M, relative minor and major; T subs. 2, tonic substitu-
tion different from rel. m or rel. M (e.g. E:min7 instead or
C:maj7), and the percentages of errors m→M and M→m
(same root but major instead of minor or conversely). The
tables only show the categories representing more than 1%
of the total number of errors, but other substitutions (that
are not discussed here) were analyzed: tritone substitution,
substitute dominant, and equivalence of dim7 chords mod-
ulo inversions.

First, Tot. in Table 1 shows that a huge fraction of errors
can be explained by usual substitution rules. This percent-

2 http://repmus.ircam.fr/dyci2/ace_analyzer
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Model Non-diat. targ. Non-diat. pred.
A0-D0 37.96 28.41
A0-D1 44.39 15.82
A0-D2 45.87 17.60
A1-D0 38.05 21.26
A1-D1 37.94 20.63
A1-D2 38.77 20.23
A2-D0 37.13 30.01
A2-D1 36.99 28.41
A2-D2 37.96 28.24

Table 3. Errors occurring when the target is non-diatonic
(% of the total number of errors), non-diatonic prediction
errors (% of the subset of errors on diatonic targets).

age can reach 60.47%, which means that numerous clas-
sification errors nevertheless give useful indications since
they mistake a chord for another chord with an equivalent
function. For instance, Table 2 shows that a significant
amount of errors (up to 10%) are relative major / minor
substitutions. Besides, for the three distances, the percent-
age in Tot. (Table 1) increases with the size of the alpha-
bet: larger alphabets seem to imply weaker errors (higher
amount of equivalent harmonic functions).

We can also note that numerous errors (between 28.19%
and 37.77%) correspond to inclusions in major or minor
chords (⊂ Maj and ⊂ min, Table 1) for A1 and A2. In the
framework of the discussion about recognition and tran-
scription mentioned in introduction, this result questions
the relevance of considering exhaustive extensions when
the goal is to extract and formalize an underlying harmony.

Finally, for A0, A1, and A2, using D1 instead of D0

increases the fraction of errors attributed to categories in
the left part of Table 2 (and in almost all the configurations
when using D2). This shows a qualitative improvement
since all these operations are considered as valid chord
substitutions. On the other hand, the impact on the (quite
high) percentages in the right part of Table 2 is not clear.
We can assume that temporal smoothing can be one of the
keys to handle the errors m→M and M→m.

5.2.2 Harmonic degrees

The second module of our ACE Analyzer focuses on har-
monic degrees. First, by using the annotations of key in
the dataset in addition to that of chords, this module de-
termines the roman numerals characterizing the harmonic
degrees of the predicted chord and of the target chord (e.g.
in C, if a chord is an extension of C, I; if it is an extension
of D:min, ii; etc.) when it is possible (e.g. in C, if a chord
is an extension of C# it does not correspond to any degree).
Then, it counts the errors corresponding to substitutions of
harmonic degrees when it is possible (e.g. in C, A:min in-
stead of C corresponds to I∼vi). This section shows an
analysis of the results using this second module. First, it
determines if the target chord is diatonic (i.e. belongs to
the harmony of the key), as presented in Table 3. If this
is the case, the notion of incorrect degree for the predicted
chord is relevant and the percentages of errors correspond-
ing to substitutions of degrees is computed (Table 4).

Model I∼IV I∼V IV∼V I∼vi IV∼ii I∼iii
A0-D0 17.41 14.04 4.54 4.22 5.41 2.13
A0-D1 17.02 13.67 3.33 4.08 6.51 3.49
A0-D2 16.16 13.60 3.08 5.65 6.25 3.66
A1-D0 17.53 13.72 3.67 5.25 4.65 3.50
A1-D1 15.88 13.82 3.48 4.95 6.26 3.46
A1-D2 16.73 13.45 3.36 4.70 5.75 2.97
A2-D0 16.90 13.51 3.68 4.45 5.06 3.32
A2-D1 16.81 13.60 3.85 4.57 5.37 3.59
A2-D2 16.78 12.96 3.84 5.19 7.01 3.45

Table 4. Errors (> 2%) corresponding to degrees substitu-
tions (% of the subset of errors on diatonic targets).

A first interesting fact presented in Table 3 is that
36.99% to 45.87% of the errors occur when the target
chord is non-diatonic. It also shows, for the three alpha-
bets, that using D1 or D2 instead of D0 makes the frac-
tion of non-diatonic errors decrease (Table 3, particularly
A0), which means that the errors are more likely to stay
in the correct key. Surprisingly, high percentages of errors
are associated to errors I∼V (up to 14.04%), I∼IV (up to
17.41%), or IV∼V (up to 4.54%) in Table 4. These errors
are not usual substitutions, and IV∼V and I∼IV have re-
spectively 0 and 1 pitch in common. In most of the cases,
these percentages tend to decrease on alphabets A1 or A2

and when using musical distances (particularly D2). Con-
versely, it increases the amount of errors in the right part
of Table 4 containing usual substitutions: once again we
observe that the more precise the musical representations
are, the more the harmonic functions tend to be correct.

6. CONCLUSION

We presented a novel approach taking advantage of musi-
cal prior knowledge underlying the labeling alphabets into
ACE statistical models. To this end, we applied reduc-
tions on different chord alphabets and we used different
distances to train the same type of model. Then, we con-
ducted a quantitative and qualitative analysis of the classi-
fication results.

First, we conclude that training the model using dis-
tances reflecting the relationships between chords im-
proves the results both quantitatively (classification scores)
and qualitatively (in terms of harmonic functions). Second,
it appears that working first on large alphabets and reduc-
ing the chords during the test phase does not significantly
improve the classification scores but provides a qualitative
improvement in the type of errors. Finally, ACE could
be improved by moving away from its binary classifica-
tion paradigm. Indeed, MIREX evaluations focus on the
nature of chords but a large amount of errors can be ex-
plained by inclusions or usual substitution rules. Our eval-
uation method therefore provides an interesting notion of
musical quality of the errors, and encourages to adopt a
functional approach or even to introduce a notion of equiv-
alence classes. It could be adapted to the ACE problem
downstream and upstream: in the classification processes
as well as in the methodology for labeling the datasets.
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ABSTRACT

Connectionist sequence models (e.g., RNNs) applied to
musical sequences suffer from two known problems: First,
they have strictly “absolute pitch perception”. Therefore,
they fail to generalize over musical concepts which are
commonly perceived in terms of relative distances between
pitches (e.g., melodies, scale types, modes, cadences, or
chord types). Second, they fall short of capturing the con-
cepts of repetition and musical form. In this paper we
introduce the recurrent gated autoencoder (RGAE), a re-
current neural network which learns and operates on in-
terval representations of musical sequences. The relative
pitch modeling increases generalization and reduces spar-
sity in the input data. Furthermore, it can learn sequences
of copy-and-shift operations (i.e. chromatically transposed
copies of musical fragments)—a promising capability for
learning musical repetition structure. We show that the
RGAE improves the state of the art for general connec-
tionist sequence models in learning to predict monophonic
melodies, and that ensembles of relative and absolute mu-
sic processing models improve the results appreciably. Fur-
thermore, we show that the relative pitch processing of the
RGAE naturally facilitates the learning and the generation
of sequences of copy-and-shift operations, wherefore the
RGAE greatly outperforms a common absolute pitch re-
current neural network on this task.

1. INTRODUCTION

The objective of sequence models for music prediction is
to predict (the probability of) musical events at the next
time step, given some prior musical context. In the (most
common) case of predicting note events, this task involves
finding relationships between past and future occurrences
of absolute pitches. However, many music theoretical con-
structs that might help to find such relationships are de-
fined in relative terms, such as diatonic scale steps, and
cadences. The discrepancy between the relative nature of
many regularities in music and the absolute pitch represen-
tation is problematic for modeling tasks, because it leads to

c© Stefan Lattner, Maarten Grachten, Gerhard Widmer. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Stefan Lattner, Maarten Grachten, Gerhard
Widmer. “A predictive model for music based on learned interval rep-
resentations”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.

high sparsity in the input data, increased model sizes, and
altogether reduced generalization in music modeling.

To remedy these problems, musical input sequences can
be transposed to a common key before training, augmented
by random transpositions during training, or, in case of
symbolic monophonic music, transformed into interval rep-
resentations before training. In this work, we propose a
sequence model which learns both interval representations
from absolute pitch sequences and temporal dependencies
between these intervals. By learning not only the inter-
vals between two successive notes, but all intervals within
a window of n pitches, the model is more robust to dia-
tonic transposition and can also learn repetition structure.
More precisely, a recurrent neural network (RNN) is em-
ployed on top of a gated autoencoder (GAE), which we re-
fer to as recurrent gated autoencoder (RGAE). The GAE
portion learns the intervals between its input and its target
pitches and represents them in its latent space. The RNN
portion operates on these interval representations, to learn
their temporal dependencies. The implicit transformation
to intervals allows this architecture to operate directly on
absolute musical textures, without the need for data pre-
processing. Besides, relative pitch modeling reduces the
sparsity in the data and the representations learned by the
GAE are transposition-invariant. Therefore, the RGAE
requires less temporal connections than a common RNN
while achieving higher prediction accuracy.

Also, operating on the intervals of input sequences brings
added value to sequence modeling. By allowing the model
to relate its prediction with events using specific time lags,
it can learn copy-and-shift operations. In the space of inter-
vals, such operations are performed by repeatedly applying
a constant interval to events occurring a constant time lag
in the past. Moreover, the RNN portion of the architec-
ture can learn sequences of such copy-and-shift operations
(i.e., “structure schemes”), which can then be realized as
musical notes by the GAE.

This ability is promising for music modeling, where
musical form defines the self-similarity within a piece, and
repeated sections often occur as a transposed (i.e., shifted
in the pitch dimension) version of the initial section. Mu-
sical form is challenging to learn with common sequence
models, like RNNs. They are specialized in learning the
statistics of musical textures and are “blind” towards simi-
larity and (transposed) repetition (i.e., there is no content-
independent “repetition neuron”). As a result, when sam-
pling music using such models, repeated fragments occur
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either due to chance or as a phenomenon of an entangle-
ment with a learned texture. In contrast, the ability of
RGAEs to learn copy-and-shift operations may allow to
represent musical form explicitly, and to realize learned
schemes as musical textures in music prediction and music
generation tasks.

We show that the RGAE is competitive with state-of-
the-art models in a music sequence learning task. Fur-
thermore, we demonstrate that the RGAE, due to its rel-
ative pitch processing, is complementary to absolute pitch
models, by combining their predictions to obtain improved
accuracy. Lastly, we show that the RGAE is particularly
suited for learning sequences of copy-and-shift operations.
It can learn to recognize and continue pre-defined “struc-
ture schemes”, abstracted from the actual texture, with
which the scheme is realized.

In Section 2, we provide an overview of related mod-
els and related publications. In Section 3, the GAE and
the proposed extensions to the RGAE are described, as
well as the baseline RNN used for comparison and com-
bined prediction. General training details concerning the
GAE are given in Section 4. The two experiments con-
ducted, including the data used, training details and dis-
cussion for each experiment separately, are presented in
Section 5. Section 6 concludes the paper and provides fur-
ther directions.

2. RELATED WORK

GAEs are bi-linear models utilizing multiplicative interac-
tions to learn correlations between or within data instances.
They were introduced by [15] as a derivative of the gated
Boltzmann machines (GBMs) [17, 18], as standard learn-
ing criteria became applicable through the development of
denoising autoencoders [28]. In music, bi-linear models
were applied to learn co-variances within spectrogram data
for music similarity estimation [25], and for learning mu-
sical transformations in the symbolic domain [11].

The GAE was utilized for learning the derivatives of se-
quences in [16] (between subsequent frames in movies of
rotated 3D objects), and to predict accelerated motion by
stacking two layers to learn second-order derivatives [19].
This method is very similar to the one proposed here, but
we use different dimensionalities between input and out-
put, and we do not assume constant transformations but
rather learn sequences of transformations using an RNN.

Probabilistic n-gram models, specialized on learning to
predict monophonic pitch sequences include IDyOM [23],
and [10], both employ multiple features of the musical sur-
face. In this paper, we do not compare the RGAE with
these models, as they are more specialized on the musi-
cal domain, by explicit selection of (computed) features.
We compare the RGAE to the currently best performing
general connectionist sequence model, the RTDRBM [1].
Its architecture is similar to the well-known RTRBM pro-
posed in [27], but it employs a different cost function.

For structured sequence generation, Markov chains to-
gether with pre-defined repetition structure schemes were
employed in [4], where specific methods for handling tran-

sitions between repeating segments were proposed; in [20],
where an approach to a controlled creation of variations
was introduced; in [5], where chords were generated, obey-
ing a pre-defined repetition structure. In [12], a convolu-
tional restricted Boltzmann machine was employed, and
different structural properties were imposed using differ-
entiable soft-constraints and gradient descent optimization.
A constrained variable neighborhood search to generate
polyphonic music obeying a tension profile and the repe-
tition structure from a template piece was proposed in [7].
In [6], Markov chains and evolutionary algorithms were
used to generate repetition structure for Electronic Dance
Music.

3. MODELS

3.1 Gated Autoencoder

A GAE learns first-order derivatives between its input and
its output. In musical sequences, this amounts to learning
pitch intervals, which are represented as distinct codes in
its latent space. In reconstruction, it applies learned inter-
val codes to pitches in order to transpose them. Its ability to
learn and to perform musical transformations is, however,
not limited to single intervals. For example, it was shown
in [11], that more complex musical transformations like di-
atonic transposition can be learned by a GAE and can be
applied to an unseen material. Intervals are encoded in the
latent space of the GAE, denoted as mappings

mt+1 = σq(Wm(Qxtt−n ·Vxt+1)), (1)

where xt+1 is a binary vector encoding active notes at time
step t+1 as on-bits, xtt−n contain the concatenated vectors
of the last n time steps, Q,V and Wm are weight matri-
ces, and σq is the softplus non-linearity. The operator ·
(indicated as a triangle in Figure 1) depicts the Hadamard
product of the filter responses Qxtt−n and Vxt+1, denoted
as factors. This operation allows the model to relate its
inputs, making it possible to learn interval representations.

GAEs are often trained by minimizing the symmetric
error when reconstructing the output from the input and
vice versa. In the proposed RGAE architecture, we use
predictive training and just learn to reconstruct the target
xt+1 from the input xtt−n and the mapping mt+1 as

x̃t+1 = σg(V
>(W>

mmt+1 ·Qxtt−n)), (2)

where σg is the sigmoid non-linearity. The GAE portion of
the RGAE is pre-trained by minimizing the binary cross-
entropy loss of the reconstruction as

L(x, x̃) = − 1

N

N∑
n=1

[
xn log2 x̃n+(1−xn) log2(1−x̃n)

]
.

(3)

3.2 Recurrent Gated Autoencoder

The proposed model is a combination of a gated autoen-
coder (GAE) and a recurrent neural network (RNN) as de-
picted in Figure 1. The GAE learns relative pitch (i.e., in-
terval) representations of the musical surface, and the RNN
learns their temporal dependencies.
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Figure 1: Schematic illustration of the proposed recurrent
gated autoencoder architecture. Arrows represent weight
matrices, rounded rectangles represent vectors. The trian-
gles depict the Hadamard product. The specifics of the
gated recurrent unit are omitted for better clarity.

We use gated recurrent units (GRUs) [2] for the RNN
portion of the RGAE. This type of units have been shown
to be often as efficient as long short-term memory units
(LSTMs, [9]) while being conceptually simpler [3]. It is
intuitively clear that any RNN variant can be potentially
attached on a GAE. The input to the RNN at time t is the
GAE’s mapping mt, resulting in the following specifica-
tion:

zt = σg(Wzmt +Uzht−1 + bz), (4)

rt = σg(Wrmt +Urht−1 + br), (5)

ht = zt ·ht−1+(1−zt)·σh(Whmt+Uh(rt ·ht−1)+bh),
(6)

where ht is the hidden state at time t, zt is the update gate
vector, rt is the reset gate vector, and W, U and b are pa-
rameter matrices and vectors. The RNN predicts the next
mapping of the GAE as

m̃t+1 = σq(Uoht), (7)

which is used to reconstruct the target configuration at t+1
as

x̃t+1 = σs(V
>(W>

mm̃t+1 ·Qxtt−n)) . (8)

Here, we use the softmax non-linearity σs, as the data
the RGAE is trained on is monophonic. The full architec-
ture is trained with Backpropagation through time (BPTT)
to minimize the categorical cross-entropy loss for the re-
constructed target as

L(x, x̃) = − 1

N

N∑
n=1

xn log2 x̃n . (9)

When the RGAE is applied to polyphonic music, in
Equation 8 the sigmoid non-linearity, together with the bi-
nary cross-entropy loss (cf. Equation 3) has to be used.

3.3 Baseline RNN

As a baseline, we employ an RNN with GRUs to directly
operate on the data. Accordingly, Equations 4, 5, and 6 are

adapted to take xt instead of mt as input. Consequently,
the prediction of the baseline RNN amounts to

x̃t+1 = σs(Uoht), (10)

where the softmax non-linearity is applied, making the cat-
egorical cross-entropy loss (cf. Equation 9) applicable in
training.

4. GATED AUTOENCODER PRE-TRAINING

Due to the relatively high number of parameters in its GAE
portion, the RGAE is prone to overfitting. To circumvent
this, and to establish robust interval representations, we
pre-train the GAE first, using the cross-entropy of the re-
construction as the cost function (cf. Equation 3). In the
second training iteration, we train the RNN portion of the
GAE to minimize the cross-entropy error of the architec-
ture’s prediction (cf. Equation 9). The datasets may differ
between the training iterations as long as the included rela-
tions are identical (e.g. “intervals of western tonal music”).
Consequently, the GAE parameters trained on one dataset
can be used for prediction tasks on several datasets. Fine-
tuning the whole architecture in the last few epochs of pre-
dictive training can make up for possible bias.

In the following, we describe how the GAE is pre-trained
in our experiments. Details varying between the experi-
ments are given later in the experiments section (cf. Sec-
tion 5).

4.0.1 Enforcing Transposition-Invariance

A property of interval representations in music is trans-
position invariance (i.e., transposing the melody does not
change the representation). Although training the GAE as
described in Section 3.1 naturally tends to lead to similar
mapping codes for input target pairs that have the same
interval relationships, the training does not explicitly en-
force such similarities and consequently the mappings may
not be maximally transposition invariant. Therefore, when
pre-training the GAE, we explicitly support the learning of
transposition-invariant codes. First, we define a transposi-
tion function shift(x, δ), which shifts the bits of a vector x
of length M by δ pitches:

shift(x, δ) = (x(0+δ) mod M , . . . , x(M−1+δ) mod M )>,
(11)

where shift(xtt−n, δ) denotes the transposition of each sin-
gle time step vector before concatenation and linearization.

The altered training is then as follows: First, the map-
ping code mt+1 of an input/target pair is inferred as shown
in Equation 1. Then, mt+1 is used to reconstruct a trans-
posed version of the target from an equally transposed in-
put (modifying Equation 2) as

x̃′t+1 = σg(V
>(W>

mmt+1 ·Qshift(xtt−n, δ))), (12)

with δ ∈ [−30, 30]. Finally, we penalize the error between
the reconstruction of the transposed target and the actual
transposed target (i.e., employing Equation 3) as

L(shift(xt+1, δ), x̃
′
t+1). (13)

28 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



The transposition distance δ is randomly chosen for each
training batch. This method amounts to both, a form of
guided training and data augmentation.

4.0.2 Pre-training and Architecture

We use 512 units in the factor layer and 64 units in the
mapping layer of the GAE. On the latter, sparsity regular-
ization [14] is applied. The deviation of the norms of the
columns of both weight matrices U and V from their av-
erage norm is penalized. Furthermore, we restrict these
norms to a maximum value. The learning rate is reduced
from 0.001 to 0 during training, and RMSProp [8] is used.

5. EXPERIMENTS

5.1 Experiment 1: Folk Song Prediction

We test the RGAE and RNN in a sequence learning task
using the data described in Section 5.1.1. In order to make
the results comparable, we use the same experiment setup
as in [1, 22].

5.1.1 Data

The EFSC subset (comprising a total of 54,308 note events)
of the Essen Folk Song Collection (EFSC) [24] constitutes
the data for the actual training and evaluation. It consists
of 119 Yugoslavian folk songs, 91 Alsatian folk songs, 93
Swiss folk songs, 104 Austrian folk songs, the German
subset kinder (213 songs), and 237 songs of the Chinese
subset shanxi. The melodies are represented as series of
pitches ignoring note durations.

For pre-training the GAE portion of the RGAE, we use a
polyphonic Mozart piano music dataset ( [29], comprising
13 piano sonatas with more than 106,000 notes) in piano-
roll representation (i.e., using a regular time grid of 1/8th
note resolution, and an active note can span several time
steps). We pre-train on that data because polyphonic music
acts as a better regularizer for learning interval representa-
tions than monophonic music.

5.1.2 Training and Architecture

We use only 16 hidden units in the RNN portion of the
RGAE. The look-back window of the GAE is n = 8 pitches,
and we apply 50% dropout on the input in pre-training
and when training the whole architecture. We pre-train the
GAE for 250 epochs on the Mozart piano pieces (cf. Sec-
tion 5.1.1). Subsequently, the RNN portion is trained for
110 epochs on the interval representations (i.e., mappings
provided by the GAE) of the EFSC datasets. In the last 10
epochs the whole architecture is fine-tuned.

The baseline RNN with 50 hidden units is trained for
70 epochs on the EFSC data. The learning rate scheme is
adopted from that described in Section 4.0.2 for all models.

5.1.3 Combining Model Predictions

We hypothesize that the RNN and the RGAE are comple-
mentary in how they process musical sequences. For ex-
ample, the RNN may have better stability in remembering
absolute reference pitches, like the tonic of a piece, and

is superior in modeling prior probabilities, to keep predic-
tions in a plausible pitch range. In contrast, the RGAE can
make use of structural cues indicating repetitions and can
generalize better due to relative pitch processing. There are
several possibilities to combine the predictions of statisti-
cal models. Next to the ad-hoc approach of merely aver-
aging their outputs, we can also use information about the
certainty of the models and weight their outputs accord-
ingly. A measure for the certainty of a prediction is given
by the Shannon entropy [26]:

H(p) = −
∑
a∈A

p(a) log2 p(a), (14)

where p(a ∈ A) = P (X = a) is a probability mass func-
tion over a discrete alphabetA. The method which worked
best in our experiments is calculating the entropy-weighted
geometric mean of both predictions, as proposed in [21]:

p(t) =
1

R

∏
m∈M

pm(t)wm , (15)

where pm(t) is the predicted distribution of model m at
time t, wm = Hrelative(pm)−b is the weight of model m,
non-linearly scaled using a bias b (set to 0.5 in our exper-
iments), and R is a normalization constant. The relative
entropy Hrelative(pm) for model m is given by

Hrelative(pm) =
H(pm)

Hmax(pm)
, (16)

whereHmax(pm) > 0 is the entropy of the probability mass
uniformly distributed over the alphabet (indicating maxi-
mal uncertainty of the model).

5.1.4 Evaluation

Since the datasets are rather small, a fixed training/test set
split would lead to a poor estimation of the performance of
the models. Therefore, and in accordance with [1, 22], a
10-fold cross validation is performed for each dataset and
the categorical cross-entropy loss (cf. Equation 9) is re-
ported.

5.1.5 Results and Discussion

The results are shown in Table 1. The current state-of-
the-art results for general connectionist sequence models
on the datasets are achieved by the RTDRBM model in-
troduced in [1]. The results show that the RGAE slightly
outperforms the RTDRBM and is clearly superior to the
baseline RNN. Note that the RGAE only has 16 units for
learning temporal dependencies (the GAE portion mainly
transforms absolute pitch input to relative pitch represen-
tations). This compactness suggests that the relative pro-
cessing of music indeed supports generalization by reduc-
ing the sparsity in the data.

When combining the predictions of the RGAE with an
absolute pitch model (i.e., RNN or RTDRBM) based on
the entropy-weighted geometric mean (cf. Section 5.1.3), a
more substantial improvement is achieved than when com-
bining the two absolute pitch models. This result shows
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RNN RTDRBM [1] RGAE RNN + RNN + RTDRBM +
Data (GRU) RTDRBM RGAE RGAE

Alsatian folk songs 2.890 2.897 2.872 2.844 2.788 2.771
Yugoslavian folk songs 2.717 2.655 2.676 2.617 2.586 2.530
Swiss folk songs 2.954 2.932 2.895 2.851 2.831 2.769
Austrian folk songs 3.185 3.259 3.171 3.163 3.070 3.085
German folk songs 2.358 2.301 2.305 2.257 2.233 2.184
Chinese folk songs 2.725 2.685 2.752 2.612 2.650 2.595

Average 2.805 2.788 2.779 2.724 2.693 2.656

Table 1: Cross-Entropies of the 10-fold cross validation in the prediction task for different data sets and different models.
When combining the RGAE with an absolute pitch model (i.e., RNN, RTDRBM), results improve substantially. The
results suggest that absolute and relative pitch models are complementary in the aspects they learn about music and can be
effectively used in an ensemble method.

that absolute and relative processing of music are comple-
mentary and can, therefore, be effectively used together in
an ensemble method.

5.2 Experiment 2: Copy-and-Shift Operations

This experiment shall be seen as a proof-of-concept for the
RGAEs ability to learning sequences of copy-and-shift op-
erations (i.e., structure schemes). We oppose our model to
an RNN with GRUs, which is known to have difficulties to
learn tasks in the form “whatever has been generated be-
fore, now create a (shifted) copy of it”. The hypothesis is
that the RGAE, due to its modeling of intervals, is superior
in solving this task. It has shown in previous studies that
it can learn content-invariant transformations between data
instances [16], a necessary capability for learning content-
invariant structure schemes.

5.2.1 Data

In order to obtain a controlled setup for testing the model
performances, we construct data obeying different recur-
ring (chromatic) transposition patterns. To this end, the
EFSC dataset is transformed into a piano-roll representa-
tion with a resolution of 1/8th note. From that, short frag-
ments of length 4, 8, and 16 (≤ the length of the recep-
tive field of the input to the models) are randomly sampled
(rests are omitted). It is necessary that the RGAE has ac-
cess to all past events with which the prediction should be
related. Choosing longer fragment lengths than the lengths
of the receptive fields yields considerably worse results,
also for the baseline RNN, which already performs weakly
in this setup. The fragments are copied and transposed ac-
cording to some pre-defined transposition schemes (cf. Ta-
ble 2). For each of the 10 schemes and fragment lengths,
26 sequences (512 time steps each, resulting in 133 120
time steps) are generated, where 20 sequences are used for
training, 5 sequences are used for testing and 1 for evalu-
ation. This results in a total of 600 sequences for training,
150 sequences for testing and 30 sequences for evaluation.

5.2.2 Training and Architecture

The lookback window of the RGAE is n = 16 time steps,
the RNN portion has 64 units, and we do not use dropout
on the input. For the baseline RNN, we also input the 16
preceding time steps, as this supports copy operations by

Transposition Schemes

{+5,+5,+5, . . . }
{+7,+7,+7, . . . }
{−5,−5,−5, . . . }
{−7,−7,−7, . . . }
{+12,−12,+12, . . . }
{+3,−3,+3, . . . }
{+4,−4,+4, . . . }
{+9,−9,+9, . . . }
{+4,−8,+4,−8, . . . }
{−4,+8,−4,+8, . . . }

Table 2: The different relative transposition schemes used
in Experiment 2.

freeing up memory in the hidden units. The baseline RNN
model size (512 units) is selected by starting from 64 units
and always doubling that number until no substantial im-
provement occurs on the evaluation set.

The GAE portion of the RGAE is pretrained for 50 ep-
ochs on the structured sequences described above. Sub-
sequently, the RGAE is trained for 50 epochs, holding the
parameters of the GAE fixed. As the data of the pretraining
does not differ from the sequences in the prediction task,
finetuning is not necessary.

The baseline RNN is trained for 60 epochs. Again, for
both models the learning rate scheme described in Sec-
tion 4.0.2 is employed. Note that in this task, we always
randomly transpose the input to the models in all training
phases. Therefore, we need no dropout on the input of the
RGAE, and the baseline RNN does not overfit, despite its
high number of parameters.

5.2.3 Evaluation

The models have to learn to continue sequences from the
test set after exposition to the first 64 time steps of each
sequence. The experiment is different to typical prediction
tasks in that possibly incorrect predictions are fed back to
the models, causing errors to accumulate. To obtain more
stable continuations, we do not sample from the predicted
distributions of the models, but instead, treat the exper-
iment as a classification task and choose the pitch with
the highest predicted probability. Accordingly, the preci-
sion is merely the percentage of correctly predicted pitches
over time. In addition, we quantify how many sequences
are correctly continued until the end by considering all se-
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Model Pr (%) > 99% CE # Params

RNN 41.38 6.67 10.10 ∼ 2 300 000
RGAE 99.43 92.00 0.16 ∼ 600000

Table 3: Results of the structure learning task. Average
precision (Pr), percentage of continuations above 99% pre-
cision, cross-entropy (CE) and number of parameters of the
respective model.
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Figure 2: Distribution of precisions for continuation of
sequential copy-and-shift operations in the test set of size
150. The median is marked with a orange line, the boxes
indicate the interquartile range, and circles indicate out-
liers.

quences with an overall precision above 99% as correctly
continued. Furthermore, like in Experiment 1, the categor-
ical cross-entropy loss (cf. Equation 9) is computed.

5.2.4 Results and Discussion

Table 3 shows the quantitative results of the experiment,
and Figure 2 shows a box plot comparing the precisions
of the two models. With an average precision of 99.43%
percent, where 92% of all examples are flawlessly contin-
ued, the RGAE shows remarkable stability in continuing
the structure scheme realizations. The cross-entropy of the
RGAE is about two orders of magnitude lower than that
of the RNN. In Figure 3, a specific example of this se-
quence continuation task is depicted. Note that the hid-
den unit activations of the RGAE are more regular because
they only represent copy-and-shift operations instead of
the musical texture itself (as it is the case for the RNN).
The most challenging part for the RGAE is counting, in
order to change the copy operation (i.e., transposition dis-
tance) at the right time (in fact, at most of the incorrectly
continued sequences, the RGAE miscounted by one time
step). It is important to note that the hidden unit activations
of the RNN portion are identical for identical schemes,
because they operate on transformations between events,
rather than on the events themselves (i.e., they are largely
content-invariant).

6. CONCLUSION AND FUTURE WORK

The principle of modeling sequences of first-order deriva-
tives in music is a compelling concept with the potential
to solve two persistent problems in MIR: Learning trans-
position-invariant interval representations, and learning rep-
resentations of (chromatically transposed) repetition struc-
ture. The proposed model is conceptually simple and can
be trained as a generative model in sequence learning tasks.

Figure 3: Generated structure schemes and hidden unit
activations of the RGAE and the RNN models after input
of a primer indicating the {−4,+8,−4,+8, . . . } scheme,
realized with melodies of length 16 not contained in the
train set. Black notes indicate correct continuation, green
notes indicate false negatives, red notes indicate false pos-
itives. Hidden units activations of the RNN are pruned due
to space limitation.

Moreover, the RGAE can act as a building block for
more complex architectures, in order to extend its capabili-
ties. For example, the temporal lookback window could be
greatly extended by employing the RGAE on top of a (di-
lated) convolutional network, enabling it to learn higher-
level repetition structure. In another variant, an RGAE
could be employed on top of an RNN. Applied to music,
the RNN would provide the RGAE with representations of
important, absolute reference pitches (e.g., the tonic of a
scale, or the root note of a chord), and the RGAE could
learn sequences of intervals in relation to them. Another
interesting architecture would involve stacking more than
one RGAE on top of one another to learn higher-order
derivatives, for example, variations between mutually trans-
posed parts in music.

The RGAE, however, is not limited to the symbolic,
monophonic, domain of music. We show in [13] that a
GAE can also operate in the spectral domain of audio and
in polyphonic symbolic music. Finally, we note that the
RGAE is general enough to be applicable to other domains
where the derivatives of functions are of higher importance
than their absolute course. Possible applications include
modeling temporal progressions of changes in loudness,
tempo, mood, information density curves, and other musi-
cal properties, modeling moving or rotating objects, cam-
era movements in video recordings, and signals in the time
domain.
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ABSTRACT

In this work, we present an end-to-end framework for
audio-to-score transcription. To the best of our knowl-
edge, this is the first automatic music transcription ap-
proach which obtains directly a symbolic score from audio,
instead of performing separate stages for piano-roll estima-
tion (pitch detection and note tracking), meter detection or
key estimation. The proposed method is based on a Con-
volutional Recurrent Neural Network architecture directly
trained with pairs of spectrograms and their correspond-
ing symbolic scores in Western notation. Unlike standard
pitch estimation methods, the proposed architecture does
not need the music symbols to be aligned with their au-
dio frames thanks to a Connectionist Temporal Classifica-
tion loss function. Training and evaluation were performed
using a large dataset of short monophonic scores (incip-
its) from the RISM collection, that were synthesized to get
the ground-truth data. Although there is still room for im-
provement, most musical symbols were correctly detected
and the evaluation results validate the proposed approach.
We believe that this end-to-end framework opens new av-
enues for automatic music transcription.

1. INTRODUCTION

Automatic Music Transcription (AMT) is a very relevant
field within the Music Information Retrieval (MIR) com-
munity. This task can be defined as the automated pro-
cess of converting an audio recording into any kind of
musically-meaningful structured format. The usefulness of
this process is very broad, especially for MIR algorithms
such as content-based music search, symbolic music simi-
larity, or symbolic musicological analysis.

However, this is a challenging task and state-of-the-art
methods currently obtain a performance significantly be-
low a human expert. In order to obtain a complete score
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from a waveform, it is necessary to perform pitch detec-
tion, note onset/offset detection, loudness estimation and
quantization, instrument recognition, extraction of rhyth-
mic information, and time quantization [2].

Most music transcription systems focus on two of these
stages: pitch detection, where pitches at each time frame
of the audio are estimated, and note tracking [32], where
the estimations of the previous step are discretized into
sequences of 3-tuples (onset, offset, pitch). The output
in this case is a piano-roll, that is, a two-dimensional
representation of notes across time [2]. Multiple pitch
estimation techniques include spectrogram factorization
methods [1, 3, 28] and discriminative approaches, which
perform frame-by-frame pitch estimation using statistical
models [10], signal processing methods [23, 35], or ma-
chine learning techniques [4] including deep neural net-
works [17,27,30]. Some works also integrate musical lan-
guage models into the pitch estimation process to resolve
output ambiguities [27, 34].

Supervised learning approaches for piano-roll estima-
tion require the ground truth to be aligned for training.
Matching pitches frame by frame with their corresponding
waveform samples is a time-consuming task and, although
there are some efforts in this direction with datasets such as
MAPS [10], RWC [11] or MusicNet [29], currently there
are no very large AMT corpora. Beyond the difficulty of
performing an accurate annotation, frame-by-frame esti-
mation has some additional issues to be taken into account.
For example, when a whole note is played using a plucked
string instrument such as a guitar, the quick decay of its
harmonic amplitudes produces frames with a very low in-
tensity at the end of the note, causing ambiguities when
labeling the offset frames.

In addition, as pointed out in [2], AMT algorithms are
usually developed independently to carry out individual
tasks such as multiple pitch detection, beat tracking and in-
strument recognition. Some existing AMT methods, such
as the ones proposed in [19–21], also include rhythm esti-
mation and time quantization. Still, the challenge remains
to combine the outputs of the individual tasks to perform
joint estimation of all parameters, in order to avoid the cas-
cading of errors when algorithms are combined sequen-
tially.

In this work we intend to open a new framework to ad-
dress the AMT task. Our proposal is to consider end-to-
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end machine learning strategies, with which this task can
be carried out holistically. In other words, we aim at us-
ing a waveform as input, and directly obtaining a music
score at the output taking into account all its components
(pitches, note durations, time signature, key signature, etc.)
jointly.

The task of directly estimating a symbolic score from
audio is certainly different from that of estimating a piano-
roll. While piano-roll estimation aims to extract what has
been played from the audio as exact as possible, in the
score transcription task the goal is to obtain a symbolic rep-
resentation from what the musician read, which includes
abstracting away some information such as loudness.

For this, we address score estimation using Deep Neural
Networks. We specifically consider the use of a Convolu-
tional Recurrent Neural Network, which is responsible of
both processing the input spectrogram to extract meaning-
ful features and predict an output sequence that represents
the music contained in a given audio recording. Thanks
to the Connectionist Temporal Classification (CTC) loss
function, this kind of networks can be trained in terms
of pairs (input, output), without needing of dividing the
process into smaller stages or providing framewise annota-
tions. The idea is that the prediction is forced to be encoded
in terms of actual music-notation elements.

It is important to emphasize that the objective of this
work is not to outperform the accuracy of previous ap-
proaches, but to propose a framework with which to ad-
dress the AMT task. In order to demonstrate the feasibil-
ity of this formulation, our experiments are restricted to a
constrained scenario, using audio recordings from mono-
phonic scores that were synthesized using a piano. We are
aware that the main challenge in AMT is to deal with poly-
phonic real music. In a future work we plan to extend the
proposed approach to detect polyphonic scores, although
its effectiveness with sound mixtures is yet to be studied.

The evaluation results in this constrained scenario val-
idates the proposed framework and show that the the pro-
posed approach obtains reliable results, correctly detecting
most musical symbols.

The rest of the paper is organized as follows: the corpus
used for evaluation is described in Section 2; the holistic
neural framework proposed for the AMT task is described
in Section 3; the series of experiments carried out are de-
tailed in Section 4; and finally, the conclusions of the cur-
rent work are summarized in Section 5, pointing out some
interesting avenues for future work as well.

2. DATASET

In order to get the ground truth for our framework, we
used the RISM 1 collection [26], which currently contains
more than one million incipits (short monophonic music
excerpts). This corpus is very useful for music retrieval
tasks because of its size and the fact that it contains real
music written by human composers [31]. Spectrograms
from synthesized incipits are the inputs to our method, and

1 The complete set of RISM incipits can be downloaded from https:
//opac.rism.info/index.php?id=8&L=1&id=8
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Figure 1: Data acquisition for training. RISM incipits are
converted into our music notation format and magnitude
spectrograms (Short-Time Fourier Transform, STFT) are
also computed from synthesized versions of the incipits.
The inputs of the proposed framework (x) are the symbolic
data and the outputs are the spectrograms (y). Frame-by-
frame alignment is not necessary.

their corresponding symbolic scores are the outputs. The
scheme of the proposed method can be seen in Figure 1.

2.1 Preprocessing

RISM incipits are formatted in Plaine & Easie Code (PAE).
We randomly selected a subset of 71,400 incipits in West-
ern notation and converted them into the music notation
format that can be seen in Table 1, where each symbol is
encoded using a single character. This notation is oriented
to represent the music as a language, similarly to what a
speech recognition system does. Following this analogy,
we consider a music note as a word (for example, C]4 ˇ “)
containing several characters from an alphabet set Σ that
can be seen in Table 1, and which is separated to other
words by blank spaces. Rests are represented in the same
way, with a word consisting of the rest symbol and its du-
ration. In addition to notes and rests, the alphabet set in-
cludes clefs, key and time signatures, measure bars and
note ties. Every musical symbol in Table 1 is encoded for
our framework using a single element (one character).

In order to get the audio files, the RISM PAE incipits
were converted into Music Encoding Initiative (MEI) for-
mat, and then translated again into MIDI using Meico 2 ,
which unlike Verovio 3 takes into account the key signa-
ture.

The synthesis from MIDI files was performed using
timidity with the piano program of the default soundfont,
obtaining monoaural audio files at 16kHz. Then, mag-
nitude spectrograms were calculated using a 64ms (1024
samples) Hamming window with a 16ms hop (256 sam-
ples). All incipits were synthesized using random tempo
values in the range [96-144] bpm in order to make the net-
work work with different speeds.

3. FRAMEWORK

We describe in this section the neural model that allows
us to face the AMT task directly from an audio signal to a
sequence of meaningful symbols.

2 https://github.com/cemfi/meico
3 http://www.verovio.org/index.xhtml
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Class Symbol Count Histogram
Global Blank 1,526,051
Clef G2 39,337

F4 4,414
C1 22,468
C3 1,981
C4 3,200

Key D[M 112
A[M 1,065
E[M 6,815
B[M 8,950
FM 11,599
CM 15,488
GM 10,309
DM 10,861
AM 4,933
EM 1,216
BM 52

Pitch A 87,323
B 88,004
C 95,190
D 100,014
E 80,780
F 75,579
G 84,953
[ 70,557
] 55,471
Rest 89,635

Octave 2 2,937
3 44,170
4 274,590
5 284,081
6 6,065

Duration ¯ 8,686
˘ “ 52,541
ˇ “ 172,933
ˇ “( 226,395
ˇ “) 72,124

ˇ “* 6,711

‰ 72,453
Tie 10,393

Time 4/4 27,855
2/2 13,848
3/4 11,595
2/4 7,569
6/8 4,950
3/8 2,916
3/2 1,199
12/8 592
6/4 417
4/2 305
9/8 154
Barline 245,239

Table 1: Symbols of the alphabet Σ. Notes are encoded
using words of three to five symbols (for example, C]4 ˇ “‰ ).

$ q c F]4 ˇ “( . G4 ˇ “) | A4 ˇ “ a4 ˇ “( . A4 ˇ “) A4 ˇ “( D5 ˇ “( C]5 ˇ “( B4 ˇ “( | A4 ˇ “ A4 ˇ “) B4 ˇ “) A4 ˇ “) G4 ˇ “) F]4 ˇ “. A4 ˇ “( | G4 ˇ “( . F]4 ˇ “) G4 ˇ “( A4 ˇ “( F]4 ˇ “( . E4 ˇ “) F]4 ˇ “( G4 ˇ “(

1

$ q c F]4 ˇ “( . G4 ˇ “) | A4 ˇ “ a4 ˇ “( . A4 ˇ “) A4 ˇ “( D5 ˇ “( C]5 ˇ “( B4 ˇ “( | A4 ˇ “ A4 ˇ “) B4 ˇ “) A4 ˇ “) G4 ˇ “) F]4 ˇ “. A4 ˇ “( | G4 ˇ “( . F]4 ˇ “) G4 ˇ “( A4 ˇ “( F]4 ˇ “( . E4 ˇ “) F]4 ˇ “( G4 ˇ “(

1

Figure 2: Example of a magnitude spectrogram (x) syn-
thesized from a RISM incipit (center). The symbolic en-
coding representation used for the CRNN (y) is shown be-
low, where the character ‘$’ is the G2 clef, ‘q’ is the key
signature DM, the symbol ‘c’ is used to encode 4/4 and
‘|’ represents the barline. Similarly to speech recognition,
words are separated by blank spaces.

Formally, let X = {(x1, y1), (x2, y2), ...} be our end-
to-end application domain, where xi is an audio recording
represented by its magnitude spectrogram, and yi denotes
its corresponding ground-truth sequence from a fixed al-
phabet set Σ.

The problem of AMT can be reformulated as retriev-
ing the most likely sequence of symbols ŷ given an input
spectrogram x. That is:

ŷ = arg max
y∈Σ∗

P (y|x) (1)

We formulate this statistical framework by means of Re-
current Neural Networks (RNN), as they allow handling
sequences [12]. Ultimately, therefore, the RNN will be re-
sponsible of producing the sequence of musical symbols
that fulfills Eq. 1. Nevertheless, on top of it, we add a Con-
volutional Neural Network (CNN), which learns how to
process the input signal to represent it in a meaningful way
for the task at issue [36]. Since both types of networks
consist of feed-forward operations, the training stage can
be carried out jointly by simply connecting the output of
the last layer of the CNN with the input of the first layer of
the RNN, which leads to a Convolutional Recurrent Neu-
ral Network (CRNN). A similar topology was previously
applied to drum transcription in [33], although not in an
end-to-end fashion.

Our work is conducted over a supervised learning sce-
nario. Therefore, it is assumed that we can make use of
a set T ⊂ X with which to train the model. Initially, the
traditional training mechanism for a CRNN needs to be
provided with the expected output for each frame of the in-
put. As introduced above, for each recording the training
set only contains its corresponding sequence of expected
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symbols, without any kind of explicit information about
their location within the input signal. This scenario can be
solved by means of the so-called Connectionist Temporal
Classification (CTC) loss function [13].

Given an input x, CTC provides a means to optimize the
CRNN parameters in order to directly output its correct se-
quence y. In other works, CTC directly optimizes P (y|x).
Since the ground-truth is not aligned at the frame level,
that is, it is unknown the alignment between the frames of
the recurrent part and the output symbols, CTC integrates
over all possible alignments. It only considers monotonic
alignments (left-to-right constraint), which is a valid as-
sumption in our task.

Although optimizing the aforementioned probability
is computationally expensive, CTC performs a local op-
timization using an Expectation-Maximization algorithm
similar to that used for training Hidden Markov Models
[24]. However, given that CTC integrates over all possible
alignments, its main limitation is that the cost of the op-
timization procedure grows rapidly with the length of the
sequences.

Note that CTC is used only for training. At the in-
ference stage, the CRNN still predicts a symbol for each
frame of the recurrent block. To indicate a separation be-
tween symbols, or to handle those frames in which there
is no symbol, CTC considers an additional symbol in the
alphabet that indicates this situation (blank symbol).

3.1 Implementation details

Finding the best instantiation of a CRNN for the case of
AMT is out of the scope of this work, but we are inspired
by the Deep Speech 2 [8] topology, which was especially
designed for the task of Automatic Speech Recognition
(ASR). Although ASR and AMT are different tasks they
are related, and so the use of this architecture allows us to
obtain valuable results without having to make an exhaus-
tive search of the best neural topology.

Nonetheless, we made small modifications to the orig-
inal architecture in order to adjust its behavior to AMT.
The specification of our neural topology is detailed in
Table 2. It consists of 2 convolutional layers and 3 recur-
rent layers. Convolutional layers are composed of convo-
lutional filters followed by Batch Normalization [16], and
the non-linear hard hyperbolic tangent (HardTanh) activa-
tion function [14]. Furthermore, bi-directional recurrent
layers are configured as Gated Recurrent Units (GRU) [7],
with Batch Normalization as well. On top of the last recur-
rent output, a fully-connected layer is placed with as many
neurons as symbols of the vocabulary (plus 1, because of
the blank symbol). The use of the softmax activation al-
lows us to interpret the output of this last layer as a poste-
rior probability over the vocabulary [6].

The training stage is carried out by providing pairs of
spectrograms with their corresponding unaligned sequence
of musical symbols. The optimization procedure follows
stochastic gradient descent (SGD) [5] with Nesterov mo-
mentum of 0.9, gradient L2 Norm clipping of 400, and a
mini-batch size of 20 samples, which modifies the network

Input(1024× T )

Convolutional block
Conv(32, 41× 11, 2× 2), BatchNorm(), HardTanh()
Conv(32, 21× 11, 2× 1), BatchNorm(), HardTanh()

Recurrent block
B-GRU(1024), BatchNorm()
B-GRU(1024), BatchNorm()
B-GRU(1024), BatchNorm()
Dense(|Σ|+ 1), Softmax()

Table 2: Instantiation of the CRNN used in this work for
audio-to-score AMT, consisting of 2 convolutional layers
and 3 recurrent layers. Notation: Input(h × w) means an
input spectrogram of height h and width w; Conv(n, kh ×
kw, sh × sw) denotes a convolution operator of n filters,
kernel size of kh×kw, and stride of sh×sw; BatchNorm()
denotes a batch normalization procedure; HardTanh() rep-
resents the hard hyperbolic tangent activation; B-GRU(n)
means a bi-directional Gated Recurrent Units of n neurons;
Dense(n) denotes a fully-connected layer of n neurons;
and Softmax() represents the softmax activation function.
Σ denotes the character-wise alphabet considered.

weights to minimize the CTC loss function through back-
propagation. The learning rate was initially set to 0.0003,
but it was annealed by a factor of 1.1 after each epoch to fa-
vor convergence. The model was trained during 20 epochs,
fixing the weights according to the best result over the val-
idation set.

Once the CRNN is trained with the previous procedure,
it can be used to output a discrete symbol sequence from a
given spectrogram. The model yields character-level pre-
dictions in each frame. In order to provide an actual sym-
bol sequence, it is necessary to both collapse repeating
characters and discarding blank characters. Since there
could be several frame-level sequences that result in the
same sequence of musical symbols, the final decoding is
conducted by a beam search procedure [37], with a beam
width set to 10.

4. EXPERIMENTS

4.1 Setup

The proposed framework is evaluated using the corpus de-
scribed in Section 2.1.

Experiments are performed dividing the available data
into three independent partitions: 49, 980 samples (118.03
hours) for training, 10, 710 samples (25.34 hours) for val-
idation, and 10, 710 samples (25.36 hours) for the test set,
which is used to evaluate the actual performance.

Given the differences with existing AMT approaches,
our results are not directly comparable with any previous
work. Likewise, there are no standard evaluation metrics
with which to evaluate this framework.

Here, we propose a series of metrics especially consid-
ered for evaluating the presented approach. In particular,
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we are inspired by other tasks, like ASR or Optical Charac-
ter Recognition (OCR), that are also formulated expecting
a sequence of symbols as output. Analogously to these
tasks, we also assume that the output consists of individual
characters (pitches, durations, alterations, ...) that build
complete words (such as notes). Therefore, the perfor-
mance can be evaluated in terms of Character Error Rate
(CER) and Word Error Rate (WER). These metrics are de-
fined as the number of elementary editing operations (in-
sertion, deletion, or substitution) to convert the hypotheses
of the system into the ground-truth sequences, at the char-
acter and word level, respectively. They compute this cost
in a normalized way according to the length of the ground-
truth sequences. Even assuming that these metrics are not
optimal for the task of AMT, we hope that they allow us
to validate the approach and draw reasonable conclusions
from our experimental results.

In order to get some baseline results that can be com-
pared to other works, we also applied the evaluation me-
tric used in [19] for piano-roll alignment tasks. The total
number of notes in the ground truth is denoted by NGT ,
that of estimated notes by Nest. The number of notes with
pitch errors is denoted by Np, that of extra notes by Ne,
and that of missing notes by Nm. The number of matched
notes is defined as Nmatch = NGT − Nm = Nest − Ne.
Then we define the pitch error rate as Ep = Np/NGT , ex-
tra note rate as Ee = Ne/Nest, and missing note rate as
Em = Nm/NGT . Onset/offsets errors are also reported
in [19]. As we are dealing with note durations instead of
onsets/offsets, we include an alternative error metric Ed

which is calculated similarly to the pitch error Ep but us-
ing note duration errors, denoted by Nd. Thus, we define
the duration error rate as Ed = Nd/NGT .

4.2 Results

Figure 3 shows the evolution of the errors during the train-
ing process. As can be seen, the convergence is fast and
the best results on the validation set are obtained at epoch
18, reporting a CER of 5.53 and a WER of 15.98. In the
test set, a CER of 5.36 and a WER of 15.67 are obtained.
These results are very similar to those from the validation
set, thus proving that there is no over-fitting and the model
generalizes well.

After an in-depth analysis of the test set transcriptions
obtained, we observed that the majority of errors are due
to wrong time signatures, barline locations, and clefs. This
result was expected in our prior analysis, as even for a hu-
man it would be difficult to identify them based on the
short audio excerpts we provide to our model (the average
number of music measures of the audio excerpts is 4.4).
Furthermore, there are some time signatures that contain
the same number of notes per measure and therefore they
require more musical context to identify them correctly
(e.g. 4/4 and 2/2 time signatures), as shown in Figure 4.
In other cases, one of these specific errors causes the ap-
pearance of many others, as seem to happen with the time
signature in the example of Figure 5. In order to address
these ambiguities, normalization techniques could be em-

Figure 3: Evolution curves of the CTC loss, CER, and
WER over the validation set with respect to the training
epoch. The lowest WER (15.98) and CER (5.53) figures
are obtained at epoch 18.

(a) Original score.

(b) Transcribed score.

Figure 4: Example of transcription performance. Note that
the two mistakes made (clef and time signature) belong to
music notation ambiguities.

ployed (for instance, changing all 2/2 by their equivalent
notation in 4/4).

In spite of all these difficulties, some samples are per-
fectly recognized, as the one depicted in Figure 6.

We provide the results of the evaluation metric proposed
in [19] for estimated notes, and for estimated notes and
rests combined (in this case, Ep does not change). As
can be seen in Table 3, the error rates are quite low com-
pared to [19], but this is due to the fact that our audio files
are monophonic and synthesized. In addition, most tran-
scription errors are due to wrong estimations of time sig-
natures, subsequently yielding wrong barline locations as
previously explained.

5. CONCLUSIONS

In this work, we propose a new formulation of AMT in the
form of an audio-to-score task. In summary, the advan-
tages of this formulation over piano-roll estimation are:
1) it is not required to have a frame-by-frame annotation
aligned with the audio, therefore potentially more data

Table 3: Note pitch error rate (Ep), missing symbol rate
(Em), extra symbol rate (Ee) and symbol duration error
rate (Ed) considering only notes and notes plus rests.

Ep Em Ee Ed

Notes 0.99% 2.63% 1.81% 0.71%
Notes+Rests 0.99% 4.94% 2.51% 1.23%
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(a) Original score.

(b) Transcribed score.

Figure 5: Example of a transcription with several mis-
takes. Here, the unusual time signature 3/2 (wrongly de-
tected) propagates the errors to the notes.

Figure 6: Example of a correctly transcribed score.

could be acquired for training; 2) the obtained outputs are
musically meaningful; 3) the frame-by-frame annotation
ambiguities are avoided, although on the other hand there
are music notation ambiguities to deal with; 4) the task
is addressed holistically instead of using a pipeline of in-
dividual processes, avoiding the cascading of errors when
they are combined sequentially, and 5) musical models are
implicitly inferred as it occurs with language models in
speech recognition.

We validated the proposed framework using a CRNN
with a CTC loss function trained on RISM incipits, cor-
rectly predicting around 84% of symbols for monophonic
scores synthesized with a piano sound at different tempos.
It is important to note that some symbols such as barlines,
rests, ties, time signatures or key signatures were no ex-
plicitly present in spectrograms but they were correctly in-
ferred from the context.

A qualitative analysis of the performance reported that
many errors occurred because of music notation ambigui-
ties. Although they decreased the WER and CER figures,
”wrong” outputs are musically correct and equivalent to
the ground-truth scores in most cases.

As a future work, we are planning first to extend it for
polyphonic sources, and also to perform instrument recog-
nition. In order to deal with polyphony, a chord could be
considered as a “word” containing “syllabus” (the individ-
ual notes), for example: C4 ˘ “E4 ˘ “G4 ˘ “ . An additional sym-
bol could be added to indicate the instrument (for example,
PC4 ˇ “ could represent a quarter note of pitch C4 played on
Piano).

As pointed out in [18], previous experiments on deep
neural networks dealing with framewise multiple pitch de-
tection showed that unseen combinations are hard to de-
tect. A partial solution to this problem might involve a
modification of the loss function for the network to disen-
tangle individual notes explicitly and learn to decompose
a (nonlinear) mixture of signals into its constituent parts.
We believe that, unlike what happens in this framewise de-
tection, CTC loss may be able to break the observed glass-
ceiling, given that ASR methods using this architecture are
capable of generalizing to detect unseen words from its
constituent (character) elements. Nonetheless, additional
experiments on AMT should confirm this hypothesis.

Synthesized scores were used to perform the experi-
ments, although ideally real data should be evaluated. For
this, we are planning to use datasets such as Lakh [25],
which contains audio files with their corresponding MIDIs.
Given the computational cost of CTC, the proposed frame-
work needs to use short segments. Therefore, it is neces-
sary to have aligned barlines to split both the audio and the
corresponding score ground truth into smaller pieces. This
could be done using a score following method [9,22]. This
preprocessing could introduce some errors due to wrong
alignments, but there is a more suitable alternative: to
train the CRNN using full scores along with their complete
real audio files, which is the ultimate goal of the proposed
framework. This is possible and could be done by con-
sidering the recently proposed online CTC [15] function,
which efficiently adapts to any sequence length.

Another obvious future work is to find a more ade-
quate network architecture and evaluate alternative hyper-
parameters to increase the accuracy. CNN and RNN
topologies evaluated in previous AMT works [17, 27]
should be investigated for this task.

In conclusion, in this work we show that it is feasible
to perform end-to-end transcription from monophonic au-
dio files to scores. We are fully aware that experiments
were made in a very controlled and simplified environ-
ment and there is still much work to do in order to per-
form a complete transcription. But we believe that the pro-
posed framework opens a new exciting research area given
the huge amount of data that could potentially be used for
training, and its practical utility for musicians who could
obtain directly a score from audio.
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ABSTRACT

Automatic Music Transcription (AMT) is an important
task in music information retrieval. Prior work has focused
on multiple fundamental frequency estimation (multi-pitch
detection), the conversion of an audio signal into a time-
frequency representation such as a MIDI file. It is less
common to annotate this output with musical features such
as voicing information, metrical structure, and harmonic
information, though these are important aspects of a com-
plete transcription. Evaluation of these features is most of-
ten performed separately and independent of multi-pitch
detection; however, these features are non-independent.
We therefore introduce MV 2H , a quantitative, automatic,
joint evaluation metric based on musicological principles,
and show its effectiveness through the use of specific ex-
amples. The metric is modularised in such a way that
it can still be used with partially performed annotation—
for example, when the transcription process has been ap-
plied to some transduced format such as MIDI (which may
itself be the result of multi-pitch detection). The code
for the evaluation metric described here is available at
https://www.github.com/apmcleod/MV2H.

1. INTRODUCTION

Automatic Music Transcription (AMT) involves convert-
ing an acoustic musical signal into some form of music
notation. The process has generally been divided into two
steps: first, multi-pitch detection, which is the conversion
of the signal into a piano-roll notation (such as a MIDI
file) by detecting which pitches are present at each time;
and second, the conversion of that piano-roll notation into
a musical score by annotating it with further musical infor-
mation. Readers can refer to [2] for an overview of AMT.

The first step, multi-pitch detection, has been the focus
of a great amount of research in AMT. The second step in-
volves many subtasks of musical analysis, including voice
separation, metrical alignment, note value detection, and
harmonic analysis. Each of these has been the subject of
research both directly from the acoustic signal and from
other input formats such as MIDI. They are usually per-
formed separately, though some recent work has attempted

c© Andrew McLeod, Mark Steedman. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Andrew McLeod, Mark Steedman. “Evaluating Automatic
Polyphonic Music Transcription”, 19th International Society for Music
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to analyse subsets of them jointly. For example, [27] es-
timates both chords and downbeats directly from acoustic
input. [33] performs voice streaming, metrical alignment,
and harmonic analysis jointly from symbolic input. How-
ever, even in the case of these joint models, evaluation is
performed separately for each subtask. Rather than simply
taking an average of a model’s score on each subtask, there
is a need for a standardised way to compute the joint score
in a way that reflects overall AMT performance.

In this paper, we introduce MV 2H (from Multi-pitch
detection, Voice separation, Metrical alignment, note
Value detection, and Harmonic analysis), a metric to quan-
titatively evaluate AMT systems that perform both multi-
pitch detection and musical analysis. The metric can be
used for AMT systems that do not perform all aspects of
a full musical analysis—for example, those that perform
multi-pitch detection and meter detection, but nothing else.
One of the main principles of the new metric is that of
disjoint penalties: that mistakes should only be penalised
once. That is, if an error in one part of the transcrip-
tion causes a mistake in another part, that error should not
be counted twice. For example, if a pitch is missed dur-
ing multi-pitch detection, the metric should not further pe-
nalise missing that note from the voice separation results.

Based on this principle, we do not include errors re-
lated to the proper typesetting of a transcription in our met-
ric, and we do not even require a typeset musical score
to perform our evaluation. Most typesetting decisions
come down to the proper analysis of the underlying piece.
For example, if metrical alignment is performed properly,
beaming comes naturally. Likewise, stem directions can
follow from voice separation and pitch spelling is a conse-
quence of a proper harmonic analysis. For details related
to the proper typesetting of music and its relation to the
underlying music analysis, see [14].

2. EXISTING METRICS

Each of the separate tasks involved in the full AMT process
has been the subject of much prior research, and there are
existing metrics for each of them. This section gives a brief
overview of the most widely used metrics for each subtask.

2.1 Multi-pitch Detection

Multi-pitch detection is evaluated both at the frame level
and at the note level depending whether a given model in-
cludes some form of note tracking or not. As the goal of
this paper is to define a metric which is useful for a com-
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plete AMT system, the note-level evaluation metrics are
most applicable here, and readers interested in the frame-
based evaluation, an accuracy metric, should refer to [28].

For the note-level metric, a note is defined by its pitch,
onset time, and offset time. [1] defines two different preci-
sion, recall, and F-measures for note-level multi-pitch de-
tection. For the first, they define true positives as those
notes detected whose pitch lies within a quartertone of that
of a ground truth note, and whose onset time is within
50 ms of the same ground truth note’s onset time, regard-
less of offset time. Spuriously detected notes are each as-
signed a false positive, and ground truth notes which are
not matched by a detected note are each assigned a false
negative. The second metric they propose is identical, with
the additional constraint that a detected note’s offset time
must be accurate to within a certain threshold for it to be
considered a true positive. Both of these metrics are used
by both the Music Information Retrieval Evaluation Ex-
change (MIREX) [25] and the mir eval package [29].

For our purposes, we care mostly about onset time and
pitch (to the nearest semitone) as these aspects are most
directly relevant to the underlying musical score. Offset
time, on the other hand, is applicable as far as it relates
to note value, and is discussed in Section 2.4. Our multi-
pitch detection metric will therefore be based most closely
on the first multi-pitch F-measure, which doesn’t account
for offset time.

2.2 Voice Separation

Voice separation refers to the separation of the notes of a
piece of music into perceptual streams called voices. There
is no standardised definition of what constitutes a voice,
and a full discussion can be found in [3]. In this work, we
restrict each voice to be monophonic. This aligns with the
majority of work on voice separation, and is beneficial in
AMT in that it allows simpler processing of monophonic
data to occur in the later musical analysis steps.

There is no standardised metric for evaluating voice
separation performance. [5] defines Average Voice Consis-
tency (AVC), which returns an average of the percentage of
notes in each voice which have been assigned to the correct
voice. (A note is said to be assigned to the correct voice if
its ground truth voice is the most common one for notes
assigned to its voice.) This metric has a problem in that if
a model assigns each note to a distinct voice, it achieves
a perfect AVC of 100%. For acoustic input, [19, 30] use
a similar metric, with the addition that spuriously detected
notes automatically count as incorrect.

[17] defines two metrics: soundness, which measures
the percentage of consecutive notes in an assigned voice
which belong to the same ground truth voice; and com-
pleteness, which measures the percentage of consecutive
notes in a ground truth voice which were assigned to the
same voice. Finally, [12] defines a precision, recall, and
F-measure evaluation, in which the problem of voice as-
signment is treated as a graph problem where each note is
represented by a node, and two nodes are connected by an
edge if and only if they are consecutive notes in an assigned

voice. The values are calculated by counting the number
of correct edges (true positives), spurious edges (false pos-
itives), and omitted edges (false negatives).

Each of these metrics would penalise an AMT system
for any spurious notes, so for our proposed metric, we will
need to use a modified version of one of them (or design
a new metric) in order to enforce the principle of disjoint
penalties.

2.3 Metrical Alignment

Metrical alignment is most often approached as one of
three different tasks: downbeat tracking, beat tracking,
or metrical structure detection. Downbeat tracking and
beat tracking each involve identifying points in time, and
thus can theoretically be evaluated using the same metrics,
which are summarised by [8, 9]. F-measure [11] (which
downbeat tracking work uses almost exclusively), is cal-
culated by counting the number of (down)beats within
some window length (usually 70 ms) of an annotated
(down)beat. [4] proposes a similar metric, where accuracy
is calculated instead using a Gaussian window around each
annotated beat. [13] proposes a binary metric which is 1 if
the beats are correctly tracked for at least 25% of the piece,
and 0 otherwise. P-score [18], is the proportion of tracked
beats which correctly match an annotated beat, normalised
by either the number of tracked beats or the number of
annotated beats (whichever is greater). Finally, [15] pro-
poses metrics based on the longest continuously tracked
section of music. All of the above are used to some extent
in beat-tracking, and all are used by both mir eval [29] and
MIREX. [21, 23] In addition, evaluation is also often pre-
sented at twice and half the annotated beat length, to handle
models which may track a beat at the wrong metrical level.

By comparison, the evaluation of metrical structure de-
tection is far less sophisticated. Meter detection is the or-
ganisation of the beats of a given musical performance into
a sequence of trees at the bar level, in which each node
represents a single note value. The structure of each of
these trees is directly related to the music’s time signature,
where the head of each tree splits into a number of nodes
equal to the number of beats per bar, and each of these beat
nodes splits into a number of nodes equal to the number of
sub-beats per beat. Thus, each time signature uniquely de-
scribes a single metrical tree structure as defined by the
number of beats per bar and sub-beats per beat in that time
signature. The most basic evaluation is to simply report
the proportion of musical excerpts for which the model
guesses the correct metrical structure and phase (such that
each tree aligns correctly with a single bar). Another ap-
proach is to simply report the proportion of musical ex-
cerpts for which the model correctly classifies the meter as
duple or triple [10]. Both of these metrics are simplistic,
and fail to take into account some idea of partially correct
metrical structure trees.

Two metrics have been used for metrical structure de-
tection evaluation which contain within them an evaluation
of beat tracking and downbeat tracking, making them ideal
for an evaluation of a joint model. [31] proposes a metric
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which takes into account the level on the metrical tree at
which each note lies in order to capture some idea of partial
correctness. However, since it is based on detected notes,
it is not robust to errors in multi-pitch detection. [20] intro-
duces an F-measure metric where each level of the detected
metrical structure is assigned a true positive if it matches
any level of the ground truth metrical structure (even if it is
not the same level). A false positive is given for any level
of the detected metrical structure which clashes with a met-
rical grouping in the ground truth, and a false negative for
any metrical level in the ground truth which remains un-
matched by a level of the detected metrical structure. As
it is based solely on metrical groupings, rather than notes,
it is robust to multi-pitch detection errors, and would not
violate our principle of disjoint penalties. However, it was
designed for use with metronomic input, and would there-
fore need to be adapted for our purposes of evaluating a
complete AMT system on live performance data.

2.4 Note Value Detection

Note value detection (identifying a note as a quarter note,
eighth note, dotted note, tied note, etc.) is not a widely
researched problem, related to a combination of note offset
time and metrical alignment. [26] describes two metrics
for the task. One, error rate, is simply the percentage of
notes whose transcribed value is incorrect. The other, scale
error, takes into account the magnitude of the error as well
(relative to the metrical grid), in log space such that errors
from long notes do not dominate the calculation.

However, since the measured note values are reported
relative to the underlying meter, they violate our property
of disjoint penalties and we must design a new measure of
note value detection accuracy for our metric.

2.5 Harmonic Analysis

Harmonic analysis involves both key detection, a classi-
fication problem of identifying one of twelve tonic notes,
each with two possible modes (major or minor—alternate
mode detection has not been widely researched); and chord
tracking, identifying a sequence of chords and times given
an audio recording. The possible chords to identify range
from simply identifying the correct root note, to determin-
ing major or minor, identifying seventh chords, and even
identifying different chord inversions.

The standard key detection evaluation, used by both
mir eval [29] and MIREX [24], is to assign a score of 1.0
to the correct key, 0.5 to a key which is a perfect fifth too
high, 0.3 to the relative major or minor of the correct key,
0.2 to the parallel major or minor of the correct key, and
0.0 otherwise.

The standard chord tracking evaluation is chord sym-
bol recall (CSR)—described by [16], and used by both
MIREX [22], and mir eval [29]—defined as the propor-
tion of the input for which the annotated chord matches the
ground truth chord. There can be varying levels of speci-
ficity for what exactly constitutes a match, since different
sets of possible chords can be used as described above.

2.6 Joint Metric

For the joint evaluation of AMT performance, [7] presents
a system to transcribe MIDI input into a musical score
(thus including errors from typesetting), and evaluate it us-
ing five human evaluators. The evaluators were asked to:
“1) Rate the pitch notation with regard to the key signature
and the spelling of notes. 2) Rate the rhythmic notation
with regard to the time signature, bar lines, and rhythmic
values. 3) Rate the notation with regard to stems, voicing,
and placement of notes on staves,” each on a scale of 1
to 10. The three questions roughly correspond with four
of our sections above: 1) harmonic analysis; 2) metrical
alignment, note value detection; and 3) voice separation.

[6] describes an automatic metric for the same task,
similar to string edit distance, taking into account the or-
dering of 12 different aspects of a musical score: barlines,
clefs, key signatures, time signatures, notes, note spelling,
note durations, stem directions, groupings, rests, rest dura-
tion, and staff assignment.

While this metric is a great step towards an automatic
evaluation of AMT performance, it violates our principle
of disjoint penalties. A single mistake in metrical align-
ment can manifest itself in the time signature, rest dura-
tions, note durations, and even additional notes (tied notes
are counted as separate objects in the metric).

It appears that both of the above metrics measure some-
thing slightly different from what we want. They measure
the readability of a score produced by an AMT system,
while we really want a metric which measures the accuracy
of the analysis performed by the AMT system, a slightly
different task. To our knowledge, no metric exists which
measures the accuracy of the analysis performed by a com-
plete AMT system in the way we desire.

3. NEW METRIC

Our proposed metric, MV 2H , draws from existing met-
rics where possible, though we take care to ensure that our
principle of disjoint penalties is not violated. Essentially,
we calculate a single score for each aspect of the transcrip-
tion, and then combine them all into the final joint metric.

3.1 Multi-pitch Detection

For multi-pitch detection, we use an F-measure very simi-
lar to the one by [1] described above, counting a detected
note as a true positive if its detected pitch (in semitones) is
correct and its onset lies within 50 ms of the ground truth
onset time. All other detected notes are false positives, and
any unmatched ground truth notes are false negatives. Note
offset time does not factor into our evaluation; rather, see
Section 3.4 for a discussion on the related problem of note
value detection.

3.2 Voice Separation

For voice separation, we use an F-measure very similar
to [12], taking care not to violate our principle of dis-
joint penalties. Specifically, we don’t want to penalise any
model in voice separation for multi-pitch detection errors.
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Figure 1: An example transcription of the ground truth bar
(left) is shown (right). The voice connection between the
last two notes in the lower voice counts as a true positive,
even though they are not consecutive in the ground truth.

Recall that the F-measure is calculated as a binary clas-
sification problem where for each ordered pair of notes, we
must decide if they occur consecutively in the same voice
or not. To address the disjoint penalties violation, we alter
this slightly. We first remove from both the ground truth
voices and the detected voices any notes which have not
been matched as a true positive. Then, we perform the
same F-measure calculation with the new voices.

As an illustration of this, see Figure 1. In the tran-
scribed music, the last two notes in the lower voice are
both matched with a ground truth note (in pitch and on-
set time), but are not immediately sequential in the ground
truth voice. However, because the intervening note was
not correctly transcribed, the link between these two notes
counts as a true positive. (The second note in the tran-
scribed lower voice does indeed count as an error.) This
new F-measure calculation is equivalent to the standard
voice separation F-measure when multi-pitch detection is
performed perfectly.

3.3 Metrical Alignment

For metrical alignment, we would like to use a metric sim-
ilar to that from [20] which has some idea of the partial
correctness of a metrical alignment. However, as it is de-
signed for use mainly on metronomic data where a metri-
cal hypothesis cannot move in and out of phase throughout
a piece, a few adjustments must be made to adapt it for
use on live performance data. We call our newly designed
evaluation metric the metrical F-measure. It takes into ac-
count every grouping at three levels of the metrical hierar-
chy throughout an entire piece: the sub beat level, the beat
level, and the bar level.

For each hypothesised grouping at these metrical lev-
els, we check if it matches a ground truth grouping at any
level. A hypothesised grouping is said to match a ground
truth grouping if its beginning and ending times are each
within 50 ms of the beginning and ending times of that
particular ground truth grouping, regardless of the metrical
level of either grouping. 1 Each matched pair of group-
ings within a piece count as a true positive, while any un-
matched hypothesis groupings count as false positives, and
any unmatched ground truth groupings count as false nega-
tives. The metrical F-measure of a piece is then calculated

1 We use a 50 ms threshold, rather than the more common 70 ms,
because it was shown by [8] that 50 ms corresponds more exactly with
human judgement for beat tracking. However, this threshold may need to
be tuned for different genres as regular syncopation can tend to misalign
notes with the metrical grid in certain genres more than others [32].

Figure 2: An example transcription of the ground truth
bar (left) is shown (right). Those notes which are assigned
a note value score are coloured. Of those, the C (assuming
treble clef) is assigned a score of 0.5, while the others are
assigned a score of 1.

as the harmonic mean of precision and recall as usual.

3.4 Note Value Detection

It is difficult to disentangle note value detection from
multi-pitch detection, voice separation, and metrical align-
ment in order to include it in our evaluation without violat-
ing our principle of disjoint penalties. Clearly, note value
should only be regarded if the note has been counted as a
true positive in the multi-pitch detection evaluation. Less
obviously, we also disregard any detected note which is not
followed in its transcribed voice by the correct note. Ad-
ditionally, note value depends directly on meter such that
any note value accuracy metric must measure note value
relative to time rather than the underlying metrical grid.

Therefore, we define a note value score which measures
only a subset of the detected notes: those which both (1)
correspond with a true positive multi-pitch detection; and
(2) correspond with a true positive ground truth voice seg-
ment as described in the previous paragraph. Each note
which matches those two criteria is assigned a score ac-
cording to the accuracy of its normalised duration (that is,
the duration corresponding to its note value rather than its
performed duration). Specifically, each note is counted as
correct and assigned a score of 1 if its normalised dura-
tion is within 100 ms of the normalised duration of the
corresponding ground truth note. 2 Otherwise, its score
is calculated as in Equation 1, where durgt is the ground
truth note’s normalised duration and durdet is the detected
note’s normalised duration. This score is 1 when the dura-
tions match exactly and scales linearly on both sides to a
score of 0 for a note with 0 duration or a note with twice
the ground truth note’s duration. The overall note value
score is calculated as the arithmetic mean of the scores of
those notes which are assigned a score.

score = max
(
0, 1− |durgt − durdet|

durgt

)
(1)

Figure 2 illustrates this note value score. Only those
notes which are coloured are considered for the note value
score. Notice that the two C’s (assuming treble clef) on the
downbeat are not considered due to errors in voice sepa-
ration. Likewise, the last two notes in the lower voice are
also not counted against note value score due to note de-
tection errors, even though they count as true positives for

2 We use 100 ms here to allow for a 50 ms error in both onset and
offset time, although this value again may need to be tuned for different
genres.
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the voice separation F-measure. Of the coloured notes, the
C would be assigned a score of around 0.5 (depending on
exact timing), since its value duration is off by exactly half
of the ground truth note’s value duration. The others would
receive scores of 1. Thus, the final note value score would
be the average of 1, 1, 1, and 0.5, or about 0.875.

3.5 Harmonic Analysis

For harmonic analysis, we use the standard key detection
and CSR metrics described above, as neither one violates
our principle of disjoint penalties since they are based on
time rather than notes or the metrical alignment. For now,
we take the set of possible chords to include a major and
minor version for each root note, but not sevenths or inver-
sions, although the full collection of chords should be used
for the final version of our metric.

To combine the two into a single harmonic analysis
score, we take the arithmetic mean of the two values, since
they are both on the range [0–1]. Models which only per-
form one of the above tasks may simply use that task’s
score as their harmonic analysis score.

3.6 Joint Metric

We now have five values to combine into a single number:
the multi-pitch detection F-measure, the voice separation
F-measure, the metrical F-measure, the note value detec-
tion accuracy score, and the harmonic analysis mean. All
of these values are on the range [0–1] such that a value of
1 results from a perfect transcription in that aspect. We
consider three different approaches for their combination:
harmonic mean, geometric mean, and arithmetic mean.

Harmonic mean is most useful when there is potential
for one of the values involved to be significantly larger than
the others, and thus dominate the overall result. F-measure,
for example, is the harmonic mean between precision and
recall, and is used so that models cannot receive a high F-
measure by simply tuning their model to have a very high
recall or precision; rather, both recall and precision must
be relatively high in order for their harmonic mean to also
be high. This is not relevant in our case as there is no way
for a model to tune itself towards one very high score at
the expense of the others as is the case with some binary
classification problems.

Geometric mean is most useful when the values in-
volved are on different scales. Then, a given percent
change in one of the values will result in the same change
in mean as the same percent change to another of the val-
ues. This property is not necessary for us because all of
our values lie on the same range.

Arithmetic mean is a simple calculation that weights
each of the values involved equally. This property is de-
sirable for us because, for a complete transcription, all five
aspects of an analysis must be correct. Furthermore, due
to our property of disjoint penalties, we have kept the five
values involved disjoint, and a model must fairly perform
well on all aspects in order for its overall score to be high.

Therefore, for the final joint metric, MV 2H (for Multi-
pitch detection, Voice separation, Metrical alignment, note

Value detection, and Harmonic analysis), we take the
arithmetic mean of the five previously calculated values.
We also want the metric to be usable no matter what subset
of analyses is performed, for example, for models which
run on MIDI input and therefore do not perform multi-
pitch detection. In these cases, we advise using our met-
ric and simply taking the arithmetic mean of only those
scores which correspond with analyses performed. In fu-
ture work, we will investigate whether a linear combina-
tion of the five values involved, perhaps weighting some
more strongly than others, aligns more exactly with human
judgements than the current arithmetic mean.

4. EXAMPLES

To illustrate the effectiveness and appropriateness of our
metric, we present in Figure 3 two example transcriptions
of the first four bars of Bach’s Minuet in G, each exhibit-
ing different errors. Figure 3a shows the ground truth tran-
scription (where the chord progression is shown beneath
the staff), and the example transcriptions are shown be-
low. We make two assumptions: (1) ground truth voices
are separated by clef (plus the bottom two notes in the ini-
tial chord, which each belong to their own voice); and (2)
The sub beats of each transcription align in time with the
sub beats of the ground truth.

Figure 3b shows an example transcription which is good
in general, with just a few mistakes, mostly related to the
metrical alignment. First, for the multi-pitch detection F-
measure, we can see that the transcription has 20 true pos-
itives, 3 false negatives (a G on the second beat in the first
bar, a C on the second beat of the third bar, and the final
G in the fourth bar), and 0 false positives, resulting in an
F-measure of 0.93. For voice separation, this transcription
is generally good, making a single bad assignment in the
second bar, resulting in 3 false positives (the connections
to and from the incorrect assignment, as well as the incor-
rect connection in the treble clef), 3 false negatives (the
correct connections to and from the misclassified note, as
well as the correct connection in the bass clef), and a voice
separation F-measure of 0.83. Notice that the missed G in
the upper voice in the treble clef of the first bar does not re-
sult in a penalty for voice assignment due to our principle
of disjoint penalties. For metrical alignment, we can see
that this transcription is notated in 6

8 time, correctly group-
ing all sub beats (eighth notes) and bars, yielding 28 true
positives, but incorrectly grouping three sub beats together
into dotted quarter note beats, yielding 8 false positives and
12 false negatives. This results in a metrical F-measure of
0.74. For note value detection, 14 notes are counted: all
of the bass clef notes and all of the eighth notes in the first
bar, only the high D in the second bar, the low C and all
of the eighth notes in the third bar, and the high G and the
low B in the fourth bar. Notice that the initial high D isn’t
counted because the next note in its voice has not been de-
tected. Similarly, neither the G on the second beat of the
second bar nor any of the bass clef notes in the second bar
are counted due to voice separation errors. Of the 14 notes,
13 of them are assigned the correct note value (even the
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(a) Ground truth

(b) Transcription 1

(c) Transcription 2

Figure 3: Two different example transcriptions of the first
four bars of Bach’s Minuet in G.

first bass chord, since its incorrect typesetting and the ties
are related to the incorrect metrical alignment—the note
value still ends at the correct point in time). One note (the
C in the bass clef on the downbeat of the third bar) is as-
signed a value score of 0.5 (since its value duration is half
of the correct value duration). This results in a note value
detection score of 0.96. The harmonic analysis in this tran-
scription is entirely correct, resulting in a harmonic score
of 1.0. Thus, the MV 2H of the first transcription is 0.89.
This makes sense because the transcription is quite good in
general, but a few mistakes are made, the most glaring of
which is the metrical alignment (its lowest score).

Figure 3c shows another example transcription which
is again good in general, this time with a few more errors
in multi-pitch detection, as well as a poor harmonic anal-
ysis. For multi-pitch detection, it contains 17 true posi-
tives, 4 false positives, and 6 false negatives, resulting in
an F-measure of 0.77. This number is 0.16 lower than
that the previous transcription’s corresponding F-measure,
and this makes sense intuitively: the first transcription
does seem to have resulted from a more accurate multi-
pitch detection than the second. For voice separation, this
second transcription contains no errors. Some erroneous
notes are placed into one voice or the other, but all of the
correctly detected notes are also correctly separated into
voices, resulting in a perfect voice separation F-measure
of 1.0. Likewise the metrical alignment is performed per-
fectly, resulting in a metrical F-measure of 1.0. For note
value detection, we look at all of the true positive note de-
tections except (1) the initial D on the downbeat of the first
bar, (2) the B in the bass clef of the first bar, (3) the C in
the bass clef of the third bar, and (4) the high F at the end
of the third bar. (All of these exceptions are due to missed
note detections of the following note in each voice.) All of
the remaining notes have been assigned the correct value,
resulting in a note value detection score of 1.0. For the
harmonic analysis, the model has incorrectly transcribed
the excerpt in D major, resulting in a key score of 0.5.

Transcription 1 2
Multi-pitch 0.93 0.77
Voice 0.83 1.0
Meter 0.74 1.0
Note Value 0.96 1.0
Harmonic 1.0 0.5
MV 2H 0.89 0.85

Table 1: The resulting evaluation scores from each of the
example transcriptions from Figure 3.

Likewise, the model has incorrectly labelled the chord pro-
gression as D-G-G-G, rather than G-G-C-G. Thus, it has
transcribed the correct chord for half of the transcription,
resulting in a CSR of 0.5, and a harmonic score of 0.5.
The MV 2H of the second transcription is therefore 0.85:
slightly worse than the first transcription, but still good.

The scores of both transcriptions are summarised in Ta-
ble 1, and intuitively, they make sense. Both seem good
overall, though they both contain errors. The first tran-
scription has an incorrectly notated meter (although its bars
and sub beats still align correctly) and a few other smaller
mistakes related to multi-pitch detection, voice separation,
and note value detection. The second transcription, on the
other hand, correctly aligns the meter, and makes its only
errors in its harmonic analysis (which is quite poor), and
in multi-pitch detection (it is worse than the first model
in this regard). Given these examples, for applications
which need a good all-around transcription, we would rec-
ommend the system which produced the first transcription.
However, applications which emphasise metrical structure
detection or voice separation should consider using the sys-
tem which produced the second transcription instead.

5. CONCLUSION

As research moves towards the goal of a complete AMT
system, an automatic, standardised, quantitative metric for
the task will become a necessity. To that end, we have pro-
posed a joint metric, MV 2H , which measures multi-pitch
detection, voice separation, metrical alignment, note value
detection, and harmonic analysis and summarises them in
a single number. Our metric is based on the property of
disjoint penalties: that a model should not be penalised
twice for errors which come from a single mistake or mis-
interpretation. While our metric may not be the final stan-
dardised metric used for the task, we believe that it should
become part of the discussion, and that the principles that
guided us through its creation should continue to be ad-
dressed by any future proposed metrics.

Future work will evaluate our metric on a wider corpus
of realistic transcriptions. In particular, we will investigate
how well our metric aligns with human judgements, testing
a weighted average of the five values involved, rather than
using the arithmetic mean. A more advanced multi-pitch
detection metric, for example one which weights errors ac-
cording to their perceptual salience, could be another av-
enue for improvements.
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ABSTRACT

We advance the state of the art in polyphonic piano music
transcription by using a deep convolutional and recurrent
neural network which is trained to jointly predict onsets
and frames. Our model predicts pitch onset events and
then uses those predictions to condition framewise pitch
predictions. During inference, we restrict the predictions
from the framewise detector by not allowing a new note to
start unless the onset detector also agrees that an onset for
that pitch is present in the frame. We focus on improving
onsets and offsets together instead of either in isolation as
we believe this correlates better with human musical per-
ception. Our approach results in over a 100% relative im-
provement in note F1 score (with offsets) on the MAPS
dataset. Furthermore, we extend the model to predict rel-
ative velocities of normalized audio which results in more
natural-sounding transcriptions.

1. INTRODUCTION

Automatic music transcription (AMT) aims to create a
symbolic music representation (e.g., MIDI) from raw au-
dio. Converting audio recordings of music into a sym-
bolic form makes many tasks in music information re-
trieval (MIR) easier to accomplish, such as searching for
common chord progressions or categorizing musical mo-
tifs. Making a larger collection of symbolic music avail-
able also broadens the scope of possible computational
musicology studies [8].

Piano music transcription is a task considered difficult
even for humans due to its inherent polyphonic nature. Ac-
curate note identifications are further complicated by the
way note energy decays after an onset, so a transcription
model needs to adapt to a note with varying amplitude and
harmonics. Nonnegative matrix factorization (NMF) is an
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early popular method used in the task of polyphonic mu-
sic transcription [19]. With recent advancements in deep
learning, neural networks have attracted more and more
attention from the AMT community [13, 18]. In particu-
lar, the success of convolutional neural networks (CNN)
for image classification tasks [21] has inspired the use of
CNNs for AMT because two-dimensional time-frequency
representations (e.g., constant-Q transform [5]) are com-
mon input representations for audio. In [13], the authors
demonstrated the potential for a single CNN-based acous-
tic model to accomplish polyphonic piano music transcrip-
tion. [18] considered an approach inspired by common
models used in speech recognition where a CNN acoustic
model and a Recurrent Neural Network (RNN) language
model are combined. In this paper, we investigate improv-
ing the acoustic model by focusing on note onsets.

Note onset detection looks for only the very beginning
of a note. Intuitively, the beginning of a piano note is eas-
ier to identify because the amplitude of that note is at its
peak. For piano notes, the onset is also percussive and
has a distinctive broadband spectrum. Once the model
has determined onset events, we can condition framewise
note detection tasks on this knowledge. Previously, [6, 27]
demonstrated the promise of modeling onset events explic-
itly in both NMF and CNN frameworks. In this work, we
demonstrate that a model conditioned on onsets achieves
state of the art performance by a large margin for all com-
mon metrics measuring transcription quality: frame, note,
and note-with-offset.

We also extend our model to predict the relative veloc-
ity of each onset. Velocity captures the speed with which
a piano key was depressed and is directly related to how
loud that note sounds. Including velocity information in a
transcription is critical for describing the expressivity of
a piano performance and results in much more natural-
sounding transcriptions.

2. DATASET AND METRICS

We use the MAPS dataset [9] which contains audio and
corresponding annotations of isolated notes, chords, and
complete piano pieces. Full piano pieces in the dataset
consist of both pieces rendered by software synthesizers
and recordings of pieces played by a Yamaha Disklavier
player piano. We use the set of synthesized pieces as the
training split and the set of pieces played on the Disklavier
as the test split, as proposed in [18]. When constructing
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these datasets, we also ensured that the same music piece
was not present in more than one set. Not including the
Disklavier recordings, individual notes, or chords in the
training set is closer to a real-world testing environment be-
cause we often do not have access to recordings of a testing
piano at training time. Testing on the Disklavier recordings
is also more realistic because many of the recordings that
are most interesting to transcribe are ones played on real
pianos.

When processing the MAPS MIDI files for training
and evaluation, we first translate “sustain pedal” control
changes into longer note durations. If a note is active when
sustain goes on, that note will be extended until either sus-
tain goes off or the same note is played again. This process
gives the same note durations as the text files included with
the dataset.

The metrics used to evaluate a model are frame-level
and note-level metrics including precision, recall, and F1
score. We use the mir eval library [16] to calculate note-
based precision, recall, and F1 scores. As is standard, we
calculate two versions of note metrics: one requiring that
onsets be within ±50ms of ground truth but ignoring off-
sets and one that also requires offsets resulting in note du-
rations within 20% of the ground truth or within 50ms,
whichever is greater. Frame-based scores are calculated
using the standard metrics as defined in [2]. We also intro-
duce a new note metric for velocity transcription that is fur-
ther described in Section 3.1. Both frame and note scores
are calculated per piece and the mean of these per-piece
scores is presented as the final metric for a given collection
of pieces.

Our goal is to generate piano transcriptions that contain
all perceptually relevant performance information in an au-
dio recording without prior information about the record-
ing environment such as characterization of the instrument.
We need a numerical measure that correlates with this per-
ceptual goal. Poor quality transcriptions can still result in
high frame scores due to short spurious notes and repeated
notes that should be held. Note onsets are important, but
a piece played with only onset information would either
have to be entirely staccato or use some kind of heuristic to
determine when to release notes. A high note-with-offset
score will correspond to a transcription that sounds good
because it captures the perceptual information from both
onsets and durations. Adding a velocity requirement to this
metric ensures that the dynamics of the piece are captured
as well. More perceptually accurate metrics may be pos-
sible and warrant further research. In this work we focus
on improving the note-with-offset score, but also achieve
state of the art results for the more common frame and note
scores and extend the model to transcribe velocity informa-
tion as well.

3. MODEL CONFIGURATION

Framewise piano transcription tasks typically process
frames of raw audio and produce frames of note activa-
tions. Previous framewise prediction models [13, 18] have
treated frames as both independent and of equal impor-

tance, at least prior to being processed by a separate lan-
guage model. We propose that some frames are more im-
portant than others, specifically the onset frame for any
given note. Piano note energy decays starting immediately
after the onset, so the onset is both the easiest frame to
identify and the most perceptually significant.

We take advantage of the significance of onset frames
by training a dedicated note onset detector and using the
raw output of that detector as additional input for the
framewise note activation detector. We also use the thresh-
olded output of the onset detector during the inference pro-
cess, similar to concurrent research described in [24]. An
activation from the frame detector is only allowed to start
a note if the onset detector agrees that an onset is present
in that frame.

Our onset and frame detectors are built upon the convo-
lution layer acoustic model architecture presented in [13],
with some modifications. We use librosa [15] to com-
pute the same input data representation of mel-scaled spec-
trograms with log amplitude of the input raw audio with
229 logarithmically-spaced frequency bins, a hop length
of 512, an FFT window of 2048, and a sample rate of
16kHz. We present the network with the entire input se-
quence, which allows us to feed the output of the convolu-
tional frontend into a recurrent neural network (described
below).

The onset detector is composed of the acoustic model,
followed by a bidirectional LSTM [17] with 128 units in
both the forward and backward directions, followed by a
fully connected sigmoid layer with 88 outputs for repre-
senting the probability of an onset for each of the 88 piano
keys.

The frame activation detector is composed of a sepa-
rate acoustic model, followed by a fully connected sigmoid
layer with 88 outputs. Its output is concatenated together
with the output of the onset detector and followed by a
bidirectional LSTM with 128 units in both the forward and
backward directions. Finally, the output of that LSTM is
followed by a fully connected sigmoid layer with 88 out-
puts. During inference, we use a threshold of 0.5 to deter-
mine whether the onset detector or frame detector is active.

Training RNNs over long sequences can require large
amounts of memory and is generally faster with larger
batch sizes. To expedite training, we split the training au-
dio into smaller files. However, when we do this splitting
we do not want to cut the audio during notes because the
onset detector would miss an onset while the frame de-
tector would still need to predict the note’s presence. We
found that 20 second splits allowed us to achieve a rea-
sonable batch size during training of at least 8, while also
forcing splits in only a small number of places where notes
are active. When notes are active and we must split, we
choose a zero-crossing of the audio signal. Inference is
performed on the original and un-split audio file.

Our ground truth note labels are in continuous time,
but the results from audio processing are in spectrogram
frames. So, we quantize our labels to calculate our train-
ing loss. When quantizing, we use the same frame size as
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the output of the spectrogram. However, when calculat-
ing metrics, we compare our inference results against the
original, continuous time labels.

Our loss function is the sum of two cross-entropy
losses: one from the onset side and one from the note side.

Ltotal = Lonset + Lframe (1)

Lonset =

pmax∑
p=pmin

T∑
t=0

CE (Ionset(p, t),Ponset(p, t)) (2)

where pmin/max denote the MIDI pitch range of the pi-
ano roll, T is the number of frames in the example,
Ionset(p, t) is an indicator function that is 1 when there is
a ground truth onset at pitch p and frame t, Ponset(p, t)
is the probability output by the model at pitch p and
frame t and CE denotes cross entropy. The labels
for the onset loss are created by truncating note lengths
to min(note length, onset length) prior to quantiza-
tion. We performed a coarse hyperparameter search over
onset length (we tried 16, 32 and 48ms) and found that
32ms worked best. In hindsight this is not surprising as it
is also the length of our frames and so almost all onsets
will end up spanning exactly two frames. Labeling only
the frame that contains the exact beginning of the onset
does not work as well because of possible mis-alignments
of the audio and labels. We experimented with requiring
a minimum amount of time a note had to be present in a
frame before it was labeled, but found that the optimum
value was to include any presence.

In addition, within the frame-based loss term Lframe,
we apply a weighting to encourage accuracy at the start of
the note. A note starts at frame t1, completes its onset at
t2 and ends at frame t3. Because the weight vector assigns
higher weights to the early frames of notes, the model is
incentivized to predict the beginnings of notes accurately,

thus preserving the most important musical events of the
piece. First, we define a raw frame loss as:

Lframe =

pmax∑
p=pmin

T∑
t=0

CE (Iframe(p, t),Pframe(p, t))

(3)
where Iframe(p, t) is 1when pitch p is active in the ground
truth in frame t and Pframe(p, t) is the probability output
by the model for pitch p being active at frame t. Then, we
define the weighted frame loss as:

Lframe(l, p) =


cL′frame(l, p) t1 ≤ t ≤ t2

c
t−t2L

′
frame t2 < t ≤ t3

L′frame(l, p) elsewhere

(4)

where c = 5.0 as determined with coarse hyperparameter
search.

3.1 Velocity Estimation

We further extend the model by adding another stack to
also predict velocities for each onset. This stack is similar
to the others and consists of the same layers of convolu-
tions. This stack does not connect to the other two. The
velocity labels are generated by dividing all the velocities
by the maximum velocity present in the piece. The small-
est velocity does not go to zero, but rather to vmin

vmax
. The

stack is trained with the following loss averaged across a
batch:

Lvel =

pmax∑
p=pmin

T∑
t=0

Ionset(p, t)(v
p,t
label − v

p,t
predicted)

2 (5)

At inference time the output is clipped to [0, 1] and then
transformed to a midi velocity by the following mapping:

vmidi = 80vpredicted + 10 (6)

The final mapping is arbitrary, but we found this leads
to pleasing audio renderings.

While various studies have considered the estimation
of dynamics (note intensities or velocities) in a record-
ing given the score [10, 22, 26], to our knowledge there
has been no work in the literature considering estimation
of dynamics alongside pitch and timing information. As
a result, as Benetos et al. [3] noted in their review pa-
per in 2013, “evaluating the performance of current [au-
tomatic music transcription] systems for the estimation of
note dynamics has not yet been addressed.” To evaluate our
velocity-aware model, we therefore propose an additional
criterion for the note-level precision, recall, and F1 scores.

Evaluating velocity predictions is not straightforward
because unlike pitch and timing, velocity has no abso-
lute meaning. For example, if two transcriptions contained
identical velocities except that they were offset or scaled
by a constant factor, they would be effectively equivalent
despite reporting completely different velocities for every
note. To address these issues, we first re-scale all of the
ground-truth velocities in a transcription to be in the range
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[0, 1]. After notes are matched according to their pitch
and onset/offset timing, we assemble pairs of the reference
(ground-truth) and estimated velocities for matched notes,
referred to as vr and ve respectively. We then perform a
linear regression to estimate a global scale and offset pa-
rameter such that the squared difference between pairs of
reference and estimated velocities is minimized:

m, b = argmin
m,b

M∑
i=1

‖vr(i)− (mve(i) + b)‖2 (7)

where M is the number of matches (i.e. number of entries
in vr and ve). These scalar parameters are used to re-scale
the entries of ve to obtain

v̂e = {mve(i) + b, i ∈ 1, . . . ,M} (8)

Finally, a match i is now only considered correct if, in ad-
dition to having its pitch and timing match, it also satis-
fies |v̂e(i) − vr(i)| < τ for some threshold τ . We used
τ = 0.1 in all of our evaluations. The precision, recall,
and F1 scores are then recomputed as normal based on this
newly filtered list of matches.

4. EXPERIMENTS

We trained our onsets and frames model using Tensor-
Flow [1] on the training dataset described in Section 2 us-
ing a batch size of 8, a learning rate of .0006, and a gradi-
ent clipping L2-norm of 3. A hyperparameter search was
conducted to find the optimal learning rate. We use the
Adam optimizer [14] and train for 50,000 steps. Train-
ing takes 5 hours on 3 P100 GPUs. The same hyperpa-
rameters were used to train all models, including those
from the ablation study, except when reproducing the re-
sults of [18] and [13], where hyperparameters from the
respective papers were used. The source code for our
model is available at https://goo.gl/magenta/
onsets-frames-code.

For comparison, we reimplemented the models de-
scribed in [13, 18] to ensure evaluation consistency. We
also compared against the commercial software Melodyne
version 4.1.1.011 1 . We would have liked to compare
against AnthemScore 2 as described in [25] as well, but
because it produces a MusicXML score with quantized
note durations instead of a MIDI file with millisecond-
scale timings, an accurate comparison was not possible.

Results from these evaluations are summarized in Ta-
ble 1. Our onsets and frames model not only produces
better note-based scores (which only take into account on-
sets), it also produces the best frame-level scores and note-
based scores that include offsets.

An example input spectrogram, note and onset output
posteriorgrams, and inferred transcription for a recording
from outside of the training set is shown in Figure 2. The
importance of restricting frame activations based on on-
set predictions during inference is clear: The second-to-
bottom image (“Estimated Onsets and Notes”) shows the

1 http://www.celemony.com/en/melodyne
2 https://www.lunaverus.com/

results from the frame and onset predictors. There are
several examples of notes that either last for only a few
frames or that reactivate briefly after being active for a
while. Frame results after being restricted by the onset de-
tector are shown in magenta. Many of the notes that were
active for only a few frames did not have a corresponding
onset detection and were removed, shown in cyan. Cases
where a note briefly reactivated were also removed because
a corresponding second onset was not detected.

Despite not optimizing for inference speed, our net-
work performs 70× faster than real time on a Tesla
K40c. The MIDI files resulting from our inference exper-
iments are available at https://goo.gl/magenta/
onsets-frames-examples.

5. ABLATION STUDY

To understand the individual importance of each piece in
our model, we conducted an ablation study. We consider
removing the onset detector entirely (i.e., using only the
frame detector) (a), not using the onset information dur-
ing inference (b), making the bi-directional RNNs uni-
directional (c,d), removing the RNN from the onset detec-
tor entirely (e), pre-training the onset detector rather than
jointly training it with the frame detector (f), weighting all
frames equally (g), sharing the convolutional features be-
tween both detectors (h), removing the connection between
the onset and frame detectors during training (i), using a
Constant Q-Transform (CQT) input representation instead
of mel-scaled spectrograms (j), and finally removing all the
LSTMs and sharing the convolutional features (k).

These results show the importance of the onset infor-
mation – not using the onset information during inference
(b) results in a significant 18% relative decrease in the note
onset score and a 31% relative decrease in the note-with-
offset score while increasing the frame score slightly. De-
spite the increased frame score, the output sounds signif-
icantly worse. To our ears, the decrease in transcription
quality is best reflected by the note-with-offset scores.

The model which does not have the onset detector
at all (a) – consisting of convolutions followed by a bi-
directional RNN followed by a frame-wise loss – does the
worst on all metrics, although it still outperforms the base-
line model from [13]. The other ablations indicate a small
impact for each component (< 6%). It is encouraging that
forward-only RNNs have only a small accuracy impact as
they can be used for online piano transcription.

We tried many other architectures and data augmenta-
tion strategies not listed in the table, none of which re-
sulted in any improvement. Significantly, augmenting the
training audio by adding normalization, reverb, compres-
sion, noise, and synthesizing the training MIDI files with
other synthesizers made no difference. We believe these
results indicate a need for a much larger training dataset of
real piano recordings that have fully accurate label align-
ments. These requirements are not satisfied by the current
MAPS dataset because only 60 of its 270 recordings are
from real pianos, and they are also not satisfied by Music-
Net [23] because its alignments are not fully accurate (e.g.,
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Frame Note Note w/ offset Note w/ offset & velocity
P R F1 P R F1 P R F1 P R F1

Sigtia et al., 2016 [18] 71.99 73.32 72.22 44.97 49.55 46.58 17.64 19.71 18.38 — — —
Kelz et al., 2016 [13] 81.18 65.07 71.60 44.27 61.29 50.94 20.13 27.80 23.14 — — —

Melodyne (decay mode) 71.85 50.39 58.57 62.08 48.53 54.02 21.09 16.56 18.40 10.43 8.15 9.08
Onsets and Frames 88.53 70.89 78.30 84.24 80.67 82.29 51.32 49.31 50.22 35.52 30.80 35.39

Table 1. Precision, Recall, and F1 Results on MAPS configuration 2 test dataset (ENSTDkCl and ENSTDkAm full-length
.wav files). Note-based scores calculated by the mir eval library, frame-based scores as defined in [2]. Final metric is
the mean of scores calculated per piece. MIDI files used to calculate these scores are available at https://goo.gl/
magenta/onsets-frames-examples.
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Figure 2. Inference on 6 seconds of MAPS MUS-mz 331 3 ENSTDkCl.wav (a recording which is not in the training set).
From top to bottom, we show the log-magnitude mel-frequency spectrogram input, the framewise note probability and onset
probability “posteriorgrams” produced by our model, the corresponding estimated onsets and notes after thresholding, and
finally the resulting estimated transcription produced by our model alongside the reference transcription. In the onset and
notes plot (second from the bottom), onset predictions are shown in black. Notes with a corresponding onset prediction are
shown in magenta and notes which are filtered out because no onset was predicted for the note are shown in cyan. In the
bottom plot, the estimated transcription is shown in blue and the reference is shown in red. Figure best viewed in color.
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there is an audible time difference between piano audio and
MIDI at 1:24 in sequence 2533). Other approaches, such
as seq2seq [20] may not require fully accurate alignments.

F1
Frame Note Note

with offset
Onset and Frames 78.30 82.29 50.22

(a) Frame-only LSTM 76.12 62.71 27.89
(b) No Onset Inference 78.37 67.44 34.15

(c) Onset forward LSTM 75.98 80.77 46.36
(d) Frame forward LSTM 76.30 82.27 49.50

(e) No Onset LSTM 75.90 80.99 46.14
(f) Pretrain Onsets 75.56 81.95 48.02

(g) No Weighted Loss 75.54 80.07 48.55
(h) Shared conv 76.85 81.64 43.61

(i) Disconnected Detectors 73.91 82.67 44.83
(j) CQT Input 73.07 76.38 41.14

(k) No LSTM, shared conv 67.60 75.34 37.03

Table 2. Ablation Study Results.

6. NEED FOR MORE DATA, MORE RIGOROUS
EVALUATION

The most common dataset for evaluation of piano tran-
scription tasks is the MAPS dataset, in particular the EN-
STDkCl and ENSTDkAm renderings of the MUS collec-
tion of pieces. This set has several desirable properties: the
pieces are real music as opposed to randomly-generated
sequences, the pieces are played on a real physical piano
as opposed to a synthesizer, and multiple recording envi-
ronments are available (“close” and “ambient” configura-
tions). The main drawback of this dataset is that it contains
only 60 recordings. To best measure transcription quality,
we believe a new and much larger dataset is needed. How-
ever, until that exists, evaluations should make full use of
the data that is currently available.

Many papers, for example [7,12,18,27], further restrict
the data used in evaluation by using only the “close” col-
lection and/or only the first 30 seconds or less of each file.
We believe this method results in an evaluation that is not
representative of real-world transcription tasks. For exam-
ple, evaluating on only the “close” collection raises our
note F1 score from 82.29 to 84.34, and evaluating on only
the first 30 seconds further raises it to 86.38. For compari-
son, [27] achieved a note F1 score of 80.23 in this setting.
The model in [12] is also evaluated using 30s clips from the
“close” collection, but it was additionally trained on data
from the test piano. This method limits the generalizability
of the model but produced a note F1 score of 85.06.

In addition to the small number of the MAPS Disklavier
recordings, we have also noticed several cases where
the Disklavier appears to skip some notes played at
low velocity. For example, at the beginning of the
Beethoven Sonata No. 9, 2nd movement, several A[
notes played with MIDI velocities in the mid-20s are
clearly missing from the audio (https://goo.gl/
magenta/onsets-frames-examples). More anal-
ysis is needed to determine how frequently missed notes

occur, but we have noticed that our model performs partic-
ularly poorly on notes with ground truth velocities below
30.

Finally, we believe that more strict metrics should be
adopted by the community. As discussed in Section 2,
frame and note onset scores are not enough to determine
whether a transcription has captured all musically rele-
vant information from a performance. We present sev-
eral audio examples at https://goo.gl/magenta/
onsets-frames-examples to illustrate this point.
Of the metrics currently available, we believe that the note-
with-offset and velocity is the best way to compare models
going forward.

Similarly, the current practice of using a 50ms tolerance
for note onset correctness allows for too much timing jit-
ter. An audio example illustrating this point is available
at the above URL. We suggest future work should evalu-
ate models with tighter timing requirements. Much work
remains to be done here because as observed in [4], achiev-
ing high accuracy is increasingly difficult as timing preci-
sion is increased, in part due to the limited timing accuracy
of the datasets currently available [11]. When we trained
our model at a resolution of 24ms, our scores using the ex-
isting 50ms metrics were not always as high: Frame 76.87,
Note F1 82.54, Note-with-offset 49.99. Audio examples of
this higher resolution model are also available at the above
URL. In the examples, the higher time resolution is evi-
dent, but the model also produces more extraneous notes.

7. CONCLUSION AND FUTURE WORK

We presented a jointly-trained onsets and frames model
for transcribing polyphonic piano music which yields sig-
nificant improvements by using onset information. This
model transfers well between the disparate train and test
distributions. The current quality of our model’s output is
on the cusp of enabling downstream applications such as
symbolic MIR and automatic music generation. To further
improve the results we need to create a new dataset that
is much larger and more representative of various piano
recording environments and music genres for both training
and evaluation. Combining an improved acoustic model
with a language model is a natural next step. Another di-
rection is to go beyond traditional spectrogram representa-
tions of audio signals.

It is very much worth listening to the examples of tran-
scription. Consider Mozart Sonata K331, 3rd movement.
Our system does a good job in terms of capturing harmony,
melody, rhythm, and even dynamics. If we compare this
transcription to the other systems, the difference is quite
audible. We have also successfully used the model to tran-
scribe recordings from the Musopen.org website that are
completely unrelated to our training dataset. The model
even works surprisingly well transcribing a harpsichord
recording. Audio examples are available at https://
goo.gl/magenta/onsets-frames-examples.
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ABSTRACT
State-of-the-art automatic drum transcription (ADT) ap-
proaches utilise deep learning methods reliant on time-
consuming manual annotations and require congruence be-
tween training and testing data. When these conditions
are not held, they often fail to generalise. We propose
a game approach to ADT, termed player vs transcriber
(PvT), in which a player model aims to reduce transcrip-
tion accuracy of a transcriber model by manipulating train-
ing data in two ways. First, existing data may be aug-
mented, allowing the transcriber to be trained using record-
ings with modified timbres. Second, additional individual
recordings from sample libraries are included to generate
rare combinations. We present three versions of the PvT
model: AugExist, which augments pre-existing record-
ings; AugAddExist, which adds additional samples of
drum hits to the AugExist system; and Generate, which
generates training examples exclusively from individual
drum hits from sample libraries. The three versions are
evaluated alongside a state-of-the-art deep learning ADT
system using two evaluation strategies. The results demon-
strate that including the player network improves the ADT
performance and suggests that this is due to improved gen-
eralisability. The results also indicate that although the
Generate model achieves relatively low results, it is a vi-
able choice when annotations are not accessible.

1. INTRODUCTION
Automatic music transcription (AMT) systems generate a
symbolic representation of the instrumentation within an
audio recording. There are multiple educational, analytical
and creative fields that would benefit from fast and accu-
rately produced music notation. Automatic drum transcrip-
tion (ADT) systems form a subset of AMT systems which
produce notation solely focused on drum instrumentation.

1.1 Background
At present, high ADT accuracies have been achieved for
audio files containing either just drums or polyphonic
mixtures [4, 7, 9–11, 18]. Following the comprehensive

c© Carl Southall, Ryan Stables and Jason Hockman. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Carl Southall, Ryan Stables and Jason Hock-
man. “Player Vs Transcriber: A Game Approach To Data Manipulation
For Automatic Drum Transcription”, 19th International Society for Music
Information Retrieval Conference, Paris, France, 2018.

ADT literature review in [22], current state-of-the-art
ADT systems utilise either deep learning (DL) or non-
negative matrix factorisation (NMF). NMF approaches
perform instrument-specific onset detection through an it-
erative simultaneous update of basis and activation func-
tions via factorisation of an input spectrogram. Recent
NMF approaches have introduced specialised update meth-
ods (i.e., fixed, adaptive and semi-adaptive) based on the
expected end-use application of the algorithm [2] or in-
corporated additional basis functions to capture harmonic
content within polyphonic recordings [23]. Alternatively,
DL approaches perform instrument-specific onset detec-
tion through supervised frame-based classification. The
first DL systems to acheive high ADT performance in-
corporated recurrent neural networks [14, 19, 20]. More
recent approaches now include convolutional neural net-
works [21] and soft attention mechanisms [15]. As in
many fields, augmentation of data (i.e., pitch shifting) dur-
ing training has aided performance [12, 20].

1.2 Motivation

Evaluations undertaken in [22] and the MIREX 2017 Drum
Transcription Task 1 highlight that state-of-the-art ADT
accuracies are achieved by supervised DL approaches.
However, success of DL systems is reliant on training
data achieved through a time-consuming manual annota-
tion process [24]. Also, if there is a mismatch between
training and testing data, these systems will fail to gener-
alise [22]. We propose a game approach to ADT influenced
by generative adversarial networks [5], termed player vs
transcriber (PvT). In an attempt to undermine the accuracy
of a transcriber model (i.e., an existing supervised ADT
approach), a player model seeks to exploit poorly defined
areas of the feature space through a manipulation of train-
ing data. This is achieved through learned data manipu-
lation variables in the player network, which are used to
define the manipulation coordinates of the transform. Ad-
ditionally, the player model is able to manipulate the data
depending on its content, where existing methods for aug-
mentation typically rely on a set of global variables [8].

The remainder of this paper is structured as follows:
Section 2 presents the PvT model and Section 3 provides
an overview of the undertaken evaluation. The results and
discussion are presented in Section 4 and the conclusions
and future work are presented in Section 5.

1 http://www.music-ir.org/mirex/wiki/2017:
Drum_Transcription_Results
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Figure 1. Overview of the player vs transcriber (PvT) game approach to automatic drum transcription. The PvT model is
achieved through four stages: feature generation, player model, transcriber model and peak-picking.

2. METHOD

Figure 1 provides an overview of the proposed PvT system,
which is achieved through four stages: Feature generation,
data manipulation by a player, activation function creation
by a transcriber, and framewise classification by peak pick-
ing. At the core of the system is an iterative process of data
manipulation (i.e., data augmentation and sample addition)
and activation function generation between the player and
transcriber. Both models examine the loss functions related
to the activation functions created by the transcriber. Here,
the two models have diametrically opposed goals; while
the player seeks to maximize the loss, the transcriber at-
tempts to minimize the loss. Once the loss function has
been optimized during training, testing data may be evalu-
ated by the transcriber and drum events are found through
peak picking.

2.1 Feature Generation

Input audio (16-bit .wav file sampled at 44.1kHz) is seg-
mented into T frames using a Hanning window of m sam-
ples (m = 2048) with a m

2 hopsize. A logarithmic fre-
quency representation of each of the frames is created us-
ing a similar process to [21] using the madmom Python
library [1]. The magnitudes of a discrete Fourier transform
are converted to a logarithmic scale (20Hz–20kHz) using
twelve triangular filters per octave, resulting in a 84 x T
logarithmic spectrogram x and corresponding target y.

2.2 Player

The aim of the player is to exploit weaknesses within the
transcriber through a manipulation of the training data.
This is achieved using two processes as demonstrated in
Figure 2: data augmentation (Section 2.2.1), which alters
the frequential content of existing data; and sample addi-
tion (Section 2.2.2), which adds recordings of individual
drum hits from drum samples (Section 2.2.3) to the pre-
existing training examples. To ensure that the process is
end-to-end and that the player network can be trained us-
ing back propagation, the process must be differentiable.
To this end, the entire process is designed around network
defined variables θ (Sections 2.2.4 and 2.2.5) and avoids
operations such as argmax.

2.2.1 Data Augmentation

The data augmentation stage is based on existing data aug-
mentation approaches [8], however also aims to portray
changes in instrumentation and performance techniques by
manipulating the frequency content of pre-existing data.
This is achieved using three network-generated variables
(θp, θn and θg), in which θp and θn are used within an
pseudo-equaliser function and θg as an overall gain. Time-
step t of the augmented segment xaug is calculated using:

xtaug = ReLU(xt + (s(θp)xtv)− (s(θn)xtv))g, (1)

where v and s, the softmax functions are used to prevent
over augmentation by limiting maximum augmentation to
either 1 or -1. The rectified linear unit function (ReLU)
ensures non-negativity and g is determined using:

g = θg(1−ming) +ming, (2)

where ming is a hyperparameter that determines the mini-
mum possible gain.

2.2.2 Sample Addition

The sample addition stage aims to reduce transcription ac-
curacy by adding new drum hits to the augmented existing
training data using drum samples c (Section 2.2.3). This
is achieved by generating a new spectrogram q and cor-
responding target u and adding them to the existing aug-
mented training spectrogram xaug and target y:

x = xaug + qω, (3)

y = y + uω. (4)

ω is the sample number and the total sample number hy-
perparameter Ω determines how many of each sample class
are added. Each sample is added in an iterative process
with the latest version of y and xaug used in the update
equations. To create q and u, four network determined
variables are used: θps, θns and θgs which are variables
used to augment each sample using the previously ex-
plained augmentation process and θl, which is used to de-
termine the location of the additional drum samples. For
all four network-determined variables, if Ω > 1 a different
variable is used for each sample (i.e., θl = [θl1, θ

l
2]). The
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Figure 2. Overview of player model (Section 2.2) with
a data augmentation stage that alters frequency content of
pre-existing data and a sample addition stage that adds new
drum hits based on generated locations.

generated target u is created using two variables: f , an ac-
tivation function derived from the network determined pa-
rameter θl and k, a variable that ensures there are no over-
laps between the same drum class. The activation function
f for each individual drum sample is derived using:

iω =
θlω

max(θlω)
, (5)

fω = ReLU(iω + ε−max(iω))
1

ε
, (6)

where ε is used to prevent undefined numbers. k is calcu-
lated from the current target y using a minimum distance
between possible locations hyperparameter d:

htω = mean(yt−d : yt+d), (7)

nω =
max(hω)

hω
(hω − ε), (8)

kω = 1−ReLU(
nω

max(nω)
). (9)

u is then generated by performing element wise multipli-
cation on the two activation functions f and k:

uω = kω � fω. (10)

To calculate the new spectrogram q, a matrix consisting of
all of the possible spectrograms for all T time steps e is
created using:

zω = pad(caugω, T, T ), (11)

etω = zt+bω : zt+b+Tω , (12)

where caug is the augmented current sample spectrogram
and pad(c, 1, 1) means zero pad c by 1 in both directions in
the time-step dimension. The spectrogram with the sample
in the chosen location is then calculated using:

qω =

T∑
t=1

etωu
t
ω. (13)

It is worth noting that the proposed sample addition tech-
nique is capable of learning to not add any samples by
putting the samples in locations where they overlap other
locations and so will be removed.

2.2.3 Drum Samples

For drum samples (i.e., isolated drum events) to be utilised
within the player model they must be segmented and un-
dergo the same processing as the input features x. Segmen-
tation of drum events from within larger audio files was
achieved automatically through an automatic drum tran-
scription method [13], and subsequently verified manually.
Each sample is then cut to a pre-determined sample length
with b frames before the onset. In this work a sample
length of 50 is used with b = 10. The segmented samples
are then converted to logarithmic spectrograms c through
the process presented in Section 2.1. More information re-
garding the extraction of samples is given in Section 3.3.

2.2.4 Variations

From the augmentation and sample addition processes we
create three different versions of the player model. The
first version, termed AugExist augments existing training
data using only the augmentation stage. The second ver-
sion, termed AugAddExist uses both stages to augment
existing training data and add drum samples to the aug-
mented data. The final version, termed Generate gener-
ates entirely new training data by initializing x and y with
zeros (i.e., no existing training data).

2.2.5 Player Network

The player neural network generates θ using a convolu-
tional neural network consisting of two 3x3 kernel convo-
lutional layers with max pooling, dropout [17] and batch
normalisation [6], followed by a sigmoid fully connected
output layer. The first convolutional layer is comprised
of 5 channels and the second layer contains 10 channels.
The size of the max pooling layer is altered depending on
the player parameters (i.e., Ω, v, ming) so that the total
number of trainable parameters of each model is compa-
rable. The input features are the existing training data x
and the different drum instrument samples c concatenated
along the time dimensions. Throughout the remainder of
this paper, all trainable player parameters are denoted as ζ.

2.3 Transcriber
The transcriber model follows the same system outline pro-
posed in [14]. Input features are fed into a pre-trained
neural network, which aims to output an activation func-
tion ỹ with spikes in frames where onsets are located. In
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this paper, we present a novel system that combines the
strength of two recently proposed models. The soft at-
tention mechanism presented in [15] is combined with the
convolutional recurrent neural network proposed in [21] to
create a convolutional recurrent neural network with a soft
attention mechanism output layer. It contains two convo-
lutional layers consisting of 3x3 filters, 3x3 max pooling,
dropouts [17] and batch normalization [6], with the first
layer consisting of 32 channels and the second is com-
prised of 64 channels. This is followed by two 20 neu-
ron bidirectional recurrent neural network layers contain-
ing long short-term memory cells with peephole connec-
tions and a three-neuron sigmoid soft attention mechanism
output layer. The attention number is set to 3 [15] and
all other unstated variables are the same as the original im-
plementations [15, 21]. Throughout the remainder of this
paper, all trainable transcriber parameters are denoted as φ.

2.4 Peak Picking
Once the optimisation process is complete, the peak-
picking stage classifies frames of ỹ as either containing or
not containing an onset. We use the mean threshold (MT)
peak-picking technique from [15]. First a threshold τ t is
determined as:

τ t = mean(ỹt−γ : ỹt+γ) ∗ λ (14)

τ t =

{
tmax, τ > tmax
tmin, τ < tmin,

(15)

where λ is a constant, tmax and tmin are the possible
maximum and minimum values and γ sets the number of
frames used to calculate the mean. The current frame of ỹ
is accepted as an onset if it is the maximum of a surround-
ing number of frames and above the threshold τ :

Ot =

{
1, ỹt == max(ỹt−δ : ỹt+δ) & ỹt > τ t

0, otherwise,
(16)

where O(t) represents an onset at time step t and δ is the
number of frames on either side of the current frame t used
to calculate the maximum.

2.5 Training
The player and transcriber are iteratively trained for one
epoch each in a two-stage process, in which the player
is first trained by updating ζ and then the transcriber is
trained by updating φ. Cross entropy is used to minimise
the loss function in both instances with 1 − y used as the
player target and y used as the transcriber target. Both sys-
tems are trained using mini-batch gradient descent with the
Adam optimiser and an initial learning rate of 0.003. These
settings were determined using previous ADT studies [15]
and also suited the player network well with no instability
observed. Each mini-batch consists of 10 randomly cho-
sen, 100 frame length segments. The data is divided into
training, validation and test sets, with the training data used
to optimize the systems and the validation used to prevent
over fitting and to optimize the player and peak-picking pa-
rameters. Training is stopped if there has been no decrease
in the transcriber validation loss after 10 epochs.

3. EVALUATION
To identify whether the PvT approach improves ADT per-
formance, we compare it with the current state-of-the-art
supervised ADT approach in six evaluation conditions,
consisting of the three contexts and two evaluation strate-
gies used in [22]. To determine whether similarity be-
tween drum samples and existing training data affects per-
formance, two different sample libraries are utilised.

3.1 Contexts
For the first context, termed drum transcription of drum-
only recordings (DTD) we utilise the IDMT-SMT-Drums
dataset [2]. For the second context, termed termed drum
transcription in the presence of percussion (DTP) we
utilise the drum-only tracks within the ENST-Drums mi-
nus one subset [3] and MDB Drums [16]. The third con-
text, termed drum transcription in the presence of melodic
instruments (DTM), utilises the full polyphonic audio from
the ENST-Drums minus one subset, MDB-Drums and
RBMA-2013 [21].

3.2 Evaluation Strategies
The first strategy, termed random, utilises all of the con-
text data and divides the tracks in to 70%, 15% and 15%
training, validation and test subsets with three-fold cross
validation. The second strategy, termed subset, utilises all
data for the DTD context and only ENST-Drums for DTP
and DTM. This strategy aims to test the generalisability
of the systems by utilising the existing subsets within the
datasets so that the training and testing data are unrelated.

3.3 Sample Usage

For drum samples, two sample libraries are used to test for
the effect of similarity to existing training data. In addition
to these, percussive mixtures are also generated using the
content of the unobserved drum samples.

Training: The first library, termed training, only utilises
samples extracted from the training data. For the IDMT-
SMT-Drums dataset, a single sample for each observed
drum instrument is extracted from each of the 104 tracks.
For ENST-Drums the samples are extracted from the
included isolated drum files, resulting in a total of 276
samples (21 KD, 146 SD and 109 HH). No samples
are extracted from the other datasets; in the DTP and
DTM cases the training sample library only consists of
ENST-Drum samples.

Collection: The second sample library, termed collection,
consists of drum samples collected from online resources.
The collection samples are included as they represent a
dataset with a wider diversity and are not included in the
existing training data. In total, there are 445 samples (101
KD, 151 SD and 193 HH).

Polyphonic Instances: For the DTP versions of the
Generate system, the player network output is combined
with artificial percussive mixture segments created from
other percussive samples (i.e., toms and cymbals) extracted
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Figure 3. Results for random (top) and subset (bottom) strategies for DTD (left), DTP (middle) and DTM (right) contexts.
Crosses denote mean instrument and mean fold F-measure, dashed lines present mean instrument and median fold F-
measure and box plots present F-measure range across folds.

Figure 4. Individual and mean instrument F-measure, pre-
cision and recall scores for existing state-of-the-art sys-
tem (S) and highest performing AugAddExist PvT model
(AAE) using random (top) and subset (bottom) strategies.

from the ENST-Drums isolated files. For the DTM ver-
sions of the Generate system the player network output is
combined with the artificial percussive mixtures as well as
the accompaniment files from the ENST-Drums and MDB-
Drums datasets.

3.4 Evaluation Methodology
In all evaluations, the three proposed PvT models—
AugExist (AE), AugAddExist (AAE) and Generate (G)—
are compared with the current state-of-the-art supervised
ADT approach (S), which consists solely of the transcriber
model. Additionally, two versions of the AAE system are
evaluated: for the first (AAER), the θ parameters are set to
the highest performing random values using a grid search

with the aim of portraying existing data augmentation tech-
niques [8], and the second (AAEC) uses data from the col-
lection samples alone (Section 3.3). The standard preci-
sion, recall and F-measure are used as evaluation metrics,
with onset candidates being accepted if they fall within
30ms of the ground truth annotations. For all PvT systems
d is set to 3 (approx. 30ms) b is set to 10 and hyperpa-
rameters v, ming and Ω are optimized using grid search.
To prevent either networks from overpowering the other,
the player max pooling sizes are set so that the number
of parameters ζ matches that of the transcriber network φ
(approx. 100,000).

4. RESULTS AND DISCUSSION
4.1 Random and Subset
Figure 3 presents the random and subset results for the six
implemented systems in the three contexts. The crosses
represent the mean instrument F-measures and the box
plots present the median and range across the folds. In
all cases the trained versions of the AugExist (AE) and
AugAddExist (AAE) systems achieve a higher mean F-
measure and median F-measure than the existing state-of-
the-art supervised method (S), with the box plots show-
ing that this improvement is consistent in the major-
ity of the folds. Results from t-tests across folds high-
light that the improvements made by all AugExist and
AugAddExist systems in the random DTD evaluation are
significant (i.e., ρ < 0.05). Larger improvements are
seen in the subset evaluation—designed specifically to test
the generalisability of the systems [22]—which suggests
that the PvT model does improve generalisability. For all
PvT variations, the trained AugAddExist player versions
(AAE) achieve higher accuracies than the grid search-set
AugAddExist system (AAER). This demonstrates the worth
of utilising a player network to learn the weaknesses of the
transcriber model and its ability to manipulate each of the
segements based on the content. Although the Generate
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Figure 5. Mean fold, mean instrument and mean training strategy F-measure results of different AugAddExist settings for
PvT model hyperparameters v (left), ming (middle) and Ω (right).

systems do not achieve a higher F-measure they achieve
a high accuracy relative to the amount of human input re-
quired within the process. Again, this is more apparent in
the subset and easier contexts. The lower improvements
achieved by the AugAddExist and Generate systems in
the DTP and DTM contexts can be attributed to the limi-
tation of samples from just the ENST dataset. This high-
lights that the more diverse the sample library, the larger
the improvement in performance. However, the results
from the system trained using the collection sample library
(AAEC) show that too much diversity can cause the sys-
tem to underfit, resulting in a slightly lower improvement
being observed. The random-θ and collection sample li-
brary versions of the AugExist and Generate versions
were also implemented but not included within the results
as the trends are the same as the AAER and AAEC systems.

4.2 Individual Instrument

Figure 4 presents the mean fold, mean context individ-
ual and mean drum instrument F-measure, precision and
recall scores for the supervised and highest performing
AugAddExist systems. In all cases the AugAddExist sys-
tem achieves higher F-measure precision and recall scores
for all of the observed drum instruments with 0.015 in-
crease in mean instrument F-measure in random and 0.035
increase in subset. The largest relative improvement is
within the snare drum class, which further suggests the in-
crease is due to greater generalisability, as it has proven to
be the most difficult instrument to generalise [22].

4.3 Player Settings

Figure 5 presents mean instrument, mean fold and mean
training strategy F-measure results for the AugAddExist

system with different user defined hyperparameter set-
tings. The left diagram presents results for different val-
ues of v, the middle diagram for different values of ming
and the right diagram different values of Ω. v = 0.0005
achieved the highest accuracies with lower values not al-
lowing enough manipulation and higher values causing
class overlap. ming = 0.9 achieved the highest accu-
racy overall however, within the DTP and DTM contexts
lower values achieved similar results. This is possibly due
to the fact that a larger diversity of playing technique is
present within those contexts. Adding a maximum of two
extra drum hits (Ω = 2) resulted in the highest accuracies
with larger values causing too much overlap between in-
struments.

4.4 Understanding What The Player Does

By observing the player model training it is possible to
gain an understanding of poorly defined areas of the fea-
ture space within ADT datasets. When the player performs
data augmentation, a maximum amount of augmentation is
selected most of the time (i.e., the output of the ReLU func-
tion in eq. 1 is close to either 1 or -1). This suggests that
there are substantial gaps in coverage of training datasets in
the feature space for the different instrumentation. Within
the sample addition stage the player model consistently at-
tempts to overlap drums with both other drum instruments
and other instrumentation within the existing training data.
This suggests that the datasets only contain limited obser-
vations of overlapping instrument combinations.

5. CONCLUSIONS AND FUTURE WORK

To overcome the requirement of time-consuming manual
annotation, we proposed PvT, a game approach to auto-
matic drum transcription. The player model is trained to
alter the training data so that the accuracy of the tran-
scriber model is reduced. The three implemented versions
of the PvT model—AugExist (AE), AugAddExist (AAE)
and Generate (G)—are evaluated alongside the existing
supervised state-of-the-art ADT (S) and a grid search-
set AugAddExist approach (AAER) using two evaluation
strategies and three contexts. The results highlight that the
trainable PvT model does improve ADT performance with
AugAddExist achieving the highest accuracy in all evalu-
ations. The Generate model also provides a viable option
when annotated training data is not accessible. Although
two approaches to alter the training data have been im-
plemented, more are possible. Future work could explore
trainable methods for moving existing drum events or syn-
thesizing new drum samples within the player network, as
there are no structural constraints on what the player can
do. For polyphonic cases, the unobserved instrumentation
could also be included within the player network so that
further combinations can be generated. Another possible
direction is to increase the number of observed drum in-
struments (i.e., including toms and crash cymbals), which
is easily done using the Generate model. Open source
versions of the PvT model are available online. 2

2 https://github.com/CarlSouthall/
Player-Vs-Transcriber
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[4] Olivier Gillet and Gaël Richard. Transcription and sep-
aration of drum signals from polyphonic music. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 16(3):529–540, 2008.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing sys-
tems, pages 2672–2680, 2014.

[6] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In International Conference on
Machine Learning, pages 448–456, 2015.

[7] Henry Lindsay-Smith, Skot McDonald, and Mark San-
dler. Drumkit transcription via convolutive NMF. In
Proceedings of the International Conference on Digital
Audio Effects Conference (DAFx), York, United King-
dom, 2012.

[8] Brian McFee, Eric J Humphrey, and Juan Pablo Bello.
A software framework for musical data augmentation.
In ISMIR, pages 248–254, 2015.

[9] Marius Miron, Matthew E. P. Davies, and Fabien
Gouyon. An open-source drum transcription system
for pure data and max MSP. In Proceedings of the
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 221–225, Van-
couver, Canada, 2013.
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ABSTRACT

Despite being a core component of Western music theory,
harmonic analysis remains a subjective endeavor, resistant
automation. This subjectivity arises from disagreements
regarding, among other things, the interpretation of con-
trapuntal figures, the set of “legal” harmonies, and how
harmony relates to more abstract features like tonal func-
tion. In this paper, we provide a formal specification of
harmonic analysis. We then present a novel approach to
computational harmonic analysis: rather than computing
harmonic analyses based on one specific set of rules, we
compute all possible analyses which satisfy only basic,
uncontroversial constraints. These myriad interpretations
can later be filtered to extract preferred analyses; for in-
stance, to forbid 7th chords or to prefer analyses with fewer
non-chord tones. We apply this approach to two concrete
musical datasets: existing encodings of 371 chorales by
J.S. Bach and new encodings of 200 chorales by M. Præto-
rius. Through an online API users can filter and download
numerous harmonic interpretations of these 571 chorales.
This dataset will serve as a useful resource in the study
of harmonic/functional progression, voice-leading, and the
relationship between melody and harmony, and as a step-
ping stone towards automated harmonic analysis of more
complex music.

1. INTRODUCTION

Broadly, harmony refers to the simultaneous sounding of
multiple pitches [22]. However, harmonic theory involves
far more than just pitch collections. Rather, harmonic the-
ory describes an abstract syntactic structure in Western
tonal music, hierarchically removed from the literal pitches
of the musical “surface” [22]. Though harmonic theory is a
foundational component of basic music theory, the details
of the theory are vague, and deceptively complex [5]. Har-
mony intertwines low-level sensory distinctions (conso-
nance vs dissonance), short-term musical constructs (coun-
terpoint, voice-leading), and abstract long-range musical
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structures (function, form, tonality, etc.), and thus plays a
central role in musical experience. Given this complexity,
it is no surprise that actual harmonic analysis is highly sub-
jective, and thwarts any attempt to systematize or automate
it. This paper attempts to clarify the dimensions of har-
monic analysis, identifying the import points of disagree-
ment and ambiguity in harmonic theory. We then present
a novel approach to automated harmonic analysis, which
allows us to generate a variety of consistent harmonic an-
notations based on a various assumptions and preferences.

1.1 Theory and Terminology

To avoid confusion with the more general concept of “har-
mony,” we use the term sonority to refer to pitch-class
collections. The most basic sonority is the dyad—pairs
of pitch classes which form consonant or dissonant in-
tervals. 1 Larger sonorities can be seen as combinato-
rial compositions of dyads, as each new pitch class forms
an interval with every other pitch class in the sonority.
Harmonic theory generalizes about various dyad combi-
nations, reducing a huge variety of possible interval com-
binations to a few categories. The central harmonic cat-
egories of Western music are the set of cardinal-three
sonorities in which all intervals are consonant (triads) and
the cardinal-four sonorities which include one dissonant
interval (7th chords). Other sonorities—the preponder-
ance of possibilities—are unclassified and considered non-
syntactic. Some genres (e.g., jazz, music theatre) employ
larger sonorities (9th chords, 13th chords, etc.), which nec-
essarily contain more dissonant intervals, as well as dis-
sonant cardinal-three and cardinal-four sonorities (sus4,
add9, etc.) [5], but even in these styles the vast majority
of sonorities are unclassified.

Traditionally, dissonant harmonic intervals are only
used in highly constrained melodic settings: Dissonant
notes must “decorate” a neighboring consonant note, typ-
ically by moving to/from the consonance by step—a dis-
sonance moving to a consonance by step is said to resolve
to the consonance. Thus, a basic hierarchical distinction
is introduced into music, as “decorative” dissonances are
necessarily subservient to “structural” consonances. Tradi-
tional theory and pedagogy approaches larger musical tex-
tures by applying two-part concepts (parallelism, motion

1 Here we only consider generic intervals, and thus generic disso-
nances. Generically, thirds, fifths, and sixths are consonant, though some
specific versions of these intervals (e.g., diminished fifths, augmented
thirds) are dissonant.
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types, dissonance resolution) to all individual pairs. Un-
fortunately, larger textures introduce complexities which
two-voice theory cannot address: decorative tones may ap-
pear in multiple voices at different times, at the same time,
or even staggered such that one voice’s decorative disso-
nance cooccurs with another’s consonant resolution. As
a result, the consonant harmonies which undergird mu-
sical syntax may never be explicitly sounded as sonori-
ties. The concrete distinction between consonant and dis-
sonant intervals gives way to a nebulous distinction be-
tween chord-tones which instantiate the local harmony and
non-chord tones that decorate them [22]. This distinction,
is the essential task of harmonic analysis. Traditional “ro-
man numeral” harmonic analysis also requires some in-
terpretation of higher-level tonal structures, including the
global key and local modulations. Just as the melodic
surface elaborates the underlying harmonic progressions,
harmonic progressions elaborate more abstract functional
(tonic, subdominant, dominant) progressions and prolon-
gations, which in turn articulate the key or progressions
between keys. This hierarchy, however, is not clear-cut or
discrete: disentangling surface features from increasingly
abstract structural progressions is difficult, and the proce-
dure poorly defined.

1.2 Literature

Computational research into harmonic progression and
function has been extensive [8, 12, 22–24, 27, 30]. Many
researchers have sought to automate harmonic analysis, ei-
ther using rule-based algorithms [9, 11, 21, 28, 29] or ma-
chine learning [13, 18, 19, 26]. Impressive performance
has been achieved, though proper evaluation is some-
what difficult given that the “correct answer” is not clear
cut. Even if interpretive leeway is allowed, algorithms in-
evitably struggle with even mildly idiosyncratic or excep-
tional passages—devising sufficiently complicated rules to
cover all possibilities is impossible, and such passages
are too rare to be learned by machine learning. Due to
these difficulties, many researchers have relied instead on
manual annotation by experts, who can make more nu-
anced decisions and adapt to never-before-seen situations
[1,3,4,8,20]. However, though human analysts may create
more accurate data, manual harmonic annotations—even
by the same analyst—can be extremely inconsistent [14].
Given the subjectivity of harmonic analysis, the consis-
tency of data annotation may actually more important than
a vaguely-defined “accuracy” [6]—inconsistent answers to
similar or identical musical patterns will inevitably hamper
learning, whether human or machine.

To account for inconsistency and disagreement between
theorists, many studies have employed multiple indepen-
dent annotators [3, 4]. This approach is appropriate to the
extent that analytical inconsistency is considered random
noise. However, as we will explain, harmonic indetermi-
nacy is not simply a matter of random error, but rather
reflects fundamental disagreements concerning the nature,
meaning, and purpose of harmonic analysis. Thus, anno-
tation error is not (entirely) stochastic, but rather, is sys-

tematic. What’s more, though multiple independent anno-
tations give us some sense of the scope of disagreement
between analysts, they do little to clarify the root causes of
these disagreements. Our view is that is preferable to: A)
precisely describe the subjective features of harmonic the-
ory; B) study how different theoretical assumptions result
in different analyses; and C) evaluate how well different
assumptions/models explain patterns in music. The goal
of our project is to facilitate these tasks.

1.3 Analytical ambiguity

Harmonic analysis is evidently a useful tool in the descrip-
tion of musical structure and musical experience, yet in
practice, harmonic theory is underspecified with regards to
many musical passages. Indeed, many prominent theories
of music (e.g. Rameau, Riemann, Schenker) differ funda-
mentally in their approach to harmony. It is often possible
to interpret the same passage in a number of ways. Further-
more, the informative distinctions conveyed by different
interpretations is unclear. This ambiguity mainly regards
four questions:

1. Which harmonies are “legal” structural harmonies?
Are sevenths chords true harmonies, or are they al-
ways decorative?

2. How do we interpret sonorities that are subsets,
supersets, or intersections of each other? Tradi-
tional harmonic categories like {V,V7,viio} both
share many pitch classes and have similar musical
function—what, if any, useful information is con-
veyed by treating them as independent categories?

3. How do we interpret contrapuntally decorative notes
which are consonant—i.e, can there be consonant
non-chord tones? This issue is especially difficult
when multiple voices engage in decorative motion
at once, creating “passing chords.”

4. Should harmonic analysis reflect only “surface” fea-
tures (like dissonance resolutions), or should higher-
level structures also play a role? For instance,
should, large-scale parallelism inform analyses?—
i.e., analyzing two parallel passages in a similar way
even if their surface details differ?

Figure 1 illustrates a number of these issues in a con-
crete musical example. In Figure 1, the three notes col-
ored red form dissonances and therefore must be inter-
preted as non-chord tones. Notes colored blue are conso-
nant, but evince melodic contours similar to the dissonant
notes. Throughout this paper, we refer to each new sonor-
ity formed whenever any voice articulates a new onset as
a sonority “slice”—in Figure 1, slices are numbered above
the grand staff.

The consonant passing tones in slices 2 and 8 are espe-
cially illustrative. If the passing tone in slice 2 is consid-
ered a chord tone, slices 1–2 form the harmonies I→ vi6,
both tonic function chords. If the passing tone in slice 8 is
interpreted as a chord tone, the progression ii → vii6

o

results—a transition between two different tonal functions
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(subdominant and dominant). Given these functional dif-
ferences, many analysts would mark slices 1–2 as a single
I chord but slices 7–8 as ii→vii6

o. This is especially
true since transitions from ii→ I (slice 9) are considered
abnormal, while transitions from vii6

o → I are norma-
tive. Several slices illustrate the ambiguity regarding 7th
chords: Passing tones in slices 6, 18, 20, 22 and 24 might
each be interpreted as sevenths, or not. For instance, the
G in slice 11 can be seen as the 7th of a ii6 harmony, or
as a suspension. In Bach’s chorale music, chordal 7ths are
nearly always treated like dissonances, begging the ques-
tion: what is the difference between a “chord-tone 7th” and
a “non-chord-tone 7th”?

2. CURRENT PROJECT

This paper describes a new approach to automated har-
monic analysis, which remains agnostic regarding many
of the specific interpretive complexities discussed so far.
Rather, we base analyses on only a few, basic, uncon-
troversial constraints, allowing us to produce numerous
interpretations of the same sonorities. Using this ap-
proach, we have generated a novel form of harmonic anal-
ysis dataset, including numerous harmonic annotations of
chorales by Michael Prætorius (1571–1621) and Johann
Sebastian Bach (1685–1750). This dataset can serve sev-
eral useful functions:

1. Researchers can generate specific, consistent har-
monic analyses, conforming to whatever analytical
preferences/assumptions they prefer, for all music in
the corpora. These analyses can be used like any
other harmonic annotation data—i.e., to study har-
monic progression and tonality in general.

2. The dataset includes a set of late-modal (Prætorius)
and early-tonal (Bach) music, which are nonetheless
largely similar in texture and style. This makes the
dataset particularly useful for historical research [8].

3. Finally, by comparing analyses generated with dif-
ferent constraints, we can rigorously explore the
ways in which different harmonic theories fit, or
don’t fit, real music.

Chorale music is invaluable for teaching and studying
harmony, as it features consistent and highly constrained
melodic/contrapuntal textures, with few non-chord tones.
Bach’s 371 chorales are mainstays of music theory peda-
gogy and have been the subject of much music informa-
tion retrieval research [2, 7, 8, 16, 22–24, 27, 31]. Præto-
rius’ 200 chorales are music of a somewhat similar texture,
but have received relatively little attention. Several sets of
expert analyses of Bach’s chorales have been published,
though only subsets of the chorales have annotations digi-
tally aligned with symbolic music data. Other researchers
have generated harmonic annotations—or analogous func-
tional analyses—of the chorales computationally, and used
these analyses in research, but have not published their an-
notations, nor describe them in detail.

3. METHODOLOGY

The approach of this project is to calculate all legal har-
monic interpretations of a passage, and to only filter out
specific interpretations at a later stage. Our approach is de-
signed specifically for our dataset, and is thus rather “over
fit” to chorale music, so it will not generalize well to other
music. However, the basic concepts of our approach could
be adapted to other tonal music.

Key to our entire endeavor is establishing “basic” con-
straints on harmonic interpretation. In true music the-
ory form, we formulate these constraints as the following
“rules.” There are two types of rules: harmonic rules and
melodic rules. Our harmonic rules are as follows:

1. Every sonority slice belongs to one and only one har-
mony.

2. Every new harmony must be followed by another
new harmony on the next stronger metric position—
i.e., harmonic rhythm cannot be syncopated. (Some
Prætorius chorales contain exceptions to this rule, as
the entire rhythmic texture is syncopated.)

3. Only triads (major, minor, diminished, or aug-
mented) and 7th chords (dominant, major, minor,
half-diminished, or fully-diminished) are consid-
ered legal harmonies. However, subsets of legal
harmonies may also appear in music. Complete
harmonies are preferred, but cardinal-three subsets
of seventh chords (Root-3rd-7th or Root-5th-7th),
dyadic subsets of triads (i.e., consonant intervals),
and even unisons/octaves are permitted.

Given these definitions of harmony, we can then estab-
lish which notes do, or do not, belong to the local harmony.
To be a non-chord tone, a note must satisfy the following
melodic rules—any note that fails any of these rules must
be a chord tone:

1. The antecedent and consequent note of each non-
chord tone must be consonant (chord tones), except-
ing the special case of Rule 4g (below).

2. Non-chord tones cannot sustain across metric posi-
tions that are stronger than their own metric position.

3. Non-chord tones cannot sustain through changes of
harmony. A note cannot start as a non-chord tone
and then become a chord tone (though the opposite
is possible, in the suspension).

4. Finally, all non-chord tones must match one of these
traditional contrapuntal dissonance models:

(a) Passing tone: approached and departed by step
in the same direction.

(b) Neighbor tone: approached and departed by
steps in opposite directions; the antecedent and
consequent are the same note.

(c) Suspension/Retardation: approached by uni-
son (or sustain); departed by step; stronger
metric position than antecedent.
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Figure 1. Illustration of “decorative” melodic idioms in a contrived example of four-part counterpoint. Slices (sonorities)
are numbered above the staff. Notes colored red indicate dissonances. Notes colored blue indicate consonant notes which
nonetheless articulate decorative melodic idioms, including passing tones (slices 2, 5, 8, 16, 18, 20, 21, 23, 24), neighbor
tones (slices 6, 17, 18, 19), suspensions (slices 11, 23), a retardation (slice 15), and an anticipation (slice 22). Some of
these interpretations are mutually exclusive, as a decorative tone cannot decorate another decorative tone. For instance, if
the C in slice 5 is considered a passing tone, then the B in slice 6 must be a chord tone which resolves the passing tone.

(d) Appoggiatura: approached by leap; departed
by step in opposite direction; stronger metric
position that antecedent.

(e) Escape tone: approached by step; left by skip;
weaker metric position than its antecedent.

(f) Pedal tone: approached by unison (or sustain);
left by unison (or sustain).

(g) Double passing: two non-chord tones of the
same duration, separated by step; approached
and departed by step in the same direction; the
first of the pair must occupy a weaker beat than
its antecedent.

As in all dimensions of harmonic analysis, there is
not universal agreement regarding the rules for non-chord
tones. The rules set out here are an amalgam of the rules
explicitly, or implicitly, described in typical music theory
text books [15, 17], specialized (through some trial an er-
ror) for our chorale datasets.

3.1 Data parsing

Symbolic encodings of the Bach chorales were gathered
from the KernScores repository (kern.ccarh.org),
which is maintained by Stanford’s Center for Com-
puter Assisted Research in the Humanities. The mu-
sic of 370 four-part chorales, and one five-part chorale 2 ,
is encoded in the humdrum **kern representation
(www.humdrum.org) [10]. Symbolic encodings of 200
chorales by Prætorius were recently digitized by members

2 This five-part chorale was excluded from the dataset available on
Kernscores, but was encoded for the purposes of this study

of McGill University SIMSSA project: Scores were ini-
tially scanned and interpreted by optical music recogni-
tion software before being corrected by a human annota-
tor. This data was originally encoded in musicXML for-
mat, but was converted to **kern data for this project,
so as to facilitate alignment with harmonic annotations.
The Prætorius data includes 197 four-voice chorales and
three five-voice chorales. In total, the dataset includes 571
chorales, consisting of 129,568 notes (+ 898 rests), which
form 42,895 sonority slices.
**kern data was parsed using the Humdrum Toolkit

[10], before being loaded into R [25] for additional pars-
ing. The analysis workflow was also conducted in R. To
make the analyses useful as comparisons across the two
composers, (almost) the exact same parsing and analysis
workflow are applied to each.

In addition to pitch and rhythm data, the Bach chorale
data contains some phrasing information, in particular, fer-
matas. A phrase ending in a Bach chorale was identified
whenever all four voices reach a fermata. 3 The Præto-
rius chorale data contains phrasing information, encoded
as rests in all voices, and both datasets contain metric in-
formation. 4

3.2 Workflow

Our process has a two-stage workflow. The first-stage is
to divide the music exhaustively into contiguous groups

3 Several chorales had notational inconsistencies, wherein fermatas
were not encoded on the inner voices. These inconsistencies were fixed
manually.

4 Though metric indications in Prætorius’ era are not exactly concep-
tually equivalent to modern time signatures.
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Figure 2. Illustration of contextual windows in Bach’s Chorale 1, Aus meines Herzens Grunde. Slices between dashed red
lines are analyzed as one window.

of successive slices: “contextual windows.” The second-
stage applies an analysis algorithm to each segment.

3.2.1 Stage 1

Many sonority slices can be analyzed in isolation. How-
ever, many more slices need context to by analyzed. Our
approach is to parse the music into a single set of contigu-
ous (non-overlapping) windows, identified using a sim-
ple, rule-based heuristic. A new contextual window begins
anytime:

1. All voices attack on a strong beat.

2. All voices attack and one or more voices did not at-
tack in the previous slice.

3. In an offbeat slice, more than two voices attack and
one or more voices sustains into/past the next beat.

4. After a phrase boundary.
Figure 2 illustrates the contextual windows derived by this
heuristic in the first seven measures of Bach’s first chorale.
The aim of this heuristic is to err on the side of larger seg-
ments: unnecessarily large windows can be broken down
into separate harmonies at a later stage, but windows that
are too small will not provide enough context to identify
all legal interpretations, and in some cases may result in
windows that are not parsable.

3.2.2 Stage 2

Once analytical windows are identified, we apply the fol-
lowing permutational algorithm to the slices in each win-
dow.

1. Identify all ways in which the window can be di-
vided exhaustively into sub-segments while obeying
harmonic-rhythm constraints (Harmonic Rule 2).

2. For each possible segmentation, identify all pitches
that can legally be non-chord tones (Melodic Rules
3–4)—we call these potential non-chord tones.

3. Compute every combination of potential non-chord
tones, allowing that some interpretations are mutu-
ally exclusive (detailed explanation below).

4. For every legal combination of potential non-chord
tones, remove these non-chord tones and group

the remaining chord tones into every possible sub-
segment.

5. Discard interpretations which contain (any) illegal
harmonies.

6. If any preferred harmonies are present, discard in-
complete harmonies (Harmonic Rule 3).

7. If the same chord is identified in two successive
slices, discard this interpretation (a different sub-
segmentation is sure to have found the equivalent).

8. If a slice is identified as a dyad/unison, and the pre-
ceding or succeeding slice is a superset of that dyad/
unison, the slice is subsumed into the superset.

Figure 3 illustrates the application of this algorithm to
the sixth window in the chorale shown in Figure 2. The
four slices in this window can be legally divided in six
segmentations (Step 1), shown below the staff. Eleven of
the twelve notes in the window are potential non-chord
tones (labeled and enumerated in Figure 3). The algo-
rithm tests various permutations of these potential non-
chord tones (algorithm Steps 3–5) as so: First, assume
potential non-chord #1 is a non-chord tone and all other
notes are chord tones: under this assumption, segmentation
1... forms the illegal sonority {A,B,C,D,E,F#}; seg-
mentation 1.2. forms the illegal sonorities {B,C,D,E}
and {A,B,C,E,F#}; segmentation 1..2 forms the ille-
gal sonority {B,C,D,E} and the legal sonority {A,C,F#};
etc. Repeat this procedure for every other potential non-
chord tone, every pair of non-chord tones, every triplet
of non-chord tones, etc., skipping combinations which are
mutually exclusive—i.e., if #2 is an appoggiatura #4 must
be a chord tone (Rule 1). Testing all non-chord tone per-
mutations across all six segmentations reveals eleven non-
redundant (Steps 6–8) interpretations with legal chords in
all segments (Step 5). 5 Of these eleven, we can “filter
out” interpretations involving 7th chords, leaving the three
triadic analyses shown in Figure 3.

5 Our actual algorithm incorporates a few additional optimizations to
limit the number of permutations which must be tested. The most impor-
tant involves pitch classes: within a given harmonic segment all instances
of a single pitch class must be either non-chord tones or chord tones. For
instance, it would be meaningless to treat #9 as a passing tone but treat
#11 as a chord tone. Similarly, #7 (a C) can never actually be a passing
tone, since the C in the bass is always a chord tone.
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Figure 3. Illustration of the permutational analysis of a
single contextual window (window 6 from Figure 2). Each
note in the window is annotated as a potential non-chord
tone, marked p for passing tone, n for neighbor tone, r for
retardation, or a for appoggiatura—mutually exclusive po-
tentials are annotated with arrows. The single unlabeled C
must be a chord tone, as it does not match any contrapun-
tal dissonance model (Melodic Rules 4). Below the staff,
the six possible rhythmic segmentations of the window are
shown. The four possible purely-triadic interpretations of
the window are show; the notes which are interpreted as
non-chord tones are identified (by number) beside each
analysis.

3.3 Edge cases

Chorale music is valued pedagogically for its simplicity
and consistency. Nonetheless, a handful of chorales con-
tain unusual features which complicate the batch analysis
of the corpora. Notable examples in the Bach chorales in-
clude: an unusual call and response between the soprano
and the rest of the voices in Chorale 43; dissonant notes
which resolve across phrase boundaries (i.e., through a
fermata) in Chorales 127, 202, and 234; and suspensions
which resolve indirectly in Chorales 5 and 199. A number
of Prætorius chorales also contain subsections in which a
subset of voices sing while the others rest, confounding our
windowing heuristic. Solutions to these special cases, and
a handful others, were hard-coded into the workflow.

4. API

The data is hosted at github.com/DDMAL/
Flexible harmonic chorale annotations.
The harmonic permutation data is stored in a rData file.
Users may filter out specific harmonic analyses using an
online GUI, and download them as a zipped collection
of text files encoded in the Humdrum Syntax. Each file
contains the **kern representation of a chorale aligned
with one or more harmonic analyses in a **harm repre-
sentation. Interpretations can be filtered by the following
criteria:

• Type of harmonies.

• Number of harmonies (per beat/per window).

• Types of non-chord tones.

• Number of non-chord tones (per slice/per window).

For example, one could extract analyses which forbid aug-
mented triads, appoggiaturas, and ˇ “) harmonic rhythms.
Users may also download the raw data and associated R
scripts for local use or customization.

5. CONCLUSION

The empirical and computational study of harmony is es-
sential to furthering our understanding of musical structure
and perception. However, this research must remain cog-
nisant of the subtle complexities and controversies of har-
monic theory if it is to be fruitful. We have presented a
novel approach to automated harmonic analysis which is
not limited to one specific set of theoretical assumptions,
allowing for just such subtleties to be explored systemati-
cally. We have also described a new dataset generated via
this method. We hope that this dataset will facilitate re-
search into tonality and harmonic progression, especially
changes in harmonic practice between the early 1600s and
the mid 1700s. However, our grander purpose is to facili-
tate critical, data-driven, interrogation of harmonic theory
in general.
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ABSTRACT

Melodic contour, the ‘shape’ of a melody, is a common
way to visualize and remember a musical piece. The pur-
pose of this paper is to explore the building blocks of a fu-
ture ‘gesture-based’ melody retrieval system. We present
a dataset containing 16 melodic phrases from four musi-
cal styles and with a large range of contour variability.
This is accompanied by full-body motion capture data of
26 participants performing sound-tracing to the melodies.
The dataset is analyzed using canonical correlation analy-
sis (CCA), and its neural network variant (Deep CCA), to
understand how melodic contours and sound tracings re-
late to each other. The analyses reveal non-linear relation-
ships between sound and motion. The link between pitch
and verticality does not appear strong enough for complex
melodies. We also find that descending melodic contours
have the least correlation with tracings.

1. INTRODUCTION

Can hand movement be used to retrieve melodies? In this
paper we use data from a ‘sound-tracing’ experiment (Fig-
ure 1) containing motion capture data to describe music–
motion cross-relationships, with the aim of developing a
retrieval system. Details about the experiment and how
motion metaphors come to play a role in the representa-
tions are presented in [19]. While our earlier analysis was
focused on the use of the body and imagining metaphors
for tracings [17, 18], in this paper, we will focus on mu-
sical characteristics and study music–motion correlations.
The tracings present a unique opportunity for cross-modal
retrieval, because a direct correspondence between tracing
and melodic contour presents an inherent ‘ground-truth.’

Recent research in neuroscience and psychology has
shown that action plays an important role in perception. In
phonology and linguistics, the co-articulation of action and
sound is also well understood. Theories from embodied
music cognition [22] have been critical to this exploration
of multimodal correspondences.

c© Tejaswinee Kelkar, Udit Roy, Alexander Refsum Jense-
nius. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Tejaswinee Kelkar, Udit Roy,
Alexander Refsum Jensenius. “Evaluating a collection of Sound-Tracing
Data of Melodic Phrases”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

Figure 1. An example of post-processed motion capture
data from a sound-tracing study of melodic phrases.

Contour perception is a coarse-level musical ability
that we acquire early during childhood [30, 33, 34]. Re-
search suggests that our memory for contour is enhanced
when melodies are tonal, and when tonal accent points of
melodies co-occur with strong beats [16], making melodic
memory a salient feature in musical perception. More gen-
erally, it is easier for people to remember the general shape
of melody rather than precise intervals [14], especially if
they are not musical experts. Coarse representations of
melodic contour, such as with drawing or moving hands
in the air may be intuitive to capturing musical moments
of short time scales [9, 25].

1.1 Research Questions

The inspiration for our work mainly comes from several
projects on melodic content retrieval using intuitive and
multi-modal representations of musical data. The oldest
example of this is the 1975 project titled ‘Directory of
Tunes and Musical Themes,’ where the author uses a sim-
plified contour notation method, involving letters for de-
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noting contour directions, to create a dictionary of musi-
cal themes where one may look up a tune they remem-
ber [29]. This model is adopted for melodic contour re-
trieval in Musipedia.com [15]. Another system is proposed
in the recent project SoundTracer, in which a user’s mo-
tion of their mobile phone is used to retrieve tunes from a
music archive [21]. A critical difference between these ap-
proaches is how they handle mappings between contour in-
formation and musical information, especially differences
between time-scales and time-representations. Most of
these methods do not have ground-truth models of con-
tours, and instead use one of several ways of mappings,
each with its own assumptions.

Godøy et al. has argued for using motion-based, graphi-
cal, verbal, and other representations of motion data in mu-
sic retrieval systems [10]. Liem et al. make a case for using
multimodal user-centered strategies as a way to navigate
the discrepancy between audio similarity and music simi-
larity [23], with the former referring to more mathematical
features, and the latter to more perceptual features. We
proceed with this as the point of departure for describing
our dataset and its characteristics, to approach the goal of
making a system for classifying sound-tracings of melodic
phrases with the following specific questions:

1. Are the mappings between melodic contour and mo-
tion linearly related?

2. Can we confirm previous findings regarding correla-
tion between pitch and the vertical dimension?

3. What categories of melodic contour are most corre-
lated for sound-tracing queries?

2. RELATED WORK

Understanding the close relationship between music and
motion is vital to understanding subjective experiences of
performers and listeners, [7, 11, 12]. Many empirical ex-
periments aimed at investigating music–motion correspon-
dences deal with stimulus data that is made to explicitly
observe certain mappings, for example pitched and non-
pitched sound, vertical dimension and pitch, or player ex-
pertise [5, 20, 27]. This means that the music examples
themselves are sorted into types of sound (or types of mo-
tion). We are more interested in observing how a variety
of these mapping relationships change in the content of
melodic phrases. For this we use multiple labeling strate-
gies as explained in section 3.4. Another contribution of
this work is the use of musical styles from various parts of
the world, including those that contain microtonal inflec-
tions.

2.1 Multi-modal retrieval

Multi-modal retrieval is the paradigm of information re-
trieval used to handle different types of data together. The
objective is to learn a set of mapping functions that project
the different modalities into a common metric space, to
be able to retrieve relevant information in one modality

through a query in another. We see that this paradigm is
used often in the retrieval of image from text and text from
image. Canonical Correlation Analysis (CCA) is a com-
mon tool for investigating linear relationships of two sets
of variables. In the review paper by Wang et al. for cross
modal retrieval [35], several implementations and models
are analyzed. CCA is also previously used to show music
and brain imaging cross relationships [3].

A previous paper analyzing tracings to pitched and
non pitched sounds also used CCA to understand music–
motion relationships [25], where the authors describe in-
herent non-linearity in the mappings, despite finding in-
trinsic sound-action relationships. This work was extended
in [26], in which CCA was used to interpret how different
features correlate with each other. Pitch and vertical mo-
tion have linear relationships in this analysis, although it
is important to note that the sound samples used for this
study were short and synthetic.

The biggest reservations in analyzing music–motion
data through CCA is that non-linearity cannot be repre-
sented, and the dependence of the method on time syn-
chronization is high. The temporal evolution of motion
and sound remains linear over time [6]. To get around
this, kernel-based methods can be used to introduce non-
linearity. Ohkushi et al., present a paper that uses Kernel-
based CCA methods to analyze motion and music features
together using video sequences from classical ballet, and
optical flow based clustering. Bozkurt et al. present a CCA
based system to analyze and generate speech and arm mo-
tion for prosody-driven synthesis of the ’beat-gesture’ [4],
which is used for emphasizing prosodically salient points
in speech. We explore our dataset through CCA due to
the previous successes of using this family of methods.
We will analyze the same data using Deep CCA, a neural-
network approximation of CCA, to understand better the
non-linear mappings.

2.2 Canonical Correlation Analysis

CCA is a statistical method to find a linear combina-
tion of two variables X = (x1, x2, ..., xn) and Y =
(y1, y2, ..., ym) with n andm independent variables as vec-
tors a and b such that their correlation ρ = corr(aX, bY )
of the transformed variables is maximized. Linear
vectors a′ and b′ can be found such that a′, b′ =
argmax

a,b
corr(aTX, bTY ). We can then find the second

set of coefficients which maximize the correlation of the
variables X ′ = aX and Y ′ = bY with the additional con-
straint to keep (X,X ′) and (Y, Y ′) uncorrelated. This pro-
cess can be repeated till d = min(m,n) dimensions.

The CCA can be extended to include non-linearity by
using a neural network to transform the X and Y variables
as in the case of Deep CCA [2]. Given the network param-
eters θ1 and θ2, the objective is to maximize the correla-
tion corr(f(X, θ1), f(Y, θ2)). The network is trained by
following the gradient of the correlation objective as esti-
mated from the training data.
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3. EXPERIMENT DESCRIPTION

3.1 Procedure

The participants were instructed to move their hands as if
their movement was creating the melody. The use of the
term ‘creating,’ instead of ‘representing,’ is purposeful, as
shown in earlier studies [26,27], to be able to access sound-
production as the tracing intent. The experiment duration
was about 10 minutes. All melodies were played at a com-
fortable listening level through a Genelec 8020 speaker,
placed 3m in front of the subjects. Each session consisted
of an introduction, two example sequences, 32 trials and
a conclusion. Each melody was played twice with a 2s
pause in between. During the first presentation, the partic-
ipants were asked to listen to the stimuli, while during the
second presentation, they were asked to trace the melody.
All the instructions and required guidelines were recorded
and played back through the speaker. Their motions are
tracked using 8 infra-red cameras from Qualisys (7 Oqus
300 and 1 Oqus 410). We then post-process the data in
Qualisys Track Manager (QTM) first by identifying and
labeling each marker for each participant. Thereafter, we
create a dataset containing Left and Right hand coordinates
for all participants.

Six participants in the study had to be excluded due to
too many marker dropouts, giving us a final dataset con-
taining 26 participants tracing 32 melodies: 794 tracings
for 16 melodic categories.

3.2 Subjects

The 32 subjects (17 females, 15 males) had a mean age
of 31 years (SD = 9 years). They were mainly univer-
sity students and employees, both with and without musi-
cal training. Their musical experience was quantized using
the OMSI (Ollen Musical Sophistication Index) question-
naire [28], and they were also asked about the familiarity
with the musical genres, and their experience with dancing.
The mean of the OMSI score was 694 (SD = 292), indicat-
ing that the general musical proficiency in this dataset was
on the higher side. The average familiarity with Western
classical music was 4.03 out of a possible 5 points, 3.25 for
jazz music, 1.87 with Sami joik, and 1.71 with Hindustani
music. None of the participants reported having heard any
of the melodies played to them. All participants provided
their written consent for inclusion before they participated
in the study, and they were free to withdraw during the ex-
periment. The study design was approved by the National
ethics board (NSD).

3.3 Stimuli

In this study, we decided to use melodic phrases from vocal
genres that have a tradition of singing without words. Vo-
cal phrases without words were chosen so as to not intro-
duce lexical meaning as a confounding variable. Leaving
out instruments also avoids the problem of subjects having
to choose between different musical layers in their sound-
tracing. The final stimulus set consists of four different

Figure 2. Pitch plots of all the 16 melodic phrases used as
experiment stimuli, from each genre. The x axis represents
time in seconds, and the y axis represents notes. The ex-
tracted pitches were re-synthesized to create a total of 32
melodic phrases used in the experiment.

musical genres and four stimuli for each genre. The mu-
sical genres selected are: (1) Hindustani music, (2) Sami
joik, (3) jazz scat singing, (4) Western classical vocalise.
The melodic fragments are phrases taken from real record-
ings, to retain melodies within their original musical con-
text. As can be seen in the pitch plots in Figure 2, the
melodies are of varying durations with an average of 4.5 s
(SD = 1.5 s). The Hindustani and joik phrases are sung by
male vocalists, whereas the scat and vocalise phrases are
sung by female vocalists. This is represented in the pitch
range of each phrase as seen in Figure 2.

Seeger

Schaeffer

Varna

Hood

xx xy xyy xyx

Impulsive Iterative Sustained

Ascending Descending Stationary Varying

Arch Bow Tooth Diagonal

Adams
Repetition Recurrence

Figure 3. Contour Typologies discussed previously in
melodic contour analysis. This figure is representative,
made by the authors.

Melodic contours are overwhelmingly written about in
terms of pitch, and so we decided to create a ‘clean’ pitch–
only representation of each melody. This was done by
running the sound files through an autocorrelation algo-
rithm to create phrases that accurately resemble the pitch
content, but without the vocal, timbral and vowel content
of the melodic stimulus. These 16 re-synthesized sounds
were added to the stimulus set, thus obtaining a total of 32
sound stimuli.
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ID Description

1 All 16 Melodies
2 IJSV 4 Genres
3 ADSC Ascending, Descending,

Steady or Combined
4 OrigVSyn Original vs Synthesized
5 VibNonVib Vibrato vs No Vibrato
6 MotifNonMotif Motif Repetition Present vs

Not

Table 1. Multiple labellings for melodic categories: we
represent the 16 melodies using 5 different label sets. This
helps us analyze which features are best related to which
contour classes, genres, or melodic properties.

3.4 Contour Typology Descriptions

We base the selection of melodic excerpts on the descrip-
tions of melodic contour classes as seen in Figure 3. The
reference typologies are based on the work of Seeger [32],
Hood [13], Schaeffer [8], Adams [1], and the Hindustani
classical Varna system. Through these typologies, we hope
to cover commonly understood contour shapes and make
sure that the dataset contains as many of them as possible.

3.4.1 Multiple labeling

To represent the different contour types and categories that
these melodies represent, we create multiple labels that ex-
plain the differences. This enables us to understand how
the sound tracings actually map to the different possible
categories, and makes it easier to see patterns from the
data. We describe these labels as seen in Table 3.4.1. Mul-
tiple labels allow us to see what categories does the data
describe, and which features or combination of features
can help retrieve which labels. Some of these labels are
categories, while some are one-versus-rest. Category la-
bels include individual melodies, genres, and contour cat-
egories, while one-versus-rest correlations are computed
for finding whether vibrato, motivic repetitions exist in the
melody, and whether the melodic sample is re-synthesized
or original.

4. DATASET CREATION

4.1 Preprocessing of Motion Data

We segment each phrase that is traced by the participants,
label participant and melody numbers, and extract the data
for left and right hand markers for this analysis, since the
instructions asked people to trace using their hands. To
analyze this data, we are more interested in contour fea-
tures and shape information than time-scales. We therefore
time-normalize our datasets so that every melodic sample
and every motion tracing is the same length. This makes it
easier to find correlations between music and motion data
using different features.

Figure 4. Feature distribution of melodies for each genre.
We make sure that a wide range of variability in the fea-
tures, as described in Table 2 is present in the dataset.

Feature Calculated by

1 Pitch Autocorrelation function using
PRAAT

2 Loudness RMS value of the sound using
Librosa

3 Brightness Spectral Centroid using Librosa
4 Number

of Notes
Number of notes per melody

Table 2. Melody features extracted for analysis, and de-
tails of how they are extracted.

5. ANALYSIS

5.1 Music

Since we are mainly interested in melodic correlations, the
most important feature describing melodies is to extract
pitch. For this, we use autocorrelation algorithm avail-
able in the PRAAT phonetic program. We use Librosa
v0.5.1 [24] to compute the RMS energy (loudness), and
the brightness using Spectral Centroid. We transcribe the
melodies to get the number of notes per melody. The dis-
tribution of these features can be seen for each genre in
the stimulus set in Figure 4. We have tried to be true to
the musical styles used in this study, most of which do not
have written notation as an inherent part of their pedagogy.

5.2 Motion

For tracings, we calculate 9 features that describe vari-
ous characteristics of motion. We record only X and Z
axes, as maximum motion is found along these directions.
The derivatives of motion (velocity, acceleration, jerk) and
quantity of motion (QoM) which is a cumulative velocity
quantity are calculated. Distance between hands, cumula-
tive distance, and symmetry features are calculated as indi-
cators of contour-supporting features, as found in previous
studies.
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Feature Description

1 X-coordinate (X) Axis corresponding to the
direction straight ahead of
the participant

2 Z-coordinate (Z) Axis corresponding to the
upwards direction

3 Velocity (V) First derivative of vertical
position

4 Acceleration (A) Second derivative of vertical
position

5 Quantity of Mo-
tion

Sum of absolute velocities
for all markers

6 Distance between
Hands

Sample-wise Euclidean dis-
tance between hand markers

7 Jerk Third derivative of vertical
position

8 Cumulative Dis-
tance Traveled

Euclidean distance traveled
per sample per hand

9 Symmetry Difference between the left
and right hand in terms of
vertical position and hori-
zontal velocity

Table 3. Motion features used for analysis. 1-5 are for the
dominant hand, while 6-9 are features for both hands.

5.3 Joint Analysis

In this section we present our analysis on our dataset with
these two feature sets. We analyze the tracings for each
melody as well as utilize the multiple label sets to discover
interesting patterns in our dataset which are relevant for a
retrieval application.

5.3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a method to align se-
quences of different lengths using substitution, addition
and subtraction costs. It is a non-metric method giving us
the distance between two sequences after alignment.

In recent research, vertical motion has been shown to
correlate with pitch in the past for simple sounds. Some
form of non-alignment is also observed between the mo-
tion and pitch signals. We perform the same analysis on
our data: compute the correlation between pitch and mo-
tion in the Z axis before and after alignment with DTW
for the 16 melodies and plot their mean and variance in
Figure 5.

5.3.2 Longest Run-lengths

While observing the dataset, we find that longest ascend-
ing and descending sequences in the melodies are most
often reliably represented in the motions, although vari-
ances in stationary notes, and ornaments is likely to be
much higher. To exploit this feature in tracings, we use
“Longest Run-lengths” as a measure. We find multiple
subsequences following a pattern which can possess dis-
criminative qualities. For our analysis, we use the ascend-
ing and descending patterns, thus finding the subsequences

Figure 5. Correlations of pitch with raw data (red) vs after
DTW-alignment (blue). Although a DTW alignment im-
proves the correlation, we observe that correlation is still
low suggesting that vertical motion and pitch height are
not that strongly associated.

from the feature sequence which are purely ascending or
descending. We then rank the subsequences and build a
feature vector from the lengths of the top N results. This
step is particularly advantageous when comparing features
from motion and music sequences as it captures the overall
presence of the pattern in the sequence remaining invariant
to the mis-alignment or lag between the sequences from
different modalities. As an example, if we select the Z-
axis motion of the dominant hand and the melody pitch as
our sequences and retrieve top 3 ascending subsequence
lengths. To make the features robust, we do a low pass
filtering of the sequence as a preprocessing step.

We analyze our dataset by computing the features for
few combinations of motion and music features for ascend-
ing and descending patterns. Thereafter, we perform CCA
and show the resulting correlation of first transformed di-
mension in Table 4. We utilize the various label categories
generated for the melodies, and show the impact of the fea-
tures on the labels from each category in Tables 4 and 5.
We select the top four run lengths as our feature for each
music–motion feature sequence. For Deep CCA analysis,
we use a two layered network (same for both motion and
music features) with 10 and 4 neurons. A final round of
linear CCA is also performed on the network output.

6. RESULTS AND DISCUSSION

Figure 5 shows correlations with raw data and after DTW
alignment between the vertical motion and pitch for each
melody. Overall, the correlation improves after DTW
alignment, suggesting phase lags and phase differences be-
tween the timing of melodic peaks and onsets, and those of
motion. We see no significant differences between genres,
although the improvement in correlations for the vocalize
examples is the least pre and post DTW. This could be be-
cause of the continuous vibrato in these examples, causing
people to use more ‘shaky’ representations which are most
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Motion Music All ADSC IJSV

Ascend Pattern CCA Deep CCA CCA Deep CCA CCA Deep CCA

Z Pitch 0.19 0.23 0.25 0.16 0.09 0.05 0.24 0.17 0.12 0.13 0.16 -0.13 0.01 0.37 0.19 0.21 0.08 0.36
Z + V Pitch 0.21 0.27 0.26 0.09 0.15 0.10 0.30 0.03 0.05 0.17 0.22 -0.13 -0.01 0.35 0.24 0.25 0.15 0.34
All All 0.33 0.44 0.31 0.14 0.19 0.29 0.44 0.29 0.01 0.36 0.30 0.28 0.23 0.42 0.38 0.43 0.27 0.52

Descend Pattern

Z Pitch 0.18 0.21 0.16 -0.11 0.15 0.20 0.17 0.19 0.09 0.19 0.22 0.21 -0.04 0.23 0.22 0.18 0.08 0.28
Z + V Pitch 0.21 0.31 0.23 0.03 0.14 0.22 0.28 0.28 0.30 0.32 0.26 0.23 0.10 0.24 0.42 0.18 0.34 0.17
All All 0.35 0.44 0.39 0.12 0.20 0.25 0.38 0.02 0.37 0.37 0.35 0.25 0.12 0.36 0.40 0.22 0.14 0.52

Table 4. Correlations for all samples in the dataset and the two major categorizations of music labels, using ascend and
descend patterns as explained in Section 5.3.2, and features from Tables 3 and 2

Motion Music MotifNonMotif OrgSyn VibNonVib

Ascend Pattern CCA Deep CCA CCA Deep CCA CCA Deep CCA

Z Pitch 0.05 0.23 0.13 0.26 0.19 0.19 0.22 0.25 0.33 0.07 0.33 0.13
Z + V Pitch 0.10 0.24 0.17 0.31 0.19 0.22 0.24 0.31 0.33 0.09 0.32 0.20
All All 0.29 0.34 0.36 0.47 0.30 0.35 0.42 0.45 0.38 0.29 0.49 0.40

Descend Pattern

Z Pitch 0.20 0.17 0.19 0.21 0.20 0.16 0.23 0.18 0.20 0.17 0.24 0.18
Z + V Pitch 0.22 0.22 0.32 0.29 0.24 0.20 0.35 0.26 0.22 0.22 0.14 0.34
All All 0.25 0.40 0.37 0.45 0.38 0.33 0.45 0.44 0.33 0.35 0.54 0.35

Table 5. Correlations for two-class categories, using ascend and descend patterns as explained in Section 5.3.2
with features from Tables 3 and 2

consistent between participants. The linear mappings of
pitch and vertical motion are limited, making the dataset
challenging. This also means that the associations between
pitch and vertical motion, as described in previous stud-
ies, are not that clear for this stimulus set, especially as
we use musical samples that are not controlled for being
isochronous, nor equal tempered.

Thereafter, we conduct CCA and Deep CCA analysis
as seen in Tables 4, 5. Overall, Deep CCA performs better
than its linear counterpart. We find better correlation with
all features from Table 3, as opposed to just using verti-
cal motion and velocity. With ascending and descending
longest run-lengths, we are able to achieve similar results
for correlating all melodies with their respective tracings.
However, descending contour classification does not have
similar success. There is more general agreement on con-
tour with some melodies than others, with purely descend-
ing melodies having particularly low correlation. There is
some evidence that descending intervals are harder to iden-
tify than ascending intervals [31], and this could explain a
low level of agreement in this study amongst people for de-
scending melodies. Studying differences between ascend-
ing and descending contours requires further study.

While using genre-labels (IJSV) for correlation, we find
that scat samples show the least correlation, and the least
improvement. Speculatively, this could be related to the
high number of spoken syllables in this style, even though
the syllables are not words. Deep CCA also gives an over-
all correlation of 0.54 for recognizing melodies containing
vibrato from the dataset. This is an indication that sonic

textures are well represented in such a dataset.
With all melody and all motion features, we find an

overall correlation of 0.44 with Deep CCA, for both the
longest ascend and longest descend features. This supports
the view that non-linearity is inherent to tracings.

7. CONCLUSIONS AND FUTURE WORK

Interest in cross-modal systems is growing in the context of
multi-modal analysis. Previous studies in this area include
shorter time scales or synthetically generated isochronous
music samples. The strength of this particular study is
in using musical excerpts as are performed, and that the
performed tracings are not iconic or symbolic, but spon-
taneous. This makes the dataset a step closer to under-
standing contour perception in melodies. We hope that
the dataset will prove useful for pattern mining, as it
presents novel multimodal possibilities for the community
and could be used for user-centric retrieval interfaces.

In the future, we wish to create a system to synthe-
size melody–motion pairs based on training a network to
this dataset, and conducting a user evaluation study, where
users evaluate system generated music–motion pairs in a
forced–choice paradigm.
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ABSTRACT

Estimating the main melody of a polyphonic audio record-
ing remains a challenging task. We approach the task from
a classification perspective and adopt a convolutional re-
current neural network (CRNN) architecture that relies on
a particular form of pretraining by source-filter nonneg-
ative matrix factorisation (NMF). The source-filter NMF
decomposition is chosen for its ability to capture the pitch
and timbre content of the leading voice/instrument, pro-
viding a better initial pitch salience than standard time-
frequency representations. Starting from such a musically
motivated representation, we propose to further enhance
the NMF-based salience representations with CNN lay-
ers, then to model the temporal structure by an RNN net-
work and to estimate the dominant melody with a final
classification layer. The results show that such a system
achieves state-of-the-art performance on the MedleyDB
dataset without any augmentation methods or large train-
ing sets.

1. INTRODUCTION

Automatic dominant melody estimation (AME) is a pop-
ular and rather challenging task in Music Information Re-
trieval (MIR). In general, AME can be defined as the esti-
mation of fundamental frequencies that represent the pitch
values of the dominant melody [24]. The source of the
dominant melody could be a leading singing voice or an
instrument. The difficulty is that there is usually a poly-
phonic accompaniment to the lead vocal/instrument, and
that this accompaniment follows the melody rhythmically
and harmonically, in the sense that chord progressions will
naturally contain the dominant F0 and/or its harmonics. As
a consequence, it is not trivial to obtain a representation
that discriminates the main melody from the background
music. Hence, one of the main research directions in AME
remains finding a salience representation that enhances the

c⃝ Dogac Basaran, Slim Essid, Geoffroy Peeters. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Dogac Basaran, Slim Essid, Geoffroy Peeters. “Main
Melody Extraction
with source-filter NMF and CRNN”, 19th International Society for Music
Information Retrieval Conference, Paris, France, 2018.

fundamental frequency of the dominant melody against the
possibly polyphonic background.

One of the most popular and rather simple salience rep-
resentations is the Harmonic Sum Spectrum (HSS) [18]
that consists of mapping the energy among harmonically
related F0s. This has been used effectively in a popular
melody extraction algorithm, jbcorso-called Melodia [23].
Durrieu et. al. [11, 12] proposed a salience function where
the dominant melody (singing voice or instrument) is mod-
eled with a Source-Filter Nonnegative Matrix Factoriza-
tion (SF-NMF). This method was later combined with HSS
in [7] in order to obtain an enhanced salience representa-
tion. There also exist other methods that utilize a simple
time-frequency representation, e.g., the Short Time Fourier
Transform (STFT) or Constant Q-Transform (CQT), as a
low-level representation of salience [13, 25].

Recently, Bittner et. al. [6] proposed a Convolutional
Neural Network (CNN) system to learn salience represen-
tations based on harmonic CQT. The rationale for this ap-
proach is to learn harmonic relationships implicitly and to
obtain a salience representation similar to (or better than)
HSS.

Salience-based melody estimation methods usually use
pitch tracking methods on top of salience representations
to exploit the temporal relationships between dominant
F0s. In [12], a Hidden Markov model (HMM) was adopted
where the states represent the bins of the source activa-
tions, i.e. F0s. Then a threshold-based voicing estima-
tion (melody/non-melody estimation) was applied. An-
other very popular pitch tracking method was proposed by
Salamon et. al. [23] where the algorithm creates and char-
acterizes pitch contours on top of HSS. Characteristics of
these contours have proven very effective in voicing esti-
mation [7, 23].

Recently, Deep Neural Networks (DNNs) have become
very popular in MIR applications such as sound event de-
tection [2, 4] and chord estimation [20]. The ability of
DNNs to approximate any function with linear weights and
non-linear activations, given enough data, makes such sys-
tems attractive for MIR tasks. That said, comparatively
few attempts have been made to estimate dominant melody
using neural networks. In [19, 22], bidirectional Long
Short-Term Memory (LSTM) [15], a special kind of Re-
current Neural Network (RNN), are used for singing voice
separation. Such networks are mostly used in modeling the
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temporal information in time sequences. Recently, in [3],
a hierarchical CNN structure similar to a stacked denois-
ing autoencoder (SDA) [26] is used to learn a mapping be-
tween an STFT representation and a transcription similar
to a piano roll. A tutorial on deep learning techniques for
MIR tasks can be found in [9].

Although most of these DNNs perform end-to-end
training, it has proven effective to use a more structured
input data, such as harmonic-CQT [6]. Recently, [4]
achieved state-of-the-art results in sound classification by
using NMF activations as input as a form of pretraining.

Contributions. Inspired by these works, we propose a
Convolutional-Recurrent Neural Network (CRNN) model
whose pretraining is based on the SF-NMF model pro-
posed in [12]. We show that with NMF-based pretrain-
ing, we can achieve state-of-the-art results without requir-
ing large training datasets or data augmentation methods,
and using relatively simpler networks in terms of training
parameters. Our results clearly demonstrate the usefulness
of a good input salience representation to the network, sug-
gesting that performance would climb even higher if the
SF-NMF model were improved. Our results are obtained
on MedleyDB [5], which is a challenging dataset due to
inclusion of singing voice and instrument melodies in a di-
verse set of music genres.

The rest of the paper is organized as follows: the pro-
posed CRNN system and pretraining with SF-NMF are
detailed in Section 2. Section 3 discusses the domi-
nant melody estimation results obtained on the MedleyDB
dataset, and also gives an analysis of SF-NMF-based
salience and the comparison between different CRNN vari-
ants. Finally, some conclusions and future directions are
given in Section 4.

2. SYSTEM OVERVIEW

The block diagram of the CRNN system we propose is
given in Figure 1. In the first stage (Pretraining), we es-
timate an initial salience representation using the SF-NMF
model. Then this salience is fed into a CNN (CNN stage),
where the salience representation is further enhanced by
learning local features. The CNN output activations are
then fed into an RNN to exploit the long-term relationships
between fundamental frequencies (RNN stage). Then in
the final Classification stage, we classify the representa-
tions as melody/non-melody and give an estimate for F0

at each time-frame where each class represents a semitone
fundamental frequency. Note that the same procedure is
applied in both the training and testing of the system.

In the design of the CRNN system, we are inspired by
a similar CRNN proposed in [20] for chord recognition,
where the network is interpreted as an encoder-decoder
scheme. In the CRNN structure we propose, the CNN
and RNN stages can also be treated together as an encod-
ing stage (input sequence to mid-level salience representa-
tion) where the output is an enhanced salience representa-
tion that captures both spatial and temporal features. Then
the classification stage acts as a decoding stage (mid-level
representation to output sequence) where the salience is

Pretraining with SF-NMF

RNN Stage

Classification

CNN Stage

Salience 
representation

}

Temporal pitch 
tracking

Melody/non-melody 
F0 estimation

Figure 1: Block diagram of the proposed CRNN system
with pretraining

mapped into a frame-based note representation.

2.1 Pretraining with SF-NMF

In [12], the dominant melody (voice/instrument) is mod-
eled using a source-filter model. Assuming the mixing
of the dominant melody and the accompaniment (back-
ground) is instantaneous, the source, filter and accompa-
niment parts are modeled with the SF-NMF model as fol-
lows:

V ≈ V̂ = VF0 ⊙VΦ +VB

= WF0HF0 ⊙WΦHΦ +WBHB (1)

= WF0HF0 ⊙WΓHΓHΦ +WBHB (2)

where V represents the power spectrogram of the signal,
i.e., V = |X|2 (where X is the STFT of the audio signal to
be analyzed); F0,Φ and B represents the source, filter and
background respectively; W and H represent the basis and
activation matrices; and ⊙ denotes the Hadamard product.
The filter basis WΦ is further modeled with yet another
NMF representation, as in [11]: WΦ = WΓHΓ.

In this model, the source, VF0 = WF0HF0 , is assumed
to have a harmonic structure. To ensure such a struc-
ture, the basis WF0 is pre-constructed (not estimated) such
that each column represents the harmonic structure for one
F0. Represented F0s start from a minimum frequency, i.e.,
F0 = 55Hz, and they are logarithmically spaced, i.e., the
ratio between consecutive F0 values would be 2(1/60) for a
resolution of 5 bins per semitone. Such a construction en-
forces the corresponding row in the activation matrix HF0

to represent the activation of that specific F0, similar to a
saliency representation. That is the rationale behind using
HF0 as a saliency representation as in [7, 11, 12].

The main assumption with the filter, VΦ, is to have a
smooth structure. One way to ensure such smoothness is
to construct a basis WΦ from smooth filters in advance,
similar to enforcing harmonic structure in the source VF0 .
However it is not possible to directly construct WΦ with
smooth basis filter structures since it depends on the dom-
inant melody. In [11], it is proposed to represent WΦ with
another NMF model, WΓHΓ, where the columns of WΓ

are constructed (not estimated) as simple and smooth band
pass filters that are linearly spaced and overlapping. This
structure forces WΦ to be smooth, thus ensuring that VΦ

will be smooth as expected.
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The accompaniment/background, VB = WBHB , is
also represented with a standard NMF model where there
are no constraints on the basis such as smoothness or being
harmonic. In summary, the source basis WF0 and smooth
filter basis WΓ are pre-constructed and the rest of the pa-
rameters HF0 , HΓ,HΦ,WB and HB are estimated using
the standard alternating scheme and heuristic multiplica-
tive updates.

In this work, for the SF-NMF model, we follow the
parametrization given in [7] where the minimum and max-
imum frequencies represented in HF0 are chosen as 55Hz
and 1760Hz respectively. We choose the resolution of the
F0s as 5 bins per semitone which results in 60 bins per
octave (bpo) and 301 bins in total per frame.

Note that due to the logarithmic spacing of the F0s
where the consecutive frequencies have a ratio of 21/60,
one can tune the represented F0s with proper choice of the
minimum frequency F0,min. As an example, if F0,min =
55Hz, the notes will be tuned to A4 = 440Hz whereas if
F0,min = 55.25Hz, they will be tuned to A4 = 442Hz.
This choice of tuning might depend on the target dataset.
Here, we choose the tuning A4 = 440Hz assuming that
such tuning is more widely used. It is important to men-
tion that this construction of F0s in WF0 cannot be gener-
alized to all music genres, e.g., traditional Turkish music
with makams. Hence the methods based on SF-NMF, as
well as the proposed scheme, are limited in that sense.

Although we aim to classify the fundamental frequen-
cies at semitone resolution, we initially choose a higher
resolution for the F0s in WF0 . In practice, it is highly
probable that a dominant voice or instrument will be
slightly out-of-tune, and hence will not fit any of the repre-
sented F0s. In such cases, a high resolution representation
of F0s might better describe these out-of-tune notes.

2.2 CNN stage

In order to enhance the HF0 -salience, we propose two dif-
ferent CNN architectures, which we denote as CNN1 and
CNN2. In CNN architecture 1 (CNN1), we first decrease
the F0 resolution to semitones, then we train CNN layers
to learn local structures, i.e., the confusions between semi-
tones. In the second approach (CNN2), we follow the net-
work proposed in [6]. Here, the network learns the features
in the original resolution and within a semitone interval
with one additional layer that learns the octave patterns.

Note that since each CNN architecture only applies 2D
linear filters and non-linear activations, the input structure
is not lost through the layers of the network. This provides
an advantage of interpretable hidden layer activations and
leads to a new form of salience as output where each row
still represents the activation of a fundamental frequency.

In both architectures, rectified linear units (ReLus) are
used as non-linear activations and are applied to each CNN
layer output. Batch normalization is applied before each
intermediate CNN layer input, as it has proven effective
in the convergence of the network by reducing the internal
covariance shift [16]. The columns of HF0 are normalized
with l1 norm before being fed into the CNN network. Such

Figure 2: CNN Architecture 1 (CNN1).

a normalization is possible since the task at hand is the
estimation of the melody; that is, only the position of the
fundamental frequency is needed, not the exact energy.

2.2.1 CNN Architecture 1 (CNN1)

There are 5 layers in the CNN1 architecture. The first layer
gathers the energy around each semitone by applying fo-
cused filters centered around each semitone frequency. In
this layer, there are 64 (5x1) filters each with a stride (5,1).
This way, not only is the energy focused on the semitones,
but also the frequency resolution is decreased to the semi-
tone scale from 5 bins per semitone (time resolution re-
mains the same). The rationale behind the first layer is
two-fold: First, the number of parameters is severely de-
creased by lowering the frequency resolution, i.e., it takes
5 times less filter parameters in order to learn features. Sec-
ond, out-of-tune notes would already be represented in the
vicinity of the corresponding semitone in the HF0 repre-
sentation. Focused filters on semitones would gather the
energy on the semitone that is a way of retuning the melody
on the represented semitone fundamental frequencies.

In the following layers, zero padding is applied to con-
volutions to keep the dimensions unchanged. The second
layer has 64 (5 x 3) filters that cover ±2 semitone inter-
val and roughly 30ms in time. Then the third layer has 64
(3 x 3) filters that cover ±1 semitone and 30ms in time.
The fourth layer has 16 (15 x 3) filters to learn note con-
fusions in one octave. Filters cover ±7 semitone interval
and again 30ms in time. Then enhanced salience represen-
tation is obtained as the output of the final CNN layer that
has only one (1x1) filter as in [6] but with a rectified linear
unit instead of a sigmoid. The overall structure of CNN
architecture 1 is shown in Figure 2.

2.2.2 CNN Architecture 2 (CNN2)

CNN2 is based on the network proposed in [6]. In this net-
work, the resolution of the input remains the same through-
out the layers of the CNN, i.e., no pooling is applied. Note
that the input to CNN2 is HF0 ; therefore, the first layer of
the network contains only a single channel instead of six.
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As mentioned before, the overall system targets semi-
tone resolution for the output fundamental frequencies.
This requires a reduction in resolution somewhere in the
system. In this architecture, we left the dimensionality re-
duction to the final classification layer.

2.3 RNN stage

Recurrent neural networks are mostly used in MIR and
audio analysis tasks to model the dynamics of the obser-
vations, typically for chord recognition [20] and speech
recognition [14]. Here, we use a single bidirectional Gated
Recurrent Unit (BiGRU) layer to capture temporal rela-
tionships between F0s. A GRU is a special kind of RNN
[8] where the units are able to model long-term temporal
relationships whilst using a gate structure. It has the advan-
tage of not suffering from the vanishing gradient problem
of standard RNN and has proven to be easier to train com-
pared to the LSTM alternative.

The number of units in a BiGRU layer should be chosen
higher or equal to the output dimension of the preceding
CNN network. In the BiGRU structure, actually two GRU
layers are trained with the same input but in reverse direc-
tions to model the F0 relationships from both directions.
Later, the two layers are merged to have a single output.

2.4 Classification

The final layer of the system is a classifier where one class
represents the non-melody and the rest of the 61 classes
represent semitone fundamental frequencies between A1
and A6 (inclusive). The multiclass classification output is
obtained with a single dense layer and softmax activations.

The overall system is trained minimizing the cross en-
tropy loss between the softmax activations and true proba-
bilities. A frame is classified as a non-melody frame only
if the probability of non-melody class is higher than the
rest. Regardless of this decision, F0 is estimated for each
frame by simply picking the most probable F0 class among
the 61 note classes. Note that even if the non-melody class
has the highest probability, the second-highest probability
gives a good estimation of the pitch.

An example output of the classification layer that is ob-
tained from a CNN1 + RNN + Classification architecture
is shown in Figure 3. In this example, HF0 input (top-left)
gives a very good initial salience. Then the CNN1 output
activations (top-right) further enhance the dominant part
against the harmonic background. It is observed that the
dominant F0 classes mostly have the highest probabilities
against the rest of the class probabilities (bottom-left).

3. EXPERIMENTS

In this section, we evaluate the proposed NMF-based
CRNN system using the MedleyDB dataset [5]. For the
annotations, we use the "Melody2" definition in Med-
leyDB that is the F0 of the dominant melody at each time
step, drawn from multiple sources. With this definition
of melody, it is possible to have separate instruments or

Figure 3: (Top-left) HF0 representation of a small au-
dio excerpt as input to CRNN, (Top-right) CNN1 activa-
tions, (Bottom-left) Classifier activations of CRNN, (Bot-
tom right) Ground-truth annotations.

voices as the source of dominant melody throughout a sin-
gle song. Among 108 annotated songs in the dataset, 48
songs have predominant instrumental melody, 30 songs
have predominant vocal melody and 30 songs have both
predominant instrument and vocal melodies.

We randomly split the MedleyDB set into train, valida-
tion and test sets such that the tracks from the same artist
do not belong to different sets following the artist condi-
tional random splitting as in [6,7]. There are 27 full-length
tracks in the test set, 67 full-length tracks in the training set
and 14 full-length tracks in the validation set. Note that we
used the same test split with [6] in the MedleyDB in the
rest of the experiments to be able compare the results.

We use the five standard evaluation metrics given in
[24], namely: Raw Pitch Accuracy (RPA), Raw Chroma
Accuracy (RCA), Overall Accuracy (OA), Voicing False
Alarm (VFA) and Voicing Recall (VR). All the codes are
written in Python and available online 1 . CQT implemen-
tation is based on the librosa python package [21].

3.1 Network training

We trained three different networks with the following
combinations of the architectures given in Section 2:

CRNN-1: CNN1 + 1 layer BiGRU (128 Units) + Classifi-
cation layer;
CRNN-2: CNN2 + 1 layer BiGRU (160 Units) + Classifi-
cation layer;
C-NN: CNN2 + Classification layer.

We further denote the network variants by prepending
a label indicating the input to the network: "SF" for HF0

input and "CQT" for CQT input. Note that the CQT pa-
rameters are chosen such that the representation of a signal
via HF0 or CQT would have the same dimensions 2 .

1 github.com/dogacbasaran/ismir2018_dominant_melody_estimation
2 CQT parameters: Minimum F0=55Hz, # of octaves = 5, bpo = 60
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CRNN-1 CRNN-2 Baseline
# of Param. 307,199 854,319 406,253

Table 1: The number of trainable parameters for CRNN-1,
CRNN-2 and the baseline CNN network [6]

In the proposed CRNN structure, the purpose of the
CNN stage is to learn local features, whereas the purpose
of the RNN stage is to account for long term temporal re-
lationships. This requires selecting relatively small patch
lengths for the CNN layers but longer patch lengths for
the RNN layer. For this purpose, we used different patch
lengths for the CNN and RNN parts while jointly training
them.

In all the models, the CNN layers are trained on either
0.29-second (25-frame) or 0.58-second (50-frame) patches
and the RNN layer is trained on 5.8-second (500-frame)
patches. The training is performed using mini-batches of
16 patches per batch. We use the ADAM optimizer [17],
and reduce the learning rate if there is no improvement in
validation loss after 20 epochs. The early stopping strat-
egy is used if the validation loss is not decreased after 20
epochs. The maximum possible number of epochs is set to
200. All models were implemented with Keras 2.0 [10]
and Tensorflow 1.0 [1] and tested using NVIDIA-Tesla
K80 GPUs. The number of parameters for each network
model is given in Table 1.

Note that, in the training, we do not benefit from any
data augmentation method or from other larger datasets.

3.2 Results

We compare the outputs of all three models to a CNN-
based melody tracking system [6], considered as a base-
line, which proved to significantly outperform the previous
state-of-the-art methods in [7, 23]. The evaluation results
of [6] are available online. 3 By choosing the same test
split from the MedleyDB, we are able to compare these
published results to ours without any re-evaluation. The
evaluation results for all network variants (SF-CRNN-1,
SF-CRNN-2, CQT-CRNN-2, SF-C-NN) and for the base-
line are given in Figure 4. We use McNemar’s test on the
classification results and provide p-values as a measure of
significance whenever relevant 4 .

CQT vs. HF0 as salience
We explore the usefulness of pretrained input by com-
paring the evaluation results of the CRNN-2 model when
the input is CQT or HF0—i.e., comparing CQT-CRNN-2
and SF-CRNN-2. The results show that CRNN-2 model
performs significantly better in OA (p=0.0015) and RCA
(p=0.0003) scores when the input to the network is HF0 .
On average, results for SF-CRNN-2 are 6, 9 and 7 percent-
age points higher for OA, RPA and RCA, respectively.

The reason the CRNN-2 model performs better with
pretrained input is that HF0 provides a better initial

3 github.com/rabitt/ismir2017-deepsalience
4 Mcnemar test is based on statsmodel package in python.

HF0 CQT
RPA 0.538± 0.141 0.210± 0.16

RCA 0.648± 0.127 0.411± 0.15

Table 2: The comparison of RPA and RCA scores for HF0

feature and CQT feature by simple peak-picking method.

Figure 4: Evaluation metrics for SF-CRNN-1, SF-CRNN-
2, CQT-CRNN-2, SF-C-NN and the baseline [6].

salience representation than the CQT. Ideally, a salience
representation of melody should be discriminative for each
target fundamental frequency against the polyphonic back-
ground music. We can analyze both HF0 and CQT repre-
sentations to see how well they fit this definition of “ideal”
salience by performing a simple peak-picking strategy as
in [6]. Specifically, the frequency with maximum ampli-
tude/salience for each time frame point is chosen as the
estimate of the fundamental frequency. We can compute
the RPA and RCA scores using those estimates to see their
performances as salience. The results obtained on the full
MedleyDB dataset are given in Table 2. It can be seen
that HF0 performs nearly twice as well as the CQT repre-
sentation in both RPA and RCA scores, showing that HF0

provides a better initial salience to the CRNN networks.

SF-CRNN-2 model vs. Baseline CNN Network
The SF-CRNN-2 model uses the CNN-2 architecture in the
CNN stage, the same CNN as the baseline. When we
compare the evaluation results given in Figure 4, we ob-
serve that the SF-CRNN-2 model outperforms the baseline
in the RPA (p = 0.0015) and VR (p=0.052) scores. The
model has slightly higher OA and RCA scores on average
than the baseline. On the other hand, SF-CRNN-2 has a
higher number of network parameters (854, 319) than the
baseline CNN (406, 253). This is due to the additional
RNN layer that exists in SF-CRNN-2.

Comparison between variants SF-CRNN-1, SF-CRNN-
2 and SF-C-NN
On average, SF-CRNN-1 performs slightly better than all
other models in all metrics aside from VFA. Comparing
SF-CRNN-1 and SF-CRNN-2, we observe that a similar or
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OA RPA RCA VR VFA
SF-CRNN-1 0.444 0.595 0.677 0.556 0.423

Baseline 0.580 0.756 0.725 0.590 0.219

Table 3: Evaluation results for the track "MatthewEn-
twistle_TheFlaxenField" where the worst OA performance
occurs against the baseline [6].

higher performance can be achieved by the low resolution
CNN1 architecture and with far fewer training parameters
(see Table 1). VR rates for SF-CRNN-1 and SF-CRNN-2
are significantly higher than the SF-C-NN; however, VFA
rates are higher as well. This behavior could be due to the
activations of the RNN layer that should force some sort of
temporal smoothing on the salience representation.

On the other hand, the significantly better OA, RPA and
RCA scores of SF-CRNN-2 relative to SF-C-NN suggest
that the temporal tracking with RNN effectively improves
the performance of the melody estimation.

Comparing the best performing network variant SF-
CRNN-1 to the baseline, we observe that it outperforms
the baseline on the OA (p=0.052), RPA (p=0.0003) and
VR (p=0.0015) scores, and achieve those results with a less
complex network in terms of network parameters (see Ta-
ble 1). A track-level comparison by computing the overall
accuracy differences for each track shows that SF-CRNN-
1 performs better on 19 tracks out of 27.

The worst OA of SF-CRNN-1 occurs against the base-
line with the "MatthewEntwistle_TheFlaxenField" track
where the dominant melody consists only of instruments
including Piano. The evaluation results for this track are
given in Table 3. It is observed that both SF-CRNN-1
and baseline have relatively high VFA; however, the effect
of this is minimal since the track mostly contains voiced
frames. On the other hand, the OA score would be highly
affected by the combination of high RPA and VR scores.
For this track, although the baseline and SF-CRNN-1 have
comparable VR rates, the RPA score of the baseline is bet-
ter, which explains the difference in OA performance.

Singing voice vs. Instrument
Among the test set in MedleyDB, 16 tracks contain only
instrumental dominant melody, 3 tracks contain only dom-
inant singing voice melody and 8 tracks contain both 5 .
Evaluation results in Table 4 show that SF-CRNN-1 per-
forms better for singing voice melodies than instrument
melodies. SF-CRNN-1 outperforms the baseline in over-
all accuracy for singing voice melodies and instrument
melodies.

4. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced a novel audio-based dom-
inant melody estimation architecture using source-filter
NMF as pretraining for a new variant of deep network for

5 The ratio of the dominant singing voice melody frames and the dom-
inant instrumental melody frames among all voiced frames is 0.238 and
0.762, respectively.

SF-CRNN-1 Baseline
S.V. Ins. S.V. Ins.

OA 0.638 0.466 0.598 0.424
RPA 0.791 0.647 0.784 0.619
RCA 0.804 0.726 0.823 0.717

Table 4: OA, RPA and RCA scores for singing voice (S.V.)
main melody and Instrument (Ins.) main melody for SF-
CRNN-1 and baseline.

this task, namely a CNN-BiGRU scheme. We have shown
that the proposed system achieves state-of-the-art perfor-
mance on standard evaluation metrics, even significantly
improving on it while maintaining a lower system com-
plexity.

Analysis of HF0 as a salience representation shows that
it provides a good initial salience in general with high RPA
and RCA, even when performing melody estimation us-
ing frame-based salience peak-picking. The evaluation re-
sults clearly show the usefulness of SF-NMF-based pre-
training in many aspects. We observe that when provided
with a good initial salience input to the CRNN structure,
the system performs considerably better without requir-
ing any augmentation or additional training data. This
encourages the idea of improving the pretraining part to
obtain even more discriminative salience representations
which will surely increase the melody estimation perfor-
mance. For such improvements, SF-NMF is a good can-
didate since many other variants with various constraints
such as smoothness or sparsity exist in the literature.

We observe that in the proposed CRNN structure, the
CNN stage helps to improve the quality of the salience
representation against HF0 . In addition, exploiting tempo-
ral information with the RNN significantly improves OA,
RPA, RCA and VR. These two stages act similarly to an
encoder scheme and the classification layer acts as the de-
coder. Therefore one can interpret the proposed CRNN as
an encoder-decoder network where the encoder is used to
obtain an enhanced salience representation and the decoder
produces a frame-based transcription.

From a melody classification viewpoint, the MedleyDB
dataset is quite challenging due to its diverse range of in-
strumentation and music genres. Also, there is an im-
balance between the note classes and the non-melody class
in the dataset. The CRNN network has proven effective
in handling such imbalance when pretrained with an SF-
NMF model.

A clear future direction to pursue is training the SF-
NMF and CRNN jointly, learning the HF0 representation
while minimizing the classification error.
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ABSTRACT

Previous works on chord recognition mainly focus on
chord symbols but overlook other essential features that
matter in musical harmony. To tackle the functional har-
mony recognition problem, we compile a new profession-
ally annotated dataset of symbolic music encompassing not
only chord symbols, but also various interrelated chord
functions such as key modulation, chord inversion, sec-
ondary chords, and chord quality. We further present a
novel holistic system in functional harmony recognition;
a multi-task learning (MTL) architecture is implemented
with the recurrent neural network (RNN) to jointly model
chord functions in an end-to-end scenario. Experimental
results highlight the capability of the proposed recognition
system, and a promising improvement of the system by
employing multi-task learning instead of single-task learn-
ing. This is one attempt to challenge the end-to-end chord
recognition task from the perspective of functional har-
mony so as to uncover the grand structure ruling the flow of
musical sound. The dataset and the source code of the pro-
posed system is announced at https://github.com/
Tsung-Ping/functional-harmony.

1. INTRODUCTION

.
Harmony and tonality represent the essence of West-

ern tonal music. A complete analysis of the functional
harmony in a musical piece needs one to utilize several
interrelated concepts, such as chord progression, diatonic
function, chord inversion, key modulation, to name but a
few. These concepts are of fundamental importance in mu-
sic theory, as they provide a systematic guide for one to
understand how a phrase starts and how it ends, how one
chord is related to another, how a chord is related to the
key of the music, and more generally, how music works.

Computational approaches to analyzing musical har-
mony have gained wide attention in the past decades.
Many works related to this topic, such as chord recogni-
tion [2,6,12,18,21,23,35], key detection [3,9,17,27], and

c© Tsung-Ping Chen and Li Su. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Tsung-Ping Chen and Li Su. “Functional Harmony Recognition of
Symbolic Music Data with Multi-task Recurrent Neural Networks”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

chord sequence modeling and generation [5, 10, 14, 28, 31,
32], as the sub-problems of the complete functional har-
mony recognition problem, have been extensively studied.
Among these sub-problems, chord recognition is arguably
the most widely-investigated one.

Chord recognition focuses on the identification of chord
symbol, i.e., symbols which indicate the root note, the
chord quality (e.g., Major), and occasionally an extra in-
terval number (e.g., seventh) of a chord. 1 Such a notation
system provides direct instructions on chord construction,
and therefore becomes prevalent in jazz and pop music.
However, this notation system is insufficient for a more
holistic analysis as it provides no information about chord
functions. 2 For example, the secondary chord 3 that plays
an important role in the analysis of the hierarchical struc-
ture in a chord sequence is rarely discussed in the literature.
Little efforts at such data annotation are due to it requires
musicology expertise. As a result, there is no systematic
studies on a more holistic recognition system based on all
the above-mentioned concepts of functional harmony anal-
ysis, to the best of our knowledge. Although this topic has
been extensively studied in the field of music information
retrieval (MIR), the computers’ ability of harmonic analy-
sis is still quite limited.

In this paper, we discuss the functional harmony recog-
nition problem. To tackle this problem, we first build a new
dataset comprising five different chord functions, namely
the key, primary degree, secondary degree, quality, and
inversion. Since there is no unique and exact definition
on functional harmony analysis of music, we alternatively
consider the functional harmony recognition problem as
the recognition of the above-mentioned five aspects, in or-
der to facilitate the discussion in an engineering sense. We
formulate this problem with the perspective of multi-task
learning (MTL), and implement the system using the re-
current neural networks (RNN) with long short term mem-
ory (LSTM) units, a network structure that has been found
useful in the audio chord recognition problem [6]. Exper-
iments on the dataset show that the chord functions can
be better resolved within the multi-task learning scenario

1 For example, a chord played with notes C-E-G-B is notated as CM7.
2 In the strict sense, the term chord function refers to the diatonic func-

tion, namely the Roman numeral annotation and the functions like tonic
(T), dominant (D) and sub-dominant (S). In this paper we opt to choose
a rather loose definition by regarding key, degree, and inversion also as
some generalized ‘functions’ of a chord.

3 In this paper, the term secondary chord refers to the chord that does
not serve the key. The borrowed chords, altered chords and the secondary
dominant belong to this category.
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compared to a single RNN structure, marking a step toward
a more advanced computational music analysis framework.

2. RELATED WORK

2.1 Chord recognition and key detection

The chord recognition problem has been widely investi-
gated on both the audio and symbolic data. In recent years,
various machine learning techniques have been applied in
this problem. In audio data processing, RNN-based meth-
ods such as the LSTM-based networks have been adopt
due to its potential to model the long-term dependency of
a time series [6,12,30]. Besides, [26] proposes a word2vec
neural network to model the harmony tension, which also
represents another perspective of chord function modeling.
In symbolic data processing, early studies based on hand-
crafted rules have considered the chord recognition of Ro-
man numeral notations (i.e., chord symbol and tonality)
[13]. [19] considered deep neural networks in chord recog-
nition. Recent approaches based on machine learning, with
evaluation performance include: [15] applies deep learning
to identify non-cord tones in symbolic music data, and [21]
uses a semi-Markov conditional random field (CRF) model
for symbolic-level chord recognition.

Most of the studies on the key detection problem inves-
tigate the global key or home key detection [9, 17]. [17]
proposes a global key finding algorithm with a convolu-
tional neural network (CNN). The studies of key modu-
lation detection are less seen, while there are still some
related works such as local key detection [27].

2.2 Multi-task learning (MTL)

The MTL technique is proposed to fit one shared network
to multiple related sets of labels, i.e., to learn multiple tasks
at a time [20, 29]. If a primary task itself is difficult or is
short of training data, its performance can be improved by
introducing some auxiliary tasks by assuming these tasks
share similar network structure.

MTL has exhibited great potential in MIR [11] since
different attributes of music are often highly related. For
example, in [34], the neural network is shared by the chord
recognition task as well as the root note recognition task,
and doing this can help to improve the accuracy of chord
recognition. Similar ideas can also be seen in other models
such as the multi-chain hidden Markov model (HMM) [22]
and the dynamic Bayesian network [24]. Therefore, it sug-
gests that the functional harmony problem itself is a multi-
task learning problem, as determining one type of chord
function usually needs the information of another.

2.3 Datasets for functional harmony recognition

Accurate annotation chord functions is hard to build in the
audio domain, but rather feasible in the symbolic domain.
There are a few datasets including annotation of some, if
not all, chord functions: for example, the KSN dataset pro-
vides the annotation of chord and key modulation (i.e., the
Roman numeral annotation) [16], the Theme And Varia-
tion Encodings with Roman Numerals (TAVERN) dataset

has Roman number chord annotation [8], and the Yale
Classical Archive Corpus (YCAC) dataset has local tonic
label and chord [33].

3. DATA AND LABELS

We propose the Beethoven Piano Sonata with Function
Harmony (BPS-FH) dataset, which contains the symbolic
musical data and functional harmony annotations of the 1st
movements of 23 of Beethoven’s Piano Sonatas. 4 BPS-
FH dataset provides a more consistent corpus in terms of
musical form and genre with concise annotations for the
analysis of harmony. As an ongoing work, the annotation
will be extended to all the 32 piano sonatas.

3.1 Annotation process: harmonic analysis 5

The BPS-FH dataset is annotated by an expert musicolo-
gist with a basic harmonic analysis process step-by-step.
As opposed to the chord symbol annotation, the traditional
harmonic analysis in music theory and musicology adopts
a relative representation for chords to emphasize the in-
teraction between chords in a given context. To perform
harmonic analysis, there are several implicit processes:

• Key identification: the first step of harmonic analy-
sis is to identify the local key according to context.
Note that in many classical musical pieces, there is
no exact analysis on the local key, for key modula-
tion usually occurs, making it hard to find the local
key in a certain excerpt. 6 When the ambiguity oc-
curs, finding a later cadence which is in a key-steady
context, and then analyzing chords backwards might
give a solution.

• Segmentation: since music itself is not represented
originally as a sequence of chords, it is important
to identify reasonable segments for labeling chords.
A convincing segmentation should take the tempo-
ral rhythm and the harmonic rhythm (i.e., the rate at
which the chords change) into consideration.

• Harmonic reduction: after determining the seg-
ments, each segment is reduced to a chord symbol
(including chord root and chord quality) according
to the tones within it. Harmonic reduction is a non-
trivial and complicated process; there are many con-
fusing factors, such as the non-chord tones, or the
absence of harmonic tones in the segment.

• Inversion recognition: the inversion of a chord is de-
termined by which of the notes is the bottom note, or
bass note, of the chord. Typically, the lowest note in

4 The 23 pieces are: No. 1, 3, 5, 6, 8, 11, 12, 13, 14, 16, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 31, and 32. And all the repetitions in the
sonatas are unfold.

5 In this paper, harmonic analysis refers to Roman numeral analysis.
6 In music, modulation is the act of changing from one key (tonic, or

tonal center) to another. Generally speaking, the key of a musical piece
refers to the global key which identifies the global tonic note and the
final point of rest for the piece, while a modulation conducts the piece
temporarily to another key, that is, a local key, which replaces the global
tonic with a temporary tonic in a local area.
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(a) Diatonic function in C major.

(b) Diatonic function in C minor (harmonic minor scale).

Figure 1: Illustration of diatonic functions in relation to
the diatonic chords of the given keys. Note that in minor
key, the superscript + is added to the mediant because it is
an augmented chord.

a segment would be considered as the bass of the re-
duced chord. However, the lowest note is not always
regarded as the bass notes; the pedal point is one of
such examples.

• Labeling diatonic functions: after determining the
key and the chord symbol, a function is assigned
to the chord. In a major key, the following Ro-
man numerals are used to represent the functions of
diatonic chords: I (tonic), ii (super-tonic), iii (me-
diant), IV (sub-dominant), V (dominant), vi (sub-
mediant), and viio (leading). The capital numerals
denote major chords, the lowercase numerals denote
minor chords, and the superscript o denotes dimin-
ished chords. Figure 1 shows the details of diatonic
functions in both major and minor keys.

Figure 3b exhibits a brief example of harmonic analysis
for the excerpt in Figure 3a. It is worth mentioning some
possible confusions when analyzing harmony on this ex-
ample: at measure 83, there are two non-chord tones, G at
the 1st beat, and Eb at the second half of the 2nd beat, both
of which might be confusing for harmonic reduction. Es-
pecially, the existence of the the non-chord tone G prevents
the note E (the last note of measure 82) from directly re-
solving to F, and blurs the boundary between F-minor key
and Eb-major key. Hence, the key modulation might occur
at measure 83 as labeled, but might also occur at measure
84 or even 85. It should be acknowledged that harmonic
analysis is inherently subjective, and the confounding ef-
fect of subjectivity may affect the performance of a chord
recognition system in many ways [25]. Details about the
harmonic analysis techniques and labeling paradigms can
be found in [1] and [4] .

3.2 Annotations in the BPS-FH Dataset

A fundamental harmonic analysis provides the information
of key, degree, quality and inversion. Therefore, the BPS-
FH dataset has the corresponding annotations as follows:

• Key: the key to which a chord belongs in a local
area. Since key modulation is essential in piano
sonata, we trace the change of key, that is, we spec-
ify the local key, or temporary tonic, so as to show
that how a key deviates from the global one during
the course of the movement.

• Primary degree and secondary degree: degree refers
to the position of a chord’s root on the diatonic scale
of a key. 7 There are seven possible degrees on a
diatonic scale, that is, 1, 2, ..., 7. We use a pair
of degrees, primary degree and secondary degree,
for both diatonic chords and secondary chords. Pri-
mary degree indicates the position of the temporary
tonic on the scale, while secondary degree denotes
the position of the chord’s root based on the tempo-
rary tonic; the couple of degrees is represented as
secondary degree/primary degree. In the case of dia-
tonic chord, the primary degree is always 1. That is,
the temporary tonic is the same as that of the current
key. As for the secondary chord, both the primary
degree and the secondary degree can be any possible
degree. For example, the diatonic chord V is rep-
resented as 5/1, while the secondary chord V/IV is
represented as 5/4.

• Quality: chord quality is defined by the intervals
within a chord. For instance, a major triad has a ma-
jor third and a perfect fifth above its root. 10 types of
chord quality are identified in the dataset, which are
major triad (M), minor triad (m), augmented triad
(a), diminished triad (d), major seventh (M7), minor
seventh (m7), dominant seventh (D7), diminished
seventh (d7), half-diminished seventh (h7), and aug-
mented sixth (a6).

• Inversion: inversion of a chord describes which of
the tones in a chord is the bass note. For exam-
ple, the C-major triad has three candidates, C, E and
G, as its bass, and thus has three possible inversions
(root position is regarded as one inversion in the con-
text). For triads and seventh chords, there are totally
four possible inversions: the 0th inversion (root posi-
tion), 1st inversion ( 6or 6

3 for triad, and 6
5 for seventh

chord), 2nd inversion ( 6
4 for triad, and 4

3 for seventh
chord), and 3rd inversion (42 for seventh chord). Note
that only seventh chords have 3rd inversion.

In summary, the BPS-FH dataset contains 86,950 note
events, 29 different keys, 531 key modulations, and 7,394
chord labels. 8

7 For example, the chord C major triad has the degree 1 in C major
key, while has the degree 4 in G major key.

8 Among all the chords, 3,438 are inverted; 839 are secondary chords;
2,951 are major triads; 1,356 are minor triads; 25 are augmented triads;
286 are diminished triads; 30 are major seventh chords; 86 are minor sev-
enth chords; 2,037 are dominant seventh chords; 453 are diminished sev-
enth chords; 104 are half diminished seventh chords; 66 are augmented
sixth chords.
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(a) MTL-BLSTM-RNN with 1 task-specific layer

(b) MTL-BLSTM-RNN with 2 task-specific layers

Figure 2: Illustration of the MTL-based functional har-
mony recognition system, with a BLSTM-RNN model tak-
ing a data stream as input.

3.3 Data representation

The input data is represented in the format of a 61-key
piano-roll, with the pitch range from C1 to C6 (middle C
= C4); the duration of each note is measured in crotchet
beats. For time resolution, we define a 32th note as the
minimal time step. All the note events out of this pitch
range are transposed to fit in, while the durations of the
note events whose lengths are shorter than the minimal
time resolution are set to be the same as the time resolu-
tion. A piano-roll at a time instance is called a frame.

As shown in Figure 2, the input of the LSTM cell is
a segment of data with 32 frames. That is, for a musical
piece with 4/4 meter, the length of a segment is 4 beats
(or equivalently 1 bar). And a musical clip containing 64
segments is fed to the neural networks. The hop size for
the neural networks is 4 frames (or half a beat.)

4. MODEL

We employ recurrent neural networks (RNN) with bidirec-
tional long-short-term memory (BLSTM) units (denoted as
BLSTM-RNN hereafter) to model sequences of functional
harmony, by using the above-mentioned data representa-

Label Dim Content
Key 24 24 major and minor keys
Pri. deg. 21 7 Roman numerals by 3 (neutral, ], [)
Sec. deg. 21 7 Roman numerals by 3 (neutral, ], [)
Quality 10 M, m, a, d, M7, m7, D7, d7, h7, a6
Inversion 4 0th, 1st, 2nd, 3rd

Table 1: Chord function labels in the BPS-FH dataset, in-
cluding key, primary degree (pri. deg.), secondary degree
(sec. deg.), chord quality, and chord inversion.

Set Piece No.
Training 1, 3, 5, 11, 16, 19 20, 22, 25, 26, 32
Validation 6, 13, 14, 21, 23, 31
Testing 8, 12, 18, 24, 27, 28

Table 2: The pieces in training, validation, and testing sets.

tion as input. Such kind of model has been widely used
in audio chord symbol recognition problems [6,7,12], and
has been found capable in learning long-term information
such as music structure. Specifically, we consider the fol-
lowing two types of networks:

• MTL-BLSTM-RNN with 1 task-specific layer: as
shown in Figure 2a, we adopt a simple BLSTM
architecture with 1024 hidden units for multi-task
leaning. The outputs of the forward and the back-
ward cells are concatenated and form a 1024-by-2
matrix. This matrix is flattened and is connected to
the output layer through a fully-connected layer. The
output layer is a 80-D vector containing the classes
for the five tasks listed in Table 1. Each class is one-
hot encoding, and the Softmax function is used for
the output vector.

• MTL-BLSTM-RNN with 2 task-specific layers: as
shown in Figure 2b, the architecture is the same as
the above, but with an additional task-specific layer
before the output layer, in order to further increase
the model capacity.

Moreover, to verify the advantage of MTL, we also con-
sider the single-task learning (STL) as a baseline approach,
where the same BLSTM-RNN is used. As a result, there
are five networks in the STL-BLSTM-RNN model, each
for one chord function recognition task respectively, and
are trained individually in the experiment.

5. EXPERIMENT

5.1 Experimental settings

In the training stage, we divide the 23 pieces in the dataset
into three parts, namely the training set, the validation set,
and the testing set. Each part contains overlapped clips
which are the input instances of the BLSTM networks.
Each clip contains 64 segments, and the overlap between
two consecutive clips is 32 segments. To balance the data

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 93



(a)

(b)

(c)

(d)

(e)

Figure 3: (a) An excerpt from the 1st movement of Beethoven’s Piano Sonata No. 8, MM. 82-89. (b) The harmonic
analysis of this excerpt represented in both chord symbol and chord function. Note that the slash used in chord symbol
stands for an inversion, and the note behind the slash denotes the bass of the chord. In the analysis, this expert starts from
F minor, modulates to Eb major at measure 83, and finally ends with an authentic cadence. (c) 5 types of annotations
representing the functions in (b). (d) The testing result of chord function recognition of the excerpt. Wrong predictions are
marked in red. (e) The translation of the result in (d) to chord symbol. For the sake of concision, only the wrong predictions
lasting at least one quarter note are translated.

distribution among all possible keys, We perform data aug-
mentation by transposing all the clips into 12 keys. As a
result, there are 7,320 clips for training, 3,672 clips for
validation, and 3,636 clips for testing. Table 2 shows the
musical pieces used in each set. In the experiment, we
compare the following two tasks:

• Chord symbol recognition: with the symbolic data
of music as inputs, the model outputs chord sym-
bol predictions in a segment-wise manner. We used
25 chord classes for the output layer, that is, 24
classes for 12 major triads and 12 minor triads, and
an ‘other’ class for chords not belonging to either
major triads or minor triads.

• Chord function recognition: similar as the chord
symbol recognition, but the outputs of the model are
chord functions containing five components.

Both the MTL and STL schemes are tested on the chord

function recognition task, while the chord symbol recogni-
tion is tested with STL. For the chord function recognition
task with MTL scheme, the outputs of the five chord func-
tions are translated to chord symbol to evaluate the perfor-
mance in terms of chord symbol recognition. And for the
chord function recognition task with STL scheme , five dif-
ferent networks are trained individually for the evaluation
of chord function recognition.

All networks are implemented with TensorFlow, and are
trained using stochastic gradient descent with the Adam
optimization method. For training objective, we compute
categorical cross-entropy between targets labels and net-
work outputs, and include a L2 regularization term. More-
over, to prevent over-fitting and to speed up training con-
vergence, recurrent batch normalization is applied, and the
dropout rate at the input and the output of the LSTM cell
is set to be 0.5.
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Task Model Key Degree Secondary Quality Inversion Overall Translation
Chord Symbol STL-BLSTM-RNN – – – – – 72.71 -

STL-BLSTM-RNN 67.06 48.31 9.38 61.87 57.95 23.57 56.05
Chord Function MTL-BLSTM-RNN with 1 task-specific layer 68.48 50.49 10.96 62.31 60.04 25.53 56.91

MTL-BLSTM-RNN with 2 task-specific layers 66.65 51.79 3.97 60.59 59.10 25.69 56.25

Table 3: Accuracy (in %) of functional harmony recognition and comparison between multi-task BLSTM and single-task
BLSTM. In the table, Degree stands for the accuracy of correctly predicting both the primary and secondary degrees of all
chords; while Secondary indicates the accuracy of correctly predicting the degrees of secondary chords.

5.2 Evaluation metrics

We compute the segment-level accuracy, the ratio between
the number of correct detection and the number of total
segments in the testing set, for each category. Only one
accuracy value is computed in the case of chord symbol
recognition, while six types of accuracies are computed in
the case of chord function recognition, namely the accu-
racies of key, degree, secondary chord, quality, inversion,
and finally, the overall accuracy. Note that the accuracy
of secondary chord is computed when a secondary chord
does exist. The overall accuracy counts the segments in
which the five chord function detections are all correct. An
extra translation accuracy is computed to examine the per-
formance of chord function recognition in terms of chord
symbol recognition.

5.3 Results

Table 3 shows the results of chord symbol recognition and
chord function recognition. In the task of chord symbol
recognition, the STL-BLSTM-RNN-based model gives an
accuracy of 72.71%. In comparison to other existing works
which also estimate chord symbols on classical music
datasets such as [12,21], this result is acceptable while also
reveals the room for improvement in recognizing chords in
western classical music.

In comparison with the chord symbol recognition task,
performing the chord function recognition task is much
more challenging. Specifically, the best overall accuracy
among all chord function recognition tasks is only 25.69%,
which is far from that of chord symbol recognition. This
is partly because there are as many as 10 chord qualities
for the model to predict, and partly because tonal harmony
itself is complicated and equivocal. On the other hand,
MTL-BLSTM-RNN model with 1 task-specific layer out-
performs the single-task one for all chord functions. This
indicates that employing multi-task learning results in a
promising improvement. Among all chord functions, the
improvements of predicting degree and inversion are the
most significant, with 2.18% and 2.09% increases in accu-
racy respectively. This consequence may result from the
fact that identifying the degree and identifying the inver-
sion of a chord are relatively difficult in classical music,
and thus benefit more from multi-task learning. Moreover,
the accuracies of secondary chord are very low for all ex-
periment settings; adding one more task-specific layer even
degrades its performance. This displays the difficulty of
learning the chord representation consisting of semantic

information. Finally, we translate the predictions of chord
function recognition tasks into chord symbol to examine
the performance in terms of chord symbol recognition. It
comes as no surprise that the all the translation accura-
cies are lower than that of chord symbol recognition. This
again marks the challenge of chord function recognition,
as it needs to consider not only the elements constructing a
chord symbol, but also more high-level semantic informa-
tion such as local key and degree.

An example of the chord function recognition result is
shown in Figure 3d. Because the prediction is segment-
wise, there are numbers of discontinuities in the predicted
sequences. This issue can be addressed by further incorpo-
rating temporal smoothing models such as the CRF [21]
in the future. A close examination of this result shows
that although the model gives ‘wrong’ predictions, part of
the predictions does match the ground truth on the level of
chord symbol. For instance, as demonstrated in Figure 3d
& 3e, there are whole-bar error predictions in key and sec-
ondary degree at measure 85; however, these detections be-
come correct if we translate them into chord symbol: they
are both C minor triads, albeit in different keys. In fact,
further analysis points out that the prediction of the modu-
lation to C minor at measure 85 is also meaningful: there
does exist a potential modulation for there is a tonicization
of vi constructed by the previous chord viio7/vi at the sec-
ond half of the measure 84. From this point of view, the
model does provide more insight into the analysis of tonal
structure in this excerpt, as an expert analyzer can do.

6. CONCLUSION AND FUTURE WORK

We have given a systematic investigation on the problem
of functional harmony recognition of symbolic data based
on deep learning techniques. Experiments on the proposed
Beethoven Piano Sonata with Functional Harmony dataset
indicate that functional harmony recognition is a task much
more challenging than the chord symbol recognition, and a
multi-task learning framework provides a promising solu-
tion better than a single-task one. Detailed analysis results
not only give insightful interpretation, and also pose fur-
ther challenging problems on recognizing key modulation,
secondary degree, etc., all with its semantic level higher
than chord symbols. This work marks a preliminary step
towards a holistic approach of modeling functional har-
mony, and also provide the potential for one to analyze
interpretable and meaningful music patterns from music,
or to explore some alternative interpretation of music in
the study of computational music analysis.
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ABSTRACT

We present a single-step musical tempo estimation system
based solely on a convolutional neural network (CNN).
Contrary to existing systems, which typically first iden-
tify onsets or beats and then derive a tempo, our sys-
tem estimates the tempo directly from a conventional mel-
spectrogram in a single step. This is achieved by fram-
ing tempo estimation as a multi-class classification prob-
lem using a network architecture that is inspired by con-
ventional approaches. The system’s CNN has been trained
with the union of three datasets covering a large variety of
genres and tempi using problem-specific data augmenta-
tion techniques. Two of the three ground-truths are novel
and will be released for research purposes. As input the
system requires only 11.9 s of audio and is therefore suit-
able for local as well as global tempo estimation. When
used as a global estimator, it performs as well as or better
than other state-of-the-art algorithms. Especially the ex-
act estimation of tempo without tempo octave confusion is
significantly improved. As local estimator it can be used to
identify and visualize tempo drift in musical performances.

1. INTRODUCTION

Undoubtedly, the tempo of a musical piece is one of its
main characteristics. Its estimation is often defined as mea-
suring the frequency with which humans “tap” along to the
beat. This is notably different from beat tracking, which
aims at determining individual beat positions. If the tempo
of a musical piece stays constant throughout the whole per-
formance, it is called global tempo. It can be represented
by a single number usually specified in beats per minute
(BPM). Global tempi often occur in genres like Rock, Pop,
and Dance music. The method proposed in this paper was
primarily developed for estimating the tempo of short ex-
cerpts, but can also be applied to global tempo estimation.

Many different approaches to tempo estimation have
been taken in the past. Gouyon et al. [11] provided a
comparative evaluation of the systems that participated in
the ISMIR 2004 contest, the first large-scale evaluation of

© Hendrik Schreiber, Meinard Müller. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Hendrik Schreiber, Meinard Müller. “A single-step ap-
proach to musical tempo estimation using a convolutional neural net-
work”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

tempo induction algorithms. Five years later, Zapata and
Gómez gave an updated overview [39]. To our knowledge,
the most recent comprehensive evaluations are presented
in [2, 25, 31]. For a textbook-style introduction see [22].

Early tempo estimation methods often combined sig-
nal processing with heuristics. Scheirer [28] for example
used bandpass filters, followed by parallel comb filters, fol-
lowed by peak picking. Klapuri et al. [17] replaced the
conventional bandpass approach with STFTs, producing
36 band spectra. By differentiating and then half-wave rec-
tifying the power in each band, they created band-specific
onset strength signals (OSS), which were then combined
into four accent signals and fed into comb filters in or-
der to detect periodicities. Instead of processing an OSS
with comb filters, several other methods have been pro-
posed. Among them autocorrelation [1, 22], clustering of
inter-onset intervals (IOI) [5, 33], and the discrete Fourier
transform (DFT) [22, 23].

Recent approaches put emphasis on finding not just a
periodicity, but on finding one corresponding to the per-
ceived tempo, trying to avoid common errors by a factor
of 2 or 3, so-called octave errors [11, 31]. The meth-
ods used range from genre classification (e.g., obtained
by a genre classification component) [14, 32], secondary
tempo estimation [30], and the discrete cosine transform
of IOI histograms [7], to machine learning approaches
like Gaussian mixture models (GMM) [24], support vec-
tor machines (SVM) [9, 25], k-nearest neighbor classifica-
tion (k-NNC) [37, 38], neural networks [6], and random
forests [31].

Another area of active research aims at creating a bet-
ter OSS through the use of neural networks. Elowsson [6]
uses harmonic/percussive source separation and two differ-
ent feedforward neural networks to classify a frame as beat
or non-beat. Böck et al. [2] use a bidirectional long short-
term memory (BLSTM) recurrent neural network (RNN)
to map spectral magnitude frames and their first order dif-
ferences to beat activation values. These are then pro-
cessed further with comb filters. For their dancing robot
application, Gkiokas et al. [10] use a convolutional neural
network (CNN) to derive a beat activation function, which
is then used for beat tracking and tempo estimation.

What all these methods have in common is the multi-
step approach of decomposing the signal into sub-bands,
deriving some kind of OSS, detecting periodicities, and
then trying to pick the best one. As Humphrey et al. [15]
point out, this can be described as a deep architecture con-
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Figure 1: Tempo distribution for the Train dataset con-
sisting of LMD Tempo, MTG Tempo, and EBall.

sisting of multiple components (“layers”) that has evolved
naturally. But to the best of our knowledge, nobody has
replaced the traditional multi-component architecture with
a single deep neural network (DNN) yet. In this paper we
describe a CNN-based approach that estimates the local
tempo of a short musical piece or excerpt based on mel-
scaled spectrograms in a single step, i.e., without explicitly
creating mid-level features like an OSS or a beat activation
function that need to be processed further by another, sepa-
rate system component. Using averaging, we can combine
multiple local tempi into a global tempo.

The remainder of this paper is structured as follows:
Section 2 introduces our training datasets. Then Section 3
describes the signal representation, network architecture,
network training, and how we combine multiple local esti-
mates into a global estimate. In Section 4 we evaluate our
global tempo estimation approach quantitatively by bench-
marking against known datasets and state-of-the-art algo-
rithms. Then we discuss local tempo estimation qualita-
tively using samples from different genres and eras. Fi-
nally, in Section 5 we present our conclusions.

2. TRAINING DATASETS

Our goal is to create a general purpose system that does not
suffer from strong genre-bias. Therefore we avoid cross-
validation on small datasets and instead created a large,
multi-genre training dataset, consisting of three smaller
datasets: One derived from a subset of the Lakh MIDI
dataset (LMD) [27], a subset of the GiantSteps MTG key
dataset (MTG Key) [8] 1 , and a subset of the Extended
Ballroom [20] dataset. Two of the derived ground-truths
have been newly created for this paper.

2.1 LMD Tempo

LMD is a dataset containing MIDI files that have been
matched to 30 s audio excerpts. While some of the MIDI
files contain tempo information, none of the audio files are
annotated, and there is no guarantee that associated MIDI
and audio files have the same tempo. Our idea is to cre-
ate a sub-dataset, called LMD Tempo, that can be used for
training supervised tempo induction algorithms. To this

1 https://github.com/GiantSteps/
GiantSteps-mtg-key-dataset

end, we estimated the tempo of the matched audio pre-
views using the algorithm from [31]. Then the associated
MIDI files were parsed for tempo change messages. If the
value of more than half the tempo messages for a given
preview were within 2% of the estimated tempo, we as-
sumed the estimated tempo of the audio excerpts to be cor-
rect and added it to LMD Tempo. This resulted in 3,611
audio tracks. We were able to match more than 76% of the
tracks to the Million Song Dataset (MSD) genre annota-
tions from [29]. Of the matched tracks 29% were labeled
rock, 27% pop, 5% r&b, 5% dance, 5% country,
4% latin, and 3% electronic. Less than 2% of the
tracks were labeled jazz, soundtrack, world and
others. Thus it is fair to characterize LMD Tempo as a
good cross-section of popular music.

2.2 MTG Tempo

The MTG Key dataset was created by Faraldo [8] as a
ground-truth for key estimation of electronic dance mu-
sic (edm), a genre that is very much underrepresented in
LMD Tempo. Each two-minute track in MTG Key is an-
notated with one or more keys and a confidence value
c ∈ {0, 1, 2} for the key annotation. We annotated those
tracks that have an unambiguous key and a confidence of
c = 2 with a manually tapped tempo, which makes it one
of the very few datasets that is suitable for key and tempo
estimation. The resulting dataset size is 1,159 tracks. In
the following we will refer to this new ground-truth as MTG
Tempo.

2.3 Extended Ballroom

The original Ballroom dataset [11] is still used as test
dataset today, which is why we exclude it from train-
ing. Better suited is the recently released and much
larger Extended Ballroom dataset. Because it con-
tains some songs also occurring in Ballroom, we use
the complement Extended Ballroom \ Ballroom.
We refer to the resulting dataset as EBall. It contains
3,826 tracks with 30 s length each. EBall contributes
tracks from genres that are underrepresented or simply ab-
sent from both MTG Tempo and LMD Tempo.

2.4 Combined Training Dataset

Combined, LMD Tempo, MTG Tempo, and EBall have
a size of 8,596 tracks with tempi ranging from 44 to
216 BPM (Figure 1). In the following we will call it
Train. The sweet octave (i.e., the tempo interval [τ, 2τ)
that contains the most tracks [31]) for Train is 77 −
154 BPM, covering 84.4% of the items. The shortest in-
terval that covers 99% of the items is 65 − 204 BPM.
Even though many different tempi are represented, Train
is not tempo-balanced. More than 30% of its tracks have
tempi in the [120, 130) interval. Its mean is µ = 121.32
and the standard deviation σ = 30.52. And while cover-
ing many different genres, Train is not genre-balanced,
either. Genres like jazz and world only have rela-
tively few representatives. But despite these shortcomings,
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Figure 2: Schematic overview of the network architecture.
Three convolutional layers are followed by four mf mod
modules, which in turn are followed by four dense layers.

Train is a very rich, multi-faceted dataset and completely
independent from the test datasets we are going to use for
evaluation in Section 4.1.

3. METHOD

Our proposed method for estimating a local tempo consists
of a single step. Using a suitable representation we classify
the signal with a CNN, which produces a BPM value. We
extend the system for global tempo estimation by averag-
ing the softmax activation function over different parts of
a full track.

3.1 Signal Representation

Although we believe that it is possible to build a system
like ours with raw audio as input [4,19], we choose to rep-
resent the signal as mel-scaled magnitude spectrogram to
reduce the amount of data that needs to be processed by
the CNN. The mel-scale as opposed to a linear scale was
chosen for its relation to human perception and instrument
frequency ranges.

To create the spectrogram, we convert the signal to
mono, downsample to 11,025 Hz and use half-overlapping
windows of 1,024 samples. This is equivalent to a
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Figure 3: Each multi-filter module mf mod consists of a
pooling layer, batch normalization, six different convolu-
tional layers, a concatenation layer and a bottleneck layer.
The activation function for all convolutional layers is ELU.

frame rate of 21.5 Hz, which (according to the Nyquist-
Shannon sampling theorem) suffices to represent tempi up
to 646 BPM—well above the tempi we usually find in mu-
sic. Each window is transformed into a 40 band mel-scaled
magnitude spectrum covering 20 − 5,000 Hz by applying
a Hamming window, the DFT, and a suitable filterbank.
Since musical tempo is not an instantaneous quantity, we
require a spectrogram of a musically sufficient length. As
such we choose 256 frames, equivalent to ≈ 11.9 s.

3.2 Network Architecture

Even though tempo estimation appears to be a regression
problem, we are approaching it as a classification prob-
lem for two reasons. First, a probability distribution over
multiple classes allows us to judge how reliable a given es-
timate is. Additionally, such a distribution is naturally ca-
pable of representing tempo ambiguities [21], allowing for
the estimation of a second best tempo. Second, in infor-
mal experiments we found that a classification-based ap-
proach led to more stable results compared to a regression-
based approach. So instead of attempting to estimate a
BPM value as decimal number, we are choosing one of
256 tempo classes, covering the integer tempo values from
30 to 285 BPM.

The proposed network architecture (Figure 2) is in-
spired by the traditional approach of first creating an OSS,
which is then analyzed for periodicities. In our approach,
we first process the input with three convolutional layers
with 16 (1 × 5) filters each. All filters are oriented along
the time axis using padding and a stride of 1. Using these
fairly short filters, we hope to match onsets in the signal.

These three layers are followed by four almost identical
multi-filter modules (mf mod, Figure 3) each consisting of
an average pooling layer (m × 1), parallel convolutional
layers with different filter lengths ranging from (1 × 32)
to (1 × 256), a concatenation layer and a (1 × 1) bottle-
neck layer for dimensionality reduction. With each of these
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Figure 4: Scale-&-crop data augmentation. During train-
ing, the mel-spectrogram is first stretched or compressed
along the time axis, which requires an adjustment of the
ground-truth label, and then cropped to 256 frames at a
randomly chosen offset.

modules we are trying to achieve two goals: 1) Pooling
along the frequency axis to summarize mel-bands, and 2)
matching the signal with a variety of filters that are capable
of detecting long temporal dependencies. Using parallel
convolutional layers with different filter lengths has been
inspired by [26, 35]. In a traditional system, this could be
regarded as some sort of comb filterbank

To classify the features delivered by the convolutional
layers, we add two fully connected layers (64 units each)
followed by an output layer with 256 units. The output
layer uses softmax as activation function, while all other
layers use ELU [3]. Each convolutional or fully connected
layer is preceded by batch normalization [16]. The first
fully connected layer is additionally preceded by a dropout
layer with p = 0.5 to counter overfitting. As loss function
we use categorical cross-entropy. Overall, the network has
2,921,042 trainable parameters.

3.3 Network Training

We use 90% of Train for training and 10% for valida-
tion. To counter the tempo class imbalance and, at the same
time, augment the dataset during training, for each epoch,
we use a scale-&-crop-approach borrowed from image
recognition systems (see e.g., [34]). Contrary to regular
images, the two dimensions of spectrograms have very dif-
ferent meaning, which is why we cannot simply scale-&-
crop indiscriminately. Instead, we have to be careful to ei-
ther not change the labeled meaning of a sample or change
its label suitably (Figure 4). In our case this means that
we have to preserve the properties of the frequency axis,
but may manipulate the time axis. Concretely, we scale
the time axis of the samples’ mel-spectrograms with a ran-
domly chosen factor ∈ {0.8, 0.84, 0.88, . . . , 1.16, 1.2} us-
ing spline interpolation and adjust the ground-truth tempo
labels accordingly. This substantially increases the number

(a) “Honky Tonk Women” by The Rolling Stones

(b) “Rolling in the Deep” by Adele

(c) “Typhoon” by Foreign Beggars/Chasing Shadows

Figure 5: Tempo class probabilities for tracks from differ-
ent genres and eras. (a) The tempo drift of the performance
is clearly visible: the track starts with 108 BPM and ends
with 125 BPM. (b) Very stable tempo of a modern pop
music production. (c) Dubstep track with several no beat
passages, a very active middle section, and halve tempo
intro and outro.

of different samples we can present to the network. Since
the full mel-spectrogram for a sample is longer than the
network input layer (e.g., covering 60 s vs. 11.9 s), we crop
each scaled sample at a randomly chosen time axis offset
to fit the input layer. This again drastically increases the
number of different samples we can offer to the network.
After scaling and cropping, the values of the resulting sub-
spectrogram are rescaled to [0, 1]. In order to ensure com-
parability, time-axis augmentations are skipped during val-
idation.

We define Accuracy0 as the fraction of estimates that
are correct when rounding decimal ground-truth labels to
the nearest integer. To avoid overfitting, we train un-
til Accuracy0 for the validation set has not improved for
20 epochs using Adam (with a learning rate of 0.001,
β1 = 0.9, β2 = 0.999, ε = 1e−8) as optimizer, and then
keep the model that achieved the highest validation Accu-
racy0 (early stopping).
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Dataset schr böck new

ACM Mirum 38.3 29.4- 40.6
ISMIR04 37.7 27.2- 34.1
Ballroom 46.8- 33.8- 67.9
Hainsworth 43.7 33.8 43.2
GTzan 38.8 32.2- 36.9
SMC 14.3 17.1 12.4
GiantSteps 53.5- 37.2- 59.8
Combined 40.9- 31.2- 44.8
DS Average 39.0 30.1 42.1

(a) Accuracy0

Dataset schr böck new

ACM Mirum 72.3- 74.0- 79.5
ISMIR04 63.4 55.0 60.6
Ballroom 64.6- 84.0- 92.0
Hainsworth 65.8- 80.6 77.0
GTzan 71.0 69.7 69.4
SMC 31.8 44.7+ 33.6
GiantSteps 63.1- 58.9- 73.0
Combined 66.5- 69.5- 74.2
DS Average 61.7 66.7 69.3

(b) Accuracy1

Dataset schr böck new

ACM Mirum 97.3 97.7 97.4
ISMIR04 92.2 95.0 92.2
Ballroom 97.0 98.7 98.4
Hainsworth 85.6 89.2+ 84.2
GTzan 93.3 95.0+ 92.6
SMC 55.3 67.3+ 50.2
GiantSteps 88.7 86.4- 89.3
Combined 92.2 93.6+ 92.1
DS Average 87.1 89.9 86.4

(c) Accuracy2

Table 1: Accuracies in percent. The ‘+’ and ‘−’ signs indicate a statistically significant difference between either schr
or böck, and new. Bold numbers mark the best-performing algorithm(s) for a dataset. DS Average is the mean of the
algorithms’ results for each dataset.

3.4 Global Tempo Estimation

Since the input layer is usually shorter than the mel-
spectrogram of a whole track, it estimates merely a local
tempo. To estimate the global tempo for a track, we cal-
culate multiple output activations using a sliding window
with half-overlap, i.e., a hop size of 128 frames ≈ 5.96 s.
The activations are averaged class-wise and then—just like
in the local approach—the tempo class with the greatest
activation is picked as the result.

4. EVALUATION

For evaluation, we trained three models and chose the one
with the highest Accuracy0 measured against the valida-
tion set as our final model. As metrics we used Accuracy0
as well as Accuracy1 and Accuracy2, which are typically
used for evaluating tempo estimation systems. Accuracy1
is defined as the fraction of estimates identical to reference
values while allowing a 4% tolerance. Accuracy2 is the
percentage of correct estimates allowing for octave errors
2 and 3 again using a 4% tolerance.

4.1 Global Tempo Benchmarking

It has become customary to benchmark tempo estimation
methods with results reported for a small set of datasets:
ACM Mirum [24], Ballroom [11], GTzan [36],
Hainsworth [12], ISMIR04 [11], GiantSteps
Tempo [18], and SMC [13]. The latter was specifically de-
signed to be difficult for beat trackers. Where applicable,
we used the corrected annotations from [25]. A detailed
description of the datasets is given in [31]. We refer to the
union of these seven datasets as Combined. Unweighted
averages of results for all seven datasets will be referred
to as DS Average. We benchmarked our approach
new with the algorithms by Böck et al. (böck) [2] 2 and
Schreiber (schr) [31]. Table 1 shows the results.

Overall, new achieves the highest results when tested
against Combined with the strict metrics Accuracy0
(44.8%) and Accuracy1 (74.2%). Both accuracy values
are slightly lower when summarized as DS Average.

2 madmom-0.15.1, default options, available at https://github.
com/CPJKU/madmom

When testing with octave-error tolerance, i.e., Accuracy2,
böck reaches 93.6% for Combined, versus 92.2%
reached by schr, and 92.1% reached by new. In essence,
new is better than böck at estimating the tempo octave
correctly, while böck—and to a lesser degree schr—
achieve a slightly higher accuracy when ignoring the met-
rical level. This may be due to the fact that both böck and
schr use a traditional periodicity analysis (DFT and comb
filters, respectively) that tends to be prone to octave errors,
while new does not use a comparable isolated component.

When inspecting the dataset-specific results, we
find that new’s Accuracy1 is particularly high for
Ballroom (92.0%), GiantSteps (73.0%), and
ACM Mirum (79.5%). In fact, they are signifi-
cantly higher than böck’s (+8.0 pp/+14.1 pp/+5.5 pp)
or schr’s (+27.4 pp/+9.9 pp/+7.2 pp) results. Both the
Ballroom and GiantSteps values can be explained
through our training dataset. They clearly correspond to
EBall and MTG Tempo, therefore high values are not
surprising. We believe the same is true for ACM Mirum
and LMD Tempo. To us these results indicate that a genre-
complete training set may lead to better results for the other
datasets as well. This hypothesis is supported by the fact
that GTzan contains genres like reggae, classical,
blues, and jazz, and Hainsworth contains the gen-
res choral, classical, folk, and jazz—none of
which are well represented in Train. For both datasets
new performs worse than böck or schr. A similar con-
nection may exist for böck and GiantSteps—as far as
we know, böck has not been trained on edm.

4.2 Local Tempo Visualization

To illustrate the system’s performance for continuous lo-
cal tempo estimation, we analyzed several tracks from dif-
ferent genres using overlapping windows with a relatively
small hop size of 32 frames, i.e., ≈ 1.5 seconds. For clar-
ity, we cropped the images at 50 and 150 BPM. Figure 5a
beautifully reveals the tempo drift in The Rolling Stone’s
1969 performance of “Honky Tonk Women”, starting out
at 108 BPM and ending in 125 BPM. In contrast, Adele’s
recent studio production “Rolling in the Deep” (Figure 5b)
stays very stable at 105 BPM. A more complicated picture
is presented by the dubstep track “Typhoon” by Foreign
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Beggars/Chasing Shadows (Figure 5c). After several sec-
onds of weather noises, the intro starts with 70 BPM. The
main part’s tempo is clearly 140 BPM interrupted by two
sections with no beat. The outro again feels like 70 BPM
followed by a fade out.

5. CONCLUSIONS

We have presented a single-step tempo estimation system
consisting of a convolutional neural network (CNN). With
a conventional mel-spectrogram as input, the system is ca-
pable of estimating the musical tempo using multi-class
classification. The network’s architecture consolidates tra-
ditional multi-step approaches into a single CNN, avoid-
ing explicit mid-level features such as onset strength sig-
nals (OSS) or beat activation functions. Consequently and
contrary to many other systems, our approach does not
rely on handcrafted features or ad-hoc heuristics, but is
completely data-driven. The system was trained with sam-
ples from the union of several large datasets, two of which
were newly created. To aid training, we applied problem-
specific data augmentation techniques. For global tempo
estimation, we have shown that our single network, data-
driven approach performs as well as or better than other
more complicated state-of-the-art systems, especially w.r.t.
Accuracy1. Furthermore, by visualizing examples for lo-
cal tempo estimations, we have demonstrated qualitatively
how the system can aid music analysis, e.g., to identify
tempo drift.

We believe that the system can be improved even fur-
ther by training with a more balanced dataset that con-
tains tracks for all tested genres. Notably missing from the
current training set are jazz, classical, or reggae
tracks. Another area of potential improvement is the net-
work architecture. Shorter filters, dilated convolutions,
residual connections, and a suitable replacement for the
fully connected layers might be used to reduce the number
of parameters and thus the number of operations needed
for training and estimation.
Additional Material
Datasets are available at http://www.tagtraum.
com/tempo_estimation.html. Code to estimate
tempi and create tempograms is available at https://
github.com/hendriks73/tempo-cnn.
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ABSTRACT

Downbeat tracking consists of annotating a piece of mu-
sical audio with the estimated position of the first beat of
each bar. In recent years, increasing attention has been paid
to applying deep learning models to this task, and various
architectures have been proposed, leading to a significant
improvement in accuracy. However, there are few insights
about the role of the various design choices and the delicate
interactions between them. In this paper we offer a system-
atic investigation of the impact of largely adopted variants.
We study the effects of the temporal granularity of the in-
put representation (i.e. beat-level vs tatum-level) and the
encoding of the networks outputs. We also investigate the
potential of convolutional-recurrent networks, which have
not been explored in previous downbeat tracking systems.
To this end, we exploit a state-of-the-art recurrent neural
network where we introduce those variants, while keeping
the training data, network learning parameters and post-
processing stages fixed. We find that temporal granularity
has a significant impact on performance, and we analyze
its interaction with the encoding of the networks outputs.

1. INTRODUCTION

Musical rhythm is organized into hierarchical levels which
interact with each other. One of the predominant pulsa-
tions is the beat, which matches the foot tapping of a per-
son when listening to a music piece. Tatum is related to
the fastest pulsations still perceived by listeners, usually
twice to four times faster than beat. Beats of different
accentuations are grouped in bars. Automatic downbeat
tracking aims to determine the first beat of each bar, being
a key component for the study of the hierarchical metri-
cal structure. It is an important task in Music Information
Retrieval (MIR) that represents a useful input for several
applications, such as automatic music transcription [19],
structural segmentation [18] and rhythm similarity [22].

c© Magdalena Fuentes, Brian McFee, Hélène C. Crayen-
cour, Slim Essid, Juan P. Bello. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Mag-
dalena Fuentes, Brian McFee, Hélène C. Crayencour, Slim Essid, Juan P.
Bello. “Analysis of Common Design Choices in Deep Learning Systems
for Downbeat Tracking”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

The task of downbeat tracking has received considerable
attention in recent years. In particular, the introduction
of deep neural networks provided a major improvement
in the accuracy of downbeat tracking systems [3, 10, 16],
and the systems relying on deep learning have become the
state-of-the-art. These approaches usually exploit a first
stage of low-level feature computation, where several rep-
resentations such as chroma [10] or spectral flux [16] have
been adopted. This is usually followed by a stage of fea-
ture learning with neural networks, whose outcome is an
activation function that indicates the most likely candi-
dates for downbeats among the input audio observations.
Then, a post-processing stage is often used, which con-
sists of a dynamic model, typically a Dynamic Bayesian
Network (DBN), Hidden Markov Model (HMM) or Con-
ditional Random Field [4, 11, 12].

Among the mentioned systems, different design choices
were taken at different stages of the processing pipeline,
such as the temporal granularity of the input, low-level
feature representations, network architecture, and the post-
processing methods. Additionally, different proposals
were evaluated using distinct training data and/or evalu-
ation schemes (e.g., cross-validation vs leave-one-dataset-
out) [4, 11, 16]. This variability makes it difficult to gain
insights about the actual role of each design choice, and
the delicate interactions between them.

In this paper, we systematically investigate the impact
of design choices in downbeat tracking models. In par-
ticular, we study the effect of temporal granularity of the
input representation (i.e., beat-level vs tatum-level), the
output encoding (i.e., the label encoding used to train the
networks), and their interactions with the post-processing
stage and internal network architecture. This allows for
gaining fresh understanding into the potential and limita-
tions of the state-of-the-art approaches, and takes a step
toward the systematic design of these systems.

1.1 Related work

Durand et al. [11], proposed a system for downbeat track-
ing that consists of an ensemble of models each represent-
ing four different aspects of music: rhythm, harmony, bass
content and melody. The authors developed a Convolu-
tional Neural Network (CNN) for each musically inspired
representation, and estimated the downbeat likelihood by
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averaging the likelihoods produced by each CNN in the en-
semble. Then, the authors turn the soft state assignments
of the CNN ensemble into hard assignments (downbeat vs
no-downbeat) using an HMM. This approach showed the
potential of CNNs for downbeat tracking and the comple-
mentarity of the different musically inspired features.

In parallel, Böck et al. [4], presented a system that
jointly tracks beats and downbeats using Bi-Directional
Long-Short Term Memory networks (Bi-LSTMs). The
authors used three different magnitude spectrograms and
their first order differences as input representations, in or-
der to help the networks capture features with sufficient
resolution in both time and frequency. The input represen-
tations were fed into a cascade of three fully connected Bi-
LSTMs, obtaining activation functions for beat and down-
beat as output. Subsequently, a highly constrained DBN
was used for inferring the metrical structure.

In turn, Krebs et al. [16] proposed a downbeat track-
ing system that uses two beat-synchronous features to rep-
resent the percussive and harmonic content of the audio
signal. Those feature representations, based on spectral
flux and chroma, are then fed into two independent Bidi-
rectional Gated Recurrent Units (Bi-GRUs) [8]. Finally,
the downbeat likelihood is obtained by merging the likeli-
hoods produced by each Bi-GRU. The final inference for
downbeat candidates relies on a constrained DBN.

More recently, combinations of CNNs and Recurrent
Neural Networks (RNNs) such as GRUs or LSTMs have
received increasing attention. For instance, Convolutional-
Recurrent Neural Network architectures (CRNNs) have
been proposed in other MIR tasks such as chord recogni-
tion [20] or drum transcription [23], and they are the state
of the art in other audio processing domains such as sound
event detection [2, 6].

1.2 Our contributions

In this paper we offer a systematic investigation of impor-
tant system design choices, namely the impact of the in-
put observations’ temporal granularity, the output encod-
ing, and the post-processing stage. Also, we investigate the
potential of CRNNs for improving feature learning for the
task of downbeat tracking. To perform our experiments,
we modify a state-of-the-art RNN-system [16], and study
the effect of the different envisaged variations, keeping the
training setup and input features fixed. Our experimental
results show that the post-processing stage improves the
performance in all cases, whereas the addition of a dense-
structured output encoding does not help in the training
of downbeat tracking systems. The proposed CRNN ar-
chitecture performs competitively with the state-of-the-art
RNN system, being even able to improve the reference sys-
tem’s performance with a proper choice of input’s temporal
grid. We also observe that though beat tracking errors tend
to propagate to the output decisions, the CRNN system is
able to recover from these errors better than the baseline
RNN when taking the input observations over a tatum grid
(as opposed to beat grid).

2. ANALYSIS OF COMMON VARIATIONS

In this section we briefly describe the baseline system, the
motivation of each studied variation (or design choice) and
the experiments related to it. In particular, we study the ef-
fects and interactions of 4 design choices: the input’s tem-
poral granularity, the output encoding, the effect of post-
processing and the network architecture.

2.1 Recurrent neural network baseline

To perform our analysis, we implemented the state-of-
the-art downbeat tracking system presented by Krebs et
al. [16]. The architecture of this system consists of two
concatenated Bi-GRUs of 25 units each, where each hid-
den state vector h(t) at time t is mapped by a dense layer
to a state prediction p(t) using a sigmoid activation. A
dropout layer is used in training to avoid over-fitting. Two
separate networks are trained using different input features
and the obtained likelihoods are averaged. The low-level
input representations comprise two beat-synchronous fea-
ture sets, representing the harmonic and percussive con-
tent of the audio signal. The set of features describing
percussive content, which we will refer to as PCF (Per-
cussive Content Feature), is based on a multi-band spectral
flux, computed using the short time Fourier transform with
a Hann window, using a hop-size of 10ms and a window
length of 2048 samples, with a sampling rate of 44100 Hz.
The obtained spectrogram is filtered with a logarithmic fil-
ter bank with 6 bands per octave, covering the range from
30 to 17 000 Hz. The harmonic content’s representation is
the CLP (Chroma-Log-Pitch) [21] with a frame rate of 100
frames per second. The temporal resolution of the features
is 4 subdivisions of the beat for the PCF, and 2 subdivi-
sions for the CLP features. For computational efficiency,
the authors in [16] assembled in matrices column-wise this
resolution increment so the CLP feature set is of dimension
12× 2 and the PCF is 45× 4, which we maintained in this
work. The beats for the beat-synchronous feature mapping
are obtained using the beat tracker presented in [3], with
the DBN introduced in [17]. 1

In our experiments, we have observed that including
batch normalization (BN) layers [14] consistently im-
proves performance. We included two BN layers, one after
the input layer, and the other between the Bi-GRUs.

The optimization of the model parameters is carried out
by minimizing the binary-cross-entropy between the esti-
mated and reference values.

2.2 Temporal granularity: beat vs tatums

The temporal granularity of the input observations (or tem-
poral grid) relates to important aspects of the design of
downbeat tracking systems. It determines the length of the
context taken into account around musical events, which
controls design decisions in the network architecture, such
as filter sizes in a CNN, or the length of training sequences
in an RNN.

1 In particular we used the DBNBeatTracker algorithm of the madmom
package version 0.16 [5].
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Among the different downbeat systems, several granu-
larities have been used. In particular, the latest state-of-the-
art systems use either musically motivated temporal grids
(such as tatums or beats) or fixed length frames. Systems
that use beat- or tatum-synchronous input depend on reli-
able beat/tatum estimation upstream, so they are inherently
more complex, and prone to error propagation [11, 16].
On the other hand, frame-based systems are not subject
to these problems, but the input dimensionality is much
higher due to the increased observation rate [4], which
causes difficulties when training the models.

In this paper, we focus on musically motivated tempo-
ral analysis grids, because they reduce the computational
complexity of the systems considerably. We study the vari-
ations in performance using beat and tatum grids.

We compute the tatums by interpolating the beats, with
a resolution of 4 tatums per beat interval. 2 To study the
impact of the temporal grid, we train the networks keep-
ing the input features, architecture, training data, and post-
processing fixed, while changing only the inputs’ temporal
granularity. We adapt the sequence length used for training
the networks in order to consider the same musical context
in all cases (as specified further below). We compare the
interaction of the choice of temporal grid with those of the
output encoding, the RNN or CRNN architectures and the
post-processing stage.

2.3 Output encoding: structured vs unstructured

Among the downbeat tracking systems mentioned in Sec-
tion 1.1, the common choice is to use an one-hot vector
encoding to indicate the presence or absence of a down-
beat at a particular position of the excerpt at training time.
For instance, if using temporal analysis grid that is aligned
on beats, a sequence of beats is usually encoded as s =
[1, 0, 0, 0, 1, 0, 0, 0], indicating the presence of a downbeat
at the first and 5th beat positions. We refer to this as un-
structured encoding. Here, we also investigate whether a
densely structured encoding may help the neural networks
perform a better downbeat tracking.

2.3.1 Structured encoding definition

We define the structured encoding as a set of classes that
are active within the entire inter-beat interval. This is the
set C = {1, . . . , 13}, where each class indicates the po-
sition of the beat inside a bar. We consider a maximum
bar length of 12 beats, and an extra class X for labeling an
observation in the absence of beats and downbeats, for a
total of 13 classes (K = 13). For instance, to label a mu-
sical piece with time signature 4/4, we use the subset of
labels {1, 2, 3, 4}, and we label consecutive time units cor-
responding to the same beat interval with the same class.
Figure 1 illustrates the difference between the proposed
and the unstructured encoding. In this strutured class lex-
icon, the downbeats are represented by the label 1.

We train the networks incorporating both the unstruc-
tured and the structured encoding. In this configuration,

2 This estimation is on the 16th note level, which we assumed as a
good compromise to perform downbeat tracking.

Figure 1. Audio excerpt in 4/4 labeled with the struc-
tured encoding (top figure) and the unstructured encoding
(bottom figure). The temporal granularity showed is tatum
(beat quarter-notes). In the structured encoding each tatum
receives a label corresponding to its metrical position.

we use one dense layer to decode each class lexicon, and
we evaluate the performance of the system using the un-
structured output. The dense layers are connected so the
information of the beginning of the bar is provided by the
unstructured dense to the structured one as an extra fea-
ture. We test the effect of the encoding on the different
temporal granularities. It is important to note that the un-
structured coding has a clear interaction with the temporal
grid in terms of the number of 1- vs 0- symbols in the train-
ing data , while the structured coding is consistent (i.e., the
amount of class instances remains proportional) under any
temporal granularity.

2.4 Post-processing: DBN vs thresholding

The importance of the post-processing stage has been ad-
dressed in previous works [11,16]. In this paper, we assess
the relative importance of this stage depending on the tem-
poral granularity and the network architecture. To that end,
we use the DBN presented in [16]. This DBN models beats
(or tatums) as states, forcing the state sequence to always
transverse the bar from left to right (i.e., transitions from
beat 2 to beat 1 are not allowed), and imposing that time
signature changes are unlikely. We consider bar lengths of
3 and 4 beats (12 and 16 tatums). We invite the interested
reader to refer to [16] for further information.

2.5 Architecture: RNNs vs CRNNs

We base our CRNN architecture design on previous state-
of-the-art choices. Particularly, our CNN design is based
on the best CNN of the ensemble in [11], which we com-
bine with a single Bi-GRU layer [8]. The bi-directional
version of GRUs integrates the information across both
temporal directions, providing temporal smoothing. CNNs
are capable of extracting high level features that are in-
variant to both spectral and temporal dimensions, whether
RNNs model longer term dependencies accurately.

The architecture that we propose can be seen as an
encoder-decoder system [7], where the encoder maps the
input to an intermediate time series representation that is
then mapped to the output space by the decoder. An in-
teresting advantage of this kind of scheme is that several
combinations of encoder-decoder can be explored easily
as long as they share the intermediate representation.
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Figure 2. Encoder architecture: the input representation
is either a beat/tatum-synchronous chromagram or multi-
band spectral flux. Each time unit is fed into the encoder
with a context window. The CNN outputs a sequence of
dimension T ×N which is fed to the Bi-GRU. Finally, the
encoder output dimension is T × 512.

Figure 3. Summary of the CNN architecture.

2.5.1 Encoder architecture

The encoder architecture is depicted in Figure 2. It con-
sists of a convolutional-recurrent network. Each temporal
unit (either beat or tatum) is fed into the CNN considering
a fixed-length context window of approximately one bar
(following [11]). The CNN processes each window inde-
pendently, and outputs a sequence of size T ×N (T being
the length of the input sequence and N the output dimen-
sion of the CNN) that is fed to the Bi-GRU. In this scheme,
the CNN processes the signal locally whereas the recurrent
network provides temporal consistency.

The CNN architecture is based on the harmonic-CNN
presented in [11]. This network consists of a cascade of
convolutional and max-pooling layers, with dropout used
during training to avoid over-fitting, to a total of eight lay-
ers. We add batch normalization layers to avoid too large
or small values within the network that could hurt the en-
coder. Additionally, we modify the filters’ size to adapt to
the feature shapes described in Section 2.1. Figure 3 shows
the filter parameters in the case of the tatum grid.

The last layer of the CNN differs from the reference
implementation in the number of units, which we set to 13
instead of 2 to fit features of bigger dimension to the Bi-
GRU. We also remove the softmax activation of the last
layer because the class discrimination is not carried out by
the CNN. A summary of the CNN architecture is presented
in Figure 3. Figure 3 represents the CNN’s 2D filter sizes
and the number of units, which is [m×n, u], with m and n
operating in the spectral and temporal dimensions respec-
tively, and u the number of units. The activation (if used) is
indicated before the CNN description. Max pooling layers
are notated as [m′×n′], s indicating frequency and time di-
mension and stride. The interested reader is referred to [11]
for the motivation of network architecture.

The local features computed by the CNN are fed into
a Bi-GRU, which consists of two independent GRUs, one
running in each temporal direction. Their hidden state vec-
tors are concatenated to produce the bi-directional hidden
state vector. We set the dimensionality of each GRU to
256, resulting in a total of 512.

2.5.2 Decoder architecture

Our decoder architecture is a fully connected dense layer
that maps each hidden state vector to the prediction state
using a sigmoid activation, resulting in a downbeat like-
lihood at each time unit. The optimization of the model
parameters is carried out by minimizing the binary-cross-
entropy among the estimated and actual values.

3. EXPERIMENTS

3.1 Experimental setup

Model implementation: The models were implemented
with Keras 2.0.6 and TensorFlow 1.2.0 [1, 9]. We use the
ADAM optimizer [15] with default parameters. We stop
training after 10 epochs without changes on the validation
set, up to a maximum of 100 epochs. The low-level repre-
sentations were extracted using the madmom library and
mapped to either the beat or tatum grid (see Section 2.1).

Model variations: We study the following variations:
Temporal granularity: using low-level features synchro-
nized to two temporal granularities (tatum and beat);
Output encoding: with and without the addition of the
structured encoding during training;
Post-processing: using either a threshold or a DBN;
Architecture: we test RNNs and CRNNs.

This results in sixteen different configurations, which
we will refer to as and R or C to indicate the architec-
ture (RNN vs CRNN); S or U to indicate the encoding
(structured vs unstructured); B or T to indicate temporal
granularity (beat vs tatum); and t and d to indicate the
post-processing method (threshold vs DBN). All models
are trained using patches of 15 beats or 60 tatums depend-
ing on the temporal grid used. We use mini-batches of 64
patches per batch and a total of 100 batches per epoch.

Datasets: We investigate the performance of these config-
urations on 8 datasets of Western music, in particular:
Klapuri which consists of 4h 54m of various genres songs.
R. Williams which consists of 4h 31m of Pop songs.
Rock which consists of 12h 53m of Pop and Rock songs.
RWC Pop which consists of 6h 47m of Pop music.
Beatles which consists of 8h 01m of Beatles songs.
Ballroom which consists of 6h 04m of Ballroom dances.
Hainsworth which contains 3h 19m of various genres.
RWC Jazz, which consists of 3h 44min of Jazz music.

Evaluation methods: We perform leave-one-dataset-out
evaluation and report the F-measure scores as in [11, 16].
25% of the training data is used for validation. The
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RWC Jazz dataset is only used to illustrate the performance
of the systems in a challenging scenario where the beat es-
timation is less accurate and the music genre differs con-
siderably from the training data, it is not used for train-
ing. 3 Candidates for downbeats are obtained in two dif-
ferent manners. The first one is by thresholding the out-
put activations with a threshold chosen to give the best F-
measure result on the validation set. The second manner
is to post-process the networks’ outputs by adapting the
DBN used in [16]. In this way we report the gain of us-
ing the DBN in each case. We use the DBN to model time
signatures 3/4 and 4/4 following [16], and modifying it ac-
cordingly to the temporal grid (i.e., allowing bar lengths of
{3,4} beats or {12, 16} tatums).

Methods are evaluated independently on each dataset
listed above for comparison to prior work. We also in-
clude an evaluation over the union of all datasets (denoted
ALL). To determine statistically significant differences, we
conduct a Friedman test on the ALL-set results, followed
by post-hoc Conover tests for pairwise differences using
Bonferroni-Holm correction for multiple testing [13].

All configurations are trained with the same input low-
level representations, the same musical context, the same
training parameters and post-processing method. This al-
lows us to draw conclusions about the performance of the
models in different conditions and to compare the architec-
tures modularly.

3.2 Results and discussion

We use as baseline two state-of-the-art downbeat tracking
systems [11, 16], which reported 78% and 78.6% mean
F-measure across all datasets. 4 The performance of the
models presented here across datasets is better than the
baselines for all the cases when using the DBN as post-
processing stage. The better results are obtained with
RUBd (reference implementation, see Section 2.1) and
CUTd up to 82.4% and 82.8% respectively. A possible
explanation for this improvement is the difference in the
beat tracking performance, which is 3.3% better than the
one reported in [16]. This is likely to explain the 4.7%
improvement in the RUBd model which is our reference
implementation. To make a fair comparison, we use the
RUBd model as a baseline, with the reasonable assumption
that it behaves as the state-of-the-art. Figure 4 illustrates
the performance of the different model variations across
datasets. A detailed analysis is presented in the following.

The Friedman test on the ALL set rejected the null
hypothesis (p < 1e−10). Post-hoc analysis determined
that all pair-wise comparisons were significantly different
(p < 1e−3), with the following exceptions: RUTt/RSTt,
RUTd/RSTd, CUTt/CSBt, CUTd/CSBd, CUBd/CSTd,
and RSBd/CUBd.

Effect of post-processing: As shown in Figure 4, d vs t
model variants, the DBN post-processing helps in all

3 We kept RWC Jazz out of the training set to be comparable to [16].
4 For datasets that are not evaluated in [11], we report results in [16].

cases, being particularly important with the tatum granu-
larity and with the RNN models. The gap in performance
between the models with and without post-processing is
notable in the case of the Ballroom database, where in
some cases is up to 10% F-measure. The DBN increases
the performance from RUTt to RUTd by 6.6% in the
case of tatum grid across all databases, and 4.1% in the
case of the beat grid (RUBt to RUBd). A similar trend is
observed with the structured models (RS). The increase
in the CRNN models performance is smaller, being 3.8%
from CUTt to CUTd and 2.7% for CUBt to CUBd. The
results obtained with the thresholding (t models) are more
consistent over temporal granularities for the CRNN
models, which suggests that the likelihood estimation of
that model is more accurate and consistent over time.

Effect of the temporal granularity: The temporal grid
has an important effect on the performance of the RNN
models, as illustrated in Figure 4 (T vs B variations). When
using a tatum grid, the thresholding results (e.g. RUTt) are
lower in most of the cases, showing that the RNN vari-
ations have more difficulty to model the temporal depen-
dencies in that grid. The post-processing stage with the
DBN becomes more important in the case of the tatum
grid, helping the RNN models up to an extra 2.5% in mean
F-measure over all datasets compared to the beat grid case.

By contrast, the CRNN models appear to be robust to
the temporal granularity change. In particular, for the case
of the thresholding results, the performance of the models
is similar for the beat and tatum granularities (e.g. CUBt
vs CUTt), which implies the estimated likelihoods perform
comparably. The increase in resolution seems to help the
CRNN models in most cases, showing a small increase
from beat to tatum grid with the DBN (e.g., CUBd vs
CUTd). This indicates that the CRNN architecture is likely
being able to take advantage of a finer temporal grid.

The impact of the temporal granularity in the RNN and
CRNN models are in line with the decisions of the authors
in [11, 16], who in the first case decided to use tatums
(with CNNs), and in the second case decided to use beats
(with Bi-GRUs).

Effect of the structural encoding: Regarding the struc-
tural encoding, the experiments show that it has no im-
pact on the performance across databases (e.g. RU vs RS
and CU vs CS in Figure 4). We observed some examples
where the performance decreases, and we noticed two sys-
tematic problems: first, in some cases the estimated likeli-
hoods become sharper and more structured when using the
encoding, and when the estimation of the networks is not
accurate the likelihoods consistently maintain the bad esti-
mation across the whole duration of the audio signal. This
indicates that the encoding is structuring the likelihood es-
timation, but that is not desirable in some cases, especially
if it prevents the post-processing stages from compensating
for these errors. Second, we observed several cases where
the attack of the downbeat is not accurately estimated with
the addition of the structured encoding. A possible expla-
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Figure 4. For each dataset, the estimated mean F-measure for each model under comparison. Error bars correspond to 95%
confidence intervals under bootstrap sampling (n = 1000). ALL corresponds to the union of all test collections.

nation is the lack of information about the onset of the
no-downbeat intervals in the structured encoding, which
could be preventing the system to correctly model beats
and downbeats internally. This could change in a scenario
with joint beat and downbeat tracking, where the sparse
encoding also contains the information of the location of
beats. The addition of data augmentation could also con-
tribute to help the system to learn the encoding properly.

CRNN vs RNN — difficult scenario: Finally, to see
the performance of the systems in a difficult scenario, we
performed an experiment on the RWC Jazz dataset, whose
results are given in Figure 5. The DBN post-processing is
used in all cases. The CRNN models are more robust to un-
seen data, since the jazz genre is different from the genres
of the training data. The CRNN models have better per-
formance and less dispersion in the results. Analogously
to Figure 4, the RNN models show slightly better mean
performance in beat grid and the CRNN models in tatum
grid.

4. CONCLUSIONS AND FUTURE WORK

In this work we presented a systematic study of com-
mon decisions in the design of downbeat tracking systems
based on deep neural networks. We explored the impact of
temporal granularity, output encoding, and post-processing
stage in two different architectures. The first architecture
is a state-of-the-art RNN, and the second is a CRNN in-
troduced in this paper. Experimental results show that
the choice of the inputs’ temporal granularity has a sig-
nificant impact on performance, and that the best config-
uration depends on the architecture. The post-processing
stage improves performance in all cases, with less impact
in the case of the CRNN models whose likelihood esti-
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Figure 5. F-measure scores for the RWC Jazz dataset.
Boxes show median value and quartiles, whiskers the rest
of the distribution. Black dots denote mean values. All
results are obtained using the DBN post-processing.

mations are most accurate. We conclude that the addition
of a densely structured output encoding does not help in
the training of downbeat tracking systems. Nevertheless,
the interaction of the structured encoding with multi-task
training (beat and downbeat tracking) and data augmenta-
tion are interesting perspectives for future studies, and will
be addressed in future work. The proposed CRNN archi-
tecture performs as the state-of-the-art, proving robustness
in a challenging scenario.
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ABSTRACT

Metrical alignment is an integral part of any complete au-
tomatic music transcription (AMT) system. In this paper,
we present an HMM for both detecting the metrical struc-
ture of given live performance MIDI data, and aligning that
structure with the underlying notes. The model takes as in-
put only a list of the notes present in a performance, and
labels bars, beats, and sub beats in time. We also present
an incremental algorithm which can perform inference on
the model efficiently using a modified Viterbi search. We
propose a new metric designed for the task, and using it,
we show that our model achieves state-of-the-art perfor-
mance on a corpus of metronomically aligned MIDI data,
as well as a second corpus of live performance MIDI data.
The code for the model described in this paper is available
at https://www.github.com/apmcleod/met-align.

1. INTRODUCTION

Meter detection is the organisation of the beats of a given
musical performance into a sequence of trees at the bar
level, in which each node represents a single note value
(although the actual durations of a node at a given level
will vary with the tempo). In common-practice Western
music (the subject of our work), the children of each node
in the tree divide its duration into some number of equal-
value notes such that every node at a given depth has equal
value. The metrical structure of a single 4

4 bar, down to the
quaver level, is shown in Figure 1. Each level of a metrical
tree corresponds with a pulse level in the underlying mu-
sic: bar, beat, and sub beat, from top to bottom. The nodes
should align in time with corresponding pulses in the per-
formed music. There are theoretically more divisions fur-
ther down the tree all the way to the tatum level (the fastest
pulse present in a piece of music, often the 32nd note), but
as these three levels are enough to unambiguously identify
the time signature of a piece, we do not consider any lower.

The task is an integral component of automatic music
transcription (AMT), particularly when trying to identify
the time signature of a given performance. The time sig-
nature may change between bars (though this is not par-
ticularly common). However, such changes in structure

c© Andrew McLeod, Mark Steedman. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Andrew McLeod, Mark Steedman. “Meter Detection and
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Figure 1. The metrical structure of a 4
4 bar.

are not currently handled by our model, and are left for
future work. The proposed model can be applied to any
piece where the metrical tree structure under each node
at a given level of the tree is identical. In this work, we
evaluate our model only on the simple and compound me-
ter types 2

X, 3
X, 4

X, 6
X, 9

X, and 12
X (where X may take any

value), and leave more uncommon and irregular meters for
future work. Those interested in asymmetric meter detec-
tion should refer to [9].

Existing work on full metrical alignment of live perfor-
mance MIDI data is sparse. There is a good amount of
existing work on meter detection (but not alignment) from
metronomic data (e.g., [2, 14]), including some which la-
bels the meter type (i.e., duple or compound) of a given
piece of music, but does not align a full metrical structure
with the notes of the piece (except for synthetic rhythms, as
in [8]). There is existing work which performs full metrical
alignment of MIDI data, but not from live performance [4].
In the acoustic domain, beat tracking and downbeat detec-
tion are relatively common areas of research, but stop short
of a full meter detection and alignment (e.g. [1, 7]).

The related problems of rhythm quantisation and note
value detection have also seen some attention, but neither
are directly relevant to our task. For example, [17] quan-
tises performed rhythms to a grid, but the set of possible
onset locations for notes is known a priori (and changes
based on the time signature of the underlying piece). [3]
tracks beats and tempo, but does not go so far as to align
a full metrical grid with bars and sub beats. [15] assigns
a note value to each note, but does not explicitly align the
notes with any underlying beat or meter.

[22] performs full metrical structure detection and
alignment probabilistically from live performance data by
jointly modelling tempo, meter, and rhythm; however, the
evaluation was very brief, only testing the model on 3 bars
of a single Beatles piano performance, and the idea was
not used further on MIDI data to our knowledge. [19] pro-
poses a Bayesian model for the meter detection and align-
ment of monophonic MIDI performance data which mod-
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els the probability of a note onset occurring given the cur-
rent level of the metrical tree at any time with Bayes’ rule.
This is combined with a simple Bayesian model of tempo
changes, giving a model which can detect the full metri-
cal structure of a performance. [20] extends this model to
work on polyphonic data, combining it into a joint model
with a Bayesian voice separator and a Bayesian model of
harmony. This joint model performs well on full metri-
cal structure detection and alignment on a corpus of piano
excerpts, and we compare against it in this work.

2. PROPOSED MODEL

Our proposed model tracks pulses at the tatum level of a
musical performance based on two musicological princi-
ples: (1) the rate of these tatums should be relatively con-
stant without large discontinuities; and (2) notes should lie
relatively close to these tatums. The model is an HMM
where the observed data is the notes of a given piece,
grouped into sets.

2.1 State Space

Each state S in our model represents a single bar, contain-
ing (1) a list of the tatums from that bar and (2) a metrical
hierarchy, describing which of those tatums are beats and
sub beats. The list of tatums is represented by S.t, where
S.ti is the ith tatum in the bar, and S.t|S.t| is the downbeat
of the following bar. The tatums are in increasing time
order, where T (S.ti) represents the time of tatum S.ti.
A state’s metrical hierarchy has some number of tatums
per sub beat, sub beats per beat, and beats per bar, as well
as an anacrusis length, measured by the number of tatums
which fall before the first downbeat of a given piece. In our
model, we restrict the number of tatums per sub beat to be
4, although in theory, any number could be used. We also
restrict the anacrusis length to be some integer multiple of
the number of tatums per sub beat, a simplifying assump-
tion that ensures the first note of each piece will fall on a
sub beat. The set of possible sub beat per beat and beat per
bar pairs (i.e., time signatures) are taken all of those found
in our training set ( 2X, 3

X, 4
X, 6

X, 9
X, and 12

X). A state’s tempo,
T(S), is defined as the average length of its beats.

Each possible initial state S0 contains no tatums, and
every possible metrical hierarchy is considered equally
probable. To reduce our model’s search space, we place
a restriction on the range of allowed values for T (S1):
tmin ≤ T (S1) ≤ tmax. Nonetheless, because the pos-
sible tatum times for each state are unbounded, our model
contains an infinite number of possible states. Thus, in-
stead of predefined emission and transition probabilities,
we define emission and transition functions, presented in
the following sections.

2.2 Emission Function

After the initial state (which emits nothing), each state Si
emits a set of notes Ni, containing only notes n whose
onset times lie between that state’s first (inclusive) and
last (exclusive) tatum. This set is allowed to be empty.

Each emitted note has an onset time On(n), an offset time
Off(n), and a pitch Pitch(n) (though it is unused).

The probability of a state Si to emit the note set Ni is
presented as P (Ni|Si) in Eqn (1). The first term, calcu-
lated entirely by the lexicalised probabilistic context-free
grammar (LPCFG) presented in [13], is used to prefer gen-
erating rhythms which have a high probability according
to the grammar. The LPCFG is a replacement grammar
which first parses a given rhythm into a metrical tree struc-
ture. It then assigns strengths to nodes in the tree based
on note duration in a process called lexicalisation. The
probability of a tree is calculated by taking the product
of the learned probabilities of each grammar transition,
based on counting occurrences of a given transition from
a training corpus of parsed rhythms. Each note is aligned
to the nearest tatum by the LPCFG in order to calculate
P (rhythm), but this alignment is neither saved nor emit-
ted. The LPCFG is designed to work directly on mono-
phonic melodies only. Therefore, for polyphonic input,
this P (rhythm) term is in fact a product of one probability
per voice, each of which is calculated by the LPCFG. For
voice assignments, we use [12] as a preprocessing step.

P (Ni|Si) = P (rhythm)
∏
n∈N

P (n|Si.t) (1)

The second term in Eqn (1) is used to prefer states
whose tatums align closely with the emitted notes, and is
calculated as in Eqn (2), where N1(µ, σ, x) conceptually
represents a normal distribution with mean µ and standard
deviation σ evaluated at x. 1 Thus, P (n|Si.t) is used to
assign higher probabilities to those states which emit notes
which are closely-aligned with their tatums. In this equa-
tion, closest(Si.t) represents the tatum from Si whose
time is closest to the onset time of the note n.

P (n|Si.t) = N1

(
0, σn,On(n)− T (closest(Si.t))

)
(2)

2.3 Transition Function

A state Si−1 may transition to a state Si if and only if:
(1) the two states’ metrical hierarchies are identical (our
model cannot handle pieces with time signature changes)
and (2) the time of the last tatum in Si−1 is equal to the
time of the first tatum in Si. Note that the second condition
is invalid in the case of a transition from S0 to S1 since S0

contains no tatums; in this case, we instead restrict S1.t1
to lie exactly on the first observed note’s onset time.

The transition probability P (Si|Si−1) is shown in Eqn
(3), where the first term, defined in Eqn (4), models the
probability of a tempo change and the second term, defined
in Eqn (5), models the spacing of the tatums themselves.

P (Si|Si−1) = P (T (Si)|T (Si−1))P (S.t) (3)
1 Normal distributions are used in multiple places throughout this

model with potentially widely varying standard deviations, resulting in
potentially wildly different results when evaluated at an identical number
of standard deviations from the mean for different normal distributions.
Since the distributions are used in contexts in which they cannot be prop-
erly normalised (due to their continuous domain), the precise probability
value for N1(µ, σ, x) is calculated using a standard normal distribution
with mean 0 and standard deviation 1 evaluated at x−µ

σ
.
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P (T (Si)|T (Si−1)) =

{
N1(µt0 , σt0 , T (Si)) i = 1

N1

(
0, σt,

T (Si)−T (Si−1)
T (Si−1)

)
i ≥ 2

(4)
P (S.t) = E(b ∈ S.t)

∏
b∈S.t

(
E(sb ∈ b)

∏
sb∈b

E(t ∈ sb)
)

(5)

In Eqn (4), the tempo of the first bar (where i = 1) is as-
sumed to be normally distributed around µt0 with standard
deviation σt0 , while subsequent tempo changes are evalu-
ated as the proportional change from the tempo of the pre-
vious bar, again normally distributed, this time with mean
0 and standard deviation σt. Percent change is used rather
than absolute change because human perception of tempo
changes have been shown to follow Weber’s Law [21].

For the tatum timings in Eqn (5), the function E(t), de-
fined in Eqn (6), evaluates the probability of the evenness
of any given list of times. E(b ∈ S.t) calculates this for all
of the beats b in the state, while the terms E(sb ∈ b) and
E(t ∈ sb) perform the same calculation for the sub beats
in each beat and the tatums in each sub beat respectively.

E(t) =

{
N1(µe, σe,

σ(t)
µ(t) )/Enorm

σ(t)
µ(t) ≥ µe

N1(µe, σe, µe)/Enorm
σ(t)
µ(t) < µe

(6)

Enorm =
1

2
+
µe
σe
N1(µe, σe, µe) (7)

E(t) is a piecewise function which takes as input a list
of the lengths of a group of tatums, sub beats, or beats
(rather than their times). Here, µ(t) represents the mean of
those lengths and σ(t) represents the standard deviation of
those lengths. The function is calculated as a modified nor-
mal distribution with mean µe and standard deviation σe,
based on the input list’s standard deviation as a proportion
of its mean. If this proportion is greater than or equal to
µe, the result is calculated from a straightforward normal
distribution. Otherwise, the result is exactly the value of a
standard normal distribution evaluated at its mean.

This value is then normalised so as to ensure the new
distribution’s integral to again sum to 1 by dividing by
the factor Enorm, defined in Eqn (7) as the sum of two
terms. 1

2 is the area of the standard normal distribution
greater than the mean, and µe

σe
N1(µe, σe, µe) is the area of

the rectangle formed by extending the peak of the standard
normal distribution to the left until the value correspond-
ing to 0 from the non-standardised normal distribution, as
values less than this correspond to a negative σ(t), which
is not possible.

2.4 Search Space Reduction

We use a modified Viterbi search to perform inference on
our model, using a beam search where at each step we save
only the B most probable hypothesis states (not including
those still at S0 with no tatums yet).

For the transition from S0 to S1, we introduce two
heuristics: (1) the first tatum in S1 must lie exactly on
the onset of the first observed note and (2) the last tatum
in S1 must also lie exactly on a note onset, though which
note specifically is not restricted by any means other than

limiting the tempo of the first bar using tmin and tmax.
According to these heuristics, for each S0, the supervisor
creates the observed note set for every possible S1. Al-
lowed times for the tatums in S1.t are also restricted based
on each observed note set N1. Essentially, all tatums are
placed evenly unless there is a specific reason not to (i.e.,
unless a note onset lies close to a tatum).

Specifically, a given value for S1.t is legal if it can ever
be generated by the following procedure. First, the appro-
priate number of beats (according to a given state’s metri-
cal hierarchy) are placed between the first and last tatum
times, as if each tatum was evenly spaced. Next, each
placed beat—excluding the last beat as well as the first—
may be shifted to the location of any note whose onset time
is within half of one sub beat length of the original beat lo-
cation. Each beat (again excluding the first and last as ap-
propriate) may then be nudged up to half of a tatum length
around its location with a magnetism of Mb, as shown in
Eqn (8). Here, t is the original time of the beat, M is the
magnetism (Mb in this case) which is used to control how
far the beat is nudged, and N is the set of notes which lie
within the given window. This equation can always return
the original time, though it is also allowed to nudge the
given time towards either the onset time of the closest note
(closest(N)) or the average onset time of all notes within
the window (avg(N)), if N is large enough. Sub beats are
placed similarly: initially evenly between any of the exist-
ing beats, then nudged up to one tatum length around its
location with magnetism Msb. Notice that the sub beats
are not shifted. Finally, tatums are placed evenly between
the sub beats (and neither shifted nor nudged).

nudge(t,M,N) =


t always

t+M(closest(N)− t) |N | > 0

t+M(avg(N)− t) |N | > 1
(8)

Allowed times for the tatums in Si.t for i > 1 are re-
stricted to those which can be generated by the same proce-
dure, with the exception that the final beat in Si.tmay now
be shifted and nudged. Initial beat locations are calculated
such that T (Si−1) = T (Si).

Intuitively, this process of shifting and nudging allows a
hypothesis’ tempo to smoothly increase or decrease based
on the observed notes. Beats are allowed to change the
tempo more drastically than sub beats because they are
more salient, and more likely to align with note onsets.

Even with the above restrictions, the search space is
still large. As mentioned we use a beam search, where
at each step we save only the top B most probable hypoth-
esis states (not including those still at S0 with no tatums
yet). Before we remove those hypotheses which fall out-
side the beam, we remove hypotheses which are deemed
to be too close to another more probable hypothesis based
on a threshold ∆min. Specifically, a hypothesis which has
identical metrical hierarchy to a more probable hypothe-
sis, and whose tempo and most recent tatum time both lie
within ∆min of that other hypothesis’ tempo and most re-
cent tatum time is removed.
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2.5 Supervisor

It is important to note that due to the way in which the
observed note sets are grouped by bar, the individual note
sets for different paths through the HMM state space for
a given piece will not be identical, although the union of
all note sets on any given path equals exactly the set of
notes present in the piece. To handle this complication, we
introduce a supervisor during the HMM decoding process
which takes each note individually in onset order, grouping
them into note sets and passing the sets to the appropriate
hypothesis state at each step. Specifically, for a given hy-
pothesis state, the supervisor determines the longest and
shortest possible lengths for the following bar (based on
allowed shifts and nudges as described in the previous sec-
tion). Then, it creates every possible note set given those
bounds, and allows the hypothesis state to transition and
branch on each of those note sets.

2.6 Optimisations

Here we describe two changes used to make our model
more robust in regards to the idiosyncrasies of live perfor-
mance such as staccato and ornamentation.

For handling staccato notes which are much shorter than
their note values would suggest in the score, we extend
each note’s offset until either the onset of the following
note in the bar within its voice (if one exists), or to the
end of its bar. This allows the LPCFG, which is trained on
metronomic MIDI where staccato is not present, to better
recognise the rhythms present in live performance.

For handling ornamentation such as trills, we use a
threshold trillmax. Any note whose onset time is within
trillmax of the onset time of the previous note within its
voice is removed (though the removed notes are still used
when deciding whether to remove the subsequent note).
The overall effect of this process is that trills or any very
fast ornamentation (which again would not be present in
the LPCFG’s training data) are reduced to a single short
note with its onset at the start of the trill or ornamentation.
If this optimisation is used in conjunction with the extend
notes optimisation, the remaining notes are extended only
after trills and ornamentation are removed, and the result is
that a fast ornamentation is replaced by a single long note.

3. EVALUATION

3.1 Corpora

For evaluation, we use two corpora: one containing
metronomic MIDI files of the 48 fugues from Bach’s
Well-Tempered Clavier (WTC) 2 and Bach’s 15 Inven-
tions, 3 and another of 13 live performance MIDI files of
Bach’s fugues and preludes from the WTC, from Crest-
MusePEDB 4 [10]. For training, we also use the miscel-
laneous corpus, released and used by [20] for training, di-
vided into a live performance portion (containing 22 pieces

2 The fugues were acquired from www.musedata.org.
3 The inventions were acquired from www.imslp.org.
4 We do not include the 13th prelude from WTC Book I due to an error

in the file.

by various composers recorded from a MIDI keyboard)
and a metronomic portion (containing 45 non-performed
pieces by various composers). For voice assignments in all
corpora, we run [12] as a preprocessing step.

3.2 Training

To train most of the parameters for the beat tracking model,
we measure statistics from the live performance portion of
the miscellaneous corpus. This results in values of µt0 =
1.0885 s, σt0 = 709.918 ms, σt = 0.0743, µe = 0.0181,
σe = 0.0336, σn = 6.655 ms, tmin = 0.4 s, and tmax =
3 s.

The remaining parameters are set in an ad hoc fashion
through testing on the miscellaneous corpus, and we have
found our model’s performance not to be very sensitive to
the precise values used. Specifically, we use Mb = 1.0,
Msb = 0.5, and trillmax = 0.1 s. ∆min and B are sim-
ply optimisations used to improve the speed of our model,
and we use values of 1 ms and 200 respectively, though in
practice, lower values of ∆min or higher values of B only
improve our model’s performance.

For our standard evaluation, we train the LPCFG’s
probabilities from the metronomic portion of the miscel-
laneous corpus, since this allows for a direct comparison
with the model of [20]. However, it is noted in [13] that
the grammar is sensitive to a lack of training data, partic-
ularly a lack of training data in the style of the evaluation
corpus, which happens when training on the miscellaneous
corpus for evaluation on Bach compositions. To investi-
gate this further, we also run experiments when training the
LPCFG’s probabilities on a superset containing the metro-
nomic portion of the miscellaneous corpus as well as the
entire metronomic corpus of Bach compositions. Note that
when evaluating this version of our model, we leave out the
piece currently being evaluated from the grammar’s train-
ing set so as to avoid overfitting. In all experiments, we
train the LPCFG with data that has undergone the same
optimisations as the data to be evaluated (in terms of ex-
tending notes and removing trills and ornamentation).

3.3 Metric

Quantitative evaluation of previous work on meter align-
ment, particularly with MIDI data, is uncommon, and a
few possible metrics are discussed in [18]. [20] reports
five values which take into account tempo, phase, and the
branching factor at each level of the metrical tree. Work
on acoustic meter detection (e.g. [11]) often reports F-
measures of beats and downbeats, treated as points in time.

To evaluate our model’s performance, we would rather
use a metric similar to that from [13] which is a single
value, takes into account the tree structure’s groupings
(rather than just its beat locations), and has some idea of
the partial correctness of a metrical alignment. However,
as it is designed for use mainly on beat-aligned data where
a metrical hypothesis cannot move in and out of phase
throughout a piece, a few adjustments must be made to
adapt it for use on live performance data. We call our
newly designed evaluation metric the metrical F-measure.
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Method Metronomic Live Performance
Temperley [20] 67.65 47.62
This Work 78.71 39.63
+T 75.36 39.40
+X 79.89 45.27
+X +T 77.67 47.81
+Bach 80.48 38.21
+Bach +T 80.08 42.35
+Bach +X 80.50 55.43
+Bach +X +T 80.48 56.51

Table 1. The average metrical F-measure of our method
compared against those of [20] on our two corpora. +T
indicates use of the remove trills and ornamentation opti-
misation, +X indicates use of the extend notes optimisa-
tion, and +Bach indicates using the additional Bach train-
ing data for the LPCFG.

It takes into account every grouping at three levels of the
metrical hierarchy throughout an entire piece: the sub beat
level, the beat level, and the bar level.

For each hypothesised grouping at these metrical levels,
we check if it matches a ground truth grouping. A hypoth-
esised grouping is said to match a ground truth grouping if
its beginning and ending times are each within 70 ms of
the beginning and ending times of that particular ground
truth grouping, regardless of the metrical level of either
grouping. 5 Each matched pair of groupings within a piece
count as a true positive, while any unmatched hypothe-
sis groupings count as false positives, and any unmatched
ground truth groupings count as false negatives. The metri-
cal F-measure of a piece is then calculated as the harmonic
mean of precision and recall as usual, and our reported re-
sults average these metrical F-measures across all songs in
each corpus.

3.4 Results

We compare our model against that of Temperley [20],
which is trained entirely on the miscellaneous corpus. For
direct comparison, the standard version of our model is
trained on the same corpus, but we present an evaluation
of a few different versions of it based on different optimi-
sations or training data. Results can be found in Table 1,
where +T indicates use of the remove trills and ornamen-
tation optimisation, +X indicates use of the extend notes
optimisation, and +Bach indicates that the LPCFG training
was augmented with the additional Bach compositions. We
do not also augment Temperley’s model with additional
training data because there is no straightforward way to
do so, and the model does not seem to be one which would
be as sensitive to a lack of training data as our model.

The results show that on metronomic data, our model
without optimisations clearly outperforms Temperley’s
when using identical training data. The optimisations offer
no significant improvement (which is unsurprising as they
were designed specifically to help with live performance),

5 This 70 ms window is taken directly from a popular beat tracking
metric [6].

+Bach +X +T
Bar:

Beat:
Sub beat:

Temperley
Bar:

Beat:
Sub beat:

Figure 2. The first bar of the 1st prelude from WTC Book
I (BWV 846). Above the music, the results from Temper-
ley’s model (bottom) are shown as well as the results from
our +Bach +X +T model (top).

but augmented training data leads to a small but consis-
tent increase in performance across all optimisation con-
figurations. On live performance, our model without opti-
misations underperforms Temperley’s, both with and with-
out augmented training data. However, the optimisations
lead to increased performance: our model using both opti-
misations matches Temperley’s performance with identical
training data, and exceeds it by almost 9 points with aug-
mented training data. The effect of each optimisation is
discussed in detail in Section 3.4.1.

The distribution of metrical F-measures for Temper-
ley’s model, run on live performance data, appears to be
binomial: of the 13 pieces, three score below 20, while
six score above 55, indicating that while the model per-
forms well in general, it sometimes guesses a meter which
is nearly entirely incorrect. With both optimisations, on
the other hand, our model’s scores are normally distributed
around 65, with 8 pieces scoring between 55 and 75. Ad-
ditionally, no pieces score below 20, indicating that it is
more likely to make some partially correct guess, even if
it is not entirely correct. The 1st prelude from WTC Book
I illustrates this difference in performance, and its first bar
is shown in Figure 2 along with the results of Temperley’s
model and our +Bach +X +T model. The piece is in 4

4 time,
and Temperley’s model achieves a score of only 15.74,
guessing a 3

8 time whose beats are even out of phase with
the ground truth sub beats throughout much of the piece.
On the other hand, our model scores 93.27, guessing a 4

4

time which begins perfectly aligned, although it does shift
slightly out of phase later in the piece.

One example of a piece for which Temperley’s model
outperforms ours is the 2nd prelude of WTC Book II,
the first bar of which is shown in Figure 3 along with
the results of Temperley’s model and our +Bach +X +T
model. For this piece, Temperley’s model achieves a score
of 78.99 while ours only manages a score of 61.83. This
piece is in 4

4 time and contains relatively non-syncopated
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+Bach +X +T
Bar:

Beat:
Sub beat:

Temperley
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Sub beat:

Figure 3. The first bar of the 2nd prelude from WTC Book
II (BWV 871), showing an example the nearly isochronous
bars which give our model problems. Above the music,
the results from Temperley’s model (bottom) are shown as
well as the results from our +Bach +X +T model (top).

rhythms, with many bars containing either only sixteenth
notes or only eighth notes in a given voice, as can be seen
in the figure. While Temperley’s model captures this me-
ter correctly (with some phase errors), our model guesses
a 4

4 time which is early by a single beat. Our model has
some difficulty finding the correct phase of isochronous
melodies since it uses no pitch or harmonic information
(which are the most salient indicators of metrical phase in
such isochronous pieces). Temperley’s model, on the other
hand, also includes chord detection, allowing it to better
handle such melodies.

3.4.1 Optimisations

Another aspect of our model to investigate is the effect of
the different optimisations on its performance. As can be
seen from Table 1, they (+X and +T) have little effect on
metronomic data (which is not surprising given that they
are designed specifically for live performance). However,
on live performance data, they improve performance sig-
nificantly. Both with and without augmented training data,
the remove trills optimisation has a small effect by itself
(essentially none without the data and very small with it),
but extending notes leads to a significant improvement.
The combination of both optimisations improves perfor-
mance even further, leading to peak performance both with
and without augmented training data.

One specific example where the remove trills optimisa-
tion leads to improvement with augmented training data is
on the 7th fugue from WTC Book I, where our +Bach and
+Bach +T models achieve scores of 31.58 and 60.20 re-
spectively. There is a repeated trill throughout this piece,
leading the +Bach model to lengthen its beat length such
that the trill is interpreted as 16th notes. With the remove
trills optimisation, however, our model is able to find the
correct metrical structure. Essentially, the remove trills op-
timisation frees our model from the constraint of trying to
align its tatums with each note in a trill or ornamentation.

An example of a piece for which the extend notes opti-

misation makes an improvement is the 17th prelude from
WTC Book I. In this piece, in 3

4 time, the lowest voice has a
very common repeated rhythm of an eighth note followed
by two sixteenth notes followed by four more eighth notes,
where the eighth notes are all played staccato. With the
optimisation, our model correctly recognises the beat and
sub beat levels, although it incorrectly guesses 2

4 time rather
than the correct 3

4 time, scoring 53.59. Without the op-
timisation, on the other hand, these eighth notes are not
as salient, and the model instead guesses a 2

2 meter which
moves in and out of phase throughout the piece, achieving
a score of only 16.47. Throughout the corpus, the extend
notes optimisation helps find strong notes whenever they
are played staccato.

The combination of both optimisations improves over-
all performance even further, enabling the model to han-
dle both staccato passages and ornamentation. The im-
provements from both optimisations are seen in the fully
optimised model, alongside other slight improvements
throughout the corpus such as fixing the placement of a
single misaligned beat here or there. For example, in the
previously discussed 17th prelude from WTC Book I, the
fully optimised model achieves a metrical F-measure of
60.35 while no other model eclipses a score of 54, even
though the basic metrical alignment (a 2

4 meter) does not
change between the it and the +Bach +X model.

4. CONCLUSION

In this paper, we have described a model for metrical struc-
ture detection and alignment from live performance MIDI.

Our model is in the form of an HMM which performs
metrical structure detection and alignment given only a
list of note pitches and onset and offset times, and we
have shown that the model achieves state-of-the-art per-
formance when evaluated on a corpus of metronomic data,
as well as a second corpus of live performance data. The
HMM incorporates a rhythmic grammar as one compo-
nent, working with the grammar to align an input piece
with a metrical structure. This joint model is probabilis-
tic and incremental, and requires no information a priori
except for note onset and offset times. We have also pro-
posed a new metric for the task, which takes into account
vertical misalignments (for example, those which align the
beat level of a piece with bars) and partial correctness.

In future work, we would like to extend the evaluation
of our model with more data. In particular, our corpus of
13 pieces of live performance MIDI would benefit from an
expansion, and allow us to perform a more in-depth analy-
sis of the results.

Metrical structure detection and alignment is clearly an
important task for any complete transcription system, and
we have shown that our joint model is able to perform the
task well, even using only rhythmic data. Incorporating ad-
ditional information such as pitch or harmony should only
lead to better performance. Specifically, it has been shown
that harmonic changes are most likely to occur at the begin-
nings of bars [16], and low notes may be a salient feature
of strong beats in addition to note duration [5].
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ABSTRACT

Estimating the key velocity of each note from poly-
phonic piano music is a highly challenging task. Previous
work addressed the problem by estimating note intensity
using a polyphonic note model. However, they are limited
because the note intensity is vulnerable to various factors
in a recording environment. In this paper, we propose a
novel method to estimate the key velocity focusing on tim-
bre change which is another cue associated with the key
velocity. To this end, we separate individual notes of poly-
phonic piano music using non-negative matrix factoriza-
tion (NMF) and feed them into a neural network that is
trained to discriminate the timbre change according to the
key velocity. Combining the note intensity from the sepa-
rated notes with the statistics of the neural network predic-
tion, the proposed method estimates the key velocity in the
dimension of MIDI note velocity. The evaluation on Saar-
land Music Data and the MAPS dataset shows promising
results in terms of robustness to changes in the recording
environment.

1. INTRODUCTION

Polyphonic piano transcription is one of the most active
research topics in automatic music transcription [1]. How-
ever, the absolute majority of piano transcription algo-
rithms so far have been concerned with detecting the pres-
ence of notes in term of pitch (or note number), onset
and duration, while ignoring note dynamics, which is ex-
pressed by key velocity on piano.

Along with tempo, dynamics is a key feature that pro-
duces a musical “motion” [19]. Previous studies on piano
performance analysis employed dynamics as one of two
main features of performance characteristics in [22, 25].
Another study showed that, if dynamics is estimated for
individual notes, a finer analysis is achievable [21].

There have been a few works that challenged the task of
estimating individual note dynamics. To best of our knowl-
edge, the first attempt was made by Ewert and Müller
who tackled the problem using a parametric model of

c© Dasaem Jeong, Taegyun Kwon, Juhan Nam. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Dasaem Jeong, Taegyun Kwon, Juhan Nam. “A
Timbre-based Approach to Estimate Key Velocity from Polyphonic Piano
Recordings”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.

polyphonic piano notes [7]. Our previous work estimated
the note intensity using score-informed non-negative ma-
trix factorization (NMF) in various training strategies [15].
Szeto and Wong used a sinusoidal model to separate chords
tones into individual piano tones and estimated the note in-
tensity as part of the source separation task [23].

All of them basically estimate individual note dynamics
according to energy magnitude or loudness of the notes.
However, this approach has an essential limitation in that
a note produced by a certain key velocity can be recorded
in different sound levels depending on the recording con-
ditions. For example, a pianissimo note can be recorded
loudly or a forte note can be quietly, depending on the in-
put gain of the recording device or the distance from the
microphone.

In this paper, we challenged to overcome this limita-
tion by focusing on differences in timbral characteristics
caused by the key velocity. According to previous research,
loudness and tone of a piano note are uniquely determined
by the velocity of the hammer at the time it strikes the
strings [12]. This implies that the key velocity can be in-
ferred not only from the loudness but also from the tim-
bre of the note, assuming that the hammer velocity can be
approximated by the key velocity. This idea was explored
in [14] where a piano note shows different timbral char-
acteristics such as a spectral envelope or inharmonicity,
depending on the key velocity. While the previous work
focused on single notes, we study it for polyphonic music.

The proposed system consists of three parts: an NMF
module for note separation and intensity estimation, a neu-
ral network to discriminate key velocity, and intensity-to-
velocity calibration using the results from the two mod-
ules. The NMF module is based on score-informed settings
from [15] and [24]. After the decomposition of the audio
spectrogram, we reproduce the note-separated spectrogram
from the NMF module. The neural network takes the note-
separated spectrogram as input and estimates its key ve-
locity. The third part obtains proper mapping parameters
between note intensity and key velocity using the distribu-
tion of velocity estimation from the neural network, and
finally estimate individual key velocity in the dimension
of MIDI note velocity. We evaluate the proposed method
on Saarland Music Data and the MAPS dataset and show
promising results in terms of robustness to changes in the
recording environment.

The rest of paper is structured as follows. In Section 2
we introduce the scope of our work and define the terms
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that represent dynamics of a piano note. Section 3 summa-
rizes the related works. In Section 4 we explain the NMF
and neural network framework. The experiment and result
are explained in Section 5 and 6. Finally, the conclusion is
presented in Section 7.

2. BACKGROUND

To provide better understanding of the task and scope in
this research, we first review key terms and define the prob-
lem that we attempt to solve.

2.1 Term Definitions

Note intensity is the term that represents the magnitude of
acoustical energy of a note. It can be defined as sound-
pressure level (SPL) [10] or the sum of spectral energy as
in [7, 15]. Since the intensity is an acoustical feature, it is
highly variable by the recording condition. For example,
note intensity can be changed by simple post-processing
such as gain adjustment. Therefore, the intensity of each
note is comparable only when the recording conditions are
consistent.

Key velocity refers to the kinetic velocity of the piano
key and it is closely connected to the hammer velocity. It
can be measured by detecting the elapsed time when the
hammer shank passes two fixed points [10]. Unlike the
note intensity, the key velocity is a feature measured di-
rectly from the mechanical movement, hence independent
from the acoustic recording environment. If the recording
condition is constant and the sympathetic resonance is ig-
nored, the mapping between key velocity and note inten-
sity for each pitch is linear [10].

MIDI velocity is the term that represents the key ve-
locity in the MIDI format. It is a one-byte integer value be-
tween 0 and 127 inclusive in the note messages. Computer-
controlled pianos or MIDI-compatible keyboards have
their own mapping of key velocity to MIDI velocity.

2.2 Problem Definition

The aim of this study lies in estimating note key velocity
in terms of MIDI velocity. Although our previous work at-
tempted to produce the result in MIDI velocity, the method
requires an additional data for intensity-to-velocity calibra-
tion with the same piano and recording condition [15]. In
a real-world situation, however, it is almost impossible to
obtain such mapping for a target recording. Instead of em-
ploying a target-suited training set, our work aims to learn
a proper intensity-to-velocity mapping directly from a tar-
get audio recording.

One of the obstacles in the task is that most datasets
represent the key velocity with MIDI velocity and the map-
ping between the two varies depending on the piano or key-
board model. To focus on the relation between timbre and
key velocity in this study, we fix the key-to-MIDI velocity
mapping by employing only one piano model but differ-
ent recording conditions during the evaluation. However,
we evaluate the trained model on recordings with a dif-

ferent piano to see how it generalizes. The details will be
explained in the evaluation section.

3. RELATED WORKS

Our proposed method is based on the NMF framework
from [15] but expand it by employing a recent work by
Wang et al [24]. One of the main limitations in the NMF
framework is that it is difficult to model the timbre changes
over time. For example, the NMF model used in [8] and
[15] assumes the spectral template of each pitch does not
change over time. To overcome this limitation, Wang et
al suggested using multiple spectral templates per pitch in
NMF for piano modeling. This NMF model was adopted in
our proposed system and will be discussed in more detail
in the next section.

Identifying key velocity by its timbre can be compared
to identification of musical instruments. The earlier works
used various hand-crafted audio features [6, 14]. Recently,
deep neural network has become a popular solution for this
task [2, 11], which takes spectrograms or mel-frequency
cepstral coefficients as input. There are a few work inter-
ested in timbral difference by the velocity [4, 14] but they
did not aim to distinguish these difference explicitly.

Our task can also be compared to instrument identifi-
cation in polyphonic audio. One of typical solutions for
this task is using source separation and then handling it
as monophonic audio sources. Heittola et al. suggested
a framework with NMF-based source separation module
[13]. Similar to this work, our method also employs NMF-
based source separation. But we use the neural networks
instead of the Gaussian mixture model to identify the sep-
arated sources.

4. METHOD

Our proposed system consists of three parts as shown in the
Figure 1. The first part is score-informed NMF that factor-
izes the spectrogram of audio recording into note-separated
spectrogram for every note in the score. This also returns
the intensity of each note. The second part is neural net-
work (NN) that takes the note-separated spectrogram and
estimates the key velocity. The third part is intensity-to-
velocity calibration which is conducted by comparing the
estimated velocity from the NN module and the intensity
from the NMF module on their distributions.

4.1 Note Separation

The first part of our framework is based on NMF, a matrix
factorization for non-negative data which is usually spec-
trogram in audio processing domain.

Let us denote a given spectrogram as V ∈ RF×T
≥0 , where

F is the number of frequency bins and T is the number of
time frames. With NMF, the spectrogram can be factorized
into multiplication of two matrices W ∈ RF×(P ·R)

≥0 and

H ∈ R(P ·R)×T
≥0 where P denotes the number of pitch in

semitone and R denotes the number of spectral basis per
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Figure 1. A diagram of the proposed system.

pitch. By doing so we can decompose the input spectro-
gram with spectral templates bases W and the activation of
the bases over time H.

To clarify the relationship between spectral basis and
pitch, we will follow the similar notation presented in
[24], denoting Wf,p,r := Wf,(p−1)·R+r and Hp,r,t :=
H(p−1)·R+r,t as below:

Vft =
∑
p,r

Wf,p,rHp,r,t (1)

where f ∈ [1, F ], t ∈ [1, T ], p ∈ [1, P ], and r ∈ [1, R]
are index of frequency bin, time frame, pitch, and spectral
basis in a pitch, respectively.

4.1.1 NMF Modeling

We employ an NMF model that learns multiple time-
frequency patterns instead of single spectral templates
[24], which was applied to the score-informed AMT task.
This model captures various timbre of the same pitch and
temporal evolution of timbre, which is a necessary part of
our task. Since the main contribution of our paper lies on
the velocity estimation by combining of the NMF and NN
results, the following section will mainly explain several
differences in the implementation. The details are found
in [24].

Considering that an NMF model can be configured
mainly by the number of basis, initialization method, and
additional constraints with corresponding update rules,
Wang et al.’s model for piano recording [24] is different
from the previous models used in [8,9,15] in three aspects.

First, they suggested multi-basis per pitch so that each
pitch has R number of corresponding bases. The previous
models represent a piano note by the combination of per-
cussive (onset) and harmonic (sustain) basis for the whole
note duration. Since there is only one harmonic basis for
each pitch, the spectral shape of the note does not change
over time. This assumes that the most important timbre fea-
ture is constant in the sustain part within the single note
as well as for different key velocities. But the multi-basis
model can handle this subtle change of timbre by using
multiple bases with different activation ratios.

Second, employing the multi-basis model requires a dif-
ferent initialization method for matrix W and H. To model

temporal progression of piano timbre, the r-th basis was
initialized to be active after the (r − 1)-th basis of the
same pitch. Since the pitch bases are activated sequentially,
they can model temporal evolution of the note tone. As the
pitch bases are differed by their activation initialization,
they also have different spectral characteristics. Among R
bases of a pitch, the first basis handles percussive element
and the the second to the last represent harmonic elements
in the temporal order. In addition, the harmonic area is set
to be tapered as the rank index r increases. This makes the
earlier bases include more inharmonicity.

Third, Wang et al.’s model suggested several additional
costs for the multi-basis model. They include a soft con-
straint, temporal continuity, and energy decay in the tem-
plate matrix. Among the suggested costs, we did not em-
ploy the decaying cost for W, which encourages smooth
decrease of energy in spectral templates in W. We found
that our system works better with L1 normalized W so that
the magnitude feature is assigned only to H. We followed
the NMF costs and update function strictly except that we
ignore the decaying cost term by assign 0 to β3.

For better intensity estimation, we previously suggested
using power spectrogram, instead of linear magnitude
spectrogram [15]. We also showed that using synthesized
monophonic scale tones helps to learn spectral template.
Based on this observation, our system also uses power
spectrogram and synthesized piano scale. Another differ-
ence with [24] is post-updating of H. After the update con-
verges, we set all constraints on H to zeros and update H
for ten times with fixed W so that our final reproduction
can resemble the original gain.

The NMF module reproduces note-separated spectro-

gram V̂
(n)

for each note n in the score by multiplying
the spectral bases of note’s pitch and its activation over
note’s duration. The note intensity is defined as the max-

imum activation of V̂
(n)

, which can be represented as

max(
∑

f V̂
(n)

ft ). Then, we reproduce V̂
(n)

again around the
time frame of the maximum activation and store it for the
input for the neural network. This helps to fix the size of
NN’s input and maintain the relative position of each ele-
ment in the cropped spectrogram.
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Figure 2. Comparison of the intensity-normalized note-
separated spectrogram with different MIDI velocities.
The spectrogram was reproduced from polyphonic piano
recording (SMD). The MIDI note number is 50 and the
MIDI velocities were 14 and 95, respectively.

4.2 Velocity Estimation

The neural network (NN) model takes the note-separated
spectrograms from the NMF module as input and estimates
the velocity of each note. The note-separated spectrogram
is converted to a log-frequency spectrogram before it is
used for the input of the NN module. The frequency res-
olution is set to 25 cent and the frequency range is from
27.5 Hz (the lowest pitch of piano) to 16.7 kHz (two oc-
tave higher than the highest pitch of piano), resulting in
445 frequency bins. After some preliminary test, we used
14 frames as input size. The spectrogram magnitude is nor-
malized by the maximum value so that every entry in the
spectrogram lies between 0 and 1 the as shown in the Fig-
ure 2.

The neural network consists of 5 fully-connected hid-
den layers and each layer has 256 nodes. Every hidden
layer uses SELUs as an activation function [17]. Applying
SELUs aims to stabilize the network from internal covari-
ance shifting without any additional complexity.

The loss function is set to mean square error of key
velocity estimation, approaching the task as a regression
problem. We also attempted to use softmax as a classifi-
cation problem but the result was slightly worse. We used
Adam optimization [16] with initial learning rate of 1e-4,
and early stopping on the validation set.

4.3 Intensity-to-Velocity Calibration

The NN module provides an absolute degree of note dy-
namics but the relative magnitude between each note from
the NMF results is more stable than that from the NN re-
sults. Therefore, we combine the two results to find better
estimation.

As described in Section 1, intensity is affected by both
key velocity and recording condition. One cannot distin-
guish whether the high intensity from the NMF is caused
by strong strike of hammer or high gain in the recording
device. Therefore each recording condition needs its own
mapping parameter.

Also, the intensity-velocity relation depends on a piano
or a keyboard model [3]. Our previous study showed that
the MIDI velocity of a note can be approximated by a lin-
ear relationship with the log value of the intensity Int(n),
so that Vel(n) = a·log(Int(n))+b for the Disklavier, which
we use for the evaluation [15]. However, we need to know
intensity-paired velocity in the target recording condition,
which is not available in real-word recordings.

Our solution is estimating it from the overall velocity
distribution of each piece from the NN module. If we as-
sume the outcome velocity has a distribution with mean
µV and standard deviation σV for each piece, we can ob-
tain the mapping parameters by comparing it with the dis-
tribution of log of intensity, µlog(I) and σlog(I). Then, the
mapping parameter a and b correspond to σV /σlog(I) and
µV −(σV /σlog(I))µlog(I), respectively, with the assumption
that every note has the same mapping parameters. Note
that this neglects the note-specific difference of intensity-
to-velocity mapping parameter. The error caused by this
assumption will be also explained in Section 6.

Our system takes the result of the NN module to es-
timate µV and σV for each piece. The estimation can be
also done by a simple global setting. During the evalua-
tion, we used this scheme as a baseline to compare with
our NN model.

5. EXPERIMENT

5.1 Experiment I: SMD

We used Saarland Music Dataset (SMD) MIDI-Audio Pi-
ano Music [18] for the evaluation. The dataset consists of
fifty pairs of audio and MIDI recordings of performance
on Yamaha Disklavier DCFIIISM4PRO. The MIDI files of
SMD contain every movement of piano key and pedal in
high reliability, thus providing the ground truth of note dy-
namics in MIDI velocity.

The previous work pointed out that the recording condi-
tion of each piece in SMD is differed by its recording date
[15]. Therefore, the intensity-to-velocity mapping had to
be obtained separately for each subset of pieces that share
the same recording condition. The difference in intensity-
to-velocity mapping in SMD is represented in Figure 3.
Since the goal of the proposed system is to estimate key
velocity robustly against changes in the recording environ-
ment, such different recording conditions are ideal for eval-
uating this task.

We evaluate whether the proposed system can handle
different recording conditions and estimate correct velocity
distributions. We used fifteen pieces recorded in the year of
2011 as a test set, and other thirty-five pieces as a training
set, which was recorded during the year of 2008 and 2010.

To evaluate the exact performance and usefulness of the
NN module, we also present two upper boundary models
and a baseline model. The first upper boundary assumes
that the system obtained proper mapping parameters for
every individual pitch from other pieces in the same test
set, as in [15]. The second upper boundary assumes that
our NN module guessed correct estimation of velocity dis-
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Figure 3. The difference in velocity-intensity mapping be-
tween two subsets from SMD. Each point represents a sin-
gle note with MIDI note number 50. The notes recorded in
2009 show higher intensity compared to the notes recorded
in 2011 given the same velocity.

tribution. In this upper boundary, we employed the ground
truth of velocity distribution for each piece. The baseline
is using global mean and standard deviation values. Based
on the statistics of training set, we used µV = 57.87 and
σV = 16.25.

The evaluation measure is an absolute error of velocity
between ground truth and estimated value. In MIDI veloc-
ity dimension, absolute error is a more meaningful crite-
rion than relative error because MIDI velocity is already
a logarithm of the intensity. We used the average of ab-
solute velocity error in a piece, which can be represented
as Err =

∑N
n |VGT(n)− VEst(n)| /N , where VGT(n) and

VEst(n) are ground truth velocity and estimated velocity of
the n-th note in a piece, respectively.

5.2 Experiment II: MAPS

We also evaluate our NN module on unseen data to see
whether the NN can learn generalized piano timbre from
the training set. To this end, we designed another exper-
iment with the MAPS database [5], which was recorded
with a different piano and recording conditions.

From the MAPS dataset, we used two subsets per-
formed by Yamaha Disklavier Mark III (upright) that con-
sists of 30 recordings. One subset is recorded as “ambient”
and the other is recorded as “close” condition. We did not
use other MAPS dataset for training our NN module. The
model trained from thirty-five pieces of SMD was used for
this test.

In this experiment, the evaluation is made only with the
estimated distribution from the NN module µnn and σnn
and ground truth µgt and σgt. Since the mapping between
key velocity and MIDI velocity in SMD and the MAPS
dataset is different, we cannot compare these values di-
rectly. Also, we cannot figure out how the same key veloc-
ity will be recorded as MIDI velocity in SMD and MAPS
or which velocity value will make most close reproduction
of a note in MAPS with the instrument in SMD. What we
can assure is that MIDI velocity ranking of notes or piece
will be preserved both in SMD and MAPS. Therefore we

examine the Spearman correlation between the NN’s guess
µnn and σnn and the ground truth MAPS MIDI value µgt

and σgt.

5.3 Procedure

The experiment procedure is as follows. First, the NMF
module calculates note intensity and reproduces note-
separated spectrograms for each pieces in the training set
and test set. Then, we train the NN module with the note
spectrograms of the training set from SMD. After the train-
ing, the trained NN estimates the velocity of note spectro-
grams of the test set. Combining the distribution of esti-
mated velocity from the NN and estimated intensity from
the NMF as described in section 4.3, we can obtain final
MIDI velocity for each note in the piece. For the Experi-
ment II, the calibration part is omitted. During the exper-
iment, we used STFT with window size 8192, hop size
2048, and 8 spectral bases per pitch in the NMF module.

6. RESULTS

6.1 Experiment I: SMD

We present our result on the SMD set recorded in 2011
on Table 1. The ground truth velocity distribution of each
piece is represented as GT, and the estimated distribution
from the NN module is as NN. The remaining columns on
the right are the average errors of four different mapping
parameter for the same NMF result. UB1 is the first upper
boundary that uses other test pieces to obtain the velocity-
to-intensity mapping as in [15]. UB2 is the second upper
boundary that assumes our NN module estimated the cor-
rect µV and σV . The proposed method (Prop.) is from the
NN estimation for µV and σV . The baseline (Base) always
guessed µV = 57.87 and σV = 16.25. The last column
shows the error when we directly used the NN estimation
in note level, instead of combining it with the NMF inten-
sity.

The estimation of the NN module showed high error in
a note level as shown in the NN column. We presume the
reason for the error is mainly based on the imperfection of
source-separation. Also, the different recording condition
in the test set could make not only intensity difference but
also timbral change. This inhomogeneity may also have
had a negative impact on the performance of the NN mod-
ule.

Even though the note-level accuracy was not reliable,
we found that the overall distribution of the estimated ve-
locity resembles the distribution of ground truth velocity
as we expected. By employing the estimated velocity dis-
tribution, the note intensity from the NMF module could
be successfully mapped into MIDI velocity as shown in the
Prop. column. The proposed system outperforms the base-
line estimation in most pieces. While the fixed guess ig-
nored characteristic of each piece, the NN module success-
fully estimated a correct distribution from the note spectro-
grams.

The difference between two upper boundary UB1 and
UB2 shows the error caused by the assumption that the
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Composers Piece
Ground Truth NN Estimation UB1 UB2 Proposed Baseline NN note
Mean STD Mean STD Err Err Err Err Err

Bach BWV 888-1 49.7 12.6 53.3 15.5 3.1 3.9 3.3 6.6 10.4
Bach BWV 888-2 63.3 11.3 62.8 13.3 2.1 3.1 3.5 9.0 10.1
Bartok op. 80-1 68.9 18.2 65.7 15.3 5.9 6.6 8.5 15.0 12.2
Bartok op. 80-2 59.5 23.5 59.5 20.4 5.1 7.2 8.6 10.3 11.3
Bartok op. 80-3 67.4 19.0 64.8 17.3 6.0 7.1 8.9 14.8 13.0
Brahms op. 5-1 64.8 23.5 62.0 19.6 7.2 8.4 10.0 13.1 13.8
Haydn HobXVI-52-01 57.9 14.6 58.4 14.7 3.9 5.5 4.6 6.1 11.9
Haydn HobXVI-52-2 49.8 18.6 53.9 16.6 3.8 4.7 5.6 8.0 11.1
Haydn HobXVI-52-3 60.4 12.9 59.1 15.5 3.6 5.4 5.5 7.6 12.9
Mozart K. 265 57.5 13.2 57.1 14.4 3.2 6.2 6.2 6.7 10.5
Mozart K. 398 58.6 13.2 57.7 16.5 3.6 5.6 8.5 8.6 11.2
Rachmaninoff op. 36-1 56.5 18.7 54.5 16.9 6.4 6.1 6.9 5.9 11.7
Rachmaninoff op. 36-2 54.7 19.5 50.2 18.1 5.2 5.5 6.4 6.9 11.5
Rachmaninoff op. 36-3 66.3 19.8 66.4 16.0 6.6 9.0 8.5 14.7 12.7
Ravel Jeux d’eau 55.3 17.0 57.8 17.6 5.8 5.5 5.0 5.1 12.5

Average 4.83 5.9 6.7 9.2 11.8

Table 1. The result of experiment on SMD. The first two columns show mean and standard deviation of note velocities
from the ground truth and the estimation by neural network. “Err” stands for absolute mean error of note velocities. UB1 is
an oracle model that learns key-dependent velocity mapping from other test pieces, and UB2 is another oracle model with
ground-truth velocity mean and variance. The baseline model uses a global mean and variance. NN note represents mean
error of velocity estimation of individual notes in the neural network

intensity-to-velocity mapping is consistent over the key.
However, previous works showed that a piano stroke
makes different intensity with the same velocity depend-
ing on the key [20]. This suggests the need of additional
methods to compensate the key-dependent mapping in the
future research.

The error is notable in Rachmaninoff’s Op. 36-1. A pos-
sible reason is that the global setting of velocity distribu-
tion in the baseline is closer to the ground truth compared
to the NN estimation. The errors in Ravel’s Jeux d’eau
is worth mentioning since the two upper boundary meth-
ods made the worse result. We presume that the reason is
the frequent use of soft pedal during the performance. Soft
pedal makes intensity lower, thus making our system esti-
mate it softer than what is expected from its MIDI velocity.

6.2 Experiment II: MAPS

Figure 4 shows the correlation between the estimation from
the NN module and the ground truth on the MAPS record-
ings. The absolute value of µnn and µgt has an error be-
cause of different key velocity to MIDI velocity mapping,
thus cannot be compared directly. However, we can see that
as the ground truth velocity mean of the piece increases,
the estimated mean of NN also tends to catch it up. The
same tendency is also found in the standard deviation. The
Spearman correlation between µGT and µNN is 0.838, and
that between σGT and σNN is 0.597.

Figure 4 also shows that the estimation from the NN
module is not affected much by whether the recording is
ambient or close, indicating that our NN module is robust
to different piano and recording conditions. We did not ap-
ply the baseline method to MAPS because the estimation
would be always constant regardless of the piece.

7. CONCLUSIONS

We presented a system that estimates key velocity from
polyphonic piano recordings. The main limitation of pre-

Figure 4. The test result on the MAPS dataset (Experiment
II). Each point represents a single piece.

vious work was the lack of method for calibration be-
tween intensity and key velocity. To overcome the limi-
tation, We proposed a neural network module that takes
note-separated spectrogram and estimates the key velocity
of each note. Though the accuracy of individual notes is
not reliable, the overall distribution resembles the distribu-
tion of ground truth velocity for each piece. Our system
obtains a proper intensity-to-velocity mapping by employ-
ing the estimated velocity distribution, and then estimate
the key velocity.

We evaluated our system on two different datasets.
Overall, the evaluation showed a promising result of this
timbre-based approach. The velocity estimation from the
NN module showed a similar distribution with the ground
truth velocity distribution despite the different recording
conditions. Employing this estimated distribution, our sys-
tem mapped note intensity to MIDI velocity reliably. Also,
the result showed that our NN module learns robust fea-
tures that can be applied to unseen data.

For the future work, we plan to apply our solution to
real-world recordings with various timbre and recording
conditions and, by combining other AMT and audio-to-
score alignment algorithms, and obtain more full-fledged
performance transcription.
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ABSTRACT

Timbre discrimination, even for very brief sounds, allows
identification and separation of different sound sources.
The existing literature on the effect of duration on timbre
recognition shows high performance for remarkably short
time window lengths, but does not address the possible ef-
fect of musical training. In this study, we applied an adap-
tive procedure to investigate the effect of musical training
on individual thresholds for instrument identification. A
timbre discrimination task consisting of a 4-alternative for-
ced choice (4AFC) of brief instrument sounds with varying
duration was assigned to 16 test subjects using an adaptive
staircase method. The effect of musical training has been
investigated by dividing the participants into two groups:
musicians and non-musicians. The experiment showed lo-
west thresholds for the guitar sound and highest for the
violin sound, with a high overall performance level, but no
significant difference between the two groups. It is sug-
gested that the test subjects adjust the weightings of the
perceptual dimensions of timbre according to different de-
grees of acoustic degradation of the stimuli, which are eva-
luated both by plotting extracted audio features in a fea-
ture space and by considering the timbral specificities of
the four instruments.

1. INTRODUCTION

Timbre is a primary vehicle for sound source recognition
and, from a cognitive perspective, sound identity [10]. The
auditory system is designed to identify sound sources: this
enables us to discern a melody in a complex soundscape,
follow what is being said by a speaker, or step aside when
something fast and dangerous appears to be approaching.
As an example which is more related to music consump-
tion, listeners are able to identify musical genres better
than chance in a fraction of a second (the shortest duration
tested is 125 ms [9]).

Although so important to our auditory system, timbre is
often defined in a negative manner — as, for instance, in
Plomp’s (1970) operational definition: “Timbre is that at-
tribute of sensation in terms of which a listener can judge

c© Francesco Bigoni, Sofia Dahl. Licensed under a Crea-
tive Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Francesco Bigoni, Sofia Dahl. “Timbre Discrimination for
Brief Instrument Sounds”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

that two steady complex tones having the same loudness,
pitch and duration are dissimilar” (quoted in [12]). Tim-
bre can be described as a set of perceptual attributes which
are either continuously varying (timbral semantics such as
attack sharpness, brightness, richness) or discrete (percep-
tual features such as the pinched offset of a harpsichord
sound) [10]. For the former category of attributes, a num-
ber of objective acoustic correlates can generally be found
among spectro-temporal audio features, e.g. spectral cen-
troid, attack time and spectral envelope; for the latter, the
objective correlates are harder to identify [10].

Being complex and multidimensional, timbre is usually
modelled employing a so-called multidimensional scaling
(MDS), i.e. fitting the dissimilarity ratings given by a group
of listeners on a set of sounds to a timbre space of per-
ceptual attributes and respective acoustic correlates [10].
While the basic MDS model assumes the same percep-
tual dimensions for all listeners, more recent models (e.g.
CLASCAL by McAdams et al. [11]) account for different
weightings of the perceptual dimensions (by individual lis-
teners or classes of listeners) and for the effect of the fea-
tures that are specific to an individual timbre, called “spe-
cificities” (basically related to the aforementioned discrete
features).

The studies that evaluate the effect of brief duration on
timbre perception exhibit a decidedly different approach
from MDS research: quoting Suied et al., MDS models
aim at finding the most prominent perceptual dimensions
of specific sounds through dissimilarity ratings, whereas
the problem of timbre recognition for brief sounds asks to
identify the most informative ones [21]. Inside this field,
the prevalent area of interest is speech: in a seminal paper
from 1942, Gray investigated phoneme cues for short vo-
wel sounds, and coined the term “phonemic microtomy”
[5]. More recently, Robinson and Patterson found that tim-
bral cues for brief vowel stimuli are not pitch-assisted [18].
Generally, the measured performance is above chance for
durations as short as a single glottal pulse cycle, on the
order of 3 ms.

Only a few studies deal with non-speech sounds: Clark
et al. asked their test subjects to identify orchestral instru-
ments for varying window length and position for gated sti-
muli [3]; Robinson and Patterson replicated their previous
study using synthesized instrument sounds, achieving slig-
htly lower performance levels than for voice stimuli [17].
In later articles, the sound recognition problem has been
stated in different terms, by taking the subjective reaction
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times rather than the temporal thresholds of the stimuli into
account [1, 22].

In 2014, Suied et al. published what we consider by far
the most exhaustive contribuition on the topic, as well as
the most relevant reference for our paper [21]. In a series
of timbre discrimination experiments, participants were as-
ked to identify whether a sound belonged to a target cate-
gory (e.g. strings, percussion, voice) or a distractor cate-
gory. Very short duration thresholds were found, on the or-
der of 8-16 ms. The best performance was for voice, follo-
wed by percussion (marimba and vibraphone). Subsequent
experiments rejected the effect of feedback and training on
the performance for the voice stimuli; and, finally, demon-
strated that source recognition based on timbral cues is fast
and robust to stimulus degradation, with a clear advantage
for voice signals.

While it may not be surprising that humans are highly
trained to identify sounds as belonging to the “voice” ca-
tegory, one could expect more variability in the exposure
to instrumental sounds. Suied et al. [21] did not report any
information regarding the musical training of their partici-
pants. We would expect that listeners who are trained as
musicians would exhibit lower threshold values compared
to non-musicians.

Previous studies [17, 21] have used constant stimuli
lengths, with durations that are doubled. The increasing
differences in durations help to reduce the test time, but
also make it difficult to pinpoint where and how thres-
holds differ between individuals or groups of listeners. We
expect musically trained and untrained listeners to differ
in the overall threshold of instrument discrimination, but
there may be an interaction with the instrument type. Suied
et al. [21] found a lower performance for the “strings” ca-
tegory compared to “percussion”. In order to efficiently
target the listeners’ individual thresholds, an adaptive ap-
proach is an attractive alternative.

In this paper, we investigate whether musical training
has an effect on the perceptual interaction between timbre
and duration through a timbre discrimination task, using
brief sounds of varying length. Our goals were threefold:
1) applying an adaptive staircase method to estimate the
temporal thresholds of timbre discrimination for a small
sound set (four instruments: guitar, clarinet, trumpet and
violin); 2) determining if musical training has an effect on
the task; 3) relating the degradation of timbre descriptors
(caused by the length shortening) to the perceptual adapta-
tion strategies of the participants.

2. METHOD

We anticipated the range of thresholds to vary between par-
ticipants, and therefore opted for an adaptive test proce-
dure. Adaptive methods are designed to be time-efficient
and focus the presentation of stimuli around the percep-
tual threshold of interest by adapting the level of presenta-
tion according to the past responses of the participant (in
our case, the indication of the heard instrument). Com-
pared to the method of constant stimuli, the adaptive pro-
cedure can quickly move from presenting clearly audible
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Figure 1. Time window employed for stimulus gating (in
this case, the window length is 5 ms).

and distinguishable stimuli to a range where performance
is more difficult. By gradually decreasing the step size after
a change in test subject performance, the method allows to
zoom in rapidly on the threshold level. Depending on the
criteria for changes in presentation level and step size, the
adaptive procedure can be designed to target different per-
formance levels on the psychometric function (see [7] for
an overview). For this study, we chose the simple up-down
staircase method [8], as this does not require assumptions
on the shape of the psychometric function.

2.1 Stimuli

The four stimuli (guitar, clarinet, trumpet and violin) were
picked from an existing database of anechoic recordings
of acoustic instruments [20] [23]. The audio files were re-
corded at a sample rate of 48 kHz and a resolution of 24
bits, using a 32-channel microphone array. The audio edi-
ting was performed in the digital audio workstation Rea-
per. Four source files were created by mixing down the re-
spective 32 channels to a mono track (with no instrument-
specific mix), bounced at 16-bit/44.1 kHz. In the source
files, the instrumentalists are playing a C4 at a ff dynamic.
The pitch of the source files was already normalized, as the
instruments were all tuned at A4 = 443 Hz 1 . Sounds were
loudness-normalized to -18 LUFS using the SWS exten-
sion in Reaper. The sound snippets were prepared on the
fly in MATLAB between the presentations, by applying a
suitable window (i.e. a rectangular window with 4 samples
of silence at the start and a 1 ms equal-power fade-out at
the end) of the required duration, starting from time 0: an
example is shown in Figure 1. Thus, onset information has
been included in each snippet.

2.2 Participants

A convenience sample of 16 participants was tested, con-
sisting of 13 males and 3 females with ages ranging from
22 to 50 (µage = 32, σage = 9) recruited through aut-
hor Bigoni’s personal network. Participants indicated their
age and sex (if willing to disclose) and whether they had
normal hearing (no testing was made to assess this); they

1 This gives a fundamental frequency of 443/2(9/12) = 263.41 Hz
at C4.
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were informed that their personal data would be anonymi-
zed. Each test subject was assigned to one of two groups
(musicians or non-musicians) by asking if he/she had 5 or
more years of formal musical training and/or performance
experience. This left the border between the two groups
somewhat flexible, giving the option to music students and
amateur musicians to choose their group according to their
confidence level. The groups were fairly balanced with re-
spect to sample size: 9 musicians and 7 non-musicians. Of
the 9 musicians, 5 are primarily performing on wind in-
struments, whereas the other 4 play different combinations
of guitar, piano, drums and electronics. Despite this inter-
group difference, we do not assume that any of the subjects
were biased towards a specific instrument type.

2.3 Setup

The playback system consisted of the laptop internal sound
card, driven with ASIO4ALL drivers for Windows, and a
pair of Beyerdynamic DT 990 Pro, 250 Ohm headphones.
Even though the DT 990 Pro do not have a flat frequency
response, we assume that the sound coloration introduced
by the headphones did not alter the relative timbre percep-
tion.

2.4 Procedure

The experimental setup was implemented in MATLAB. It
features a simple GUI and consists of three steps: 1) cre-
ation of a test subject entry in a database; 2) soundcheck:
the subject can click on four buttons to play the source fi-
les (guitar, clarinet, trumpet, violin) while adjusting the he-
adphones volume to a comfortable level. The soundcheck
also constitutes a small training session on the four tim-
bres, to avoid confusion at the beginning of the discrimina-
tion task; 3) timbre discrimination task: an adaptive stair-
case method (simple up-down) with four interleaved tracks
(the four instrument timbres). For each sound presentation,
the participants made a 4-alternative forced choice (4AFC)
test. For each track, the following procedure applied: when
a participant correctly identified the instrument, the du-
ration of the next presentation (of the same instrument)
would be reduced by the step size (initially, 40 ms); on
the other hand, the duration of the next presentation would
be augmented by the step size after a wrong answer. In
the literature, right and wrong answers usually get repre-
sented by positive (+) and a negative (-) signs respectively.
In the light of this notation, a run consists of a sequence
of presentations that get answers of the same sign, and a
reversal occurs at each change of sign. Thus, after the first
misidentification, the first reversal would occur, the first
run would end, the step size would be halved and the dura-
tion would be lengthened (by 20 ms) for each wrong ans-
wer; at the next right answer, another reversal would occur,
the second run would would end and the next presentation
would, again, be shortened by the step size. For each track,
the initial snippet length was set to 500 ms, the step sizes
(halved at the end of each odd run) to 40/20/10/5/2 ms and
the stop criterion to 8 reversals.
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Figure 2. Thresholds for each group and instrument sound,
both individual (grey) and group-based means (colour-
filled symbol) for musicians (circle) and non-musicians
(square). The different variability in thresholds between
instruments is clearly seen.

The order of stimuli presentations was made by inter-
leaving the four tracks using a random permutation of a
4x4 integer sequence of indices. This technique allows the
same timbre to be replayed before a sequence of 4 is com-
pleted, removing a potential bias by avoiding the possibi-
lity of the subject anticipating the next sound. The typical
test time was 15-20 minutes (setup + 150-200 presentati-
ons), with a shortest played duration of 1 ms.

2.5 Analysis

The typical shortest durations played during tests ran-
ged between 1 and 10 ms across all participants. The
four thresholds (one per instrument) were computed as the
mean of the thresholds at reversals. The simple up-down
estimates point p = 0.50 on the psychometric function,
which is well above chance performance for 4AFC (p =
0.25).

The performance difference between the two groups
(musicians and non-musicians) was estimated by perfor-
ming a mixed ANOVA (between-subjects variable: 2 levels
of musical training, within-subjects variable: 4 instrument
sounds).

Moreover, eight sound snippets were created using the
found thresholds and two audio descriptors (spectral cen-
troid and spectral irregularity) were computed in MAT-
LAB using MIRtoolbox 1.7 [6].

3. RESULTS

The outcome of the experiment is shown in Figure 2, with
the threshold means and standard deviations re-stated in
Table 1. It can be seen that the threshold values vary con-
siderably across groups and instruments, with very low
mean values for guitar and trumpet (for non-musicians
only), and mean values almost 10 times higher for vio-
lin. Furthermore, variability is large for all thresholds,
except guitar. A Q-Q plot showed that the data violates
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Mean (std) [ms]
Stimulus Mus Non-mus

Guitar 6.4 (1.6) 12.2 (8.8)
Clarinet 21.3 (26.1) 64.7 (102.9)
Trumpet 34.4 (58.2) 7.4 (2.7)
Violin 58.9 (145.7) 63.2 (63.7)

Table 1. Mean and standard deviation of thresholds of tim-
bre discrimination. Mus = values from 9 musicians, Non-
mus = values from 7 non-musicians.

the normality assumption, while a Levene’s test indica-
ted that group variances are homogeneous. After impro-
ving normality with a 10-log transformation, we proceeded
with a mixed ANOVA (α = 0.05) on the transformed data,
looking for statistically significant effects of musical trai-
ning and stimulus. The between-subjects factor was group
(musicians/non-musicians) and the within-subjects factor
was target (instrument). The Q-Q plot of the ANOVA resi-
duals is approximately linear, so we assume that this ana-
lysis is robust with respect to our dataset. While the stimu-
lus effect was statistically significant (F (3, 42) = 5.035,
p = 0.005), the musical training effect on timbre dis-
crimination of brief sounds was not (F (1, 14) = 1.134,
p = 0.305). The interaction effect was not significant
either (F (3, 56) = 2.416, p = 0.080).

Post-hoc pairwise t-tests (two-sided, Holm-Bonferroni
correction) on the instrument thresholds showed that the
guitar mean threshold was significantly different from vi-
olin (t(15) = −1.833, p = 0.024), but not from clarinet
(t(15) = 4.873, p = 0.095) or trumpet (t(15) = −1.187,
p = 0.871). No other contrasts were significant — trum-
pet vs violin (t(15) = −1.780, p = 0.081), clarinet vs
trumpet (t(15) = −1.913, p = 0.472), clarinet vs violin
(t(15) = −2.097, p = 0.871).

As a rough approximation of an MDS model (with
equal perceptual weightings and no specificities), we crea-
ted a feature space using two calculated audio descriptors:
spectral centroid and spectral irregularity. Spectral irre-
gularity is a measure of the amplitude deviation between
successive peaks of the spectrum (implemented in MIR-
Toolbox 1.7 [6]), a feature analogous to spectral deviation.
The two descriptors were chosen for two reasons: 1) they
are informative as a set, as they are not strongly correlated
(see e.g. [15]); 2) they can be computed as single-number
features, and are thereby easy to visualize and more robust
to the short snippet durations than other descriptors which
require frame-based analysis, e.g. spectral flux.

The feature space is seen in Figures 3 (mean thresholds)
and 4 (individual thresholds), with colours denoting the
four instruments: guitar (black), clarinet (blue), trumpet
(red), and violin (green). The values for the 2 s source fi-
les are not plotted in Figure 4, thereby the different x-axis
scale. As a general trend, the spectral centroid gets lowe-
red for reduced duration. On the other hand, the spectral
irregularity seem to either stay constant (clarinet), increase
(guitar and violin), or fluctuate (trumpet) depending on the
instrument sound.
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Figure 3. Mean thresholds for the four instruments in a
feature space spanned by two audio descriptors: spectral
centroid and spectral irregularity (computed using [6]) for
the four instruments. Labels of the format xyz, with x
defining the instrument (gt = guitar (black), cl = clarinet
(blue), tp = trumpet (red), vln = violin (green)), y defi-
ning the duration of the audio file (Thr = audio snippet
cut at threshold length, Full = 2 s long source file) and
z defining the test group (Mus = musicians, Nonmus =
non-musicians).
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Figure 4. Thresholds for all participants and the four in-
struments in a feature space spanned by two audio descrip-
tors: spectral centroid and spectral irregularity (computed
using [6]) for the four instruments. The 2 s long source fi-
les are labelled xFull, with x defining the instrument (gt =
guitar (black), cl = clarinet (blue), tp = trumpet (red), vln
= violin (green).

Additionally, we computed the log attack times of the
four source files (LATguitar = −1.921, LATclarinet =
−0.930, LATtrumpet = −0.506, LATviolin = −1.092).
However, since the attack phase is incomplete for the thres-
hold snippets, this feature was less informative in relation
to the perceptual result.
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4. DISCUSSION

Using an adaptive procedure, we investigated the tempo-
ral thresholds for timbre discrimination of different sounds
for musically trained and untrained listeners. Our findings
agree with the existing literature with respect to the overall
high performance of both groups. The overall performance
was best for guitar, both with respect to duration thresholds
and variability, as confirmed by post-hoc tests.

While we measured an average violin threshold of about
60 ms, Suied et al. [21] report window lengths correspon-
ding to above chance performance as small as 8 ms for
string sounds in a first experiment, then doubled to 16 ms
in a subsequent trial (with other instruments as distractors).
Suied et al. offer two plausible interpretations of the high
performance levels: a successful adjustment of the audi-
tory representation of the stimuli, which is specific to the
signal gating setup – which is described as a computatio-
nally challenging form of unsupervised learning – or an ef-
ficient activation of spectral cues even for deteriorated sti-
muli. Both interpretations could apply to our experiment.

Some differences between our method and that used by
Suied et al. [21] are worth mentioning. While we asked our
participants to indicate the instrument heard in a 4AFC-
task that got more challenging over time, Suied et al. asked
their subjects to indicate whether the sound was a target
sound (50% of presentations) or not. The range of possi-
ble sounds was also wider in their study, with seven other
instruments beside those belonging to the target. Before
their test, however, the participants listened to the targets
repeatedly for all stimuli durations. It is therefore diffi-
cult to judge whether this would result in a harder task for
the participants compared to the one we chose. The task
of categorizing (target vs distractor) or identifying (4AFC)
sound are different: although the thresholds are still in the
same range, the peculiarity of the tasks might explain the
discrepancy between string instrument thresholds.

Our results showed no effect of musical training, pos-
sibly as a result of the moderate sample size and our ope-
rational definition of musician. Rather than dividing the
participants in two groups (musicians and non-musicians),
using an index of musical sophistication (e.g. [13, 14])
could provide a more sensitive measure and allow for a
regression analysis. Moreover, differences between mu-
sicians and non-musicians have been shown in a combi-
ned instrument/voice discrimination task [2] as well as in
brain activity [4], so group differences in terms of cog-
nitive strategies should not be dismissed. On the other
hand, our result agrees with the thesis of MDS researchers,
meaning that the inter-individual differences in perceptual
weighting of different timbral dimensions are independent
of musical training [10].

The very low thresholds and low variability for guitar
(both groups) and trumpet (non-musicians) seem to indi-
cate the presence of early acoustical markers that could
be identified by listeners. Even though it is commonly
assumed that onset is highly significant for sound recog-
nition (see e.g. [16] and [19]), this premise is not uni-
versally accepted by timbre/duration studies. It has been

doubted by Clark et al. [3] and then strongly disputed by
Suied et al., who argue that onset information might even
be misinformative for the discrimination of string instru-
ments (due to the noisy transients caused by the initial
contact between bow and string) [21]. However, the re-
sults shown by Suied et al. seem to indicate that the per-
formance difference between the two window constraints
(random and onset) is both stimulus-specific and inconsis-
tent across window lengths. The gating used in their expe-
riment applied a raised-cosine window, while we applied
a rectangular window with a fixed fade-out length (1 ms)
for all durations, as shown in Figure 1. Thus, our approach
would be more likely to preserve the original amplitude for
longer time (but with a sharper fade-out), while the stimuli
prepared by Suied et al. would decrease in amplitude in a
quicker and smoother manner. As for the acoustic analy-
sis of the stimuli, Suied et al. explain the effect of gating
in terms of “spectral splatter” (the smearing of spectral fe-
atures when short time windows are applied) and refute
the assumption that trivial spectral features are relevant to
the timbre discrimination task, based on a simulation of
auditory excitation patterns derived by the employed sti-
muli [21].

As a direct investigation of the stimuli, we placed the
source files and threshold sound snippets in a feature space
(Figures 3 and 4). Without perceptual weightings, this re-
presentation lacks the depth of MDS models, but it is use-
ful to trace the deterioration of a set of audio descriptors
(spectral centroid and spectral irregularity) for reduced du-
ration. Even though the full set of thresholds forms three
clusters (Figure 4) and most of the guitar data points are
located in one of the clusters (lower right), it is hard to
conclude that the guitar advantage is due to the fact that
the stimulus retains specific audio features for brief dura-
tions. The threshold differences could instead be explai-
ned by the different placement of discrete timbral featu-
res (specificities), which are hard to correlate to the audio
descriptors. The guitar advantage might by explained by
our choice of the onset condition, which preserves the cha-
racteristic ”twang” even for very brief window lengths. A
more systematical investigation of the evolution of a set
of audio descriptors for different stimuli and progressively
decreasing duration would be worth considering for future
work.

5. CONCLUSION

In this paper, we have investigated the temporal thresholds
of timbre discrimination for four instrument sounds. Alt-
hough the thresholds from the staircase method varied sig-
nificantly between stimuli, with means ranging from < 15
ms (guitar) to ≈ 60 ms (violin), there was no signifi-
cant effect of musical training on timbre discrimination.
The guitar advantage can be explained by considering our
choice of window position (always including the sound on-
set) and the timbral specificities of the guitar sound. The
overall low thresholds agree with the findings of the ex-
isting literature, and the adaptive staircase method seems
to constitute a viable alternative to the method of constant
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stimuli for the chosen task. As a result, participants were
able to adjust the weights of the perceptual dimensions of
timbre to the acoustic degradation of the stimuli as the du-
rations were reduced. Future research could use this inves-
tigation as a point for departure for a further examination
of the duration thresholds, using larger sound sets and mul-
tiple window conditions.
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ABSTRACT

Instrument recognition is a fundamental task in music in-
formation retrieval, yet little has been done to predict the
presence of instruments in multi-instrument music for each
time frame. This task is important for not only automatic
transcription but also many retrieval problems. In this pa-
per, we use the newly released MusicNet dataset to study
this front, by building and evaluating a convolutional neu-
ral network for making frame-level instrument prediction.
We consider it as a multi-label classification problem for
each frame and use frame-level annotations as the supervi-
sory signal in training the network. Moreover, we experi-
ment with different ways to incorporate pitch information
to our model, with the premise that doing so informs the
model the notes that are active per frame, and also encour-
ages the model to learn relative rates of energy buildup
in the harmonic partials of different instruments. Exper-
iments show salient performance improvement over base-
line methods. We also report an analysis probing how pitch
information helps the instrument prediction task. Code and
experiment details can be found at https://biboamy.
github.io/instrument-recognition/.

1. INTRODUCTION

Progress in pattern recognition problems usually depends
highly on the availability of high-quality labeled data for
model training. For example, in computer vision, the re-
lease of the ImageNet dataset [11], along with advances in
algorithms for training deep neural networks [26], has fu-
eled significant progress in image-level object recognition.
The subsequent availability of other datasets, such as the
COCO dataset [30], provide bounding boxes or even pixel-
level annotations of objects that appear in an image, facil-
itating research on localizing objects in an image, seman-
tic segmentation, and instance segmentation [30]. Such a
move from image-level to pixel-level prediction opens up
many new exciting applications in computer vision [16].

Analogously, for many music-related applications, it is
desirable to have not only clip-level but also frame-level
predictions. For example, expert users such as music com-
posers may want to search for music with certain attributes

c© Yun-Ning Hung and Yi-Hsuan Yang. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Yun-Ning Hung and Yi-Hsuan Yang. “Frame-level Instru-
ment Recognition by Timbre and Pitch”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

and require a system to return not only a list of songs but
also indicate the time intervals of the songs that have those
attributes [3]. Frame-level predictions of music tags can be
used for visualization and music understanding [31,45]. In
automatic music transcription, we want to know the musi-
cal notes that are active per frame as well as figure out the
instrument that plays each note [13]. Vocal detection [40]
and guitar solo detection [36] are another two examples
that requires frame-level predictions.

Many of the aforementioned applications are related
to the classification of sound sources, or instrument clas-
sification. However, as labeling the presence of instru-
ments in multi-instrument music for each time frame is
labor-intensive and time-consuming, most existing work
on instrument classification uses either datasets of solo in-
strument recordings (e.g., the ParisTech dataset [24]), or
datasets with only clip- or excerpt-level annotations (e.g.,
the IRMAS dataset [7]). While it is still possible to train
a model that performs frame-level instrument prediction
from these datasets, it is difficult to evaluate the result due
to the absence of frame-level annotations. 1 As a result, to
date little work has been done to specifically study frame-
level instrument recognition, to the best of our knowledge
(see Section 2 for a brief literature survey).

The goal of this paper is to present such a study, by tak-
ing advantage of a recently released dataset called Music-
Net [44]. The dataset contains 330 freely-licensed classical
music recordings by 10 composers, written for 11 instru-
ments, along with over 1 million annotated labels indicat-
ing the precise time of each note in every recording and
the instrument that plays each note. Using the pitch labels
available in this dataset, Thickstun et al. [43] built a con-
volutional neural network (CNN) model that establishes
a new state-of-the-art in multi-pitch estimation. We pro-
pose that the frame-level instrument labels provided by the
dataset also represent a valuable information source. And,
we try to realize this potential by using the data to train and
evaluate a frame-level instrument recognition model.

Specifically, we formulate the problem as a multi-label
classification problem for each frame and use frame-level
annotations as the supervisory signal in training a CNN
model with three residual blocks [21]. The model learns

1 Moreover, these datasets may not provide high-quality labeled data
for frame-level instrument prediction. To name a few reasons: the Paris-
Tech dataset [24] contains only instrument solos and therefore misses the
complexity seen in multi-instrument music; the IRMAS dataset [7] la-
bels only the “predominant” instrument(s) rather than all the active in-
struments in each excerpt; moreover, an instrument may not be always
active throughout an excerpt.
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to predict instruments from a spectral representation of au-
dio signals provided by the constant-Q transform (CQT)
(see Section 4.1 for details). Moreover, as another tech-
nical contribution, we investigate several ways to incorpo-
rate pitch information to the instrument recognition model
(Sections 4.2), with the premise that doing so informs the
model the notes that are active per frame, and also encour-
ages the model to learn the energy distribution of partials
(i.e., fundamental frequency and overtones) of different in-
struments [2,4,14,15]. We experiment with using either the
ground truth pitch labels from MusicNet, or the pitch esti-
mates provided by the CNN model of Thickstun et al. [43]
(which is open-source). Although the use of pitch features
for music classification is not new, to our knowledge few
attempts have been made to jointly consider timbre and
pitch features in a deep neural network model. We present
in Section 5 the experimental results and analyze whether
and how pitch-aware models outperform baseline models
that take only CQT as the input.

2. RELATED WORK

A great many approaches have been proposed for (clip-
level) instrument recognition. Traditional approaches used
domain knowledge to engineer audio feature extraction al-
gorithms and fed the features to classifiers such as support
vector machine [25, 32]. For example, Diment et al. [12]
combined Mel-frequency cepstral coefficients (MFCCs)
and phase-related features and trained a Gaussian mix-
ture model. Using the instrument solo recordings from the
RWC dataset [17], they achieved 96.0%, 84.9%, 70.7% ac-
curacy in classifying 4, 9, 22 instruments, respectively. Yu
et al. [47] used sparse coding for feature extraction and
support vector machine for classifier training, obtaining
96% accuracy in 10-instrument classification for the solo
recordings in the ParisTech dataset [24]. Recently, Yip and
Bittner [46] made open-source a solo instrument classifier
that uses MFCCs in tandem with random forests to achieve
96% frame-level test accuracy in 18-instrument classifica-
tion using solo recordings from the MedleyDB multi-track
dataset [5]. Recognizing instruments in multi-instrument
music has been proven more challenging. For example, Yu
et al. [47] achieved 66% F-score in 11-instrument recogni-
tion using a subset of the IRMAS dataset [7].

Deep learning has been increasingly used in more recent
work. Deep architectures can “learn” features by training
the feature extraction module and the classification module
in an end-to-end manner [26], thereby leading to better ac-
curacy than traditional approaches. For example, Li et al.
[27] showed that feeding raw audio waveforms to a CNN
achieves 72% (clip-level) F-micro score in discriminating
11 instruments in MedleyDB, which MFCCs and random
forest only achieves 64%. Han et al. [19] trained a CNN to
recognize predominant instrument in IRMAS and achieved
60% F-micro, which is about 20% higher than a non-
deep learning baseline. Park et al. [35] combined multi-
resolution recurrence plots and spectrogram with CNN to
achieved 94% accuracy in 20-instrument classification us-
ing the UIOWA solo instrument dataset [18].

Number of instru- Number of clips Pitch est.
ments used Train set Test set accuracy

0 3 0 —
1 172 5 62.9%
2 33 1 56.2%
3 95 4 60.5%
4 15 0 56.6%
6 2 0 49.6%

Table 1: The number of clips in the training and test sets
of MusicNet [44], divided according to the number of in-
struments used (among the seven instruments we consider
in our experiment) per clip (e.g., a piano trio uses 3 instru-
ments). We also show the average frame-level multi-pitch
estimation accuracy (using mir eval [38]) achieved by the
CNN model proposed by Thickstun et al. [43].

Due to the lack of frame-level instrument labels in many
existing datasets, little work has focused on frame-level in-
strument recognition. The work presented by Schlüter for
vocal detection [40] and by Pati and Lerch for guitar solo
detection [36] are exceptions, but they each addressed one
specific instrument, rather than general instruments. Liu
and Yang [31] proposed to use clip-level annotations in a
weakly-supervised setting to make frame-level predictions,
but the model is for general tags. Moreover, due to the
assumption that CNN can learn high-level features on its
own, domain knowledge of music has not been much used
in prior work on deep learning based instrument recogni-
tion, though there are some exceptions [33, 37].

Our work differentiates itself from the prior arts in two
aspects. First, we focus on frame-level instrument recog-
nition. Second, we explicitly employ the result of multi-
pitch estimation [6, 43] as additional inputs to our CNN
model, with a design that is motivated by the observation
that instruments have different pitch range and have unique
energy distributions in the partials [14].

3. DATASET

Training and evaluating a model for frame-level instrument
recognition is possible due to the recent release of the Mu-
sicNet dataset [44]. It contains 330 freely-licensed music
recordings by 10 composers with over 1 million annotated
pitch and instrument labels on 34 hours of chamber mu-
sic performances. Following [43], we use the pre-defined
split of training and test sets, leading to 320 and 10 clips
in the training and test sets, respectively. As there are only
seven different instruments in the test set, we only con-
sider the recognition of these seven instruments in our ex-
periment. They are Piano, Violin, Viola, Cello, Clarinet,
Bassoon and Horn. For the training set, we do not ex-
clude the sounds from the instruments that are not on the
list, but these instruments are not labeled. Different clips
use different number of instruments. See Table 1 for some
statistics. For convenience, each clip is divided into 3-
second segments. We use these segments as the input to
our model. We zero-pad (i.e., adding silence) the last seg-
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ment of each clip so that it is also 3 seconds. Due to space
limit, for details we refer readers to the MusicNet website
(check reference [44] for the URL) and also our project
website (see the abstract for the URL).

We note that the MedleyDB dataset [5] can also be used
for frame-level instrument recognition, but we choose Mu-
sicNet for two reasons. First, MusicNet is more than three
times larger than MedleyDB in terms of the total duration
of the clips. Second, MusicNet has pitch labels for each in-
strument, while MedleyDB only annotates the melody line.
However, as MusicNet contains only classical music and
MedleyDB has more Pop and Rock songs, the two datasets
feature fairly different instruments and future work can be
done to consider they both.

4. INSTRUMENT RECOGNITION METHOD

4.1 Basic Network Architectures that Uses CQT

To capture the timbral characteristics of each instrument,
in our basic model we use CQT as the feature represen-
tation of music audio. CQT is a spectrographic represen-
tation that has a musically and perceptual motivated fre-
quency scale [41]. We compute CQT by librosa [34],
with sampling rate 44,100 and 512-sample window size.
88 frequency notes are extracted with 12 bins per octave,
which forms a matrix X ∈ R258×88 as the input data, for
each inputting 3-second audio segment.

We experiment with two baseline models. The first
one is adapted from the CNN model proposed by Liu and
Yang [31], which has been shown effective for music auto-
tagging. Instead of using 6 feature maps as the input to the
model as they did, we just use CQT as the input. Moreover,
we use frame-level annotations as the supervisory signal
in training the network, instead of training the model in a
weakly-supervised fashion as they did. A batch normaliza-
tion layer [23] is added after each convolution layer. Figure
1a shows the model architecture.

The second one is adapted from a more recent CNN
model proposed by Chou et al. [10], which has been shown
effective for large-scale sound event detection. Its design
is special in two aspects. First, it uses 1D convolutions
(along time) instead of 2D convolutions. While 2D con-
volutions analyze the input data as a chunk and convolve
on both spectral and temporal dimensions, the 1D convolu-
tions (along time) might better capture frequency and tim-
bral information in each time frame [10, 29]. Second, it
uses the so-called residual (Res) blocks [21,22] to help the
model learn deeper. Specifically, we employ three Res-
blocks in between an early convolutional layer and a late
convolutional layer. Each Res-block has three convolu-
tional layers, so the network has a stack of 11 convolutional
layers in total. We expect such a deep structure can learn
well for a large-scale dataset such as MusicNet. Figure 1b
shows its model architecture.

4.2 Adding Pitch

Although people usually expect neural networks can learn
high-level feature such as pitch, onset and melody, our pi-

lot study shows that with the basic architecture the network
still confuses some instruments (e.g., clarinet, bassoon and
horn), and that onset frames for each instrument are not
nicely located (see the second row of Figure 3). We pro-
pose to remedy this with a pitch-aware model that explic-
itly takes pitch as input, in a hope that doing so can amplify
onset and timbre information. We experiment with several
methods for inviting pitch to join the model.

4.2.1 Source of Frame-level Pitch Labels

We consider two ways of getting pitch labels in our ex-
periment. One is using human-labeled ground truth pitch
labels provided by MusicNet. However, in real-word appli-
cations, it is hard to get 100% correct pitch labels. Hence,
we also use pitch estimation predicted by a state-of-the-
art multi-pitch estimator proposed by Thickstun et al. [43].
The author proposed a translation-invariant network which
combines traditional filterbank with a convolutional neu-
ral network. The model shares parameters in the log-
frequency domain, which exploits the frequency invariance
of music to reduce the number of model parameters and to
avoid overfitting to the training data. The model reaches
the top performance in the 2017 MIREX Multiple Funda-
mental Frequency Estimation evaluation [1]. The average
pitch estimation accuracy, evaluated using mir eval [38], is
shown in Table 1.

4.2.2 Harmonic Series Feature

Figure 1c depicts the architecture of a proposed pitch-
aware model. In this model, we aim to exploit the observa-
tion that the energy distribution of the partials constitutes
a key factor in the perception of instrument timbre [14].
Being motivated by [6], we propose the harmonic series
feature (HSF) to capture the harmonic structure of music
notes, calculated as follows. We are given the input pitch
estimate (or ground truth) P0 ∈ R258×88, which is a ma-
trix with the same size as the CQT matrix. The entries in
P0 take the value of either 0 or 1 in the case of ground truth
pitch labels, and the value in [0, 1] in the case of estimated
pitches. If the value of an entry is close to 1, we know
that likely a music note with the fundamental frequency is
active on that time frame.

First, we construct a harmonic map that shifts the active
entries in P0 upwards by a multiple of the corresponding
fundamental frequency (f0). That is, the (t, f)-th entry in
the resulting harmonic map Pn ∈ R258×88 is nonzero only
if that frequency is (n + 1) times larger than an active f0
that frame, i.e., f = f0 · (n+ 1).

Then, a harmonic series feature up to the (n+1)-th har-
monics, 2 denoted as Hn ∈ R258×88, is computed by an
element-wise sum of P0, P1, . . . up to Pn, as illustrated in
Figure 1c. In that follows, we also refer to Hn as HSF–n.

When using HSF–n as input to the instrument recog-
nition model, we concatenate CQT X and Hn along the
channel dimension, to the effect that emphasizing the par-
tials in the input audio. The resulting matrix is then used as
the input to a CNN model depicted in Figure 1c. The CNN

2 We note that the first harmonic is the fundamental frequency.
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(a) Baseline CNN [31] (b) CNN + ResBlocks [10] (c) Pitch-aware model (CQT+HSF)

Figure 1: Three kinds of model structure used in this instrument recognition experiment.

model used here is also adapted from [10], using 1D con-
volutions, ResBlocks, and 11 convolutional layers in total.
We call this model ‘CQT+HSF–n’ hereafter.

4.2.3 Other Ways of Using Pitch

We consider another two methods to use pitch information.
First, instead of stressing the overtones, the matrix P0

already contains information regarding which pitches are
active per time frame. This information can be impor-
tant because different instruments (e.g., violin, viola and
cello) have different pitch ranges. Therefore, a simple way
of taking pitch information into account is to concatenate
P0 with the input CQT X along the frequency dimension
(which is fine since we use 1D convolutions), leading to a
258 × 176 matrix, and then feed it to the early convolu-
tional layer. This method exploits pitch information right
from the beginning of the feature learning process. We call
it the ‘CQT+pitch (F)’ method for short.

Second, we can also concatenate P0 with the input CQT
X along the channel dimension, to allow the pitch informa-
tion to directly influence the input CQT X. It can tell us the
pitch note and onset timing, which is critical in instrument
recognition. We call this method ‘CQT+pitch (C)’.

4.3 Implementation Details

All the networks are trained using stochastic gradient de-
scend (SGD) with momentum 0.9. The initial learning rate
is set to 0.01. The weighted cross entropy, as defined be-
low, is used as the cost function for model training:

ln = −yn[tn · log σ(ŷn)+(1−yn) · log(1−σ(ŷn))] , (1)

where yn and ŷn are the ground truth and predicted la-
bel for the n-th instrument per time frame, σ(·) is the
sigmoid function to reduce the scale of ŷn to [0, 1], and
wn is a weight computed to emphasize positive labels and

counter class imbalance between the instruments, based on
the trick proposed in [39]. Code and model are built with
the deep learning framework PyTorch.

Due to the final sigmoid layer, the output of the instru-
ment recognition model is a continuous value in [0, 1] for
each instrument per frame, which can be interpreted as the
likelihood of the presence for each instrument. To decide
the existence of an instrument, we need to pick a threshold
to binarize the result. Simply setting the threshold to 0.5
equally for all the instruments may not work well. Accord-
ingly, we implement a simple threshold picking algorithm
that selects the threshold (from 0.01, 0.02, . . . to 0.99, in
total 99 candidates) per instrument by maximizing the F1-
score on the training set.

F1-score is the harmonic mean of precision and recall.
In our experiments, we compute the F1-score indepen-
dently (by concatenating the result for all the segments) for
each instrument and then report the average result across
instruments as the performance metric.

We do not implement any smoothing algorithm to post-
process the recognition result, though this may help [28].

5. PERFORMANCE STUDY

The evaluation result is shown in Table 2. We first examine
the result between two models without pitch information.
From the first and second rows, we see that adding Res-
blocks indeed leads to a more accurate model. Therefore,
we also use Res-blocks for the pitch-aware models.

We then examine the result when we use ground truth
pitch labels to inform the model. From the upper half of
Table 2, pitch-aware models (i.e., CQT+HSF) indeed out-
perform the models that only use CQT. While the CQT-
only model based on [10] attains 0.887 average F1-score,
the best model CQT+HSF-3 reaches 0.933. Salient im-
provement is found for Viola, Clarinet, and Bassoon.
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Pitch
Method Piano Violin Viola Cello Clarinet Bassoon Horn Avg.

source

none
CQT only (based on [31]) 0.972 0.934 0.798 0.909 0.854 0.816 0.770 0.865
CQT only (based on [10]) 0.982 0.956 0.830 0.933 0.894 0.822 0.789 0.887
CQT+HSF–1 0.999 0.986 0.916 0.972 0.945 0.909 0.776 0.929

groud- CQT+HSF–2 0.997 0.984 0.912 0.968 0.941 0.906 0.799 0.930
truth CQT+HSF–3 0.997 0.985 0.914 0.971 0.944 0.907 0.810 0.933
pitch CQT+HSF–4 0.997 0.986 0.909 0.969 0.944 0.904 0.815 0.932

CQT+HSF–5 0.998 0.975 0.902 0.968 0.942 0.912 0.803 0.928
CQT+HSF–1 0.983 0.955 0.841 0.935 0.901 0.822 0.793 0.890
CQT+HSF–2 0.983 0.954 0.830 0.933 0.899 0.820 0.800 0.889

estimated CQT+HSF–3 0.983 0.955 0.829 0.934 0.903 0.818 0.805 0.890
pitch CQT+HSF–4 0.981 0.955 0.833 0.937 0.903 0.831 0.793 0.890

by [43] CQT+HSF–5 0.984 0.956 0.835 0.935 0.915 0.839 0.805 0.896
CQT+Pitch (F) 0.983 0.955 0.829 0.936 0.887 0.819 0.791 0.886
CQT+Pitch (C) 0.982 0.958 0.819 0.921 0.898 0.827 0.794 0.886

Table 2: Recognition accuracy (in F1-score) of model with and without pitch information, using either ground truth pitches
or estimated pitches. We use bold font to highlight the best result per instrument for the three groups of results.

Figure 2: Harmonic spectrum of Viola (top left), Violin
(top right), Bassoon (bottom left) and Horn (bottom right),
created by the software Audacity [42] for real-life record-
ings of instruments playing a single note.

Moreover, a comparison among the pitch-aware models
shows that different instruments seem to prefer different
numbers of harmonics n. Horn and Bassoon achieve best
F1-score with larger n (i.e., using more partials), while Vi-
ola and Cello achieves best F1-score with smaller n (us-
ing less partials). This is possibly because string instru-
ments have similar amplitudes for the first five overtones,
as Figure 2 exemplifies. Therefore, when more overtones
are emphasized, it may be hard for the model to detect
those trivial difference, and this in turn causes confusion
between similar string instruments. In contrast, there is
salient difference in the amplitudes of the first five over-
tones for Horn and Bassoon, making HSF–5 effective.

Figure 3 shows qualitative result demonstrating the pre-
diction result for four clips in the test set. By comparing the
result of the first two rows and the last row, we see that on-
set frames are clearly identified by the HSF-based model.

Furthermore, when adding HSF, it seems easier for a model
to distinguish between similar instruments (e.g., violin ver-
sus viola). These examples show that adding HSF helps the
model learn onset and timbre information.

Next, we examine the result when we use pitch esti-
mation provided by the model of Thickstun et al. [43].
We know already from Table 1 that multi-pitch estimation
is not perfect. Accordingly, as shown in the last part of
Table 2, the performance of the pitch-aware models de-
grades, though still better than the model without pitch
information. The best result is obtained by CQT+HSF–
5, reaching 0.896 average F1-score. Except for Violin,
CQT+HSF–5 outperforms CQT-only for all the instru-
ments. We see salient improvement for Viola, Clarinet,
Bassoon and Horn, for which the CQT-only model per-
forms relatively worse. This shows that HSF helps high-
light differences in the spectral patterns of the instruments.

Besides, similar to the case when using ground truth
pitch labels, when using the estimated pitches, we see that
Viola still prefers using fewer harmonic maps, whereas
Bassoon and Horn prefer more. Given the observation that
different instruments prefer different number of harmon-
ics, it may be interesting to design an automatic way to dy-
namically decide the number of harmonic maps per frame,
to further improve the result.

The fourth row of Figure 3 gives some result for CQT+
HSF–5 based on estimated pitches. Compared to the re-
sult of CQT only (second row), we see that CQT+HSF–5
nicely reduces the confusion between Violin and Viola for
the solo violin piece, and reinforces the onset timing for
the string quartet piece.

Moving forward, we examine the result of the other two
pitch-based methods, CQT+Pitch (F) and CQT+Pitch (C),
using again estimated pitches. From the last two rows of
Table 2, we see that these two methods do not perform bet-
ter than even the second CQT-only baseline. As these two
pitch-based methods take the pitch estimates directly as
the model input, we conjecture that they are more sensitive
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Figure 3: Prediction results of different methods for four test clips. The first row shows the ground truth frame-level
instrument labels, where the horizontal axis denotes time. The other rows show the frame-level instrument recognition
result for a model that only uses CQT (‘CQT only’; based on [10]) and three pitch-aware models that use either ground
truth or estimated pitches. We use black shade to indicate the instrument(s) that are considered active in the labels or in the
recognition result in each time frame.

Figure 4: Frame-level instrument recognition result for a
pop song, Make You Feel My Love by Adele, using the
baseline CNN [31] (top), CNN + Res-blocks [10] (middle)
and CQT+HSF–5 using estimated pitches (bottom).

to errors in multi-pitch estimation and accordingly cannot
perform well. From the recognition result of the string
quartet clip in the third row of Figure 3, we see that the
CQT+Pitch (F) method cannot distinguish between similar
instruments such as Violin and Viola. This suggests that
HSF might be a better way to exploit pitch information.

Finally, out of curiosity, we test our models on a famous
pop music (despite that our models are trained on classical
music). Figure 4 shows the prediction result for the song
Make You Feel My Love by Adele. It is encouraging to see

that our models correctly detect the Piano used throughout
the song and the string instruments used in the middle solo
part. Moreover, they correctly give almost zero estimate
for the wind and brass instruments. Moreover, when us-
ing the Res-blocks, the prediction errors on clarinet are re-
duced. When using the pitch-aware model, the prediction
errors on Violin and Cello at the beginning of the song are
reduced. Besides, Piano timbre can also be strengthened
when Piano and the strings play together at the bridge.

6. CONCLUSION

In this paper, we have proposed several methods for frame-
level instrument recognition. Using CQT as the input fea-
ture, our model can achieve 88.7% average F1-score for
recognizing seven instruments in the MusicNet dataset.
Even better result can be obtained by the proposed pitch-
aware models. Among the proposed methods, the HSF-
based models achieve the best result, with average F1-
score 89.6% and 93.3% respectively when using estimated
and ground truth pitch information.

In future work, we will include MedleyDB to our train-
ing set to cover more instruments and music genres. We
also like to explore joint learning frameworks and recur-
rent models (e.g., [8, 9, 20]) for better accuracy.
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ABSTRACT

We describe an interactive music composition system that
assists a user in refining chords and melodies by gener-
ating chords for melodies (harmonization) and vice versa
(melodization). Since these two tasks have been dealt with
independently, it is difficult to jointly estimate chords and
melodies that are optimal in both tasks. Another problem
is developing an interactive GUI that enables a user to par-
tially update chords and melodies by considering the la-
tent tree structure of music. To solve these problems, we
propose a hierarchical generative model consisting of (1) a
probabilistic context-free grammar (PCFG) for chord sym-
bols, (2) a metrical Markov model for chord boundaries,
(3) a Markov model for melody pitches, and (4) a metri-
cal Markov model for melody onsets. The harmonic func-
tions (syntactic roles) and repetitive structure of chords are
learned by the PCFG. Any variables specified by a user can
be optimized or sampled in a principled manner according
to a unified posterior distribution. For improved melodiza-
tion, a long short-term memory (LSTM) network can also
be used. The subjective experimental result showed the ef-
fectiveness of the proposed system.

1. INTRODUCTION

Music composition is a highly intelligent task that has been
considered to be done only by musically trained people.
To help musically untrained people create their own musi-
cal pieces, automatic music composition has actively been
studied (e.g., [4, 8, 19, 31]). While conventional studies
have aimed at full automation of music composition, in
the process of music composition, melodies (sequences of
musical notes) and chord sequences are partially and incre-
mentally refined by trial and error until the resulting musi-
cal piece has musically appropriate structure. Our aim is to
develop an interactive arrangement system that can assist
unskillful people to take such a process for reflecting their
preference in creating melodies and chord sequences.

It is non-trivial to reflect user’s preference to a musical
piece in a consistent and unified framework of statistical

c⃝ Hiroaki Tsushima, Katsutoshi Itoyama, Eita Nakamura,
Kazuyoshi Yoshii. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Hiroaki Tsushima,
Katsutoshi Itoyama, Eita Nakamura, Kazuyoshi Yoshii. “An Interactive
System for Generating Chords and Melodies Based on a Tree-Structured
Model”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

Figure 1: Our interactive music arrangement system based
on a tree-structured generative model.

modeling. This problem is hard to solve especially when a
black-box method (e.g., neural end-to-end learning) is used
for music generation. To incrementally refine a musical
piece, one may iteratively use a harmonization method for
generating a chord sequence from a melody [4, 19, 24, 28]
and a melodization method for generating a melody from a
chord sequence [3,7,8,15,22,30,31]. This approach, how-
ever, cannot enable a user to partially and incrementally re-
fine melodies and chords in consideration of the optimality
of the whole musical piece because each task has a unique
evaluation criterion.

Since music is typically well-characterized by chords
and melodies, it is important to be aware of complicated
structures within and between chords and melodies. when
composing a musical piece. To generate a musically ap-
propriate sequence of chords, the harmonic functions of
chords, which typically consist of three categories, i.e.,
tonic (T), dominant (D), and subdominant (SD), should
be considered because such functions represent syntactic
roles in the same way as parts of speech in written texts. In
addition, a sequence of harmonic functions of chords has a
tree structure [21, 26]. For example, a chord sequence (C,
Dm, G, Am, C, F, G, C) can be interpreted as (((T, SD),
(D, T)), ((T, SD), (D, T))), where subtrees such as (T, SD),
(D, T), and ((T, SD), (D, T)) appear repeatedly in a hierar-
chical manner. Therefore, it is desirable to consider such
the hierarchical tree structure of chord sequences when we
computationally help people to create a new music.

In this paper we propose an interactive music arrange-
ment system that enables musically untrained users to cre-
ate a melody and a chord sequence (Fig. 1). To partially
and incrementally refine the piece, users can choose sev-
eral types of operations that are often exploited by mu-
sically trained people. Specifically, the entire chord se-
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quence and the corresponding tree structure can be refined
jointly for a melody; the onset time of a specified chord can
be refined; two adjacent chords forming a subtree can be
merged into a single chord or a chord can be split into two
chords; and melody notes in the region of a specified chord
can be refined. All a user needs to do is to specify where
to update the piece and it is not necessary to manually edit
individual musical elements.

To optimize a chord sequence and a melody in a unified
criterion, we propose a tree-structured hierarchical gen-
erative model that consists of (i) a probabilistic context-
free grammar (PCFG) generating chord symbols [28], (ii) a
metrical Markov model generating chord rhythms, and (iii)
a Markov model generating melody pitches conditionally
on the chord sequence, and (iv) a metrical Markov model
generating melody rhythms (Fig. 2). The rule probabili-
ties of the PCFG are learned from chord sequences, with
the expectation that the syntactic roles of chords are cap-
tured by the non-terminal symbols [29]. The other mod-
els are also learned from chord and/or note sequences. To
improve the melodization process, a long short-term mem-
ory (LSTM) network can be used instead of the Markov
models (iii) and (iv) for capturing the long-term character-
istic of a melody. Using the generative model trained in
advance, we can estimate any “missing” variables, i.e., an
unpleasant part of chords or musical notes specified by the
user, in a statistical manner.

The major contribution of this study is the realization of
a directability-aware music composition/arrangement sys-
tem based on a unified probabilistic model. This system
provides a user with an easy-to-use GUI that shows other
possibilities for an unpleasant part of the piece and all op-
erations on the GUI are implemented as posterior inference
based on the probabilistic model. Our contribution lies in
the marriage of AI and human creativity.

2. RELATED WORK

This section reviews related studies on automatic harmo-
nization and melodization.

2.1 Automatic Harmonization

Many studies have been conducted for automatic harmo-
nization for given melodies. Some studies aim to gener-
ate a sequence of chord symbols (as in this paper), and
others aim to generate several (typically four) voices of
musical notes. In the former type of research, Chuan and
Chew [4] proposed a method consisting of three processes:
selecting musical notes that might form chords from given
melodies with a support vector machine (SVM), construct-
ing triad chords from the selected notes, and generating
chord progressions by using a rule-base method. Simon
et al. [24] proposed a commercial system MySong based
on hidden Markov models (HMMs) with Markovian chord
transitions. Raczyński et al. [20] proposed similar Markov
models in which chords are conditioned by melodies and
time-varying keys. Tsushima et al. [28] proposed a har-
monization method that considers the hierarchical repeti-
tive structure of sequences of chord symbols obtained by
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Figure 2: A tree-structured hierarchical generative model
for chord symbols and melodies.

PCFGs and pitch transitions conditioned by chord symbols
with Markov models. De Prisco et al. [19] proposed a har-
monization method for only a base line of the input with
a distinctive network that models the dependencies among
bass notes, the previous chord, and the current chord.

In the latter type of research, Ebcioğlu [6] proposed
a rule-based method for generating four-part chorales in
Bach’s style. Several methods of using variants of genetic
algorithms (GAs) based on music theories have also been
proposed [17, 18, 27]. Allan and Williams [2] proposed
an HMM-based method that represents chords as hidden
states and musical notes as observed outputs. A hidden
semi-Markov model (HSMM) [11] has been used for ex-
plicitly representing the durations of chords. Paiement et
al. [16] proposed a hierarchical tree-structured model that
describes chord movements from the viewpoint of hierar-
chical time scales by dividing the notations of chords. To
generate highly convicting four-part chorales, a deep re-
current neural network has also been used for capturing the
long-term characteristic of a melody and a harmony [12].

2.2 Automatic Melodization

There have been many studies on automatic melodization
[3,8,15,22,30,31]. Fukayama et al. [8] developed a system
named Orpheus that generates a melody for a given lyric
in a way that the prosody of the lyric matches the dynam-
ics of the melody. Roig et al. [22] proposed a method of
generating a monophonic melody by using a probabilistic
model of rhythm patterns and pitch contours.

Recent studies have applied deep learning techniques.
In Magenta project [30], for example, recurrent neural net-
works (RNNs) are used for learning long-term dependency
of music. Yang et al. [31] proposed a novel method for
generating diverse monophonic melodies by combining a
generative adversarial network (GAN) with a convolutional
neural network (CNN). To generate diverse melodies, Mo-
gren [15] proposed adversarial training of an RNN that
works on continuous sequential data. The method based
on a restricted Boltzmann machine (RBM) conditioned on
RNNs that models temporal dependency has been proposed
to generate polyphonic music [3]. In addition, Eck et al. [7]
have proposed an LSTM-based method for generating both
melodies and chords by capturing the characteristic of note-
by-note transitions and the mutual dependency between
musical notes and chord symbols.
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3. USER INTERFACE

The proposed system, which is implemented as a web ser-
vice based on HTML5, enables a user to incrementally re-
fine a chord sequence and a melody on a GUI (Fig. 1). To
use a system, a user is asked to upload a melody of eight
bars. The system then estimates a chord sequence that har-
monizes with the melody. The chord onsets are located at
the bar lines. Supported arrangement operations are:

• Updating the chord symbols: The chord symbols
and the latent tree structure behind the chord sym-
bols are jointly optimized for the current melody.

• Updating a chord onset: One of the chord onsets
(boundaries) specified by a user is optimized.

• Splitting a chord: One of the chords specified by a
user is split into two adjacent chords.

• Merging chords: Two adjacent chords that form a
subtree are merged into a single chord.

• Updating the melody: Melody notes in the region
of a chord specified by a user are updated while keep-
ing consistency with neighboring measures.

4. PROBABILISTIC MODELING

This section explains a unified probabilistic model that rep-
resents the hierarchical generative process of a chord se-
quence and a melody. The proposed model consists of four
sub-models, which are trained independently.

4.1 Mathematical Notation

We assume that chord and melody onsets are on the 16th-
note-level grid. Let L be the number of measures of a mu-
sical piece (L = 8 in this paper) and T = 16L be the
total number of time units. A sequence of chord symbols
and that of chord onsets are denoted by z = {zn}Nn=1

and ϕ = {ϕn}Nn=1, respectively, where N is the number
of chords and ϕn takes an integer in [0, T ). Similarly, a
sequence of melody pitches and that of melody onsets in
the region of chord zn is denoted by pn = {pn,i}Ini=1 and
ψn = {ψn,i}Ini=1, respectively, where In is the number of
musical notes in that time span, pn,i is a MIDI note num-
ber from 32 to 93, and ψn,i takes an integer in [ϕn, ϕn+1).
The whole melody is denoted by p = {pn}

N
n=1 and ψ =

{ψn}Nn=1, where I =
∑N
n=1 In is the number of melody

notes.
Let t be a latent tree that derives z according to a PCFG

and tm:n be an inside part (subtree) of t that derives zm:n.
Thus t = t1:N . We often use tm:n to indicate the root node
of the subtree for simplicity. Let t¬m:n be an outside part
of t that derives z1:m−1, tm:n, and zn+1:N .

4.2 Model Formulation

We formulate a unified probabilistic model that represents
the generative process of a latent tree t, chord symbols z,
chord onsets ϕ, melody pitches p, and melody onsets ψ.

4.2.1 Probabilistic Context-Free Grammar for t and z

A derivation tree t and chord symbols z are generated in
this order according to a PCFG G = (V,Σ, R, S), defined
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Figure 3: Configuration of the LSTM network

by a set of non-terminal symbols V that are expected to
represent the hierarchical structure and syntactic roles of
chords, a set of terminal symbols (chord symbols) Σ, a
set of rule probabilities R, and a start symbol S (a non-
terminal symbol located on the root of a syntax tree). There
are three types of rule probabilities. θA→BC is the prob-
ability that a non-terminal symbol A ∈ V branches to
non-terminal symbols B ∈ V and C ∈ V . ηA→α is the
probability that A ∈ V emits terminal symbol α ∈ Σ. A
non-terminal symbol A ∈ V emits a terminal symbol with
a probability of 0 < λA < 1 and otherwise it branches.
These probabilities are normalized as follows:∑

B,C∈V
θA→BC = 1,

∑
α∈Σ

ηA→α = 1. (1)

We let θA = {θA→BC}B,C∈V and ηA = {ηA→α}α∈Σ.

4.2.2 Metrical Markov Models for ϕ and ψ

The metrical Markov model for chord onsets ϕ on the reg-
ular 16th-note-level grid is defined by

p(ϕn|ϕn−1) = πϕn−1mod16,ϕn−ϕn−1
, (2)

where πa,b indicates the probability that a chord starting at
the a-th position in a measure (0 ≤ a < 16) continues for
the duration of b time units (0 < b ≤ T ).

A similar model for melody onsets ψ is defined by

p(ψn,1|ψn−1,In−1
) = ρψn−1,In−1

mod16,ψn,1−ψn−1,In−1
,

p(ψn,i|ψn,i−1) = ρψn,i−1mod16,ψn,i−ψn,i−1 (1 < i), (3)

where ρa,b indicates the probability that a musical note
starts at the a-th position in a measure (0 ≤ a < 16) and
continues for the duration of b time units (0 < b ≤ T ).

4.2.3 Markov Model for p Conditioned on z

The Markov model for melody pitches p conditioned by a
chord sequence given by z is defined by

p(pn,1|pn−1,In−1 , zn) = τznpn−1,In−1
,pn,1

, (4)

p(pn,i|pn,i−1, zn) = τznpn,i−1,pn,i
(2 ≤ i ≤ In), (5)

where τ ca,b is the transition probability from pitch a to pitch
b under chord symbol c.

4.2.4 Bayesian Integration of Four Sub-models

Letting Ω = {t, z,ϕ,p,ψ} be a set of the external random
variables and Θ = {θ,η,λ,π,ρ, τ} be a set of the model
parameters, the unified model is given by

p(Ω,Θ) = p(t, z|θ,η,λ)p(ϕ|π)p(ψ|τ )p(p|z)p(Θ), (6)

where p(Θ) = p(θ)p(η)p(λ)p(π)p(ρ)p(τ ) is a prior dis-
tribution over Θ. To make Bayesian inference tractable,
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we use conjugate Dirichlet and beta priors as follows:

θA ∼ Dir(ξA), ηA ∼ Dir(ζA), λA ∼ Beta(ιA), (7)

πa ∼ Dir(βa), ρa ∼ Dir(γa), τ
c
a ∼ Dir(δca), (8)

where ξA, ζA, ιA, βa, γa, and δca are hyperparameters.

4.2.5 LSTM Network for x Conditioned on c

In melody arrangement, we can also use an LSTM model
that can learn complicated long-term dynamics of melodies.
Let x = {xt}Tt=1 be another representation of the entire
melody, where xt takes a MIDI note number at the t-th
position (0 ≤ t < T ) if the note onset is at that position
and otherwise takes 0. Let c = {ct}Tt=1 be another rep-
resentation of the entire chord sequence given by z and
ϕ, where ct indicates a chord symbol at the t-th position.
Given a sequence of musical notes x1:t = {xi}ti=1 and
that of chord symbols c1:t = {ci}ti=1, the LSTM model
determines the probability of the next musical note given
by p(xt+1|x1:t, c1:t) (Fig. 3).

4.3 Model Training

Our goal is to obtain the maximum a posteriori (MAP) es-
timates of the model parameters Θ = {θ,η,λ,π,ρ, τ}.
To estimate the parameters θ, η, and λ of the PCFG from
a chord sequence z (multiple sequences are used in prac-
tice) in an unsupervised manner, we use an inside-filtering-
outside-sampling algorithm [13,28] for generating samples
from the true posterior distribution p(θ,η,λ, t|z). More
specifically, the latent tree t and the parameters θ, η, and λ
are alternately sampled from the conditional posterior dis-
tributions p(t|θ,η,λ, z) and p(θ,η,λ|t, z), respectively.

The parameters π, τ and ρ of the Markov models are
learned independently. Given a sequence of chord onsetsϕ
and a sequence of melody onsets ψ, the posterior distribu-
tion of π and that of ρ can be calculated, respectively, be-
cause of the conjugacy between the Dirichlet and categor-
ical distributions. Similarly, given a sequence of melody
pitches p associated with a chord sequence specified by z
and ϕ, the posterior distribution of τ can be calculated.
The LSTM network is also trained from the same data.

5. CHORD AND MELODY ARRANGEMENT

This section explains how to leverage the unified model de-
scribed in Section 4 for implementing the five operations
described in Section 3. Let Ω = {t, z,ϕ,p,ψ} be a set
of random variables. To estimate a “missing” part χ ⊂ Ω,
we take a principled statistical approach based on the con-
ditional posterior distribution p(χ|Ω¬χ,Θ), where A¬B
indicates a subset of A obtained by removing the elements
of B from A. Note that full automatic music composition
can be achieved by sampling Ω from p(Ω|Θ).

5.1 Updating the Chord Symbols

When the melody pitches p are fixed, the chord symbols z
and the latent tree t can be optimized by maximizing the
conditional posterior distribution p(t, z|p,Θ). Since both
t and z are latent variables in this operation, we extend the
Viterbi algorithm to infer t and z from p. First, the inside
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Figure 4: Split and merge operations.

probabilities are recursively calculated from the layer of
terminal symbols z to the start symbol S according to

pAn,n = λAmax
z∈Σ

ηA→z p(pn|z), (9)

pAn,n+k = (1− λA) max
B,C∈V
1≤l≤k

θA→BCp
B
n,n+l−1p

C
n+l,n+k, (10)

where p(pn|zn) is the probability that a pitch subsequence
pn is generated conditionally on chord zn:

p(pn|zn) =
In∏
i=1

p(pn,i|pn,i−1, zn), (11)

where pn,0 = pn−1,In−1
. The most likely t and z are ob-

tained by recursively back-tracking the most likely paths
from the start symbol S.

5.2 Updating a Chord Onset

When the melody pitches p and the melody onsets ψ are
given and the chord symbols z are fixed, a chord onset ϕn
can be optimized by maximizing the conditional posterior
distribution given by

p(ϕn|z,ϕ¬n,p,ψ,Θ)

∝ p(pn−1|zn−1)p(pn|zn)p(ϕn|ϕn−1)p(ϕn+1|ϕn), (12)

where ϕn is restricted such that ψn−1,1 ≤ ϕ ≤ ψn,In .

5.3 Splitting a Chord and Merging Chords

The chord symbols z and the chord onsets ϕ can be locally
refined by splitting a chord into adjacent chords or merging
adjacent chords into another chord (Fig. 4). A subtree of t
is updated accordingly. The split operation can be applied
to any chord zn while the merge operation is restricted to
adjacent chords zn:n+1 forming a subtree tn:n+1.

A chord zn associated with a non-terminal symbol tn:n
is split at a 16th-note-level position ϕ into two new chords
zLn and zRn associated with two new symbols tLn and tRn
by maximizing the conditional posterior distribution given
by p(tLn , t

R
n , z

L
n , z

R
n , ϕ|t¬n:n, z¬n,ϕ,p,ψ,Θ). This oper-

ation makes a new subtree that has tn:n as its root node,
derives tLn and tRn , and generates zLn and zRn . To do this, we
use the extended Viterbi algorithm for estimating the most
likely subtree from pn. First, the inside probabilities are
recursively calculated from the layer of terminal symbols
zLn and zRn to the root node tn:n according to

αAϕ = λAmax
z∈Σ

ηA→z p(p
L
n |z, ϕ), (13)

βAϕ = λAmax
z∈Σ

ηA→z p(p
R
n |z, ϕ), (14)

ptn:n

ϕ = max
B,C∈V

θtn:n→BCα
B
ϕ β

C
ϕ p(ϕ|ϕn)p(ϕn+1|ϕ), (15)
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where pLn and pRn are the subsequences of pitches obtained
by splitting pn with a boundary ϕ. The most likely zLn , zRn ,
tLn , tRn , and ϕ are obtained by recursively back-tracking the
most likely paths from tn:n.

Two adjacent chords zn and zn+1 associated with non-
terminal symbols tn:n and tn+1:n+1 are merged into a sin-
gle chord z associated with a non-terminal symbol tn:n+1

by maximizing the conditional posterior distribution given
by p(z|t¬n:n+1, z¬n:n+1,ϕ¬n+1,p,ψ,Θ). The most likely
z is obtained as follows:

z = arg max
z′∈Σ

ηtn:n+1→z′ p(pn|z′)p(pn+1|z′). (16)

5.4 Updating the Melody

When a chord symbol zn, the last pitch pn−1,In−1
in the re-

gion of the previous chord zn−1, and the first pitch pn+1,1

in the region of the next chord zn+1 are given, a sequence
of musical notes in the region of zn (between ϕn and ϕn+1)
is obtained by maximizing the conditional posterior dis-
tribution p(pn|zn, pn−1,In−1

, pn+1,1,Θ). To do this, we
propose an efficient algorithm based on dynamic program-
ming. Let αyt,dt be the marginal likelihood that a note at
the pitch yt is located on the score time t and the duration
of the previous note is dt on a chord zn:

αyt,dt = p(yt, dt|zn) (17)

This probability can be calculated recursively in the score
time t ∈ {ϕn, ..., ϕn+1, ψn+1,1}.

αyt,dt = ρt−dt,t
∑

yt−dt , dt−dt

αyt−dt ,dt−dt
τznyt−dt ,yt

In each score time t, dt can take values in {1, ..., t, t −
ψn−1,In−1

}. By using this probability, we can recursively
sample pn from the beat score time ψn+1,1 to ψn−1,In−1

.
Another improved way of partially updating the melody

is to use the LSTM model. Suppose that we aim to update
xi:j in the whole melody x. Given a chord sequence c
and melody segments x1:i−1 and xj+1:T , the missing part
xi:j can be sampled from the conditional posterior distribu-
tion p(xi:j |c, x1:i−1, xj+1:T ) ∝ p(x|c). First, the pitches
x1:i−1 and chords c1:i−1 are fed to the network to update
the hidden states. The missing part xi:j is then sampled
sequentially according to the probability p(xt+1|x1:t, c1:t)
learned by the LSTM. This enables us to evaluate p(x|c).
Among a sufficient number of generated samples of x1:i−1,
a sample with the highest p(x|c) is selected.

6. EVALUATION

This section reports objective and subjective evaluations on
the user interface and the music arrangement method.

6.1 Experimental Conditions

To train the PCFG, we used 705 chord sequences of mu-
sical sections (e.g., verse, bridge, and chorus) from 468
pieces of popular music included in the SALAMI dataset
[25]. Only chord sequences with a length between 8 and
32 measures were chosen. The vocabulary of chord sym-
bols was limited to the combinations of the 12 root notes
{C, C#, ..., B} and the 2 chord types {major, minor}. The

number of kinds of non-terminal symbols of the PCFG was
set to 12. The values of the hyperparameter ιA were all set
to 1.0 and those of the other parameters were all set to 0.1.
To train the three Markov models, we used 9902 pairs of
melodies and the corresponding chord sequences from 194
pieces of popular music included in Rock Corpus [5]. To
train the LSTM, we used 9265 melodies associated with
chord sequences from pieces of popular music included in
Rock Corpus and Nottingham Database [1]. Note that all
of the data used in our experiments were transposed to the
C major or C minor key. The number of the hidden units
was 50 and the softmax-cross-entropy was used as a loss
function. The parameters of the LSTM were optimized by
using Adam [14]. The number of samples generated by the
LSTM (described in Section 5.4) was 50.

6.2 Objective Evaluation of Melody Arrangement

We evaluated the function of updating a melody in terms
of the note density of the generated musical notes via 10-
fold cross validation on the Rock Corpus and Nottingham
Database. For the region of each chord zn, a sequence of
melody pn is arranged by using the two methods based on
the Markov model and the LSTM described in Section 5.4.
We measured the mean squared error (MSE) between the
note density per measure of the generated musical notes
and the mean value of the density of other regions given
by

MSE=
1

N−1

N−1∑
n=1

{
16I∗n

ϕn+1−ϕn
−

∑
m̸=n 16Im∑

m̸=n (ϕm+1−ϕm)

}2

,

where I∗n and In were the number of generated musical
notes and that of the original musical notes, respectively.
The average MSE was calculated over all melodies. The
average MSE obtained by the LSTM model was 5.52 while
that obtained by the Markov model was 6.42. This indi-
cates that the LSTM-based method is a little more effec-
tive for updating a partial melody in consideration of the
note density of the whole melody because it can capture
the long-term dependency.

6.3 Subjective Evaluation of the Proposed System

We conducted the subjective evaluation of the system1 in
terms of usability and effectiveness in interactive chord and
melody arrangement. Five melodies of 8 measures were
extracted from the RWC music database [9, 10]. We asked
11 subjects to test our system. Four subjects who had
the experience of playing musical instruments for more
than five years were regarded as people with musical back-
grounds. Each subject was asked to interactively make a
musical piece by using each of the five melodies as an ini-
tial seed and then grade the system on a 5-point Likert scale
(from “strongly agree (1)” to “strongly disagree (5)”) in
terms of the following 15 criteria:

• The chord sequences obtained were suitable for the
melodies (I).

• The chord sequences obtained by the split or merge
operation were musically natural (II, III).

1 The interface used in this experiment is available online:
http://sap.ist.i.kyoto-u.ac.jp/members/tsushima/ismir2018/
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Figure 5: Results for people with musical backgrounds
(top) and those for people without musical backgrounds
(bottom). The middle bars indicate the mean value.

• The melodies obtained were suitable for the chord se-
quences (IV).

• The melodies obtained were musically natural (V).
• The musical pieces obtained by updating chord sym-

bols, splitting a chord, merging chords, or updating a
melody were interesting (VI, VII, VIII, IX).

• The function of updating chord symbols, splitting a
chord, merging chords, or updating a melody was use-
ful (X, XI, XII, XIII, XIV).

• The user interface has the capability of helping users
make musical pieces (XV).

We also asked the subjects to tell us how each of them felt
about the system.

The results of this user study is shown in Fig 5. In terms
of the naturalness and the interestingness, the two opera-
tions, updating chord symbols and updating melodies, ob-
tained the slightly high mean ratings of 3.67 in criterion (I),
3.69 in criterion (IV), and 3.51 in criterion (VI). As seen in
the score for the criterion (V), the subjects with musical
backgrounds, compared with the others, tended to feel that
the updated melodies were less musically natural.As seen
in the score for the criterion (IX), the subjects with musical
backgrounds tended to feel that the updated melodies were
more interesting. In terms of the usefulness of each oper-
ation, each operation obtained the reasonably high mean
ratings (from 3.27 to 3.91).

We obtained the following opinions on the usability of
our system:
• It was interesting that even a user without any expe-

riences in music composition can edit a musical piece
by iterating several operations.

• An operation that updates one chord symbol is neces-
sary for more freely editing a chord sequence.

We also obtained the following opinions on the problems
of some operations:
• The chord sequences obtained were almost always ap-

propriate for all samples of melodies but the system
tended to generate only basic chords (e.g., C major).

• The updated melodies were often unnatural when an
original melody has some repeated sections.

The reason for the former problem may be that the chord
symbols are updating by using the Viterbi algorithm. The
reason for the latter problem is probably that the LSTM
cannot capture the global repetitive structure of a melody.
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Figure 6: Example operation for interactive generation of
chord sequences and melodies.

6.4 Example of Chord and Melody Arrangement

Fig. 6 shows how the proposed method generates chord se-
quences and melodies. The score (melodies and chords) at
the top shows an initial state in which the chord symbols
were optimized for the melody in the input file (the chord
onsets were located at the bar lines). The second score
shows the state in which the two regions of the melody un-
der the 3rd and 6th chords were updated in order. The third
chord sequence shows the state in which the 4th chord, B♭
major, was split into F major and B♭ major. The fourth
chord sequence shows the state in which the 7th chord, A
minor, and the 8th chord, D minor, were merged into A
minor. This indicates that the proposed method can suc-
cessfully help a user partially update a melody while keep-
ing the consistency of the whole melody and that it can
generate a chord sequence by considering the latent tree
structure behind the chord sequence.

7. CONCLUSION

This paper presented an interactive music arrangement sys-
tem that enables a user to incrementally refine a chord se-
quence and a melody. The experimental results showed
that the proposed system has a great potential to help a
user create his or her original musical pieces.

There would be much room for improving our method.
To improve the diversity of generated chord symbols, the
use of some sampling or beam-search method would be ef-
fective. To improve the naturalness of generated melodies,
the use of a bidirectional LSTM [23] would be effective for
considering the repetitive structures of melodies.

For more specific studies on the effectiveness of our sys-
tem, we plan to measure how well test users can incremen-
tally refine a musical piece compared with the conventional
methods, by counting the number of necessary operations
to make musical pieces meet their satisfaction. We also
plan to conduct large-scale user studies of the system on
the Web. Collecting time-series data of users’ operations
and created pieces, it would be possible to infer their mu-
sical preference and improve the model by reinforcement
learning. Using the same data, it would be possible to re-
veal the process of music creation by humans in terms of
edit operations and optimization strategies.
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ABSTRACT

Modeling the structure of musical pieces constitutes a cen-
tral research problem for music information retrieval, mu-
sic generation, and musicology. At the present, models of
harmonic syntax face challenges on the tasks of detecting
local and higher-level modulations (most previous models
assume a priori knowledge of key), computing connected
parse trees for long sequences, and parsing sequences that
do not end with tonic chords, but in turnarounds. This pa-
per addresses those problems by proposing a new genera-
tive formalism Probabilistic Abstract Context-Free Gram-
mars (PACFGs) to address these issues, and presents vari-
ants of standard parsing algorithms that efficiently enumer-
ate all possible parses of long chord sequences and to es-
timate their probabilities. PACFGs specifically allow for
structured non-terminal symbols in rich and highly flex-
ible feature spaces. The inference procedure moreover
takes advantage of these abstractions by sharing probabil-
ity mass between grammar rules over joint features. The
paper presents a model of the harmonic syntax of Jazz
using this formalism together with stochastic variational
inference to learn the probabilistic parameters of a gram-
mar from a corpus of Jazz-standards. The PACFG model
outperforms the standard context-free approach while re-
ducing the number of free parameters and performing key
finding on the fly.

1. INTRODUCTION

The modeling of non-local relations between musical ob-
jects such as notes and chords constitutes a central re-
search problem for music information retrieval, music gen-
eration, and music analysis. Hierarchical models express
these relations by assuming a latent hierarchical structure
[19,22–24,30,31]. Consider for example the Jazz chord se-
quence Am7 D7 G7 C4 where C4 denotes a major-seventh
chord. Since the first three chords form a II V I sequence

c� Daniel Harasim, Martin Rohrmeier, Timothy J.
O’Donnell. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Daniel Harasim, Martin
Rohrmeier, Timothy J. O’Donnell. “A Generalized Parsing Framework
for Generative Models of Harmonic Syntax”, 19th International Society
for Music Information Retrieval Conference, Paris, France, 2018.

with reference to G7 which is the dominant in C major,
they form a dominant phrase [24]. The dominant phrase as
a whole then refers to the tonic chord C4. All four chords
together thus form a tonic phrase.

Figure 1 presents a syntactic analysis of the A-part
of the Jazz-standard Afternoon in Paris following the ap-
proach from [22]. It illustrates the idea of how pieces can
be decomposed into hierarchically-structured constituents
which stand in part-whole relationship with one another.
Subdominant, dominant, and tonic phrases are denoted by
the scale degrees II, V, and I, respectively. Note that the
subsequence Cm7 F7 B[4 is both a tonic progression in
B[ major and a dominant progression in E[ major. It forms
a dominant phrase in A[ major together with B[m7 and
E[7.

IC

IC

IC

C4

VC

VC

VC

G7

IIC

Dm7

VG

VDb

IAb

IA[

Ab4

VAb

VAb

VAb

E[7

IIAb

B[m7

VEb

IBb

IBb

B[4

VBb

VB[

F7

IIBb

Cm7

IC

C4

Figure 1. Hierarchical analysis of the A-part of the Jazz-
standard Afternoon in Paris.

Models of harmonic syntax similar to Figure 1 have
been successfully applied to melody harmonization [16],
chord inference from audio [5, 6], and harmonic similarity
[7]. There is also some empirical evidence for the psycho-
logical reality of hierarchical structures in music [15, 25].
While earlier theoretical and psychological work on hierar-
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chical models has provided important insight about musi-
cal structure, computational implementation of these mod-
els to date has been limited to relatively small datasets.
Earlier work includes applications to monophonic melodic
data [21], a corpus of 39 blues chord progressions with a
maximum of 24 chords per progression [12], or a dataset
of 76 chord progressions (avg. length 40) from Jazz-
standards that was restricted to subsequences of pieces that
did not change key [4]. All these earlier approaches as-
sume the knowledge of the key of the pieces a priori.

In computational linguistics, Context-Free Grammars
(CFGs) are a standard way of modeling hierarchical con-
stituent structure. They formalize constituent structures us-
ing rewrite rules denoted by long right arrows. The rule
X �! Y Z for example states that the constituent X con-
sists of the two constituents Y and Z. The existence of
natural language treebanks makes it possible to read off the
grammatical rewrite rules including their frequencies from
syntactical analyses by experts. At present, there are mu-
sic databases of simplified Schenkerian analyses [13], syn-
tactic analyses of melodies based on the generative theory
of tonal music [8], and annotated harmonic functions [4].
However, to the best of our knowledge there is currently
no dataset of hierarchically analyzed chord sequences by
human experts that could serve for the training or the eval-
uation of models of harmonic syntax. As a consequence,
there exist no comparisons of models of harmonic syntax
against expert analyses.

In the following, we introduce Abstract Context-Free
Grammars (ACFGs), a generalization of the CFG frame-
work designed to account for feature structures charac-
teristic of musical categories. A first model of Jazz har-
mony is proposed in this framework that covers full pieces
by incorporating modulations (i.e., changes in key). We
train the model in a semi-supervised fashion on a dataset
of Jazz-standards and evaluate it on a small set of hand-
annotated hierarchical analyses. We further propose a so-
lution for handling sequences that do not end with tonic
chords, but in turnarounds. Simulations demonstrate that
the ACFG model is able to outperform a PCFG model of
the dataset. The implementation of the algorithms devel-
oped in this study are publicly available as a package of the
Julia programming language [1]. 1

2. OVERVIEW OF THE APPROACH

While the CFG framework has proven invaluable in com-
putational linguistics, categories and part-whole relations
between musical constituents have properties not pos-
sessed by linguistic structures. Musical categories such as
scale degrees, for example, are equipped with an arithmetic
structure that corresponds to musical transposition.

In the following, we refer to context-free rules of the
form X �! Y X as a preparation of X by Y . The prepa-
ration of the scale degree VB[ by IIB[ in Afternoon in Paris
(see Figure 1) for example is a concrete realization of the
general principle that any category x

k

consisting of a scale

1 https://github.com/dharasim/GeneralizedChartParsing.jl

degree x and a key k can be prepared by an ascending dia-
tonic fifth (x+4 mod 7)

k

. [24]. In addition to facts such as
these, a framework for modeling musical structure has to
account for the fact that the musical categories and rewrite
rules are grouped into key-independent classes. For exam-
ple, both VB[ and VA[

are fifth scale degrees. The prob-
abilities of the application a rule to VB[ and VA[

should
therefore be related.

This paper introduces Abstract Context-free Grammars
(ACFGs), a modeling framework with a greater flexibility
than CFGs. In particular, in ACFGs constituent categories
are allowed to be of any data type and the rules are general-
ized partial functions. Unlike standard context-free rules,
ACFG rules can therefore take advantage of the algebraic
structure of categories. Probabilistic ACFGs extend prob-
abilistic CFGs with the ability to express a wider range of
probability distributions over rules.

3. ABSTRACT CONTEXT-FREE GRAMMARS

3.1 Definitions

Definition 1. A (non-probabilistic) Abstract Context-free
Grammar (ACFG) G = (T,C,C0,�) consists of a set T
of terminal symbols, a set C of constituent categories, a set
of start categories C0 ✓ C, and a set of partial functions

� := { r | r : C 7! (T [ C)

⇤ } ,

called rewrite rules or rewrite functions. The arrow 7! is
used throughout the paper to denote partial functions. A
sequence � 2 (T [ C)

⇤ can be generated in one step
from a sequence ↵ 2 (T [ C)

⇤ by the application of
a rewrite function r 2 �, denoted by ↵ �!

r

�, if
there exist ↵1,↵2 2 (T [ C)

⇤ and A 2 C such that
↵ = ↵1A↵2 and � = ↵1r(A)↵2. A sequence of rewrite
rules r1 . . . rn is called a derivation of a sequence of termi-
nals ↵ 2 T

⇤ if there exists a start category ↵1 2 C0, and
↵2, . . . ,↵n

2 (C [ T )

⇤ such that

↵1 �!
r1 ↵2 �!

r2 · · · �!
rn ↵,

where r

i

is always applied to the leftmost category of ↵
i

for i 2 { 1, . . . , n� 1 }. The set of derivations of ↵ is
denoted by D(↵). The language of the grammar G is the
set of terminal sequences that have a derivation in G.

Note that if C is finite, the languages that can be de-
scribed by ACFGs are exactly the languages that can be
described by standard context-free grammars (CFGs). For
each ACFG with finite C, a CFG with rule set R can be
constructed by dividing each rewrite function with domain
cardinality k into k standard context-free rewrite rules,

R :=

[

r2�

{ (A,↵) 2 C ⇥ (T [ C)

⇤ | r(A) = ↵ } .

Definition 2. A Probabilistic Abstract Context-free Gram-
mar (PACFG) is an ACFG where each category A 2 C is
associated with a random variable X

A

over rewrite func-
tions r such that P(X

A

= r) is positive if and only if r(A)
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is defined, that is A is in the domain of r, A 2 dom(A).
The probability p(d) of a derivation d = r1 . . . rn of a se-
quence of terminal symbols ↵ 2 T

⇤ is defined as the prod-
uct

Q
n

i=1 P(XAi = r

i

) where in each step r

i

is applied to
a category A

i

2 C. The probability of ↵ is then defined as
p(↵) =

P
d2D(↵) p(d).

Note that PACFG categories can share the same proba-
bility distribution over rewrite functions without rewriting
to exactly the same right-hand sites. This important prop-
erty allows us to model the structural relations between
musical keys. We use this property in Section 4 to build
a model that abstract chords sequences from their concrete
scale by defining the probability that a rewrite function is
applied to a scale degree independently of its key. The
sharing of probability mass between rules additionally re-
duces the number of free parameters of a PACFG model.

To illustrate the different learning capabilities of PCFG
and PACFG models, consider a toy PCFG with nonter-
minal symbols C = {S,A,B }, start symbol S, ter-
minal symbols T = { a, b }, and rules S �! A | B,
A �! A A | a, and B �! B B | b. The grammar thus
generates sequences that solely consist either of as or bs.
In a classical PCFG setting, no probability mass is shared
between rules, but each rule has its separate probability.
However, in the process of inferring the probabilities of
the rules from data, it might be desirable to generalize the
rules A �! AA and B �! B B to a meta rule x �! x x

where x 2 {A,B } and to put probability mass on this ab-
stract entity. In that way, the grammar can learn something
about A �! A A when it observes B �! B B and vice
versa. The PACFG version of the PCFG presented above
addresses the problem by replacing the classical context-
free rules by the partial functions r1, r2, r3, r4, and r5 with
r1(S) = A, r2(S) = B, r3(x) = x x for x 2 {A,B },
r4(A) = a, and r5(B) = b. Analogously, a PACFG of
Jazz chord sequences can generalize classical rewrite rules
so that their probabilities do not depend on the keys of their
left-hand sides to model transpositional invariance.

3.2 Parsing

Parsing a sequence of terminal symbols with respect to a
formal grammar is the task of computing the distribution
of parse trees conditioned on this sequence. Many parsers
are based on versions of the CYK algorithm that assumes
grammars to be given in Chomsky normal form. Since
grammar transformations into Chomsky normal form con-
siderably blow up the grammar, the here presented parser
transforms grammars on the fly during parsing, similar
to the transformation presented in [18]. Each rule of the
form A �! B1 . . . Bk

is transformed into a set of states
s

i

= B1 . . . Bi

for 1  i  k, a transition function

tran : S ⇥ (T [ C) ! S, tran(s

i

, B

i+1) = s

i+1

and a completion function comp : S ! 2

C such that
{A } ✓ comp(s

k

), where S denotes the set of all states.
Note that the states and the transition function form a
search trie where the completion function checks if there

items: edges [s, i, j] for s 2 S

constituents [A, i, j] for A 2 C

for and i, j 2 {1, . . . , |↵|+ 1}

goal items: [A, 1, |↵|+ 1] for A 2 S

axioms:
[↵

i

, i, i+ 1]

for i 2 {1, . . . , |↵|}

introduce edge:
[A, i, j]

[s, i, j]

s = tran(s0, A)

complete edge:
[s, i, j]

[A, i, j]

A 2 comp(s)

fundamental rule:
[s, i, j] [A, j, k]

[s

0
, i, k]

tran(s,A) = s

0

Figure 2. Description of the parsing algorithm in the pars-
ing as deduction framework. Existing Constituents can
start the parser to read a sequence of terminal symbols and
categories by the introduce edge rule. The fundamental
rule is then recursively applied to extend these sequences.
The complete edge rule eventually merges sequences to
single constituents if they are the right-hand side of a gram-
mar rule.

is a rewrite rule that has a sequence of terminal symbols
and categories as its right-hand side. This trie data struc-
ture leads to a compact representation of the forest of all
trees for a given input sequence. More generally, the parser
can handle any transition and completion functions derived
from finite-state automata, see [14].

In the following, a generic bottom-up parsing algorithm
for abstract grammars is presented in the parsing as de-
duction framework using the above defined transition and
completion functions [3, 29]. The parsing as deduction
framework is a meta-formalism to state and compare dif-
ferent parsing algorithms. It views the parses of a sequence
as logical deductions of goals from axioms by using con-
stituents as atomic logical formulas. The formula [IB[, 2, 5]

for example states the existence of a constituent with cate-
gory IB[ that spans over the second, third, and fourth termi-
nal symbol. This formula is true in the analysis presented
in Figure 1 because that analysis contains a constituent
with label IB[ over the span from the second to the forth
leaf chord. The goals are constituents that span the full
sequence and come from the set of start categories. The
axioms are formulas of the form [t

i

, i, i + 1] for each ter-
minal in the input sequence t1 . . . tn. The parsing strategy
such as bottom-up parsing or Earley parsing is encoded in
the deduction rules. These rules are denoted by a set of
atomic formulas over a horizontal line, an atomic formula
under this line, and an optional side condition (see Figure
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2). The formula under the line can be deduced from the
formulas above if the side condition holds.

The proposed algorithm makes use of two different
kinds of atomic formulas: edges (not yet completed con-
stituents) and constituents. A state s 2 S together with a
start index i and an end index j is called an edge and de-
noted by [s, i, j]. Analogously, a category A 2 C together
with start and end indices i and j is called a constituent
and denoted by [A, i, j]. Figure 2 shows the axioms, goal
items, and the deduction rules of our algorithm.

3.3 Inference of Rule Probabilities

In this section, we give an overview of an inference algo-
rithm for the rule probabilities P(X

A

= r). Let �
A

=

{ r 2 � | A 2 dom(r) } be the set of rewrite functions
whose domain contains the constituent category A. We
place a Dirichlet distribution on the probability vector de-
scribing the distribution over �

A

, ~✓�A ⇠ Dirichlet(~↵�A)

for pseudocount vector ~↵�A . The inference problem is to
compute the posterior distribution over this set of probabil-
ity vectors, given the data D and pseudocounts {~↵�A},

p({~✓�A} | D, {~↵�A}) / p(D | {~✓�A})p({~✓�A} | {~↵�A}),

where { ~

✓�A} is an abbreviation for { ~

✓�A}A2C

, etc. Varia-
tional Bayesian inference (VB) is used to approximate this
posterior distribution [2, 11, 32]. We introduce an approx-
imating variational distribution q({~✓�A} | {~⌫�A}) with
variational parameters {~⌫�A} over our target hidden vari-
ables (rule weights) and minimize the Kullback-Leibler di-
vergence between this approximation and the true poste-
rior,

DKL(q({~✓�A} | {~⌫�A}) || p({~✓�A} | D, {~↵�A})),

by adjusting the variational parameters {~⌫�A}.
Following [17], we approximate the distribution over

each probability vector with a Dirichlet distribution
~

✓�A | ~⌫�A ⇠ Dirichlet(~⌫�A), and make use of the mean-
field approximation

q({~✓�A} | {~⌫�A}) =
Y

A2C

p(

~

✓�A | ~⌫�A).

We minimize the Kullback-Leibler divergence with a
coordinate descent algorithm similar to the expectation-
maximization algorithm. First, we compute the expec-
tation of the counts of rule usages in the data under our
current setting of the variational parameters, E

q

[#(r,D)]

where #(r,D) is the number of times that rule r was used
to generate the data D, and then we update our varia-
tional parameters based on these expectations. Since all
of our distributions are in the exponential family, it can
be shown that the optimal update is given by the equation
ˆ

~⌫�A = ~↵�A + E
q

[#(r,D)] [2]. In other words, we set the
pseudocounts of our variational distributions equal to the
expected number of rule usages plus the pseudocount for
each rule in the prior distribution.

Under the standard coordinate-ascent algorithm given
in [17], expected counts must be computed for the whole

corpus before updating using the equation above. Hoff-
man et al. [9] propose a stochastic variant of the standard
variational (inspired by stochastic gradient descent) where
updates are computed with respect to randomly sampled
minibatches of the data. We make use of this stochastic
variational Bayes algorithm in the results reported below.

4. A GENERATIVE MODEL OF JAZZ HARMONY

This section presents a PACFG G = (T,C,C0,�) that
models the syntax of Jazz harmony following the pro-
posal in [24]. That work addressed the problem of find-
ing a restrictive grammar that describes the full variety of
syntactic relations in the musical idiom of Jazz-standards.
The set of terminal symbols T is a set of pairs describing
chords each of which consists of the root of the chord and
a string describing the chord form—one of: a major triad,
a major-seventh chord, a major sixth chord, a dominant-
seventh chord, a minor triad, a minor-seventh chord, a half-
diminished-seventh chord, a diminished seventh-chord, an
augmented triad, or a suspended chord.

In the following, Z
n

denotes the ring of integers mod-
ulo n 2 N. The categories are modeled as pairs of scale
degrees and keys, C = Z7 ⇥ K, where a key consists of
a pitch class representing its root and a string describing
its mode, K = Z12 ⇥ {major,min }. Scale degrees are
denoted by roman numerals from I to VII. All categories
with scale degree I are start symbols, C0 = { I }⇥K. Let
k 2 K denote an arbitrary key. The set of rewrite functions
� consists of prolongation,

PROLONG(hx, ki) = hx, ki hx, ki

for x 2 Z7, diatonic preparation,

DIAT-PREP(hx, ki) = hx+ 4 mod 7, ki hx, ki

for x 2 Z7 \ { IV }, dominant preparation,

DOM-PREP(hx, ki) = hV, µ(x, k)i hx, ki

for x 2 Z7 \ { I } where µ(x, k) denotes the modulation
from k into the key of scale degree x (e.g. µ(II, (0,maj)) =
(2,min), the key of the second scale degree of C major is
D minor), plagal preparation,

PLAGAL-PREP(hI, ki) = hIV, ki hI, ki,

modulation,

MODULATION(hx, ki) = hI, µ(x, k)i,

mode change,

MODE-CHANGE(hI, (r,m)i) =
(
hI, (r,min)i, if m = maj
hI, (r,maj)i, if m = min,

for r 2 Z12,m 2 {maj,min }, diatonic substitution,

DIAT-SUBST(hx, (r,m)i) =

8
>>><

>>>:

hVI, (r,m)i, if x = I,m = maj
hIII, (r,m)i, if x = I,m = min
hIV, (r,m)i, if x = II
hVII, (r,m)i, if x = V
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Figure 3. Parsing the turnaround of All of me

for x 2 { I, II,V } , r 2 Z12,m 2 {maj,min }, and domi-
nant substitution,

DOM-SUBST
i

(hV, (r,m)i) = hV, (r + i mod 12,m)i

for r 2 Z12, m 2 {maj,min }, and i 2 { 3, 6, 9 }.
Additionally, � contains appropriate termination rules
C 7! T according to standard Jazz harmony theory (e.g.
seventh-chord-termination(h4, (0,maj)i) = G7, see [20]
for further explanation). The distribution of Xhx,ki over
rules rewriting the category hx, ki is defined as a categori-
cal distribution such that P(Xhx,ki = r) = P(Xhx,k0i = r)

for all scale degrees x, rules r, and keys k, k0 that have the
same mode. That is, the probability of r rewriting hx, ki
does not depend on the root of k which enables the model
to learn the parameters of its probability distributions key-
independently.

These grammar rules can be grouped into three classes:
the prolongation rule, preparation rules, and substitution
rules. Preparation rules create categories that for the lis-
tener generate the expectation to hear the prepared chord.
Substitution rules substitute chords for other chords that
fulfill an equivalent function inside the sequence such as
tritone substitutions of dominants in Jazz.

5. THE TURNAROUND PROBLEM

A lead-sheet of a Jazz-standard consists of a melody to-
gether with a chord sequence describing the fundamental
harmonic structure of the piece. The chord sequence is re-
peated multiple times in a performance. While some lead-
sheets end with tonic chords, others include harmonic up-
beats to the first chord of the piece at the end of the sheet,
called turnarounds. The final chord of a performances is
nevertheless usually a tonic chord. The lead-sheet of the
Jazz-standard All of me starts for example with a C4 chord
and ends with the turnaround E[�7 Dm7 G7.

The grammar of Jazz harmony proposed above assumes
that pieces end with a tonic chord. Therefore, a simple im-
plementation of this grammar would not able to parse lead-
sheets that end in turnarounds. We solve this problem by
cyclic parsing, meaning that we assume that constituents
can have spans from the end of a piece back to the begin-
ning, see Figure 3.

Figure 4. Tree accuracy plot

6. EXPERIMENTS

6.1 Dataset

The model is evaluated using the iRealPro dataset of Jazz-
standards. 2 This dataset consists of 1173 chord sequences
electronically-encoded by the Jazz musician community
including metadata such as the titles, composers, and keys.
The sequences were collected and converted into the Hum-
drum format [10] by Daniel Shanahan and Yuri Broze [28],
and are available online. 3 For other research that uses
this dataset see [26, 27]. The chord forms in the iRealPro
dataset include information about nineths and elevenths
that are not considered in this study.

The subset of 394 Jazz-standards that consist of at most
40 chords was considered to train the models. 34.52%
(136) of these pieces were parsable using the standard
approach and 90.61% (357) pieces were parsable using
the cyclic parsing approach described above. Less then
55% of the considered Jazz-standards therefore end in
turnarounds.

6.2 Tree Accuracy Evaluation

We compare four models: (i) the proposed PACFG model
that uses a representation of rules independent of key,
(ii) its PCFG counterpart the rules of which are not in-
dependent of key, (iii) a baseline of randomly generated
trees, and (iv) a right-branching baseline in which all con-
stituents split into a constituent on the left and a terminal
symbol on the right.

The models are trained on the 357 cyclic parsable se-
quences using minibatches of 8 sequences. They are eval-
uated on 13 pieces hand-annotated by the authors. We re-
port the predicted tree accuracy. That is the precision of
correctly predicted spans of internal tree nodes. A span of
a tree node is defined as the start index of its leftmost leaf
together with the end index of its rightmost leaf.

Figure 4 shows the means of the tree accuracies includ-
ing 95% confidence intervals as error bars. The right-
branching baseline performs at an accuracy level under
10%. The random baseline performs slightly better at an

2 https://irealpro.com
3 https://musiccog.ohio-state.edu/home/index.php/iRb Jazz Corpus
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Figure 5. Predicted tree accuracy for each minibatch up-
date. Note that the y-axis displays only values between
33% and 50%.

accuracy level of 15.35% Under a uniform prior, both the
PACFG and the PCFG model perform at an accuracy level
of 36.30% a priori of the data. As opposed to the trained
PCFG model that only improves its performance by about
3% (in comparison to the uniform prior) reaching an ac-
curacy of 39.43%, the trained PACFG model improves by
about 10% (in comparison to the uniform prior) reaching
an accuracy of 45.95%. The PACFG model was thus able
to learn more from the data than the PCFG model. Note
that since the PCFG model does not abstract the grammar
rules from the concrete key wherein they are applied, the
number of free parameters of the PCFG model is approxi-
mately 12 times higher than the number of free parameters
of the APCFG model.

Despite the fact that the PACFG model learns key-
independently, it is still much simpler than models that
produce state-of-the-art parsing results in computational
linguistics. In particular, state-of-the-art models in com-
putational linguistics typically make use of conditioning
information beyond the parent constituent categories used
in the PACFG model—such as larger tree fragments, con-
ditioning on heads and/or adjacent elements in the string,
state-splitting, and other richer contextual information. We
anticipate that the inclusion of similar structures into mu-
sical parsing models will lead to similar improvements in
performance.

Figure 5 shows the mean predicted tree accuracies of
the PACFG and the PCFG models for each minibatch up-
date. Note that this figure is produced using a stochastic
algorithm and is therefore inherently noisy. We see that
the stochasticity of the inference algorithm leads to ran-
dom jumps of the accuracy up to 0.5%. The models appear
to do most of their learning in the first 10 minibatches.

6.3 Performance Diagnosis using Scale Degree
Frequencies

Figure 6 shows the expected frequency of scale-degree use
in the whole corpus. The scale degrees VI in major and
III in minor are more frequently used by the model than
expected. Because these scale degrees are substitutions for
the first scale degrees and because they enable modulations

Figure 6. Expected usage of scale degrees to parse the full
training dataset

into the relative key (e.g. from C major to A minor and vice
versa), the model may be using them to alternate between
relative keys. The prominence of the VII in minor keys is
probably related to the fact that it has a dominant-seventh
chord form. The model may be interpreting a I in major as
a III in the relative minor key that is then prepared by the
VII in minor. For example, the simple chord transition G7

C4 would in this case be derived by

I
a

�! III
a

�! VII
a

III
a

�! G7 III
a

�! G7 C4
.

7. CONCLUSION AND FUTURE RESEARCH

The research presented here introduced a new general
grammar and parsing framework tailored to the needs of
music and showed how to perform inference for such a
model.

Experiments show that in contrast to standard context-
free models, the proposed model is able to learn character-
istic structures of the observed data. To the best of our
knowledge, this is the first computational approach that
automatically performs hierarchical analyses of chord se-
quences and evaluates them on analyses by human experts.

This paper lays the groundwork for more advanced
models of harmonic syntax. Our future research will
in particular focus on expanding the dataset of hand-
annotated expert analyses to provide significance tests of
the performance comparison of different models, for ex-
ample. Further studies can use the tools developed here
to build models of unsupervised grammar induction, joint
models of multiple musical levels of musical structure like
harmony and rhythm, and models of musical structure that
have more complex dependencies than those representable
in simple tree structures.
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ABSTRACT

The relationship between sensory consonance and Western
harmony is an important topic in music theory and psy-
chology. We introduce new methods for analysing this re-
lationship, and apply them to large corpora representing
three prominent genres of Western music: classical, popu-
lar, and jazz music. These methods centre on a generative
sequence model with an exponential-family energy-based
form that predicts chord sequences from continuous fea-
tures. We use this model to investigate one aspect of in-
stantaneous consonance (harmonicity) and two aspects of
sequential consonance (spectral distance and voice-leading
distance). Applied to our three musical genres, the results
generally support the relationship between sensory conso-
nance and harmony, but lead us to question the high impor-
tance attributed to spectral distance in the psychological
literature. We anticipate that our methods will provide a
useful platform for future work linking music psychology
to music theory.

1. INTRODUCTION

Music theorists and psychologists have long sought to un-
derstand how Western harmony may be shaped by natural
phenomena universal to all humans [13, 27, 36]. Key to
this work is the notion of sensory consonance, describing
a sound’s natural pleasantness [32, 35, 38], and its inverse
sensory dissonance, describing natural unpleasantness.

Sensory consonance has both instantaneous and se-
quential aspects. Instantaneous consonance is the conso-
nance of an individual sound, whereas sequential conso-
nance is a property of a progression between sounds.

Instantaneous sensory consonance primarily derives
from roughness and harmonicity. Roughness is an un-
pleasant sensation caused by interactions between spectral
components in the inner ear [8,41], whereas harmonicity 1

is a pleasant percept elicited by a sound’s resemblance to
the harmonic series [4, 20].

1 Related concepts include tonalness [27], toneness [15], fusion [14,
36], complex sonorousness [29], and multiplicity [29].

c© Peter M. C. Harrison, Marcus T. Pearce. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Peter M. C. Harrison, Marcus T. Pearce. “An energy-based
generative sequence model for testing sensory theories of Western har-
mony”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

Sequential sensory consonance is primarily determined
by spectral distance and voice-leading distance. Spec-
tral distance 2 describes how much a sound’s acoustic
spectrum perceptually differs from neighbouring spectra
[22–24, 27, 29]. Voice-leading distance 3 describes how
far notes in one chord have to move to produce the next
chord [2, 39, 40]. Consonance is associated with low spec-
tral and voice-leading distance.

Many Western harmonic conventions can be rational-
ized as attempts to increase pleasantness by maximizing
sensory consonance. The major triad maximizes con-
sonance by minimizing roughness and maximizing har-
monicity; the circle of fifths maximizes consonance by
minimizing spectral distance; tritone substitutions are con-
sonant through voice-leading efficiency [39].

This idea – that Western harmony seeks to maximize
sensory consonance – has a long history in music the-
ory [31]. Its empirical support is surprisingly limited, how-
ever. The best evidence comes from research linking sen-
sory consonance maximization to rules from music the-
ory [15, 27, 39], but this work is constrained by the sub-
jectivity and limited scope of music-theoretic textbooks.

A better approach is to bypass textbooks and analyse
musical scores directly. Usefully, large datasets of digi-
tised musical scores are now available, as are many com-
putational models of consonance. However, statistically
linking them is non-trivial. One could calculate distribu-
tions of consonance features, but this would give only lim-
ited causal insight into how these distributions arise. Better
insight might be achieved by regressing transition proba-
bilities against consonance features, but this approach is
statistically problematic because of variance heterogeneity
induced by the inevitable sparsity of the transition tables.

This paper presents a new statistical model developed
for tackling this problem. The model is generative and
feature-based, defining a probability distribution over sym-
bolic sequences based on features derived from these se-
quences. Unlike previous feature-based sequence models,
it is specialized for continuous features, making it well-
suited to consonance modelling. Moreover, the model pa-
rameters are easily interpretable and have quantifiable un-

2 Spectral distance is also known by its antonym spectral similarity
[23]. Pitch commonality [29] is a similar concept. Psychological models
of harmony and tonality in the auditory short-term memory (ASTM) tra-
dition typically rely on some kind of spectral distance measure [1, 7, 17].

3 Voice-leading distance is termed horizontal motion in [2]. Parncutt’s
notion of pitch distance [28, 29] is also conceptually similar to voice-
leading distance.
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certainty, enabling error-controlled statistical inference.
We use this new model to test sensory theories of har-

mony as follows. We fit the model to corpora of chord
sequences from classical, popular, and jazz music, using
psychological models of sensory consonance as features.
We then compute feature importance metrics to quantify
how different aspects of consonance constrain harmonic
movement. This work constitutes the first corpus analysis
comprehensively linking sensory consonance to harmonic
practice.

2. METHODS

2.1 Representations

2.1.1 Input

Chord progressions are represented as sequences of pitch-
class sets. Exact chord repetitions are removed, but
changes of chord inversion are represented as repeated
pitch-class sets.

2.1.2 Pitch-Class Spectra

Some of our features use pitch-class spectra as defined
in [22, 24]. A pitch-class spectrum is a continuous func-
tion that describes perceptual weight as a function of pitch
class (pc). Perceptual weight is the strength of percep-
tual evidence for a given pitch class being present. Pitch
classes (pc) take values in the interval [0, 12) and relate to
frequency (f , Hz scale) as follows:

pc =

[
9 + 12 log2

(
f

440

)]
mod 12. (1)

Pitch-class sets are transformed to pitch-class spectra
by expanding each pitch class into its implied harmonics.
Pitch classes are modelled as harmonic complex tones with
12 harmonics, after [22]. The jth harmonic in a pitch class
has level j−ρ, where ρ is the roll-off parameter (ρ > 0).
Partials are represented by Gaussians with mass equal to
partial level, mean equal to partial pitch class, and standard
deviation σ. Perceptual weights combine additively.

Formally, W (pc, X) defines a pitch-class spectrum, re-
turning the perceptual weight at pitch-class pc for an input
pitch-class set X = {x1, x2, . . . , xm}:

W (pc, X) =

m∑
i=1

T (pc, xi). (2)

Here i indexes the pitch classes, and T (pc, x) is the contri-
bution of a harmonic complex tone with fundamental pitch
class x to an observation at pitch class pc:

T (pc, x) =
12∑
j=1

g
(
pc, j

−ρ, h(x, j)
)
. (3)

Now j indexes the harmonics, g(pc, l, px) is the contribu-
tion from a harmonic with level l and pitch-class px to an
observation at pitch-class pc,

g(pc, l, px) =
l

σ
√
2π

exp

(
−1

2

(
d(pc, px)

σ

)2
)
, (4)

d(px, py) is the distance between two pitch classes px and
py ,

d(px, py) = min (|px − py|, 12− |px − py|) , (5)

and h(x, j) is the pitch class of the jth partial of a harmonic
complex tone with fundamental pitch class x:

h(x, j) = (x+ 12 log2 j) mod 12. (6)

ρ and σ are set to 0.75 and 0.0683 after [22].

2.2 Features

2.2.1 Spectral Distance

Spectral distance is operationalised using the psychologi-
cal model of [22, 24]. The spectral distance between two
pitch-class sets X,Y is defined as 1 minus the continuous
cosine similarity between the two pitch-class spectra:

D(X,Y ) = 1−
∫ 12

0
W (z,X)W (z, Y ) dz√∫ 12

0
W (z,X)2 dz

√∫ 12

0
W (z, Y )2 dz

(7)
withW as defined in Equation 2. The measure takes values
in the interval [0, 1], where 0 indicates maximal similarity
and 1 indicates maximal divergence.

2.2.2 Harmonicity

Our harmonicity model is inspired by the template-
matching algorithms of [21] and [29]. The model simulates
how listeners search the auditory spectrum for occurrences
of harmonic spectra. These inferred harmonic spectra are
termed virtual pitches. High harmonicity corresponds to a
strong virtual pitch percept.

Our model differs from previous models in two ways.
First, it uses a pitch-class representation, not a pitch repre-
sentation. This makes it voicing-invariant and hence more
suitable for modelling pitch-class sets. Second, it takes
into account the strength of all virtual pitches in the spec-
trum, not just the strongest virtual pitch.

The model works as follows. The virtual pitch-class
spectrumQ defines the spectral similarity of the pitch-class
set X to a harmonic complex tone with pitch class pc:

Q(pc, X) = D(pc, X) (8)

with D as defined in Equation 7. Normalising Q to unit
mass produces Q′:

Q′(pc, X) =
Q(pc, X)∫ 12

0
Q(y,X) dy

. (9)

Previous models compute harmonicity by taking the peak
of this spectrum. In our experience this works for small
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chords but not for larger chords, where several virtual
pitches need to be accounted for. We therefore instead
compute a spectral peakiness measure. Several such mea-
sures are possible, but here we use Kullback-Leibler diver-
gence from a uniform distribution. H(X), the harmonicity
of a pitch-class set X , can therefore be written as follows:

H(X) =

∫ 12

0

Q′(y,X) log2 (12Q
′(y,X)) dy. (10)

Harmonicity has a large negative correlation with the
number of notes in a chord. Some correlation is expected,
but not to this degree: the harmonicity model considers
a tritone (the least consonant two-note chord) to be more
consonant than a major triad (the most consonant three-
note chord). We therefore separate the two phenomena by
adding a ‘chord size’ feature, corresponding to the number
of notes in a given chord, and rescaling harmonicity to zero
mean and unit variance across all chords with a given chord
size.

2.2.3 Roughness

Roughness has traditionally been considered to be an im-
portant contributor to sensory consonance, though some
recent research disputes its importance [20]. We originally
planned to include roughness in our model, but then dis-
covered that the phenomenon is highly sensitive to chord
voicing. Since the voicing of a pitch-class set is unde-
fined, its roughness is therefore unpredictable. Roughness
is therefore not modelled in the present study.

2.2.4 Voice-Leading Distance

A voice leading connects the individual notes in two pitch-
class sets to form simultaneous melodies [39]. Pitch-class
sets of different sizes can be connected by allowing pitch
classes to participate in multiple melodies. Voice-leading
distance is an aggregate measure of the resulting melodic
distance. We operationalise voice-leading distance using
[39]’s geometric model.

Consider two pitch-class sets X = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn}. A voice-leading between X
and Y can be writtenA→ B whereA = (a1, a2, . . . , aN ),
B = (b1, b2, . . . , bN ), and the following holds: if x ∈ X
then x ∈ A, if y ∈ Y then y ∈ B, if a ∈ A then a ∈ X , if
b ∈ B then b ∈ Y , and n ≤ N .

The distance of the voice leading A → B is denoted
V (A,B) and uses the taxicab norm:

V (A,B) =
N∑
i=1

d(ai, bi) (11)

with d(ai, bi) as defined in Equation 5.
The voice-leading distance between pitch-class sets

X,Y is then defined as the smallest value of V (A,B) for
all legal A,B. This minimal distance can be efficiently
computed using the algorithm described in [39].

2.2.5 Summary

This section defined three sensory consonance features.
These included one instantaneous measure (harmonicity)
and two sequential measures (spectral distance, voice-
leading distance). Harmonicity correlated strongly with
chord size, which could have confounded our analyses.
We therefore controlled for chord size by normalising har-
monicity for each chord size and including chord size as a
feature.

2.3 Statistical Model

2.3.1 Overview

The statistical model is generative, defining a probability
distribution over chord sequences (e.g. [12, 25, 33]). It
is feature-based, using features of the chord and its con-
text to predict chord probabilities (e.g. [12]). It is energy-
based, defining scalar energies for each feature configu-
ration which are then transformed and normalised to pro-
duce the final probability distribution (e.g. [3, 10, 30]). It
is exponential-family in that the energy function is a linear
function of the feature vector (e.g. [10, 30]). Informally,
the model might be said to generalise linear regression to
symbolic sequences.

2.3.2 Form

Let A denote the set of all possible chords, and let en0 de-
note a chord sequence of length n, where e0 is always a
generic start symbol. Let ei ∈ A denote the ith chord and
eji the subsequence (ei, ei+1, . . . , ej). Let w be the weight
vector that parametrises the model.

The probability of a chord sequence is factorised into a
chain of conditional chord probabilities.

P (en0 |w) =
n∏
i=1

P
(
ei | ei−10 ,w

)
(12)

These are given energy-based expressions:

P
(
ei | ei−10 ,w

)
=

exp (−E(ei−10 , ei,w))

Z(ei−10 ,w)
(13)

where E is the energy function and Z is the partition func-
tion. Z normalises the probability distribution to unit mass:

Z(ei−10 ,w) =
∑
x∈A

exp (−E(ei−10 , x,w)). (14)

High E corresponds to low probability. E is defined as
a sum of feature functions, fj , weighted by −w:

E(ei−10 , x,w) = −
m∑
j=1

fj(e
i−1
0 :: x)wj (15)

where wj is the jth component of w, m is the dimension-
ality of w, equalling the number of feature functions fj ,
and ei−10 :: x is the concatenation of ei−10 and x ∈ A.

Feature functions measure a property of the last ele-
ment of a sequence. Our feature functions are chord size,
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harmonicity, spectral distance, and voice-leading distance.
Chord size and harmonicity are context-independent,
whereas spectral and voice-leading distance relate the last
chord to the penultimate chord. When the penultimate
chord is undefined, mean values are imputed for spectral
and voice-leading distance, with the mean computed over
all possible chord transitions.

2.3.3 Estimation

The model is parametrised by the weight vector w. This
weight vector is optimised using maximum-likelihood es-
timation on a corpus of sequences, as follows.

Let enk

0,k denote the kth sequence from a corpus of size
N , where nk is the sequence’s length. The negative log-
likelihood of the weight vector w with respect to the corpus
is then

C(w) = −
N∑
k=1

nk∑
i=1

logP (ei,k|ei−10,k ,w). (16)

After some algebra, the gradient can be written

dC

dw
=

N∑
k=1

nk∑
i=1

Z ′(ei−10,k ,w)

Z(ei−10,k ,w)
− f(ei0,k) (17)

where

Z ′(ei−10,k ,w) =
∑
x∈A

f(ei−10,k :: x) exp (−E(ei−10,k , x,w))

(18)
and f is the vector of feature functions. This expression can
be plugged into a generic optimiser to find a weight vector
minimising the negative log-likelihood. The present work
used the BFGS optimiser [37].

2.3.4 Feature Importance

This section introduces three complementary feature im-
portance measures. These are weight, explained entropy,
and unique explained entropy.

Weight describes a feature’s relationship to chord prob-
ability. The weight for a feature function fj is the parame-
ter wj , corresponding to (minus) the change in the energy
function E in response to a one-unit change in the fea-
ture function fj (Equation 15). Weight is a signed feature
importance measure: the sign dictates whether the model
prefers high (positive weight) or low (negative weight) fea-
ture values, and the magnitude dictates the strength of pref-
erence. To aid weight comparability between features, fea-
ture functions are scaled to unit variance over the set of all
possible chord transitions.

Dividing the cost function (Equation 16) by the num-
ber of chords in the corpus (

∑N
k=1 nk) gives an estimate

of cross entropy in units of nats. Cross entropy measures
chord-wise unpredictability with respect to a given model.
From it we define two further measures: explained entropy
and unique explained entropy.

Explained entropy for a feature fj is computed by com-
paring cross entropy estimates for two models: a model

trained using feature fj and a null model trained with no
features. Explained entropy is the difference between the
two cross entropies. Higher values indicate that the feature
explains a lot of structure in the corpus.

Unique explained entropy for a feature fj is the amount
that cross entropy changes when feature fj is removed
from the full feature set. It measures the unique explana-
tory power of a feature while controlling for other features.

2.3.5 Related Work

The literature contains several alternative approaches for
feature-based modelling of chord sequences. One is the
multiple viewpoint method [11, 12]. However, this method
is specialised for discrete features, not the continuous fea-
tures required for consonance modelling. A second alter-
native is the maximum-entropy approach of [10, 30]. This
approach has some formal similarities with the present
work, but its binary feature functions are incompatible with
our continuous features. A third possibility is the feature-
based dynamic networks of [33]; however, these networks
would need substantial modification to represent the kind
of feature dependencies required here.

2.4 Corpora

Our corpora represent three musical genres: classical mu-
sic (1,022 movements/pieces), popular music (739 pieces),
and jazz music (1,186 pieces). The classical corpus was
compiled from KernScores [34], including ensemble music
and keyboard music from several several major composers
of common-practice tonal music (Bach, Haydn, Mozart,
Beethoven, Chopin). Chord labels were obtained using the
algorithm of [26] with an expanded chord dictionary, and
with segment boundaries co-located with metrical beat lo-
cations as estimated from time signatures. Chord inver-
sions were identified as the lowest-pitch chord tone in the
harmonic segment being analysed. The popular and jazz
corpora corresponded to publicly available datasets: the
McGill Billboard corpus [6] and the iRB corpus [5].

2.5 Efficiency

Computation can be reduced by identifying repeated terms
in the cost and cost gradient (Equations 16, 17). These
repeated terms only need to be evaluated once. Our feature
functions never look back further than the previous chord,
and they are invariant to chord transposition; this means
that repeated terms occur whenever a chord pair is repeated
at some transposition. Collapsing over these repetitions
reduces computation by a factor of 20–100 for our corpora.

2.6 Numeric Integration

The features related to pitch-class spectra all use integra-
tion. These integrals are numerically approximated using
the rectangle rule with 1,200 subintervals, after [24].

2.7 Software

The statistical model was implemented in R and C++;
source code is available from the authors on request.
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3. RESULTS

3.1 Corpus level

Figure 1 plots feature importances for the three consonance
measures: harmonicity (normalised by chord size), spec-
tral distance, and voice-leading distance. Analyses are split
by musical corpus, and confidence intervals are calculated
using nonparametric bootstrapping [9].

3.1.1 Importance by Feature

All the consonance features contribute to harmonic struc-
ture in some way. The order of feature importance is
fairly consistent between genres and importance measures.
Broadly speaking, voice-leading distance is most impor-
tant, followed by harmonicity, then spectral distance.

3.1.2 Importance by Corpus

Harmonicity is particularly important for popular music,
less so for classical, and least for jazz. Spectral distance is
most important for classical music, less so for popular, and
unimportant for jazz.

The relative importance of voice-leading distance de-
pends on the measure used: it scores highly on explained
entropy, but less on weight and unique explained entropy.
This may be because voice-leading distance and chord
size capture some common information: moving from a
small chord to a large chord typically involves a large
voice-leading distance. If we wish to assess the unique
effect of voice-leading distance, we can look at weight
and unique explained entropy: these measures tell us that
voice-leading distance is most important for jazz music,
less for classical music, and least for popular music.

3.1.3 Signs of Weights

The sign of a feature weight determines whether the model
prefers positive or negative values of the feature. The ob-
served feature signs are all consistent with theory. Har-
monicity has a positive weight for all genres, indicating
that harmonicity is universally promoted. Spectral distance
and voice-leading distance both have negative weights, in-
dicating preference for lower values of these features.

3.2 Composition Level

We also explored the application of these techniques to in-
dividual compositions (Figure 2). While the composition-
level analyses reflect the same trends as the corpus-level
analyses (Figure 1), they also reveal substantial overlap be-
tween the corpora. We assessed the extent of this overlap
by training a generic machine-learning classifier to predict
genre from the complete set of feature importance mea-
sures. Our classifier was a random forest model trained us-
ing the randomForest package in R [18], with 2,000 trees
and four variables sampled at each split. Performance was
assessed using 10-fold cross-validation repeated and aver-
aged over 10 runs, resulting in a classification accuracy of
86% and a kappa statistic of .79. This indicates that genre
differences in sensory consonance are moderately salient,
even at the composition level.

4. CONCLUSION

This paper introduces new methods for testing relation-
ships between sensory consonance and Western harmony.
The methods centre on a new statistical model that predicts
symbolic sequences using continuous features. We demon-
strate these methods through application to three corpora
representing classical, popular, and jazz music.

The results strongly support theoretical relationships
between sensory consonance and harmonic structure. The
three aspects of sensory consonance tested – harmonic-
ity, spectral distance, and voice-leading distance – all pre-
dicted harmonic movement. Not all aspects were equally
important, however. Spectral distance performed poorly,
particularly in jazz. This is interesting given the high im-
portance attributed to spectral distance in recent psycho-
logical literature [1, 7, 22]. Harmonicity performed well in
popular music, but less so in classical and jazz. In contrast,
voice-leading distance performed consistently well.

The corpus analyses deserve further development. It
would be worth probing the true universality of sensory
consonance by exploring a broader range of styles and us-
ing more refined stylistic categories, possibly at the level of
the composer. The validity of the classical analyses could
also be improved through more principled sampling [19]
and manual chord-labelling [16].

The three feature importance measures provide useful
complementary perspectives, but it is unnecessary to plot
each one every time. In future we recommend inspect-
ing the weights to check whether a feature is promoted or
avoided, but then plotting just unique explained entropy.
Unique explained entropy is preferable to weight because
its units are well-defined, and preferable to explained en-
tropy because it controls for other features, thereby provid-
ing a better handle on causality.

We focused on interpreting the statistical model through
feature importance measures, but an alternative strategy
would be to use the model to generate chord sequences for
subjective evaluation. This route lacks the objectivity of
feature-importance analysis, but it would give a uniquely
intuitive perspective on what the model has learned.

The modelling techniques could be developed further.
An important limitation of the current model is the linear-
ity of the energy function, which restricts it to monotonic
feature effects. A polynomial energy function would ad-
dress this problem. It would also be interesting to develop
the psychological features further, perhaps adding echoic
memory to the spectral distance measure [17], and intro-
ducing an octave-generalised roughness measure.

Despite these limitations, we believe that the current
results have important implications for our understanding
of Western tonal harmony. In particular, the results im-
ply that voice-leading efficiency is a better candidate for
a harmonic universal than spectral similarity. This result
is important for music psychology, where voice-leading
efficiency is relatively underemphasised compared to har-
monicity and spectral similarity (though see [2, 27, 39]).
Future psychological work may wish to re-examine the
role of voice-leading efficiency in harmony perception.
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Figure 1. Measures of feature importance as a function of musical corpus. These measures are calculated from statistical
models trained on the corpus level. Error bars represent 99% confidence intervals estimated by nonparametric bootstrap-
ping [9]. Signs of feature weights are reversed for spectral distance and voice-leading distance, so that positive weights
correspond to consonance maximisation.
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Figure 2. Distributions of feature importance measures as calculated for individual compositions within the three corpora.
Distributions are represented by Epanechnikov kernel density functions. Signs of feature weights are reversed for spectral
distance and voice-leading distance, so that positive weights correspond to consonance maximisation.
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ABSTRACT

Songs can be well arranged by professional music curators
to form a riveting playlist that creates engaging listening
experiences. However, it is time-consuming for curators
to timely rearrange these playlists for fitting trends in fu-
ture. By exploiting the techniques of deep learning and
reinforcement learning, in this paper, we consider music
playlist generation as a language modeling problem and
solve it by the proposed attention language model with
policy gradient. We develop a systematic and interactive
approach so that the resulting playlists can be tuned flex-
ibly according to user preferences. Considering a playlist
as a sequence of words, we first train our attention RNN
language model on baseline recommended playlists. By
optimizing suitable imposed reward functions, the model
is thus refined for corresponding preferences. The ex-
perimental results demonstrate that our approach not only
generates coherent playlists automatically but is also able
to flexibly recommend personalized playlists for diversity,
novelty and freshness.

1. INTRODUCTION

Professional music curators or DJs are usually able to care-
fully select, order, and form a list of songs which can give
listeners brilliant listening experiences. For a music radio
with a specific topic, they can collect songs related to the
topic and sort in a smooth context. By considering pref-
erences of users, curators can also find what they like and
recommend them several lists of songs. However, different
people have different preferences toward diversity, popu-
larity, and etc. Therefore, it will be great if we can refine
playlists based on different preferences of users on the fly.
Besides, as online music streaming services grow, there
are more and more demands for efficient and effective mu-
sic playlist recommendation. Automatic and personalized
music playlist generation thus becomes a critical issue.

However, it is unfeasible and expensive for editors to
daily or hourly generate suitable playlists for all users
based on their preferences about trends, novelty, diversity,

c© Shun-Yao Shih, Heng-Yu Chi. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Shun-Yao Shih, Heng-Yu Chi. “automatic, personalized, and
flexible playlist generation using reinforcement learning”, 19th Interna-
tional Society for Music Information Retrieval Conference, Paris, France,
2018.

etc. Therefore, most of previous works try to deal with
such problems by considering some particular assump-
tions. McFee et al. [14] consider playlist generation as a
language modeling problem and solve it by adopting statis-
tical techniques. Unfortunately, statistical method does not
perform well on small datasets. Pampalk et al. [16] gen-
erate playlists by exploiting explicit user behaviors such
as skipping. However, for implicit user preferences on
playlists, they do not provide a systematic way to handle
it.

As a result, for generating personalized playlists auto-
matically and flexibly, we develop a novel and scalable
music playlist generation system. The system consists of
three main steps. First, we adopt Chen et al.’s work [4]
to generate baseline playlists based on the preferences of
users about songs. In details, given the relationship be-
tween users and songs, we construct a corresponding bipar-
tite graph at first. With the users and songs graph, we can
calculate embedding features of songs and thus obtain the
baseline playlist for each songs by finding their k-nearest
neighbors. Second, by formulating baseline playlists as
sequences of words, we can pretrain RNN language model
(RNN-LM) to obtain better initial parameters for the fol-
lowing optimization, using policy gradient reinforcement
learning. We adopt RNN-LM because not only RNN-LM
has better ability of learning information progresses than
traditional statistical methods in many generation tasks,
but also neural networks can be combined with reinforce-
ment learning to achieve better performances [10]. Finally,
given preferences from user profiles and the pretrained pa-
rameters, we can generate personalized playlists by ex-
ploiting techniques of policy gradient reinforcement learn-
ing with corresponding reward functions. Combining these
training steps, the experimental results show that we can
generate personalized playlists to satisfy different prefer-
ences of users with ease.

Our contributions are summarized as follows:

• We design an automatic playlist generation frame-
work, which is able to provide timely recommended
playlists for online music streaming services.

• We remodel music playlist generation into a se-
quence prediction problem using RNN-LM which is
easily combined with policy gradient reinforcement
learning method.

• The proposed method can flexibly generate suitable
personalized playlists according to user profiles us-
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ing corresponding optimization goals in policy gra-
dient.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce several related works about playlist
generation and recommendation. In Section 3, we provide
essential prior knowledge of our work related to policy gra-
dient. In Section 4, we introduce the details of our pro-
posed model, attention RNN-LM with concatenation (AC-
RNN-LM). In Section 5, we show the effectiveness of our
method and conclude our work in Section 6.

2. RELATED WORK

Given a list of songs, previous works try to rearrange them
for better song sequences [1,3,5,12]. First, they construct a
song graph by considering songs in playlist as vertices, and
relevance of audio features between songs as edges. Then
they find a Hamiltonian path with some properties, such as
smooth transitions of songs [3], to create new sequencing
of songs. User feedback is also an important considera-
tion when we want to generate playlists [6, 7, 13, 16]. By
considering several properties, such as tempo, loudness,
topics, and artists, of users’ favorite played songs recently,
authors of [6, 7] can thus provide personalized playlist
for users based on favorite properties of users. Pampalk
et al. [16] consider skip behaviors as negative signals and
the proposed approach can automatically choose the next
song according to audio features and avoid skipped songs
at the same time. Maillet et al. [13] provides a more in-
teractive way to users. Users can manipulate weights of
tags to express high-level music characteristics and obtain
corresponding playlists they want. To better integrate user
behavior into playlist generation, several works are pro-
posed to combine playlist generation algorithms with the
techniques of reinforcement learning [11, 20]. Xing et al.
first introduce exploration into traditional collaborative fil-
tering to learn preferences of users. Liebman et al. take
the formulation of Markov Decision Process into playlist
generation framework to design algorithms that learn rep-
resentations for preferences of users based on hand-crafted
features. By using these representations, they can generate
personalized playlist for users.

Beyond playlist generation, there are several works
adopting the concept of playlist generation to facilitate
recommendation systems. Given a set of songs, Vargas
et al. [18] propose several scoring functions, such as diver-
sity and novelty, and retrieve the top-K songs with higher
scores for each user as the resulting recommended list of
songs. Chen et al. [4] propose a query-based music rec-
ommendation system that allow users to select a preferred
song as a seed song to obtain related songs as a recom-
mended playlist.

3. POLICY GRADIENT REINFORCEMENT
LEARNING

Reinforcement learning has got a lot of attentions from
public since Silver et al. [17] proposed a general reinforce-
ment learning algorithm that could make an agent achieve

superhuman performance in many games. Besides, rein-
forcement learning has been successfully applied to many
other problems such as dialogue generation modeled as
Markov Decision Process (MDP).

A Markov Decision Process is usually denoted by a tu-
ple (S,A,P,R, γ), where

• S is a set of states
• A is a set of actions
• P(s, a, s′) = Pr[s′|s, a] is the transition probability

that action a in state s will lead to state s′

• R(s, a) = E[r|s, a] is the expected reward that an
agent will receive when the agent does action a in
state s.

• γ ∈ [0, 1] is the discount factor representing the im-
portance of future rewards

Policy gradient is a reinforcement learning algorithm to
solve MDP problems. Modeling an agent with parameters
θ, the goal of this algorithm is to find the best θ of a pol-
icy πθ(s, a) = Pr[a|s, θ] measured by average reward per
time-step

J(θ) =
∑
s∈S

dπθ (s)
∑
a∈A

πθ(s, a)R(s, a) (1)

where dπθ (s) is stationary distribution of Markov chain for
πθ.

Usually, we assume that πθ(s, a) is differentiable with
respect to its parameters θ, i.e., ∂πθ(s,a)∂θ exists, and solve
this optimization problem Eqn (1) by gradient ascent. For-
mally, given a small enough α, we update its parameters θ
by

θ ← θ + α∇θJ(θ) (2)

where
∇θJ(θ) =

∑
s∈S

dπθ (s)
∑
a∈A

πθ(s, a)∇θπθ(s, a)R(s, a)

= E[∇θπθ(s, a)R(s, a)]
(3)

4. THE PROPOSED MODEL

The proposed model consists of two main components. We
first introduce the structure of the proposed RNN-based
model in Section 4.1. Then in Section 4.2, we formulate
the problem as a Markov Decison Process and solve the
formulated problem by policy gradient to generate refined
playlists.

4.1 Attention RNN Language Model

Given a sequence of tokens {w1, w2, . . . , wt}, an RNN-
LM estimates the probability Pr[wt|w1:t−1] with a recur-
rent function

ht = f(ht−1, wt−1) (4)

and an output function, usually softmax,

Pr[wt = vi|w1:t−1] =
exp(W>viht + bvi)∑
k exp(W

>
vk
ht + bvk)

(5)
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Figure 1. The structure of our attention RNN language model with concatenation

where the implementation of the function f depends on
which kind of RNN cell we use, ht ∈ RD, W ∈ RD×V
with the column vector Wvi corresponding to a word vi,
and b ∈ RV with the scalar bvi corresponding to a word vi
(D is the number of units in RNN, and V is the number of
unique tokens in all sequences).

We then update the parameters of the RNN-LM by
maximizing the log-likelihood on a set of sequences with
size N , {s1, s2, . . . , sN}, and the corresponding tokens,
{wsi1 , w

si
2 , . . . , w

si
|si|}.

L =
1

N

N∑
n=1

|sn|∑
t=2

log Pr[wsnt |w
sn
1:t−1] (6)

4.1.1 Attention in RNN-LM

Attention mechanism in sequence-to-sequence model has
been proven to be effective in the fields of image caption
generation, machine translation, dialogue generation, and
etc. Several previous works also indicate that attention is
even more impressive on RNN-LM [15].

In attention RNN language model (A-RNN-LM), given
the hidden states from time t − Cws to t, denoted as
ht−Cws:t, whereCws is the attention window size, we want
to compute a context vector ct as a weighted sum of hid-
den states ht−Cws:t−1 and then encode the context vector
ct into the original hidden state ht.

βi = ν> tanh(W1ht +W2ht−Cws+i) (7)

αi =
exp(βi)∑Cws−1

k=0 exp(βk)
(8)

ct =

Cws−1∑
i=0

αiht−Cws+i (9)

h′t =W3

[
ht
ct

]
(10)

where β is Bahdanau’s scoring style [2], W1,W2 ∈
RD×D, and W3 ∈ RD×2D.

4.1.2 Our Attention RNN-LM with concatenation

In our work, {s1, s2, . . . , sN} and {wsi1 , w
si
2 , . . . , w

si
|si|}

are playlists and songs by adopting Chen et al.’s work [4].
More specifically, given a seed song wsi1 for a playlist si,
we find top-k approximate nearest neighbors of wsi1 to for-
mulate a list of songs {wsi1 , w

si
2 , . . . , w

si
|si|}.

The proposed attention RNN-LM with concatenation
(AC-RNN-LM) is shown in Figure 1. We pad w1:t−1 to
w1:T and concatenate the corresponding h′1:T as the input
of our RNN-LM’s output function in Eqn (5), where T is
the maximum number of songs we consider in one playlist.
Therefore, our output function becomes

Pr[wt = vi|w1:t−1] =
exp(W>vih

′ + bvi)∑
k exp(W

>
vk
h′ + bvk)

(11)

where W ∈ RDT×V , b ∈ RV and

h′ =


h′1
h′2
...
h′T

 ∈ RDT×1 (12)

4.2 Policy Gradient

We exploit policy gradient in order to optimize Eqn (1),
which is formulated as follows.

4.2.1 Action

An action a is a song id, which is a unique representation
of each song, that the model is about to generate. The set
of actions in our problem is finite since we would like to
recommend limited range of songs.

4.2.2 State

A state s is the songs we have already recommended in-
cluding the seed song, {wsi1 , w

si
2 , . . . , w

si
t−1}.
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4.2.3 Policy

A policy πθ(s, a) takes the form of our AC-RNN-LM and
is defined by its parameters θ.

4.2.4 Reward

RewardR(s, a) is a weighted sum of several reward func-
tions, i.e.,Ri : s× a 7→ R. In the following introductions,
we formulate 4 important metrics for playlists generation.
The policy of our pretrained AC-RNN-LM is denoted as
πθRNN (s, a) with parameters θRNN , and the policy of our
AC-RNN-LM optimized by policy gradient is denoted as
πθRL(s, a) with parameters θRL.

Diversity represents the variety in a recommended list of
songs. Several generated playlists in Chen et al.’s
work [4] are composed of songs with the same artist
or album. It is not regarded as a good playlist for
recommendation system because of low diversity.
Therefore, we formulate the measurement of the di-
versity by the euclidean distance between the em-
beddings of the last song in the existing playlist,
ws|s|, and the predicted song, a.

R1(s, a) = − log(|d(ws|s|, a)− Cdistance|) (13)

where d(·) is the euclidean distance between the em-
beddings of ws|s| and a, and Cdistance is a parameter
that represents the euclidean distance that we want
the model to learn.

Novelty is also important for a playlist generation sys-
tem. We would like to recommend something new
to users instead of recommend something familiar.
Unlike previous works, our model can easily gener-
ate playlists with novelty by applying a correspond-
ing reward function. As a result, we model reward of
novelty as a weighted sum of normalized playcounts
in periods of time [19].

R2(s, a) = − log(
∑
t

w(t)
log(pt(a))

log(maxa′∈A pt(a′))
)

(14)

where w(t) is the weight of a time period, t, with a
constraint

∑
t w(t) = 1, pt(a) is playcounts of the

song a, and A is the set of actions. Note that songs
with less playcounts have higher value of R2, and
vice versa.

Freshness is a subjective metric for personalized playlist
generation. For example, latest songs is usually
more interesting for young people, while older peo-
ple would prefer old-school songs. Here, we arbi-
trarily choose one direction for optimization to the
agent πθRL to show the feasibility of our approach.

R3(s, a) = − log(
Ya − 1900

2017− 1900
) (15)

where Ya is the release year of the song a.

Coherence is the major feature we should consider to
avoid situations that the generated playlists are
highly rewarded but lack of cohesive listening ex-
periences. We therefore consider the policy of our
pretrained language model, πθRNN (s, a), which is
well-trained on coherent playlists, as a good enough
generator of coherent playlists.

R4(s, a) = log(Pr[a|s, θRNN ]) (16)

Combining the above reward functions, our final reward
for the action a is

R(s, a) =γ1R1(s, a) + γ2R2(s, a)+

γ3R3(s, a) + γ4R4(s, a)
(17)

where the selection of γ1, γ2, γ3, and γ4 depends on dif-
ferent applications.

Note that although we only list four reward functions
here, the optimization goal R can be easily extended by a
linear combination of more reward functions.

5. EXPERIMENTS AND ANALYSIS

In the following experiments, we first introduce the details
of dataset and evaluation metrics in Section 5.1 and train-
ing details in Section 5.2. In Section 5.3, we compare pre-
trained RNN-LMs with different mechanism combination
by perplexity to show our proposed AC-RNN-LM is more
effectively and efficiently than others. In order to demon-
strate the effectiveness of our proposed method, AC-RNN-
LM combined with reinforcement learning, we adopt three
standard metrics, diversity, novelty, and freshness (cf. Sec-
tion 5.1) to validate our models in Section 5.4. More-
over, we demonstrate that it is effortless to flexibly ma-
nipulate the properties of resulting generated playlists in
Section 5.5. Finally, in Section 5.6, we discuss the details
about the design of reward functions with given preferred
properties.

5.1 Dataset and Evaluation Metrics

The playlist dataset is provided by KKBOX Inc., which is
a regional leading music streaming company. It consists of
10, 000 playlists, each of which is composed of 30 songs.
There are 45, 243 unique songs in total.

For validate our proposed approach, we use the metrics
as follows.

Perplexity is calculated based on the song probability dis-
tributions, which is shown as follows.

perplexity = e
1
N

∑N
n=1

∑
x−q(x) log p(x)

where N is the number of training samples, x is a
song in our song pool, p is the predicted song prob-
ability distribution, and q is the song probability dis-
tribution in ground truth.

Diversity is computed as different unigrams of artists
scaled by he total length of each playlist, which is
measured by Distinct-1 [9]
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Figure 2. Log-perplexity of different pretrained models on
the dataset under different training steps

Novelty is designed for recommending something new to
users [19]. The more the novelty is, the lower the
metric is.

Freshness is directly measured by the average release
year of songs in each playlist.

5.2 Training Details

In the pretraining and reinforcement learning stage, we
use 4 layers and 64 units per layer in all RNN-LM with
LSTM units, and we choose T = 30 for all RNN-LM
with padding and concatenation. The optimizer we use is
Adam [8]. The learning rates for pretraining stage and re-
inforcement learning stage are empirically set as 0.001 and
0.0001, respectively.

5.3 Pretrained Model Comparison

In this section, we compare the training error of RNN-LM
combining with different mechanisms. The RNN-LM with
attention is denoted as A-RNN-LM, the RNN-LM with
concatenation is denoted as C-RNN-LM, and the RNN-
LM with attention and concatenation is denoted as AC-
RNN-LM. Figure 2 reports the training error of different
RNN-LMs as log-perplexity which is equal to negative log-
likelihood under the training step from 1 to 500, 000. Here
one training step means that we update our parameters by
one batch. As shown in Figure 2, the training error of
our proposed model, AC-RNN-LM, can not only decrease
faster than the other models but also reach the lowest value
at the end of training. Therefore, we adopt AC-RNN-LM
as our pretrained model.

Worth noting that the pretrained model is developed for
two purposes. One is to provide a good basis for fur-
ther optimization, and the other is to estimate transition

Table 1. Weights of reward functions for each model

Model γ1 γ2 γ3 γ4

RL-DIST 0.5 0.0 0.0 0.5
RL-NOVELTY 0.0 0.5 0.0 0.5

RL-YEAR 0.0 0.0 0.5 0.5
RL-COMBINE 0.2 0.2 0.2 0.4

Table 2. Comparison on different metrics for playlist gen-
eration system (The bold text represents the best, and the
underline text represents the second)

Model Diversity Novelty Freshness

Embedding [4] 0.32 0.19 2007.97
AC-RNN-LM 0.39 0.20 2008.41

RL-DIST 0.44 0.20 2008.37
RL-NOVELTY 0.42 0.05 2012.89

RL-YEAR 0.40 0.19 2006.23
RL-COMBINE 0.49 0.18 2007.64

probabilities of songs in the reward function. Therefore,
we simply select the model with the lowest training er-
ror to be optimized by policy gradient and an estimator of
Pr[a|s, θRNN ] (cf. Eqn (16)).

5.4 Playlist Generation Results

As shown in Table 2, to evaluate our method, we compare
6 models on 3 important features, diversity, novelty, and
freshness (cf. Section 5.1), of playlist generation system.
The details of models are described as follows. Embed-
ding represents the model of Chen et al.’s work [4]. Chen
et al. construct the song embedding by relationships be-
tween user and song and then finds approximate k nearest
neighbors for each song. RL-DIST, RL-NOVELTY, RL-
YEAR, and RL-COMBINE are models that are pretrained
and optimized by the policy gradient method (cf. Eqn (17))
with different weights, respectively, as shown in Table 1.

The experimental results show that for single objec-
tive such as diversity, our models can accurately gener-
ate playlists with corresponding property. For example,
RL-Year can generate a playlist which consists of songs
with earliest release years than Embedding and AC-RNN-
LM. Besides, even when we impose our model with mul-
tiple reward functions, we can still obtain a better resulting
playlist in comparison with Embedding and AC-RNN-LM.
Sample result is shown in Figure 3.

From Table 2, we demonstrate that by using appropriate
reward functions, our approach can generate playlists to fit
the corresponding needs easily. We can systematically find
more songs from different artists (RL-DIST), more songs
heard by fewer people (RL-NOVELTY), or more old songs
for some particular groups of users (RL-YEAR).

5.5 Flexible Manipulating Playlist Properties

After showing that our approach can easily fit several
needs, we further investigate the influence of γ to the re-
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Figure 3. Sample playlists generated by our approach. The
left one is generated by Embedding [4] and the right one is
generated by RL-COMBINE.

sulting playlists. In this section, several models are trained
with the weight γ2 from 0.0 to 1.0 to show the vari-
ances in novelty of the resulting playlists. Here we keep
γ2 + γ4 = 1.0 and γ1 = γ3 = 0 and fix the training steps
to 10, 000.

As shown in Figure 4, novelty score generally decreases
when γ2 increases from 0.0 to 1.0 but it is also possible
that the model may sometimes find the optimal policy ear-
lier than expectation such as the one with γ2 = 0.625.
Nevertheless, in general, our approach can not only let the
model generate more novel songs but also make the extent
of novelty be controllable. Besides automation, this kind
of flexibility is also important in applications.

Take online music streaming service as an example,
when the service provider wants to recommend playlists
to a user who usually listens to non-mainstream but fa-
miliar songs (i.e., novelty score is 0.4), it is more suitable
to generate playlists which consists of songs with novelty
scores equals to 0.4 instead of generating playlists which is
composed of 60% songs with novelty scores equals to 0.0
and 40% songs with novelty scores equals to 1.0. Since
users usually have different kinds of preferences on each
property, to automatically generate playlists fitting needs
of each user, such as novelty, becomes indispensable. The
experimental results verify that our proposed approach can
satisfy the above application.

5.6 Limitation on Reward Function Design

When we try to define a reward function Ri for a prop-
erty, we should carefully avoid the bias from the state s.
In other words, reward functions should be specific to the
corresponding feature we want. One common issue is that

Figure 4. Novelty score of playlists generated by different
imposing weights

the reward function may be influenced by the number of
songs in state s. For example, in our experiments, we adopt
Distinct-1 as the metric for diversity. However, we cannot
also adopt Distinct-1 as our reward function directly be-
cause it is scaled by the length of playlists which results
in all actions from states with fewer songs will be bene-
fited. Therefore, difference between cR1 and Distinct-1 is
the reason that RL-DIST does not achieve the best perfor-
mance in Distinct-1 (cf. Table 1). In summary, we should
be careful to design reward functions, and sometimes we
may need to formulate another approximation objective
function to avoid biases.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we develop a playlist generation system
which is able to generate personalized playlists automat-
ically and flexibly. We first formulate playlist generation
as a language modeling problem. Then by exploiting the
techniques of RNN-LM and reinforcement learning, the
proposed approach can flexibly generate suitable playlists
for different preferences of users.

In our future work, we will further investigate the pos-
sibility to automatically generate playlists by considering
qualitative feedback. For online music streaming service
providers, professional music curators will give qualitative
feedback on generated playlists so that research develop-
ers can improve the quality of playlist generation system.
Qualitative feedback such as ‘songs from diverse artists
but similar genres’ is easier to be quantitative. We can de-
sign suitable reward functions and generate corresponding
playlists by our approach. However, other feedback such
as ‘falling in love playlist’ is more difficult to be quantita-
tive. Therefore, we will further adopt audio features and
explicit tags of songs in order to provide a better playlist
generation system.
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ABSTRACT

Generative models aim to understand the properties of
data, through the construction of latent spaces that allow
classification and generation. However, as the learning is
unsupervised, the latent dimensions are not related to per-
ceptual properties. In parallel, music perception research
has aimed to understand timbre based on human dissimi-
larity ratings. These lead to timbre spaces which exhibit
perceptual similarities between sounds. However, they
do not generalize to novel examples and do not provide
an invertible mapping, preventing audio synthesis. Here,
we show that Variational Auto-Encoders (VAE) can bridge
these lines of research and alleviate their weaknesses by
regularizing the latent spaces to match perceptual distances
collected from timbre studies. Hence, we propose three
types of regularization and show that they lead to spaces
that are simultaneously coherent with signal properties and
perceptual similarities. We show that these spaces can be
used for efficient audio classification. We study how audio
descriptors are organized along the latent dimensions and
show that even though descriptors behave in a non-linear
way across the space, they still exhibit a locally smooth
evolution. We also show that, as this space generalizes to
novel samples, it can be used to predict perceptual similar-
ities of novel instruments. Finally, we exhibit the genera-
tive capabilities of our spaces, that can directly synthesize
sounds with continuous evolution of timbre perception.

1. INTRODUCTION

Generative models aim to understand the underlying dis-
tribution of data based on the observation of examples,
in order to generate novel content. Recently, audio syn-
thesis using these models has seen great improvements
through efficient waveform models, such as WaveNet [19]
and SampleRNN [17]. These models are able to generate
high-quality audio matching the properties of the corpus

c© Philippe Esling, Axel Chemla, Adrien Bitton. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Philippe Esling, Axel Chemla, Adrien Bitton.
“Bridging audio analysis, perception and synthesis with perceptually-
regularized variational timbre spaces”, 19th International Society for Mu-
sic Information Retrieval Conference, Paris, France, 2018.

they have been trained on. However, these models give lit-
tle control over the output or the hidden features it results
from. More recently, NSynth [4] has been proposed to gen-
erate instrumental notes, while allowing to morph between
specific instruments. However, these models remain highly
complex, requiring very large number of parameters, long
training times and a large number of examples.

Amongst recent generative models, a key proposal is
the Variational Auto-Encoder (VAE) [11]. In these models,
encoder and decoder networks are jointly trained through
the construction of a latent space, that allow both analysis
and generation. VAEs address all the limitations of con-
trol and analysis through this latent space, while remaining
simple and fast to learn without requiring large sets of ex-
amples. Furthermore, the VAE seems able to disentangle
underlying variation factors by learning independent latent
variables [7]. However, these unsupervised dimensions are
not related to perceptual properties, which might hamper
the control and use of these spaces for analysis and synthe-
sis. The potential of VAEs for audio applications has only
been scarcely investigated and mostly for speech source
separation [13] and transformation [8]. However, the use
of variational latent spaces specifically for musical audio
synthesis is yet to be investigated.

In parallel, music perception research has tried to under-
stand the mechanisms behind the perception of instrumen-
tal timbre. Several studies [15] collected dissimilarity rat-
ings between pairs of instrumental samples. Then, Multi-
Dimensional Scaling (MDS) is applied to these ratings to
obtain timbre spaces, which exhibit the perceptual similar-
ities between instruments. Although these spaces provide
interesting analyses, they are inherently limited by the fact
that MDS produces a fixed discrete space, which has to be
recomputed for any new sample. Therefore, these spaces
do not generalize to novel examples and do not provide an
invertible mapping, preventing audio synthesis.

Here, we show that we can bridge analysis, synthesis
and perceptual audio research by regularizing the learning
of latent spaces so that they match the perceptual distances
from timbre studies. Our overall approach is depicted in
Figure 1. First, we adapt the VAE to analyze musical au-
dio content, by relying on the Non-Stationary Gabor Trans-
form (NSGT) with a Constant-Q scale. This transform al-
lows us to obtain a log-frequency scale while remaining in-
vertible, which is critical to perform audio synthesis. Even
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with a simple model on a small training set, we show that
this provides a generative model with an interesting latent
space, able to synthesize novel instrumental sounds.

Then, we propose three regularizations to the learn-
ing objective, aiming to enforce that the latent space ex-
hibits the same topology as the topology of timbre spaces.
We build a model of perceptual relationships by normal-
izing dissimilarity ratings from five timbre space studies
[5, 9, 12, 14, 16]. We show that perceptually-regularized
latent spaces are both coherent with perceptual dissimilar-
ities, while being able to reconstruct audio samples with a
high accuracy. Hence, we can drive the learning of the la-
tent space to match the topology of any given target space.

We demonstrate that these spaces can be used for au-
dio classification by training low-capacity classifiers on the
spaces. We obtain high accuracy for family and instrument
labels, but also for the pitch and dynamics, even though the
model had no information on these during training. We ex-
hibit the generative capabilities of our spaces, by assessing
the reconstruction quality of the model on a test dataset.
We show that the latent spaces can be directly used to syn-
thesize sounds with continuous evolution of timbre percep-
tion. We also show that these spaces generalize to novel
samples, by encoding instruments that were not part of the
training set. Therefore, the spaces could be used to predict
the perceptual similarities of novel instruments. Finally,
we study how audio descriptors behave along the latent di-
mensions, by generating audio samples on a grid across
space. We show that even though descriptors behave in a
non-linear way across the space, they still follow a locally
smooth evolution. Our source code, audio examples and
additional figures and animations are available online 1 .

2. STATE-OF-ART

2.1 Variational auto-encoders

Generative models are a flourishing class of machine learn-
ing approaches, aiming to find the underlying probability
distribution of the data p(x) [2]. Formally, based on a
set of examples in x ∈ Rdx , we assume that these fol-
low an unknown probability distribution p (x). Further-
more, we consider a set of latent variables defined in a
lower-dimensional space z ∈ Rdz (dz � dx), a higher-
level representation that could have led to generate a given
example. These latent variables help govern the distribu-
tion of the data and enhance the expressivity of the model.
The complete model is defined by the joint probability dis-
tribution p(x, z) = p(x | z)p(z). We could find p(x) by
marginalizing z from the joint probability. However, for
most models, this integral can not be found in closed form.

Recently, variational inference (VI) has been proposed
to solve this problem through optimization. VI assumes
that if the distribution is too complex to find, we could
find a simpler approximate distribution that still models the
data, while trying to minimize its difference to the real dis-
tribution. VI specifies a familyQ of approximate densities,

1 https://github.com/acids-ircam/ismir2018
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Figure 1. The VAE models audio samples x by learning an
encoder qφ(z |x) which maps them to a GaussianN (µ(x),
σ(x)) in latent space z. The decoder pθ(x|z) samples from
this Gaussian to generate a reconstruction x̃. Perception
studies use dissimilarity ratings to construct a timbre space
that exhibits the perceptual distances between instruments.
Here, we develop regularizations methods R(z, T ), to en-
force that the variational model finds a topology of latent
space z that matches the topology of the timbre space T .

where each member q(z|x) ∈ Q is a candidate approxima-
tion to the exact conditional p (z | x). Hence, the inference
can be transformed into an optimization problem by mini-
mizing the Kullback-Leibler (KL) divergence between the
approximation and the original density

q∗(z | x) = argmin
q(z | x)∈Q

DKL
[
q (z | x) ‖ p (z | x)

]
(1)

By developing this KL divergence and re-arranging terms
(the detailed development can be found in [11]), we obtain

log p(x)−DKL

[
q(z | x) ‖ p(z | x)

]
=

Ez

[
log p(x | z)

]
−DKL

[
q(z | x) ‖ p(z)

]
(2)

This formulation describes the quantity we want to max-
imize log p(x) minus the error we make by using an ap-
proximate q instead of p. Therefore, we can optimize
this alternative objective, called the evidence lower bound
(ELBO). Now, to optimize this objective, we will rely on
parametric distributions qφ(z) and pθ(z). Optimizing our
generative model will amount to optimizing these parame-
ters

{
θ, φ
}

of these distributions with

Lθ,φ = E
[
log pθ(x|z)

]
−β ·DKL

[
qφ(z|x) ‖ pθ(z)

]
(3)

We can see that this equation involves qφ(z | x) which en-
codes the data x into the latent representation z and a de-
coder p(x |z), which allows generating a data x given a la-
tent configuration z. Hence, this structure defines the Vari-
ational Auto-Encoder (VAE), depicted in Figure 1 (Left).
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The VAE objective can be interpreted intuitively. The
first term increases the likelihood of the data generated
given a configuration of the latent, which amounts to mini-
mize the reconstruction error. The second term represents
the error made by using a simpler distribution qφ(z | x)
rather than the true distribution pθ(z). Therefore, this reg-
ularizes the choice of approximation q so that it remains
close to the true posterior distribution [11]. Here, we also
introduced a weight β on the KL divergence, which has
been shown to improve the capacity of the model to disen-
tangle factors of variations in the data [7].

VAEs are powerful representation learning frameworks,
while remaining simple and fast to learn without requiring
large sets of examples [18]. Their potential for audio appli-
cations have been only scarcely investigated yet and mostly
in topics related to speech processing such as blind source
separation [13] and speech transformation [8]. However,
to our best knowledge, the use of VAE to perform musical
audio analysis and generation has yet to be investigated.

2.2 Timbre spaces and auditory perception

For decades, researchers have tried to understand the
mechanisms of timbre perception. Timbre is the set of
properties that distinguishes two instruments playing the
same note at the same intensity. Several studies tried to un-
derstand this phenomenon by relying on timbre spaces [6],
a model that aims to organize audio samples based on hu-
man dissimilarity ratings. The experimental protocol con-
sists of presenting pairs of sounds to subjects. Each subject
has to rate the perceptual dissimilarity of all pairs of sam-
ples inside a selected set of instruments. Then, these rat-
ings are compiled into a set of dissimilarity matrices that
are analyzed with Multi-Dimensional Scaling (MDS). The
MDS algorithm provides a timbre space that exhibits the
perceptual distances between different instruments. This
process is depicted in Figure 1 (Right). Here, we briefly
detail the studies and redirect the interested readers to the
full articles for more details.

In his seminal paper, Grey [5] performed a study with
16 instrumental sound samples in which 22 subjects had to
rate their dissimilarities on a continuous scale from 0 (most
similar) to 1 (most dissimilar), leading to the first construc-
tion of a timbre space. Following this study, Krumhansl
[12] used 21 instruments with 9 subjects on a discrete scale
from 1 to 9, Iverson et al. [9] with 16 samples and 10
subjects on a continuous scale from 0 to 1, McAdams et
al. [16] with 18 instruments and 24 subjects on a discrete
scale from 1 to 16 and, finally, Lakatos [14] with 17 sub-
jects and different instrument sets on a continuous scale
from 0 to 1. Each of these studies shed light on different
aspects of audio perception, depending on the interpreta-
tion of the dimensions. However, all studies produced dif-
ferent spaces with different dimensions, preventing a gen-
eralization on the acoustic cues that might correspond to
timbre dimensions. Furthermore, these studies are inher-
ently limited by the fact that ordination techniques (e.g.
MDS) produce fixed spaces that must be recomputed for
any new data point [16]. Hence, these spaces are unable

to generalize nor can we generate data from these as they
do not provide an invertible mapping. Here, we show that
learning latent spaces, while regularizing their topology to
fit perceptual ratings can alleviate these limitations.

3. REGULARIZING THE TOPOLOGY OF
LATENT SPACES

We show that we can influence the learning of the latent
space z so that it follows the topology of a given target
space T . Here, we rely on timbre spaces based on percep-
tual ratings as a target space. However, it should be noted
that this idea can be applied to any target space. Here, we
consider a set of audio samples xi where each have rela-
tions in both latent space zi and target space Ti. In order to
relate the elements of the audio set to the perceptual space,
we consider that each sample is labeled with its instrumen-
tal class Ci, that has an equivalent in the timbre space.

3.1 Penalty regularization

First, we define an additive penalty regularizationR (z, T )
that imposes that the properties of the latent z are similar
to that of the target T . Our objective becomes

E
[
log pθ(x|z)

]
− βDKL

[
qφ(z|x) ‖ pθ(z)

]
+ αR

(
z, T

)

Hence, amongst two otherwise equal solutions, the model
is pushed to select the one that comply with the penalty.
The weight α allows us to control the influence of this reg-
ularization. In our case, we want the distances between
instruments to follow the perceptual distances. There-
fore, we need to minimize the differences between the dis-
tances in latent space Dz

i,j = D(zi, zj) and in target space
DTi,j = D(Ti, Tj). The regularization criterion will mini-
mize the differences between these sets of distances

R
(
z, T

)
=
∑

i6=j

Ri,j
(
z, T

)
=
∑

i 6=j

R
(
Dz
i,j ,DTi,j

)
(4)

Euclidean. First, we rely on the Euclidean distance to
compute the distance between points in both spaces with
DSi,j = ‖Si − Sj‖2 and also to compare distance matrices

Ri,j
(
z, T

)
=
∥∥Dz

i,j −DTi,j
∥∥2 (5)

This regularization provides an incentive to the model to
obtain the Euclidean metric properties of the target space.
Gaussian. Here, we model the fact that perceptual rat-
ings are subjective assessments. Therefore, we consider
that each perceptual rating between instruments i and j is
drawn from a univariate Gaussian di,j ∼ N

(
µi,j , σi,j

)
.

As we can see, we define a different distribution for each
pair of instruments. When evaluating the regularization,
we draw a different distance at each iteration for all pairs

{
DTi,j

}
it
∼ N

(
µi,j , σi,j

)

Hence, this regularization models the uncertainty present
in the set of perceptual ratings.
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3.2 Prior regularization

In the VAE objective, we observe that the prior p(z) al-
ready carries information on the organization of the latent
space. Therefore, we can inject the desired topology of the
latent space inside that term. Here, we propose to intro-
duce a class-based prior

p(zi) = N (µT (Ci), σT (Ci))

where Ci is the class of element i. Therefore, this prior
pushes the VAE to find a configuration of the samples in
latent space so that they follow the same distribution as
their class in our target timbre space. The computation of
class means µT (Ci) and covariances σT (Ci) based on the
perceptual ratings is detailed in Section 4.1.

4. EXPERIMENTS

4.1 Datasets

Timbre studies. We rely on perceptual dissimilarity rat-
ings collected across five independent timbre studies [5, 9,
12, 14, 16], detailed globally in [3, 15]. As discussed ear-
lier (Section 2.2), even though all studies follow the same
protocol, there are some discrepancies in the instruments,
number of participants and rating scales.

Hence, we normalize the dissimilarity ratings so that all
studies map to a common scale from 0 to 1. Then, we
compute the maximal set of instruments for which we had
pairwise ratings for all pairs by counting co-occurences
in studies. This leads to a set of 11 instruments (Piano,
Cello, Violin, Flute, Clarinet, Trombone, Horn, Oboe, Sax-
ophone, Trumpet, Tuba). Finally, we extract the set of rat-
ings that corresponds to our selected instruments, amount-
ing to a total of 11845 pairwise ratings. Based on this set of
ratings, we compute an MDS space to obtain the positions
in target space of each instrument (which also corresponds
to the mean µT ) and to ensure the consistency of our nor-
malized perceptual space. For all pairs of instruments, we
also fit a Gaussian distribution to the pairwise dissimilar-
ity ratings in order to obtain the mean µi,j and variance
σi,j of that pair for the Gaussian regularization. We derive
the global variance σT for each instrument, by taking the
mean of their pairwise variances. Results of this analysis
are displayed in Figure 2. Even though ratings come from
different studies, the resulting space appears very coherent
with clusters of families and the distances between individ-
ual instruments correlated to previous perceptual studies.

Audio datasets. In order to learn the distribution of in-
strumental audio, we rely on the Studio On Line (SOL)
database [1]. We selected 2,200 samples to represent the
11 instruments for which we extracted perceptual ratings.
These represent the whole tessitura and dynamics avail-
able (to remove effects from the pitch and loudness). All
recordings were resampled to a sampling rate of 22050Hz.
For each audio sample, we compute the Non-Stationary
Gabor Transform (NSGT) mapped on a Constant-Q scale
of 24 bins per octave. We only keep the magnitude of the
NSGT to train our models. Then, we perform a corpus-
wide normalization to preserve the relative intensities of
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Figure 2. Multi-dimensional scaling (MDS) applied to the
combined normalized set of perceptual dissimilarity rat-
ings (strings in blue, brasses in green and winds in red).

the samples and extract a single temporal frame to repre-
sent the given audio sample. Finally, the dataset is ran-
domly split between a training (90%) and test (10%) set.

4.2 Models

In order to evaluate our proposal, we rely on a very sim-
ple VAE architecture to show its efficiency. The encoder
is defined as a 3-layers feed-forward network with ReLU
activations and 3000 units per layer. The last layer maps
to a latent space of 64 dimensions. The decoder is defined
with the same architecture, mapping back to the dimen-
sionality of the input. For learning the model, we use a
value of β, which is linearly increased from 0 to 2 during
the first 100 epochs (warmup procedure [18]). In order to
train the model, we rely on the ADAM optimizer [10] with
an initial learning rate of 0.00001, and a Xavier weight ini-
tialization [18]. In a first stage, we train the model without
perceptual regularization (α = 0) for 5000 epochs. Then,
we introduce the perceptual regularization (α = 1) and
train for another 1000 epochs. This allows the model to
first focus on the quality of the reconstruction with its own
unsupervised regularization, and then to converge towards
a solution with perceptual space properties. This leads to a
training time of one hour on a NVIDIA Titan X GPU.

5. RESULTS

5.1 Latent spaces properties

In order to visualize the latent spaces, we apply a Principal
Component Analysis (PCA) to obtain a 3d representation.
Using a PCA ensures that the representation is a linear
transform that preserves the distances inside the original
space. This also provides an exploitable control space for
audio synthesis. Results are displayed in Figure 3.

As we can see, the VAE without regularization is al-
ready able to dissociate instrumental distributions, while
providing almost perfect reconstruction of audio samples
from the low-dimensional space. This confirms that VAEs
can provide interesting latent spaces for analysis and syn-
thesis. However, the relationships between instruments are
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Figure 3. Comparing the latent spaces for the VAE unregularized (a) or with Prior (b), Euclidean (c) and Gaussian (d)
regularization. The mean L2 differences between latent and timbre spaces distances is indicated on each graph. We show
under each space the reconstruction of NSGT distributions from the test set directly from these spaces.

entirely different from perceptual ratings. Furthermore, the
large variance of the distributions seem to indicate that the
model rather tries to spread the information across the la-
tent space to help the reconstruction.

In the case of all regularizations (b-d), we can clearly
see the enhancement on the dissociation of instrumental
distributions. Furthermore, the overall distances between
instruments match well the distances based on perceptual
ratings (Figure 2). This similarity is particularly striking
for the L2 regularization (c), which provides the lowest
overall differences to our combined timbre space. This
might come from the fact that MDS spaces have an Eu-
clidean metric topology. However, this might also indi-
cate an effect of over-regularization, which might impact
generalization. For all regularized latent spaces, the instru-
mental distributions are shuffled around the space in order
to comply with the reconstruction objective. However, the
pairwise distances reflecting perceptual relations are well
matched as indicated by their respective L2 differences to
the timbre space. Finally, by looking at the reconstructions
of the NSGT distributions from the test set, we can see that
enforcing the perceptual topology to the latent spaces does
not impact the quality of audio reconstruction (this evalu-
ation is quantified in Section 5.3). However, we note an
occasional addition of low-amplitude noise, which might
indicate that the model focuses on optimizing the partials
rather than the low-amplitude tail of the distribution.

5.2 Discriminative capabilities

We evaluate the discriminative capabilities of the latent
spaces through a classification task. We use a very low-
capacity classifier composed of a single-layer network of
512 ReLU units with batch normalization and softmax re-
gression. The low-capacity classifier ensures that the latent
space needs to be well organized to obtain a good accu-
racy. In order to evaluate the impact of our proposal, we
also compare these results to a simple PCA with softmax
regression and an Auto-Encoder (AE) with the same ca-
pacity as the VAE. Results are presented in Table 1.

We can see that all models perform an excellent classifi-

Method Family Instrument Pitch Dynam.
PCA 0.790 0.697 0.167 0.527
AE 0.973 0.957 0.936 0.597

VAE 0.978 0.993 0.963 0.941
Prior 0.975 0.991 0.993 0.936

Euclidean 0.972 0.990 0.990 0.943
Gaussian 0.982 0.991 0.989 0.948

Table 1. Discriminative capabilities in classifying family,
instrument, pitch and dynamics of the test set.

Method log p(x) ‖x− x̃‖2

PCA - 2.2570
AE -1.2008 1.6223

VAE -2.3443 0.1593
Prior -2.7143 0.1883

Euclidean 17.8960 0.1223
Gaussian 0.2894 0.1749

Table 2. Generative capabilities evaluated on the log like-
lihood and reconstruction error over the test set.

cation of instrumental properties. However, a very interest-
ing observation comes from the vanilla VAE providing the
best accuracy on instrument classification, even though we
regularized other models with distances highly relevant to
these categories. This might underline the fact that percep-
tual information could blur discrimination of highly simi-
lar instruments (such as violin and violoncello). Interest-
ingly, the symmetric results on pitch and dynamics cate-
gories might indicate that regularized model are pushed to
focus on timbre properties. Therefore, they need to more
clearly separate the variations coming from pitch and loud-
ness to understand the variability of timbre.

5.3 Generative capabilities

We quantify generative capabilities by evaluating recon-
structions from the latent space, through the log likelihood
and mean difference between original and reconstructed
audio on the test set. The results are presented in Table 2.
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Figure 4. (Top) We encode instruments that were not part
of timbre studies to show the out-of-domain capabilities of
latent spaces. (Bottom) Topology of descriptors. We define
4 projection planes equally spaced across the x axis. We
sample points at these positions on a 50x50 grid and re-
construct their audio distribution to compute their spectral
centroid, flatness and bandwidth.

Overall, the regularizations do not impact the recon-
struction quality of the model. Furthermore, we can now
sample directly from the spaces to obtain novel sounds that
remain perceptually relevant, which allows us to turn our
spaces into generative timbre synthesizers. However, as
previously hypothesized, the L2 regularization seems to
have a too strong effect on the latent space, disrupting the
generalization of the model. We provide generated audio
clips representing paths between different instruments in
the latent space on the supporting repository for subjective
evaluation of the latent space audio synthesis.

5.4 Perceptual inference

The encoder of our perceptually-regularized spaces is able
to analyze new instruments that were not part of the origi-
nal timbre studies. Hence, we could hope that it is able to
predict perceptual relationships between new instruments,
to feed further timbre studies. To evaluate this, we ex-
tracted instruments outside of our perceptual set (Contra-
bass, Guitar, Harp, Piccolo, Viola) and encode these sam-
ples in the latent space to study the out-of-domain general-
ization capabilities of our model. Results are presented in

Figure 4 (Top, only the centroid of distributions are shown
for clarity). Here, the Piccolo and Viola seem to group
in a coherent way with their families. However, the Gui-
tar and Harp do not provide such straightforward relation-
ships. Therefore, perceptual inference from these spaces
would require more extensive perception experiments.

5.5 The topology of audio descriptors

We analyze the behavior of signal descriptors across the
latent space in order to study their topology. As the space
is continuous, we do so by sampling uniformly the PCA
space and then using the decoder to generate all audio sam-
ples on this grid. Then, we compute the audio descriptors
of these samples. In order to provide a visualization here,
we select equally-distant planes across the x dimension (at
positions {-.75, -.25, .25, .75}) in Figure 4 for the spec-
tral flatness, centroid and bandwidth. Videos of continu-
ous traversals of the latent space for different descriptors
are available on the supporting repository.

Audio descriptors seem to be organized in a non-linear
way across our spaces. However, they still exhibit both
locally smooth evolution and an overall logical organiza-
tion. This shows that our model is able to organize audio
variations. A very interesting observation comes from the
topology of the centroid. Indeed, all perceptual studies un-
derline its linear correlation to timbre perception, which is
partly confirmed by our model (see Figure 4). This con-
firms the perceptual relevance of these latent spaces. How-
ever, this also shows that the relation between centroid and
timbre perception might not be entirely linear.

6. CONCLUSION

We have shown that VAEs can learn a latent space al-
lowing for high-level audio analysis and synthesis directly
from these spaces. We proposed different methods for reg-
ularizing these spaces to follow the metric properties of
timbre spaces. These regularized models provide a con-
trol space from which the generation of perceptually rel-
evant audio content is straightforward. By analyzing the
behavior of audio descriptors across the latent space, we
have shown that, while following a non-linear evolution,
they still exhibit some locally smooth properties. Future
works on these spaces include perceptual experiments to
confirm their perceptual topology and also to thrive on the
smoothness of audio descriptors to develop a descriptor-
based synthesizer.

7. ACKNOWLEDGEMENTS

This work was supported by the MAKIMOno project 17-
CE38-0015-01 funded by the French ANR and the Cana-
dian Natural Sciences and Engineering Reserch Council
(STPG 507004-17) and the ACTOR Partnership funded
by the Canadian Social Sciences and Humanities Research
Council (895-2018-1023).

180 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



8. REFERENCES

[1] Guillaume Ballet, Riccardo Borghesi, Peter Hoffmann,
and Fabien Lévy. Studio online 3.0: An internet”
killer application” for remote access to ircam sounds
and processing tools. Journée dInformatique Musicale
(JIM), 1999.

[2] Christopher M. Bishop and Tom M. Mitchell. Pattern
recognition and machine learning. 2014.

[3] John A. Burgoyne and Stephen McAdams. A meta-
analysis of timbre perception using nonlinear exten-
sions to clascal. In International Symposium on Com-
puter Music Modeling and Retrieval, pages 181–202.
Springer, 2007.

[4] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander
Dieleman, Douglas Eck, Karen Simonyan, and Mo-
hammad Norouzi. Neural audio synthesis of musi-
cal notes with wavenet autoencoders. arXiv preprint
arXiv:1704.01279, 2017.

[5] John M Grey. Multidimensional perceptual scaling of
musical timbres. the Journal of the Acoustical Society
of America, 61(5):1270–1277, 1977.

[6] John M. Grey and John W. Gordon. Perceptual effects
of spectral modifications on musical timbres. The Jour-
nal of the Acoustical Society of America, 63(5):1493–
1500, 1978.

[7] Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learn-
ing basic visual concepts with a constrained variational
framework. 2016.

[8] Wei-Ning Hsu, Yu Zhang, and James Glass. Learning
latent representations for speech generation and trans-
formation. arXiv preprint arXiv:1704.04222, 2017.

[9] Paul Iverson and Carol L. Krumhansl. Isolating the dy-
namic attributes of musical timbrea. The Journal of
the Acoustical Society of America, 94(5):2595–2603,
1993.

[10] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Diederik P. Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[12] Carol L. Krumhansl. Why is musical timbre so hard to
understand. Structure and perception of electroacous-
tic sound and music, 9:43–53, 1989.

[13] Jen-Tzung Kuo and Kuan-Ting Chien. Variational re-
current neural networks for speech separation. INTER-
SPEECH 2017.

[14] Stephen Lakatos. A common perceptual space for
harmonic and percussive timbres. Perception & psy-
chophysics, 62(7):1426–1439, 2000.

[15] Stephen McAdams, Bruno L. Giordano, Patrick Susini,
Geoffroy Peeters, and Vincent Rioux. A meta-analysis
of acoustic correlates of timbre dimensions. Journal of
the Acoustical Society of America, 120(5):3275, 2006.

[16] Stephen McAdams, Suzanne Winsberg, Sophie Don-
nadieu, Geert De Soete, and Jochen Krimphoff.
Perceptual scaling of synthesized musical timbres:
Common dimensions, specificities, and latent subject
classes. Psychological research, 58(3):177–192, 1995.

[17] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani,
Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron
Courville, and Yoshua Bengio. Samplernn: An un-
conditional end-to-end neural audio generation model.
arXiv preprint arXiv:1612.07837, 2016.

[18] Casper K. Sønderby, Tapani Raiko, Lars Maaløe,
Søren K. Sønderby, and Ole Winther. How to train deep
variational autoencoders and probabilistic ladder net-
works. arXiv preprint arXiv:1602.02282, 2016.

[19] Aaron Van Den Oord, Sander Dieleman, Heiga
Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 181



CONDITIONING DEEP GENERATIVE RAW AUDIO MODELS FOR
STRUCTURED AUTOMATIC MUSIC

Rachel Manzelli∗ Vijay Thakkar∗ Ali Siahkamari Brian Kulis
∗Equal contributions ECE Department, Boston University

{manzelli, thakkarv, siaa, bkulis}@bu.edu

ABSTRACT
Existing automatic music generation approaches that fea-
ture deep learning can be broadly classified into two types:
raw audio models and symbolic models. Symbolic mod-
els, which train and generate at the note level, are cur-
rently the more prevalent approach; these models can cap-
ture long-range dependencies of melodic structure, but fail
to grasp the nuances and richness of raw audio genera-
tions. Raw audio models, such as DeepMind’s WaveNet,
train directly on sampled audio waveforms, allowing them
to produce realistic-sounding, albeit unstructured music.
In this paper, we propose an automatic music generation
methodology combining both of these approaches to cre-
ate structured, realistic-sounding compositions. We con-
sider a Long Short Term Memory network to learn the
melodic structure of different styles of music, and then use
the unique symbolic generations from this model as a con-
ditioning input to a WaveNet-based raw audio generator,
creating a model for automatic, novel music. We then eval-
uate this approach by showcasing results of this work.

1. INTRODUCTION
The ability of deep neural networks to generate novel mu-
sical content has recently become a popular area of re-
search. Many variations of deep neural architectures have
generated pop ballads, 1 helped artists write melodies, 2

and even have been integrated into commercial music gen-
eration tools. 3

Current music generation methods are largely focused
on generating music at the note level, resulting in outputs
consisting of symbolic representations of music such as se-
quences of note numbers or MIDI-like streams of events.
These methods, such as those based on Long Short Term
Memory networks (LSTMs) and recurrent neural networks
(RNNs), are effective at capturing medium-scale effects
in music, can produce melodies with constraints such as
mood and tempo, and feature fast generation times [14,22].

1 http://www.flow-machines.com/
2 https://www.ampermusic.com/
3 https://www.jukedeck.com/

c© Rachel Manzelli, Vijay Thakkar, Ali Siahkamari, Brian
Kulis. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Rachel Manzelli, Vijay Thakkar,
Ali Siahkamari, Brian Kulis. “Conditioning Deep Generative Raw Audio
Models for Structured Automatic Music”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

In order to create sound, these methods often require an in-
termediate step of interpretation of the output by humans,
where the symbolic representation transitions to an audio
output in some way.

An alternative is to train on and produce raw audio
waveforms directly by adapting speech synthesis models,
resulting in a richer palette of potential musical outputs,
albeit at a higher computational cost. WaveNet, a model
developed at DeepMind primarily targeted towards speech
applications, has been applied directly to music; the model
is trained to predict the next sample of 8-bit audio (typi-
cally sampled at 16 kHz) given the previous samples [25].
Initially, this was shown to produce rich, unique piano
music when trained on raw piano samples. Follow-up
work has developed faster generation times [16], generated
synthetic vocals for music using WaveNet-based architec-
tures [3], and has been used to generate novel sounds and
instruments [8]. This approach to music generation, while
very new, shows tremendous potential for music genera-
tion tools. However, while WaveNet produces more real-
istic sounds, the model does not handle medium or long-
range dependencies such as melody or global structure in
music. The music is expressive and novel, yet sounds un-
practiced in its lack of musical structure.

Nonetheless, raw audio models show great potential for
the future of automatic music. Despite the expressive na-
ture of some advanced symbolic models, those methods re-
quire constraints such as mood and tempo to generate cor-
responding symbolic output [22]. While these constraints
can be desirable in some cases, we express interest in gen-
erating structured raw audio directly due to the flexibility
and versatility that raw audio provides; with no specifica-
tion, these models are able to learn to generate expression
and mood directly from the waveforms they are trained on.
We believe that raw audio models are a step towards less
guided, unsupervised music generation, since they are un-
constrained in this way. With such tools for generating raw
audio, one can imagine a number of new applications, such
as the ability to edit existing raw audio in various ways.

Thus, we explore the combination of raw audio and
symbolic approaches, opening the door to a host of new
possibilities for music generation tools. In particular,
we train a biaxial Long Short Term Memory network
to create novel symbolic melodies, and then treat these
melodies as an extra conditioning input to a WaveNet-
based model. Consequently, the LSTM model allows us
to represent long-range melodic structure in the music,
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while the WaveNet-based component interprets and ex-
pands upon the generated melodic structure in raw audio
form. This serves to both eliminate the intermediate inter-
pretation step of the symbolic representations and provide
structure to the output of the raw audio model, while main-
taining the aforementioned desirable properties of both
models.

We first discuss the tuning of the original unconditioned
WaveNet model to produce music of different instruments,
styles, and genres. Once we have tuned this model appro-
priately, we then discuss our extension to the conditioned
case, where we add a local conditioning technique to the
raw audio model. This method is comparable to using a
text-to-speech method within a speech synthesis model.
We first generate audio from the conditioned raw audio
model using well-known melodies (e.g., a C major scale
and the Happy Birthday melody) after training on the Mu-
sicNet dataset [24]. We also discuss an application of our
technique to editing existing raw audio music by changing
some of the underlying notes and re-generating selections
of audio. Then, we incorporate the LSTM generations as a
unique symbolic component. We demonstrate results of
training both the LSTM and our conditioned WaveNet-
based model on corresponding training data, as well as
showcase and evaluate generations of realistic raw audio
melodies by using the output of the LSTM as a unique lo-
cal conditioning time series to the WaveNet model.

This paper is an extension of an earlier work originally
published as a workshop paper [19]. We augment that
work-in-progress model in many aspects, including more
concrete results, stronger evaluation, and new applications.

2. BACKGROUND
We elaborate on two prevalent deep learning models for
music generation, namely raw audio models and symbolic
models.

2.1 Raw Audio Models

Initial efforts to generate raw audio involved models used
primarily for text generation, such as char-rnn [15] and
LSTMs. Raw audio generations from these networks are
often noisy and unstructured; they are limited in their ca-
pacity to abstract higher level representations of raw audio,
mainly due to problems with overfitting [21].

In 2016, DeepMind introduced WaveNet [25], a gen-
erative model for general raw audio, designed mainly for
speech applications. At a high level, WaveNet is a deep
learning architecture that operates directly on a raw audio
waveform. In particular, for a waveform modeled by a vec-
tor x = {x1, ..., xT } (representing speech, music, etc.), the
joint probability of the entire waveform is factorized as a
product of conditional probabilities, namely

p(x) = p(x1)
T∏

t=2

p(xt|x1, ..., xt−1). (1)

The waveforms in WaveNet are typically represented as
8-bit audio, meaning that each xi can take on one of

Figure 1: A stack of dilated causal convolutions as used
by WaveNet, reproduced from [25].

256 possible values. The WaveNet model uses a deep
neural network to model the conditional probabilities
p(xt|x1, ..., xt−1). The model is trained by predicting val-
ues of the waveform at step t and comparing them to the
true value xt, using cross-entropy as a loss function; thus,
the problem simply becomes a multi-class classification
problem (with 256 classes) for each timestep in the wave-
form.

The modeling of conditional probabilities in WaveNet
utilizes causal convolutions, similar to masked convolu-
tions used in PixelRNN and similar image generation net-
works [7]. Causal convolutions ensure that the prediction
for time step t only depends on the predictions for previ-
ous timesteps. Furthermore, the causal convolutions are
dilated; these are convolutions where the filter is applied
over an area larger than its length by skipping particular
input values, as shown in Figure 1. In addition to dilated
causal convolutions, each layer features gated activation
units and residual connections, as well as skip connections
to the final output layers.

2.2 Symbolic Audio Models

Most deep learning approaches for automatic music gen-
eration are based on symbolic representations of the mu-
sic. MIDI (Musical Instrument Digital Interface), 4 for ex-
ample, is a ubiquitous standard for file format and proto-
col specification for symbolic representation and transmis-
sion. Other representations that have been utilized include
the piano roll representation [13]—inspired by player pi-
ano music rolls—text representations (e.g., ABC nota-
tion 5 ), chord representations (e.g., Chord2Vec [18]), and
lead sheet representations. A typical scenario for produc-
ing music in such models is to train and generate on the
same type of representation; for instance, one may train on
a set of MIDI files that encode melodies, and then generate
new MIDI melodies from the learned model. These mod-
els attempt to capture the aspect of long-range dependency
in music.

A traditional approach to learning temporal dependen-
cies in data is to use recurrent neural networks (RNNs). A
recurrent neural network receives a timestep of a series xt
along with a hidden state ht as input. It outputs yt, the
model output at that timestep, and computes ht+1, the hid-
den state at the next timestep. RNNs take advantage of

4 https://www.midi.org/specifications
5 http://abcnotation.com
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Figure 2: A representation of a biaxial LSTM network.
Note that the first two layers have connections across
timesteps, while the last two layers have recurrent connec-
tions across notes [14].

this hidden state to store some information from the pre-
vious timesteps. In practice, vanilla RNNs do not perform
well when training sequences have long temporal depen-
dencies due to issues of vanishing/exploding gradients [2].
This is especially true for music, as properties such as key
signature and time signature may be constant throughout a
composition.

Long Short Term Memory networks are a variant of
RNNs that have proven useful in symbolic music gener-
ation systems. LSTM networks modify the way memory
information is stored in RNNs by introducing another unit
to the original RNN network: the cell state, ct, where the
flow of information is controlled by various gates. LSTMs
are designed such that the interaction between the cell
state and the hidden state prevents the issue of vanish-
ing/exploding gradients [10, 12].

There are numerous existing deep learning symbolic
music generation approaches [5], including models that
are based on RNNs, many of which use an LSTM as a
key component of the model. Some notable examples
include DeepBach [11], the CONCERT system [20], the
Celtic Melody Generation system [23] and the Biaxial
LSTM model [14]. Additionally, some approaches com-
bine RNNs with restricted Boltzmann machines [4,6,9,17].

3. ARCHITECTURE
We first discuss our symbolic method for generating
unique melodies, then detail the modifications to the raw
audio model for compatibility with these generations.
Modifying the architecture involves working with both
symbolic and raw audio data in harmony.

3.1 Unique Symbolic Melody Generation with LSTM
Networks

Recently, applications of LSTMs specific to music genera-
tion, such as the biaxial LSTM, have been implemented
and explored. This model utilizes a pair of tied, paral-
lel networks to impose LSTMs both in the temporal di-
mension and the pitch dimension at each timestep. Each
note has its own network instance at each timestep, and

Figure 3: An overview of the model architecture, showing
the local conditioning time series as an extra input.

receives input of the MIDI note number, pitchclass, beat,
and information on surrounding notes and notes at previous
timesteps. This information first passes through two lay-
ers with connections across timesteps, and then two layers
with connections across notes, detailed in Figure 2. This
combination of note dependency and temporal dependency
allow the model to not only learn the overall instrumen-
tal and temporal structure of the music, but also capture
the interdependence of the notes being played at any given
timestep [14].

We explore the sequential combination of the symbolic
and raw audio models to produce structured raw audio out-
put. We train a biaxial LSTM model on the MIDI files of
a particular genre of music as training data, and then feed
the MIDI generations from this trained model into the raw
audio generator model.

3.2 Local Conditioning with Raw Audio Models

Once a learned symbolic melody is obtained, we treat it
as a second time series within our raw audio model (anal-
ogous to using a second time series with a desired text
to be spoken in the speech domain). In particular, in the
WaveNet model, each layer features a gated activation unit.
If x is the raw audio input vector, then at each layer k, it
passes through the following gated activation unit:

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x), (2)

where ∗ is a convolution operator, � is an elementwise
multiplication operator, σ(·) is the sigmoid function, and
the Wf,k and Wg,k are learnable convolution filters. Fol-
lowing WaveNet’s use of local conditioning, we can intro-
duce a second time series y (in this case from the LSTM
model, to capture the long-term melody), and instead uti-
lize the following activation, effectively incorporating y as
an extra input:

z = tanh(Wf,k∗x+Vf,k∗y)�σ(Wg,k∗x+Vg,k∗y), (3)

where V are learnable linear projections. By condition-
ing on an extra time series input, we effectively guide the
raw audio generations to require certain characteristics; y
influences the output at all timestamps.
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Instrument Minutes Labels
Piano 1,346 794,532
Violin 874 230,484
Cello 621 99,407

Solo Piano 917 576,471
Solo Violin 30 8,837
Solo Cello 49 10,876

Table 1: Statistics of the MusicNet dataset. [24]

In our modified WaveNet model, the second time series
y is the upsampled MIDI embedding of the local condition-
ing time series. In particular, local conditioning (LC) em-
beddings are 128-dimensional binary vectors, where ones
correspond to note indices that are being played at the cur-
rent timestep. As with the audio time series, the LC em-
beddings first go through a layer of causal convolutions
to reduce the number of dimensions from 128 to 16, which
are then used in the dilation layers as the conditioning sam-
ples. This reduces the computational requirement for the
dilation layers without reducing the note state information,
as most of the embeddings are zero for most timestamps.
This process along with the surrounding architecture is
shown in Figure 3.

3.3 Hyperparameter Tuning

Table 2 enumerates the hyperparameters used in the
WaveNet-based conditioned model to obtain our results.
We note that the conditioned model needs only 30 dila-
tion layers as compared to the 50 we had used in the un-
conditioned network. Training with these parameters gave
us comparable results as compared to the unconditioned
model in terms of the timbre of instruments and other nu-
ances in generations. This indicates that the decrease in
parameters is offset by the extra information provided by
the conditioning time series.

4. EMPIRICAL EVALUATION
Example results of generations from our models are posted
on our web page. 6

One of the most challenging tasks in automated music
generation is evaluating the resulting music. Any gener-
ated piece of music can generally only be subjectively eval-
uated by human listeners. Here, we qualitatively evaluate
our results to the best of our ability, but leave the results
on our web page for the reader to subjectively evaluate.
We additionally quantify our results by comparing the re-
sulting loss functions of the unconditioned and conditioned
raw audio models. Then, we evaluate the structural compo-
nent by computing the cross-correlation between the spec-
trogram of the generated raw audio and conditioning input.

4.1 Training Datasets and Loss Analysis

At training time, in addition to raw training audio, we must
also incorporate its underlying symbolic melody, perfectly

6 http://people.bu.edu/bkulis/projects/music/index.html

Hyperparameter Value
Initial Filter Width 32
Dilation Filter Width 2
Dilation Layers 30
Residual Channels 32
Dilation Channels 32
Skip Channels 512
Initial LC Channels 128
Dilation LC Channels 16
Quantization Channels 128

Table 2: WaveNet hyperparameters used for training of the
conditioned network.

aligned with the raw audio at each timestep. The problem
of melody extraction in raw audio is still an active area of
research; due to a general lack of such annotated music,
we have experimented with multiple datasets.

Primarily, we have been exploring use of the recently-
released MusicNet database for training [24], as this data
features both raw audio as well as melodic annotations.
Other metadata is also included, such as the composer of
the piece, the instrument with which the composition is
played, and each note’s position in the metrical structure
of the composition. The music is separated by genre; there
are over 900 minutes of solo piano alone, which has proven
to be very useful in training on only one instrument. The
different genres provide many different options for train-
ing. Table 1 shows some other statistics of the MusicNet
dataset.

After training with these datasets, we have found that
the loss for the unconditioned and conditioned WaveNet
models follows our expectation of the conditioned model
exhibiting a lower cross-entropy training loss than the un-
conditioned model. This is due to the additional embed-
ding information provided along with the audio in the con-
ditioned case. Figure 5 shows the loss for two WaveNet
models trained on the MusicNet cello dataset over 100,000
iterations, illustrating this decreased loss for the condi-
tioned model.

4.2 Unconditioned Music Generation with WaveNet

We preface the evaluation of our musical results by ac-
knowledging the fact that we first tuned WaveNet for
unstructured music generation, as most applications of
WaveNet have explored speech applications. Here we
worked in the unconditioned case, i.e., no second time se-
ries was input to the network. We tuned the model to gener-
ate music trained on solo piano inputs (about 50 minutes of
the Chopin nocturnes, from the YouTube-8M dataset [1]),
as well as 350 songs of various genres of electronic dance
music, obtained from No Copyright Sounds 7 .

We found that WaveNet models are capable of produc-
ing lengthy, complex musical generations without losing
instrumental quality for solo instrumental training data.
The network is able to learn short-range dependencies, in-

7 https://www.youtube.com/user/NoCopyrightSounds
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Figure 4: Example MIDI generation from the biaxial
LSTM trained on cello music, visualized as sheet music.

Figure 5: Cross entropy loss for the conditioned (solid
green) and unconditioned (dotted orange) WaveNet mod-
els over the first 100,000 training iterations, illustrating the
lower training loss of the conditioned model.

cluding hammer action and simple chords. Although gen-
erations may have a consistent energy, they are unstruc-
tured and do not contain any long-range temporal depen-
dencies. Results that showcase these techniques and at-
tributes are available on our webpage.

4.3 Structure in Raw Audio Generations

We evaluate the structuring ability of our conditioned raw
audio model for a generation based on how closely it fol-
lows the conditioning signal it was given, first using pop-
ular existing melodies, then the unique LSTM genera-
tions. We use cross-correlation as a quantitative evalua-
tion method. We also acknowledge the applications of our
model to edit existing raw audio.

4.3.1 Raw Audio from Existing Melodies

We evaluate our approach first by generating raw audio
from popular existing melodies, by giving our conditioned
model a second time series input of the Happy Birthday
melody and a C major scale. Since we are familiar with
these melodies, they are easier to evaluate by ear.

Initial versions of the model evaluated in this way were
trained on the MusicNet cello dataset. The generated
raw audio follows the conditioning input, the recognizable
Happy Birthday melody and C major scale, in a cello tim-
bre. The results of these generations are uploaded on our
webpage.

4.3.2 Raw Audio From Unique LSTM Generations

After generating novel melodies from the LSTM, we pro-
duced corresponding output from our conditioned model.
Since it is difficult to qualitatively evaluate such melodies

(a) Unedited training sample from the MusicNet dataset.

(b) Slightly modified training sample.

Figure 6: MIDI representations of a sample from the Mu-
sicNet solo cello dataset, visualized as sheet music; (b) is a
slightly modified version of (a), the original training sam-
ple. We use these samples to showcase the ability of our
model to “edit” raw audio.

by ear due to unfamiliarity with the melody, we are inter-
ested in evaluating how accurately the conditioned model
follows a novel melody quantitatively. We evaluate our re-
sults by computing the cross-correlation between the MIDI
sequence and the spectrogram of the generated raw au-
dio as shown in Figure 7. Due to the sparsity of both the
spectrogram and the MIDI file in the frequency dimension,
we decided to calculate the cross-correlation between one-
dimensional representations of the two time series. We
chose the frequency of the highest note in the MIDI at each
timestep as its one-dimensional representation. In the case
of the raw audio, we chose the most active frequency in
its spectrogram at each timestep. We acknowledge some
weakness in this approach, since some information is lost
by reducing the dimensionality of both time series.

Cross-correlation is the “sliding dot product” of two
time series — a measure of linear similarity as a function
of the displacement of one series relative to the other. In
this instance, the cross-correlation between the MIDI se-
quence and the corresponding raw audio peaks at delay 0
and is equal to 0.3. In order to assure that this correlation
is not due to chance, we have additionally calculated the
cross-correlation between the generated raw audio and 50
different MIDI sequences in the same dataset. In Figure 7,
we can see that the cross-correlation curve stays above the
other random correlation curves in the the area around de-
lay 0. This shows that the correlation found is not by
chance, and the raw audio output follows the conditioning
vector appropriately.

This analysis generalizes to any piece generated with
our model; we have successfully been able to transform
an unstructured model with little long-range dependency
to one with generations that exhibit certain characteristics.

4.3.3 Editing Existing Raw Audio

In addition, we explored the possibility of using our ap-
proach as a tool similar to a MIDI synthesizer, where we
first generate from an existing piece of a symbolic melody,
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Figure 7: Comparison of the novel LSTM-generated melody (top) and the corresponding raw audio output of the condi-
tioned model represented as a spectrogram (middle). The bottom plot shows the cross-correlation between the frequency of
the highest note of the MIDI and the most active frequency of raw audio from the WaveNet-based model, showing strong
conditioning from the MIDI on the generated audio.

in this case, from the training data. Then, we generate new
audio by making small changes to the MIDI, and evaluate
how the edits reflect in the generated audio. We experi-
ment with this with the goal of achieving a higher level of
fidelity to the audio itself rather using a synthesizer to re-
play the MIDI as audio, as that often forgoes the nuances
associated with raw audio.

Figure 6(a) and 6(b) respectively show a snippet of the
training data taken from the MusicNet cello dataset and the
small perturbations made to it, which were used to evalu-
ate this approach. The results posted on our webpage show
that the generated raw audio retains similar characteristics
between the original and the edited melody, while also in-
corporating the changes to the MIDI in an expressive way.

5. CONCLUSIONS AND FUTURE WORK
In conclusion, we focus on combining raw and symbolic
audio models for the improvement of automatic music gen-
eration. Combining two prevalent models allows us to take
advantage of both of their features; in the case of raw audio
models, this is the realistic sound and feel of the music, and
in the case of symbolic models, it is the complexity, struc-
ture, and long-range dependency of the generations.

Before continuing to improve our work, we first plan
to more thoroughly evaluate our current model using rat-
ings of human listeners. We will use crowdsourced evalua-
tion techniques (specifically, Amazon Mechanical Turk 8 )
to compare our outputs with other systems.

A future modification of our approach is to merge the
LSTM and WaveNet models to a coupled architecture.

8 https://www.mturk.com/mturk/

This joint model would eliminate the need to synthesize
MIDI files, as well as the need for MIDI labels aligned with
raw audio data. In essence, this adjustment would create a
true end-to-end automatic music generation model.

Additionally, DeepMind recently updated the WaveNet
model to improve generation speed by 1000 times over the
previous model, at 16 bits per sample and a sampling rate
of 24kHz [26]. We hope to investigate this new model to
develop real-time generation of novel, structured music,
which has many significant implications.

The potential results of our work could augment and
inspire many future applications. The combination of our
model with multiple audio domains could be implemented;
this could involve the integration of speech audio with mu-
sic to produce lyrics sung in tune with our realistic melody.

Even without the additional improvements considered
above, the architecture proposed in this paper allows for
a modular approach to automated music generation. Mul-
tiple different instances of our conditioned model can be
trained on different genres of music, and generate based
on a single local conditioning series in parallel. As a re-
sult, the same melody can be reproduced in different genres
or instruments, strung together to create effects such as a
quartet or a band. The key application here is that this type
of synchronized effect can be achieved without awareness
of the other networks, avoiding model interdependence.
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ABSTRACT

It has been shown recently that deep convolutional gen-
erative adversarial networks (GANs) can learn to gener-
ate music in the form of piano-rolls, which represent mu-
sic by binary-valued time-pitch matrices. However, exist-
ing models can only generate real-valued piano-rolls and
require further post-processing, such as hard thresholding
(HT) or Bernoulli sampling (BS), to obtain the final binary-
valued results. In this paper, we study whether we can have
a convolutional GAN model that directly creates binary-
valued piano-rolls by using binary neurons. Specifically,
we propose to append to the generator an additional refiner
network, which uses binary neurons at the output layer.
The whole network is trained in two stages. Firstly, the
generator and the discriminator are pretrained. Then, the
refiner network is trained along with the discriminator to
learn to binarize the real-valued piano-rolls the pretrained
generator creates. Experimental results show that using bi-
nary neurons instead of HT or BS indeed leads to better
results in a number of objective measures. Moreover, de-
terministic binary neurons perform better than stochastic
ones in both objective measures and a subjective test. The
source code, training data and audio examples of the gen-
erated results can be found at https://salu133445.
github.io/bmusegan/.

1. INTRODUCTION

Recent years have seen increasing research on symbolic-
domain music generation and composition using deep neu-
ral networks [7]. Notable progress has been made to gener-
ate monophonic melodies [25,27], lead sheets (i.e., melody
and chords) [8, 11, 26], or four-part chorales [14]. To add
something new to the table and to increase the polyphony
and the number of instruments of the generated music, we
attempt to generate piano-rolls in this paper, a music rep-
resentation that is more general (e.g., comparing to lead-
sheets) yet less studied in recent work on music generation.
As Figure 1 shows, we can consider an M -track piano-roll

c© Hao-Wen Dong and Yi-Hsuan Yang. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Hao-Wen Dong and Yi-Hsuan Yang. “Convolutional Gen-
erative Adversarial Networks with Binary Neurons for Polyphonic Music
Generation”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.
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Figure 1. Six examples of eight-track piano-roll of four-
bar long (each block represents a bar) seen in our training
data. The vertical and horizontal axes represent note pitch
and time, respectively. The eight tracks are Drums, Piano,
Guitar, Bass, Ensemble, Reed, Synth Lead and Synth Pad.

as a collection of M binary time-pitch matrices indicating
the presence of pitches per time step for each track.

Generating piano-rolls is challenging because of the
large number of possible active notes per time step and the
involvement of multiple instruments. Unlike a melody or
a chord progression, which can be viewed as a sequence
of note/chord events and be modeled by a recurrent neural
network (RNN) [21,24], the musical texture in a piano-roll
is much more complicated (see Figure 1). While RNNs are
good at learning the temporal dependency of music, con-
volutional neural networks (CNNs) are usually considered
better at learning local patterns [18].

For this reason, in our previous work [10], we used a
convolutional generative adversarial network (GAN) [12]
to learn to generate piano-rolls of five tracks. We showed
that the model generates music that exhibit drum patterns
and plausible note events. However, musically the gener-
ated result is still far from satisfying to human ears, scoring
around 3 on average on a five-level Likert scale in overall
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quality in a user study [10]. 1

There are several ways to improve upon this prior work.
The major topic we are interested in is the introduction of
the binary neurons (BNs) [1, 4] to the model. We note
that conventional CNN designs, also the one adopted in our
previous work [10], can only generate real-valued predic-
tions and require further postprocessing at test time to ob-
tain the final binary-valued piano-rolls. 2 This can be done
by either applying a hard threshold (HT) on the real-valued
predictions to binarize them (which was done in [10]), or
by treating the real-valued predictions as probabilities and
performing Bernoulli sampling (BS).

However, we note that such naı̈ve methods for binariz-
ing a piano-roll can easily lead to overly-fragmented notes.
For HT, this happens when the original real-valued piano-
roll has many entries with values close to the threshold. For
BS, even an entry with low probability can take the value
1, due to the stochastic nature of probabilistic sampling.

The use of BNs can mitigate the aforementioned issue,
since the binarization is part of the training process. More-
over, it has two potential benefits:
• In [10], binarization of the output of the generator
G in GAN is done only at test time not at train-
ing time (see Section 2.1 for a brief introduction of
GAN). This makes it easy for the discriminator D
in GAN to distinguish between the generated piano-
rolls (which are real-valued in this case) and the real
piano-rolls (which are binary). With BNs, the bina-
rization is done at training time as well, so D can
focus on extracting musically relevant features.

• Due to BNs, the input to the discriminatorD in GAN
at training time is binary instead of real-valued. This
effectively reduces the model space from <N to 2N ,
where N is the product of the number of time steps
and the number of possible pitches. Training D may
be easier as the model space is substantially smaller,
as Figure 2 illustrates.

Specifically, we propose to append to the end of G a re-
finer network R that uses either deterministic BNs (DBNs)
or stocahstic BNs (SBNs) at the output layer. In this way,
Gmakes real-valued predictions andR binarizes them. We
train the whole network in two stages: in the first stage we
pretrain G and D and then fix G; in the second stage, we
train R and fine-tune D. We use residual blocks [16] in R
to make this two-stage training feasible (see Section 3.3).

As minor contributions, we use a new shared/private de-
sign of G and D that cannot be found in [10]. Moreover,
we add toD two streams of layers that provide onset/offset
and chroma information (see Sections 3.2 and 3.4).

The proposed model is able to directly generate binary-
valued piano-rolls at test time. Our analysis shows that the

1 Another related work on generating piano-rolls, as presented by
Boulanger-Lewandowski et al. [6], replaced the output layer of an RNN
with conditional restricted Boltzmann machines (RBMs) to model high-
dimensional sequences and applied the model to generate piano-rolls se-
quentially (i.e. one time step after another).

2 Such binarization is typically not needed for an RNN or an RBM
in polyphonic music generation, since an RNN is usually used to predict
pre-defined note events [22] and an RBM is often used with binary visible
and hidden units and sampled by Gibbs sampling [6, 20].

Figure 2. An illustration of the decision boundaries (red
dashed lines) that the discriminator D has to learn when
the generatorG outputs (left) real values and (right) binary
values. The decision boundaries divide the space into the
real class (in blue) and the fake class (in red). The black
and red dots represent the real data and the fake ones gen-
erated by the generator, respectively. We can see that the
decision boundaries are easier to learn when the generator
outputs binary values rather than real values.

generated results of our model with DBNs features fewer
overly-fragmented notes as compared with the result of us-
ing HT or BS. Experimental results also show the effective-
ness of the proposed two-stage training strategy compared
to either a joint or an end-to-end training strategy.

2. BACKGROUND

2.1 Generative Adversarial Networks

A generative adversarial network (GAN) [12] has two core
components: a generator G and a discriminator D. The
former takes as input a random vector z sampled from a
prior distribution pz and generates a fake sample G(z). D
takes as input either real data x or fake data generated by
G. During training time, D learns to distinguish the fake
samples from the real ones, whereas G learns to fool D.

An alternative form called WGAN was later proposed
with the intuition to estimate the Wasserstein distance be-
tween the real and the model distributions by a deep neural
network and use it as a critic for the generator [2]. The
objective function for WGAN can be formulated as:

min
G

max
D

Ex∼pd
[D(x)]−Ez∼pz [D(G(z))] , (1)

where pd denotes the real data distribution. In order to
enforce Lipschitz constraints on the discriminator, which
is required in the training of WGAN, Gulrajani et al. [13]
proposed to add to the objective function of D a gradient
penalty (GP) term: Ex̂∼px̂

[(∇x̂‖x̂‖ − 1)2], where px̂ is
defined as sampling uniformly along straight lines between
pairs of points sampled from pd and the model distribution
pg . Empirically they found it stabilizes the training and
alleviates the mode collapse issue, compared to the weight
clipping strategy used in the original WGAN. Hence, we
employ WGAN-GP [13] as our generative framework.

2.2 Stochastic and Deterministic Binary Neurons

Binary neurons (BNs) are neurons that output binary-
valued predictions. In this work, we consider two types of
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Figure 3. The generator and the refiner. The generator (Gs

and several Gi
p collectively) produces real-valued predic-

tions. The refiner network (several Ri) refines the outputs
of the generator into binary ones.

Figure 4. The refiner network. The tensor size remains the
same throughout the network.

BNs: deterministic binary neurons (DBNs) and stochastic
binary neurons (SBNs). DBNs act like neurons with hard
thresholding functions as their activation functions. We
define the output of a DBN for a real-valued input x as:

DBN(x) = u(σ(x)− 0.5) , (2)

where u(·) denotes the unit step function and σ(·) is the
logistic sigmoid function. SBNs, in contrast, binarize an
input x according to a probability, defined as:

SBN(x) = u(σ(x)− v), v ∼ U [0, 1] , (3)

where U [0, 1] denotes a uniform distribution.

2.3 Straight-through Estimator

Computing the exact gradients for either DBNs or SBNs,
however, is intractable. For SBNs, it requires the computa-
tion of the average loss over all possible binary samplings
of all the SBNs, which is exponential in the total number
of SBNs. For DBNs, the threshold function in Eq. (2) is
non-differentiable. Therefore, the flow of backpropagation
used to train parameters of the network would be blocked.

A few solutions have been proposed to address this is-
sue [1, 4]. One strategy is to replace the non-differentiable
functions, which are used in the forward pass, by differen-
tiable functions (usually called the estimators) in the back-
ward pass. An example is the straight-through (ST) esti-
mator proposed by Hinton [17]. In the backward pass, ST
simply treats BNs as identify functions and ignores their
gradients. A variant of the ST estimator is the sigmoid-
adjusted ST estimator [9], which multiplies the gradients
in the backward pass by the derivative of the sigmoid func-
tion. Such estimators were originally proposed as regular-
izers [17] and later found promising for conditional com-
putation [4]. We use the sigmoid-adjusted ST estimator in
training neural networks with BNs and found it empirically
works well for our generation task as well.

Figure 5. The discriminator. It consists of three streams:
the main stream (Dm, Ds and several Di

p; the upper half),
the onset/offset stream (Do) and the chroma stream (Dc).

Figure 6. Residual unit used in the refiner network. The
values denote the kernel size and the number of the output
channels of the two convolutional layers.

3. PROPOSED MODEL

3.1 Data Representation

Following [10], we use the multi-track piano-roll represen-
tation. A multi-track piano-roll is defined as a set of piano-
rolls for different tracks (or instruments). Each piano-roll
is a binary-valued score-like matrix, where its vertical and
horizontal axes represent note pitch and time, respectively.
The values indicate the presence of notes over different
time steps. For the temporal axis, we discard the tempo
information and therefore every beat has the same length
regardless of tempo.

3.2 Generator

As Figure 3 shows, the generator G consists of a “s”hared
network Gs followed by M “p”rivate network Gi

p, i =
1, . . . ,M , one for each track. The shared generator Gs

first produces a high-level representation of the output mu-
sical segments that is shared by all the tracks. Each pri-
vate generator Gi

p then turns such abstraction into the final
piano-roll output for the corresponding track. The intu-
ition is that different tracks have their own musical prop-
erties (e.g., textures, common-used patterns), while jointly
they follow a common, high-level musical idea. The de-
sign is different from [10] in that the latter does not include
a shared Gs in early layers.

3.3 Refiner

The refiner R is composed of M private networks Ri, i =
1, . . . ,M , again one for each track. The refiner aims to
refine the real-valued outputs of the generator, x̂ = G(z),
into binary ones, x̃, rather than learning a new mapping
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Figure 7. Comparison of binarization strategies. (a): the probabilistic, real-valued (raw) predictions of the pretrained G.
(b), (c): the results of applying post-processing algorithms directly to the raw predictions in (a). (d), (e): the results of the
proposed models, using an additional refiner R to binarize the real-valued predictions of G. Empty tracks are not shown.
(We note that in (d), few noises (33 pixels) occur in the Reed and Synth Lead tracks.)

from G(z) to the data space. Hence, we draw inspiration
from residual learning and propose to construct the refiner
with a number of residual units [16], as shown in Figure 4.
The output layer (i.e. the final layer) of the refiner is made
up of either DBNs or SBNs.

3.4 Discriminator

Similar to the generator, the discriminator D consists of
M private network Di

p, i = 1, . . . ,M , one for each track,
followed by a shared network Ds, as shown in Figure 5.
Each private network Di

p first extracts low-level features
from the corresponding track of the input piano-roll. Their
outputs are concatenated and sent to the shared networkDs

to extract higher-level abstraction shared by all the tracks.
The design differs from [10] in that only one (shared) dis-
criminator was used in [10] to evaluate all the tracks col-
lectively. We intend to evaluate such a new shared/private
design in Section 4.5.

As a minor contribution, to help the discriminator ex-
tract musically-relevant features, we propose to add to the
discriminator two more streams, shown in the lower half
of Figure 5. In the first onset/offset stream, the differences
between adjacent elements in the piano-roll along the time
axis are first computed, and then the resulting matrix is
summed along the pitch axis, which is finally fed to Do.

In the second chroma stream, the piano-roll is viewed
as a sequence of one-beat-long frames. A chroma vector
is then computed for each frame and jointly form a matrix,
which is then be fed to Dc. Note that all the operations
involved in computing the chroma and onset/offset features
are differentiable, and thereby we can still train the whole
network by backpropagation.

Finally, the features extracted from the three streams are
concatenated and fed to Dm to make the final prediction.

3.5 Training

We propose to train the model in a two-stage manner: G
and D are pretrained in the first stage; R is then trained
along withD (fixingG) in the second stage. Other training
strategies are discussed and compared in Section 4.4.

4. ANALYSIS OF THE GENERATED RESULTS

4.1 Training Data & Implementation Details

The Lakh Pianoroll Dataset (LPD) [10] 3 contains 174,154
multi-track piano-rolls derived from the MIDI files in the
Lakh MIDI Dataset (LMD) [23]. 4 In this paper, we use a
cleansed subset (LPD-cleansed) as the training data, which
contains 21,425 multi-track piano-rolls that are in 4/4 time
and have been matched to distinct entries in Million Song
Dataset (MSD) [5]. To make the training data cleaner, we
consider only songs with an alternative tag. We randomly
pick six four-bar phrases from each song, which leads to
the final training set of 13,746 phrases from 2,291 songs.

We set the temporal resolution to 24 time steps per
beat to cover common temporal patterns such as triplets
and 32th notes. An additional one-time-step-long pause is
added between two consecutive (i.e. without a pause) notes
of the same pitch to distinguish them from one single note.
The note pitch has 84 possibilities, from C1 to B7.

We categorize all instruments into drums and sixteen
instrument families according to the specification of Gen-
eral MIDI Level 1. 5 We discard the less popular instru-
ment families in LPD and use the following eight tracks:
Drums, Piano, Guitar, Bass, Ensemble, Reed, Synth Lead
and Synth Pad. Hence, the size of the target output tensor
is 4 (bar) × 96 (time step) × 84 (pitch) × 8 (track).

BothG andD are implemented as CNNs. The length of
the input random vector is 128. R consists of two residual
units [16] shown in Figure 6. Following [13], we use the
Adam optimizer [19] and only apply batch normalization
to G and R. We apply the slope annealing trick [9] to net-
works with BNs, where the slope of the sigmoid function
in the sigmoid-adjusted ST estimator is multiplied by 1.1
after each epoch. The batch size is 16 except for the first
stage in the two-stage training setting, where the batch size
is 32. For more details, we refer readers to the online ap-
pendix, which can be found on the project website. 6

3 https://salu133445.github.io/
lakh-pianoroll-dataset/

4 http://colinraffel.com/projects/lmd/
5 https://www.midi.org/specifications/item/

gm-level-1-sound-set
6 https://salu133445.github.io/bmusegan/
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training
data

pretrained proposed joint end-to-end ablated-I ablated-II

BS HT SBNs DBNs SBNs DBNs SBNs DBNs BS HT BS HT

QN 0.88 0.67 0.72 0.42 0.78 0.18 0.55 0.67 0.28 0.61 0.64 0.35 0.37
PP 0.48 0.20 0.22 0.26 0.45 0.19 0.19 0.16 0.29 0.19 0.20 0.14 0.14
TD 0.96 0.98 1.00 0.99 0.87 0.95 1.00 1.40 1.10 1.00 1.00 1.30 1.40

(Underlined and bold font indicate respectively the top and top-three entries with values closest to those shown in the ‘training data’ column.)

Table 1. Evaluation results for different models. Values closer to those reported in the ‘training data’ column are better.

(a)

(b)

(c)

(d)

(e)

Figure 8. Closeup of the piano track in Figure 7.

4.2 Objective Evaluation Metrics

We generate 800 samples for each model and use the fol-
lowing metrics proposed in [10] for evaluation. We con-
sider a model better if the average metric values of the
generated samples are closer to those computed from the
training data.
• Qualified note rate (QN) computes the ratio of the

number of the qualified notes (notes no shorter than
three time steps, i.e., a 32th note) to the total number
of notes. Low QN implies overly-fragmented music.

• Polyphonicity (PP) is defined as the ratio of the
number of time steps where more than two pitches
are played to the total number of time steps.

• Tonal distance (TD) measures the distance between
the chroma features (one for each beat) of a pair of
tracks in the tonal space proposed in [15]. In what
follows, we only report the TD between the piano
and the guitar, for they are the two most used tracks.

4.3 Comparison of Binarization Strategies

We compare the proposed model with two common test-
time binarization strategies: Bernoulli sampling (BS) and
hard thresholding (HT). Some qualitative results are pro-

(a)
0 20000 40000 60000 80000 100000

step
0.0

0.2

0.4

0.6

0.8

1.0

qu
al

if
ie

d 
no

te
 r

at
e

pretrain
proposed (+DBNs)
proposed (+SBNs)
joint (+DBNs)
joint (+SBNs)

(b)
0 20000 40000 60000 80000 100000

step
0.0

0.2

0.4

0.6

0.8

1.0

po
ly

ph
on

ic
it

y
pretrain
proposed (+DBNs)
proposed (+SBNs)
joint (+DBNs)
joint (+SBNs)

Figure 9. (a) Qualified note rate (QN) and (b) polyphonic-
ity (PP) as a function of training steps for different models.
The dashed lines indicate the average QN and PP of the
training data, respectively. (Best viewed in color.)

vided in Figures 7 and 8. Moreover, we present in Table 1
a quantitative comparison among them.

Both qualitative and quantitative results show that the
two test-time binarization strategies can lead to overly-
fragmented piano-rolls (see the “pretrained” ones). The
proposed model with DBNs is able to generate piano-rolls
with a relatively small number of overly-fragmented notes
(a QN of 0.78; see Table 1) and to better capture the sta-
tistical properties of the training data in terms of PP. How-
ever, the proposed model with SBNs produces a number of
random-noise-like artifacts in the generated piano-rolls, as
can be seen in Figure 8(d), leading to a low QN of 0.42.
We attribute to the stochastic nature of SBNs. Moreover,
we can also see from Figure 9 that only the proposed model
with DBNs keeps improving after the second-stage train-
ing starts in terms of QN and PP.

4.4 Comparison of Training Strategies

We consider two alternative training strategies:
• joint: pretrain G and D in the first stage, and then
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Figure 10. Example generated piano-rolls of the end-to-
end models with (top) DBNs and (bottom) SBNs. Empty
tracks are not shown.

train G and R (like viewing R as part of G) jointly
with D in the second stage.

• end-to-end: train G, R and D jointly in one stage.
As shown in Table 1, the models with DBNs trained

using the joint and end-to-end training strategies receive
lower scores as compared to the two-stage training strategy
in terms of QN and PP. We can also see from Figure 9(a)
that the model with DBNs trained using the joint training
strategy starts to degenerate in terms of QN at about 10,000
steps after the second-stage training begins.

Figure 10 shows some qualitative results for the end-
to-end models. It seems that the models learn the proper
pitch ranges for different tracks. We also see some chord-
like patterns in the generated piano-rolls. From Table 1 and
Figure 10, in the end-to-end training setting SBNs are not
inferior to DBNs, unlike the case in the two-stage training.
Although the generated results appear preliminary, to our
best knowledge this represents the first attempt to generate
such high dimensional data with BNs from scratch.

4.5 Effects of the Shared/private and Multi-stream
Design of the Discriminator

We compare the proposed model with two ablated ver-
sions: the ablated-I model, which removes the onset/offset
and chroma streams, and the ablated-II model, which uses
only a shared discriminator without the shared/private and
multi-stream design (i.e., the one adopted in [10]). 7 Note
that the comparison is done by applying either BS or HT
(not BNs) to the first-stage pretrained models.

As shown in Table 1, the proposed model (see “pre-
trained”) outperforms the two ablated versions in all three
metrics. A lower QN for the proposed model as compared
to the ablated-I model suggests that the onset/offset stream
can alleviate the overly-fragmented note problem. Lower

7 The number of parameters for the proposed, ablated-I and ablated-II
models is 3.7M, 3.4M and 4.6M, respectively.
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Figure 11. Qualified note rate (QN) as a function of train-
ing steps for different models. The dashed line indicates
the average QN of the training data. (Best viewed in color.)

with SBNs with DBNs

completeness* 0.19 0.81
harmonicity 0.44 0.56
rhythmicity 0.56 0.44
overall rating 0.16 0.84

*We asked, “Are there many overly-fragmented notes?”

Table 2. Result of a user study, averaged over 20 subjects.

TD for the proposed and ablated-I models as compared to
the ablated-II model indicates that the shared/private de-
sign better capture the intertrack harmonicity. Figure 11
also shows that the proposed and ablated-I models learn
faster and better than the ablated-II model in terms of QN.

4.6 User Study

Finally, we conduct a user study involving 20 participants
recruited from the Internet. In each trial, each subject
is asked to compare two pieces of four-bar music gener-
ated from scratch by the proposed model using SBNs and
DBNs, and vote for the better one in four measures. There
are five trials in total per subject. We report in Table 2
the ratio of votes each model receives. The results show a
preference to DBNs for the proposed model.

5. DISCUSSION AND CONCLUSION

We have presented a novel convolutional GAN-based
model for generating binary-valued piano-rolls by using
binary neurons at the output layer of the generator. We
trained the model on an eight-track piano-roll dataset.
Analysis showed that the generated results of our model
with deterministic binary neurons features fewer overly-
fragmented notes as compared with existing methods.
Though the generated results appear preliminary and lack
musicality, we showed the potential of adopting binary
neurons in a music generation system.

In future work, we plan to further explore the end-to-
end models and add recurrent layers to the temporal model.
It might also be interesting to use BNs for music transcrip-
tion [3], where the desired outputs are also binary-valued.
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ABSTRACT

In this work, we pose and address the following “cover
song analogies” problem: given a song A by artist 1 and
a cover song A’ of this song by artist 2, and given a dif-
ferent song B by artist 1, synthesize a song B’ which is a
cover of B in the style of artist 2. Normally, such a poly-
phonic style transfer problem would be quite challenging,
but we show how the cover songs example constrains the
problem, making it easier to solve. First, we extract the
longest common beat-synchronous subsequence between
A and A’, and we time stretch the corresponding beat in-
tervals in A’ so that they align with A. We then derive a
version of joint 2D convolutional NMF, which we apply to
the constant-Q spectrograms of the synchronized segments
to learn a translation dictionary of sound templates from A
to A’. Finally, we apply the learned templates as filters to
the song B, and we mash up the translated filtered compo-
nents into the synthesized song B’ using audio mosaicing.
We showcase our algorithm on several examples, including
a synthesized cover version of Michael Jackson’s “Bad” by
Alien Ant Farm, learned from the latter’s “Smooth Crimi-
nal” cover.

1. INTRODUCTION

The rock group Alien Ant Farm has a famous cover of
Michael Jackson’s “Smooth Criminal” which is faithful
to but stylistically unique from the original song. How-
ever, to our knowledge, they never released a cover of any
other Michael Jackson songs. What if we instead wanted
to know how they would have covered Michael Jackson’s
“Bad”? That is, we seek a song which is identifiable
as MJ’s “Bad,” but which also sounds as if it’s in Alien
Ant Farm’s style, including timbral characteristics, relative
tempo, and instrument types.

In general, multimedia style transfer is a challenging
task in computer aided creativity applications. When an
example of the stylistic transformation is available, as in
the “Smooth Criminal” example above, this problem can
be phrased in the language of analogies; given an object
A and a differently stylized version of this object A′, and
given an object B in the style of A, synthesize an ob-

c© Christopher J. Tralie. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Christopher J. Tralie. “Cover Song Synthesis by Analogy”, 19th Interna-
tional Society for Music Information Retrieval Conference, Paris, France,
2018.

Figure 1. A demonstration of the “shape analogies” tech-
nique in [22]. In the language of our work, the statue head
with a neutral expression (A′) is a “cover” of the low reso-
lution meshA with a neutral expression, and this is used to
synthesize the surprised statue “cover” face B′ from a low
resolution surprised face mesh B.

ject B′ which has the properties of B but the style of
A′. One of the earliest works using this vocabulary is the
“image analogies” work [12], which showed it was pos-
sible to transfer both linear filters (e.g. blurring, emboss-
ing) and nonlinear filters (e.g. watercolors) in the same
simple framework. More recent work with convolutional
networks has shown even better results for images [10].
There has also been some work on “shape analogies” for
3D meshes [22], in which nonrigid deformations between
triangle meshes A and A′ are used to induce a correspond-
ing deformation B′ from an object B, which can be used
for motion transfer (Figure 1).

In the audio realm, most style transfer works are based
on mashing up sounds from examples in a target style us-
ing “audio mosaicing,” usually after manually specifying
some desired path through a space of sound grains [16].
A more automated audio moscaicing technique, known
as “audio analogies” [19], uses correspondences between
a MIDI score and audio to drive concatenated synthesis,
which leads to impressive results on monophonic audio,
such as stylized synthesis of jazz recordings of a trumpet.
More recently, this has evolved into the audio to musical
audio setting with audio “musaicing,” in which the timbre
of an audio source is transferred onto a target by means of
a modified NMF algorithm [7], such as bees buzzing The
Beatles’ “Let It Be.” A slightly closer step to the poly-
phonic (multi source) musical audio to musical audio case
has been shown to work for drum audio cross-synthesis
with the aid of a musical score [5], and some very recent
initial work has extended this to the general musical audio
to musical audio case [9] using 2D nonnegative matrix fac-
torization, though this still remains open. Finally, there is
some recent work on converting polyphonic audio of gui-
tar songs to musical scores of varying difficulties so users
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Figure 2. An ideal cartoon example of our joint 2DNMF
and filtering process, where M = 20, N = 60, T = 10,
F = 10, and K = 3. In this example, vertical time-
frequency blocks are “covered” by horizontal blocks, di-
agonal lines with negative slopes are covered by diagonal
lines with positive slopes, and squares are covered by cir-
cles. When presented with a new song B, our goal is to
synthesize a song B′ whose CQT is shown in the lower
right green box.

can play their own covers [1].
In this work, we constrain the polyphonic musical au-

dio to musical audio style transfer problem by using cover
song pairs, or songs which are the same but in a differ-
ent style, and which act as our ground truth A and A′

examples in the analogies framework. Since small scale
automatic cover song identification has matured in recent
years [4, 17, 18, 23], we can accurately synchronize A and
A′ (Section 2.1), even if they are in very different styles.
Once they are synchronized, the problem becomes more
straightforward, as we can blindly factorize A and A′ into
different instruments which are in correspondence, turn-
ing the problem into a series of monophonic style transfer
problems. To do this, we perform NMF2D factorization of
A and A′ (Section 2.2). We then filter B by the learned
NMF templates and mash up audio grains to create B′, us-
ing the aforementioned “musaicing” techniques [7] (Sec-
tion 2.3). We demonstrate our techniques on snippets of
A, A′, and B which are about 20 seconds long, and we
show qualitatively how the instruments of A′ transfer onto
the music of B in the final result B′ (Section 3).

2. ALGORITHM DETAILS

In this section, we will describe the steps of our algorithm
in more detail. 1

2.1 Cover Song Alignment And Synchronization

As with the original image analogies algorithm [12], we
find it helpful if A and A′ are in direct correspondence
at the sample level. Since cover song pairs generally dif-
fer in tempo, we need to align them first. To accomplish
this, we draw upon the state of the art “early fusion” cover
song alignment technique presented by the authors of [23].
Briefly, we extract beat onsets for A and A′ using either

1 Note that all audio is mono and sampled at 22050hz.

Figure 3. An example feature fused cross-similarity ma-
trix D for the first 80 beats of Michael Jackson’s “Smooth
Criminal,” compared to the cover version by Alien Ant
Farm. We threshold the matrix and extract 20 seconds of
the longest common subsequence, as measured by Smith
Waterman. The alignment path is shown in red.

a simple dynamic programming beat tracker [8] or slower
but more accurate RNN + Bayesian beat trackers [13], de-
pending on the complexity of the audio. We then com-
pute beat-synchronous sliding window HPCP and MFCC
features, and we fuse them using similarity network fu-
sion [25, 26]. The result is a M × N cross-similarity ma-
trix D, where M is the number of beats in A and N is the
number of beats in A′, and Dij is directly proportional to
the similarity between beat i of A and beat j in A′. Please
refer to [23] for more details.

Once we have the matrix D, we can then extract an
alignment between A and A′ by performing Smith Water-
man [20] on a binary thresholded version of D, as in [23].
We make one crucial modification, however. To allow for
more permissive alignments with missing beats for identi-
fication purposes, the original cover songs algorithm cre-
ates a binary thresholded version of D using 10% mutual
binary nearest neighbors. On the other hand, in this appli-
cation, we seek shorter snippets from each song which are
as well aligned as possible. Therefore, we create a stricter
binary thresholded version B, where Bij = 1 only if it is
in the top 3

√
MN distances over all MN distances in D.

This means that many rows of Bij will be all zeros, but
we will hone in on the best matching segments. Figure 3
shows such a thresholding of the cross-similarity matrix for
two versions of the song “Smooth Criminal,” which is an
example we will use throughout this section. Once B has
been computed, we compute a X-length alignment path
P by back-tracing through the Smith Waterman alignment
matrix, as shown in Figure 3.

Let the beat onset times for A in the path P be
t1, t2, ..., tX and the beat times for A′ be s1, s2, ..., sX .
We use the rubberband library [3] to time stretch A′ beat
by beat, so that interval [si, si + 1] is stretched by a fac-
tor (ti+1 − ti)/(si+1 − si). The result is a snippet of A′

which is the same length as the corresponding snippet inA.
Henceforth, we will abuse notation and refer to these snip-
pets asA andA′. We also extract a smaller snippet fromB
of the same length for reasons of memory efficiency, which
we will henceforth refer to as B.
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2.2 NMF2D for Joint Blind Factorization / Filtering

Once we have synchronized the snippets A and A′, we
blindly factorize and filter them into K corresponding
tracks A1, A2, ..., AK and A′1, A

′
2, ..., A

′
K . The goal is for

each track to contain a different instrument. For instance,
A1 may contain an acoustic guitar, which is covered by an
electric guitar contained in A′1, and A2 may contain drums
which are covered by a drum machine in A′2. This will
make it possible to reduce the synthesis problem to K in-
dependent monophonic analogy problems in Section 2.3.

To accomplish this, the main tool we use is 2D convo-
lutional nonnegative matrix factorization (2DNMF) [15].
We apply this algorithm to the magnitude of the constant-Q
transforms (CQTs) [2] CA, CA′ and CB of A, A′, and B,
respectively. Intuitively, we seek K time-frequency tem-
plates in A and A′ which represent small, characteristic
snippets of the K instruments we believe to be present in
the audio. We then approximate the magnitude constant-
Q transform of A and A′ by convolving these templates
in both time and frequency. The constant-Q transform is
necessary in this framework, since a pitch shift can be ap-
proximated by a linear shift of all CQT bins by the same
amount. Frequency shifts can then be represented as con-
volutions in the vertical direction, which is not possible
with the ordinary STFT. Though it is more complicated,
2DNMF is a more compact representation than 1D con-
volutional NMF (in time only), in which it is necessary
to store a different template for each pitch shift of each
instrument. We note that pitch shifts in real instruments
are more complicated than shifting all frequency bins by
the same perceptual amount [14], but the basic version of
2DNMF is fine for our purposes.

More concretely, define a K-component, F -frequency,
T -time lag 2D convolutional NMF decomposition for a
matrix X ∈ RM×N as follows

X ≈ ΛW,H =
T∑
τ=1

F∑
φ=1

↓φ
Wτ

→τ
Hφ (1)

where Wτ ∈ RM×K and Hφ ∈ RK×N store a τ -
shifted time template and φ-frequency shifted coefficients,

respectively. By
↓φ
A, we mean down shift the rows of A by

φ, so that row i of
↓φ
A is row i−φ of A, and the first φ rows

of
↓φ
A are all zeros. And

←τ
A means left-shift A, so that col-

umn j of
←τ
A is column j − τ of A, and the first τ columns

of
←τ
A are all zeros.
In our problem, we define an extension of 2DNMF to

jointly factorize the 2 songs,A andA′, which each haveM
CQT coefficients. In particular, given matrices CA,CA′ ∈
CM×N1 representing the complex CQT frames in each
song over time, we seek Wτ

1,W
τ
2 ∈ RM×K and Hφ

1 ∈
RK×N1 that minimize the sum of the Kullback-Leibler di-
vergences between the magnitude CQT coefficients and the
convolutions:

D(|CA| || ΛW1,H1) +D(|CA′ | || ΛW2,H1) (2)

where the Kullback-Leibler divergence D(X||Y ) is de-
fined as

D(X||Y) =
∑
i

∑
j

Xi,j log
Xi,j

Yi,j
−Xi,j + Yi,j (3)

That is, we share H1 between the factorizations of
|CA| and |CA′ | so that we can discover shared structure
between the covers. Following similar computations to
those of ordinary 2DNMF [15], it can be shown that Equa-
tion 2 is non-decreasing under the alternating update rules:

Wτ
1 ←Wτ

1 �

∑F
φ=1

↑φ(
|CA|

ΛW1,H1

)→τ
Hφ

1

T

∑F
φ=1 1 ·

→τ
Hφ

1

T
(4)

Wτ
2 ←Wτ

2 �

∑F
φ=1

↑φ(
|CA′ |

ΛW2,H1

)→τ
Hφ

1

T

∑F
φ=1 1 ·

→τ
Hφ

1

T
(5)

Hφ
1 ← Hφ

1�


∑T
τ=1

↓φ
Wτ

1

T ←τ(
|CA|

ΛW1,H1

)
+
↓φ

Wτ
2

T ←τ(
|CA′ |

ΛW2,H1

)
∑T
τ=1

↓φ
Wτ

1

T←τ
1 +

↓φ
Wτ

2

T←τ
1


(6)

where 1 is a column vector of all 1s of appropriate di-
mension. We need an invertible CQT to go back to au-
dio templates, so we use the non-stationary Gabor Trans-
form (NSGT) implementation of the CQT [24] to compute
CA,CA′ , and CB. We use 24 bins per octave between
50hz and 11.7kHz, for a total of 189 CQT bins. We also
use F = 14 in most of our examples, allowing 7 halfstep
shifts, and we use T = 20 on temporally downsampled
CQTs to cover a timespan of 130 milliseconds. Finally, we
iterate through Equations 4, 5,and 6 in sequence 300 times.

Note that a naive implementation of the above equations
can be very computationally intensive. To ameliorate this,
we implemented GPU versions of Equations 1, 4, 5,and 6.
Equation 1 in particular is well-suited for a parallel imple-
mentation, as the shifted convolutional blocks overlap each
other heavily and can be carefully offloaded into shared
memory to exploit this 2 . In practice, we witnessed a 30x
speedup of our GPU implementation over our CPU imple-
mentation for 20 second audio clips for A, A′, and B.

Figure 2 shows a synthetic example with an exact solu-
tion, and Figure 4 shows a local min which is the result
of running Equations 4, 5,and 6 on real audio from the
“Smooth Criminal” example. It is evident from H1 that
the first component is percussive (activations at regular in-
tervals in H1

1, and no pitch shifts), while the second com-
ponent corresponds to the guitar melody (H2

1 appears like
a “musical score” of sorts). Furthermore, W1

1 and W1
2

2 In the interest of space, we omit more details of our GPU-based
NMFD in this paper, but a documented implementation can be found
at https://github.com/ctralie/CoverSongSynthesis/,
and we plan to release more details in a companion paper later.
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Figure 4. Joint 2DNMF on the magnitude CQTs of “Smooth Criminal” by Michael Jackson and Alien Ant Farm, with
F = 14 (7 halfsteps at 24 bins per octave), T = 20 (130ms in time), and K = 2 components. In this case, W 1

1 and W 1
2

hold percussive components, and W 2
1 and W 2

2 hold guitar components.

have broadband frequency content consistent with percus-
sive events, while W2

1 and W2
2 have visible harmonics

consistent with vibrating strings. Note that we generally
use more than K = 2, which allows finer granularity than
harmonic/percussive, but even for K = 2 in this exam-
ple, we observe qualitatively better separation than off-the-
shelf harmonic/percussive separation algorithms [6].

Once we have W1, W2, and H1, we can recover the
audio templates A1, A2, ..., AK and A′1, A

′
2, ..., A

′
K by us-

ing the components of W1 and W2 as filters. First, define
ΛW,H,k as

ΛW,H,k =
T∑
τ=1

F∑
φ=1

↓φ

Wkτ
→τ

Hk
φ (7)

where Wk is the kth column of W and Hk is the kth

row of H. Now, define the filtered CQTs by using soft
masks derived from W1 and H1:

CAk
= CA �

(
Λp

W1,H1,k∑K
m=1 Λp

W1,H1,m

)
(8)

CA′
k
= CA′ �

(
Λp

W2,H1,k∑K
m=1 Λp

W2,H1,m

)
(9)

where p is some positive integer applied element-wise
(we choose p = 2), and the above multiplications and di-
visions are also applied element-wise. It is now possible to
invert the CQTs to uncover the audio templates, using the
inverse NSGT [24]. Thus, if the separation was good, we
are left with K independent monophonic pairs of sounds
between A and A′.

In addition to inverting the sounds after these masks are
applied, we can also listen to the components of W1 and
W2 themselves to gain insight into how they are behav-
ing as filters. Since W1 and W2 are magnitude only, we
apply the Griffin Lim algorithm [11] to perform phase re-
trieval, and then we invert them as before to obtain 130
millisecond sounds for each k.

2.3 Musaicing And Mixing

We now describe how to use the corresponding audio tem-
plates we learned in Section 2.2 to perform style transfer
on a new piece of audio, B.

2.3.1 Separating Tracks in B

First, we compute the CQT of B, CB ∈ CM×N2 . We
then represent its magnitude using W1 as a basis, so that
we filter B into the same set of instruments into which A
was separated. That is, we solve for H2 so that |CB| ≈
ΛW1,H2 . This can be performed with ordinary 2DNMF,
holding W1 fixed; that is, repeating the following update
until convergence

Hφ
2 ← Hφ

2 �


∑T
τ=1

↓φ
Wτ

1

T ←τ(
|CB|

ΛW1,H2

)
∑T
τ=1

↓φ
Wτ

1

T←τ
1

 (10)

As with A and A′, we can now filter B into a set of au-
dio tracksB1, B2, ..., BK by first computing filtered CQTs
as follows

CBk
= CB �

(
Λp

W1,H2,k∑K
m=1 Λp

W1,H2,m

)
(11)

and then inverting them.

2.3.2 Constructing B′ Track by Track

At this point, we could use H2 and let our cover song CQT
magnitudes |CB′ | = ΛW2,H2 , followed by Griffin Lim
to recover the phase. However, we have found that the
resulting sounds are too “blurry,” as they lack all but re-
arranged low rank detail from A′. Instead, we choose to
draw sound grains from the inverted, filtered tracks from
A′, which contain all of the detail of the original song.
For this, we first reconstruct each track of B using audio
grains from the corresponding tracks in A, and then we

200 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



replace each track with the corresponding track in B. To
accomplish this, we apply the audio musaicing technique
of Driedger [7] to each track in B, using source audio A.

For computational and memory reasons, we now aban-
don the CQT and switch to the STFT with hop size h =
256 and window size w = 2048. More specifically, let N1

be the number of STFT frames in A and A′ and let N2 be
the number of STFT frames in B. For each Ak, we create
an STFT matrix SAk

which holds the STFT of Ak con-
catenated to pitch shifted versions of Ak, so that pitches
beyond what were inA can be represented, but by the same
instruments. We use ± 6 halfsteps, so SAk

∈ Cw×13N1 .
We do the same for A′k to create SA′

k
∈ Cw×13N1 . Fi-

nally, we compute the STFT of Bk without any shifts:
SBk

∈ Cw×N2 .
Now, we apply Driedger’s technique, using |SAk

| as a
spectral dictionary to reconstruct |SBk

| (SAk
is analogous

to the buzzing bees in [7]). That is, we seek an Hk ∈
R13N1×N2 so that

|SBk
| ≈ |SAk

|H (12)

For completeness, we briefly re-state the iterations in
Driedger’s technique [7]. For L iterations total, at the `th

iteration, compute the following 4 updates in order. First,
we restrict the number of repeated activations by filtering
in a maximum horizontal neighborhood in time

R
(`)
km =

{
H

(`)
km if H

(`)
km = µ

r,(`)
km

H
(`)
km(1− n+1

N ) otherwise

}
(13)

where µ
r,(`)
km holds the maximum in a neighborhood

Hk,m−r:m+r for some parameter r (we choose r = 3 in
our examples). Next, we restrict the number of simultane-
ous activations by shrinking all of the values in each col-
umn that are less than the top p values in that column:

P
(`)
km =

{
R

(`)
km if R

(`)
km ≥Mp(n)

R
(`)
km(1− n+1

N ) otherwise

}
(14)

where Mp(`) is a row vector holding the pth largest
value of each column of R(`) (we choose p = 10 in our
examples). After this, we promote time-continuous struc-
tures by convolving along all of the diagonals of H:

C
(`)
km =

c∑
i=−c

P
(`)
(k+i),(m+i) (15)

We choose c = 3 in our examples. Finally, we perform
the ordinary KL-based NMF update:

H(`+1) ← H(`) �
|SAk

|T |SBk
|

|SAk
|C(`)

|SAk
| · 1

(16)

We perform 100 such iterations (L = 100). Once we
have our final H, we can use this to create B′k as follows:

SB′
k
= SA′

k
H (17)

In other words, we use the learned activations to cre-
ate SBk

using SAk
, but we instead use these activations

with the dictionary from SA′k. This is the key step in
the style transfer, and it is done for the same reason that
H1 is shared between A and A′. Figure 5 shows an ex-
ample for the guitar track on Michael Jackson’s “Bad,”
translating to Alien Ant Farm using A and A′ templates
from Michael Jackson’s and Alien Ant Farms’ versions of
“Smooth Criminal,” respectively. It is visually apparent
that |SAk

|H ≈ SBk
, it is also apparent that SB′

k
= SA′

k
H

is similar to SBk
, except it has more energy in the higher

frequencies. This is consistent with the fact that Alien Ant
Farm uses a more distorted electric guitar, which has more
broadband energy.

Figure 5. Driedger’s technique [7] using audio grains from
pitch shifted versions of Ak (the kth track in Michael Jack-
son’s “Smooth Criminal”) to create Bk (the kth track in
Michael Jackson’s “Bad”), and using the activations to
create B′k (the kth synthesized track in Alien Ant Farm’s
“Bad”).

To create our final B′, we simply add all of the STFTs
SB′

k
together for each k, and we perform and inverse STFT

to go back to audio.

2.4 A Note About Tempos

The algorithm we have described so far assumes that the
tempos tA, tA′ , and tB of A, A′, and B, respectively are
similar. This is certainly not true in more interesting cov-
ers. Section 2.1 took care of the disparity between A and
A′ during the synchronization. However, we also need to
perform a tempo scaling on B by a factor of tA/tB be-
fore running our algorithm. Once we have computed B′,
whose tempo is initially tA, we scale its tempo back by
(tB/tA) · (tA′/tA). For instance, suppose that tA = 60,
tA′ = 80, and tB = 120. Then the final tempo of B′ will
be 60× (120/60)× (80/60) = 160 bpm.

3. EXPERIMENTAL EXAMPLES

We now qualitatively explore our technique on several ex-
amples 3 . In all of our examples, we use K = 3 sources.

3 Please listen to our results at http://www.covers1000.net/
analogies.html
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This is a hyperparameter that should be chosen with care
in general, since we would like each component to cor-
respond to a single instrument or group of related instru-
ments. However, our initial examples are simple enough
that we expect basically a harmonic source, a percussive
source, and one other source or sub-separation between ei-
ther harmonic and percussive.

First, we follow through on the example we have been
exploring and we synthesize Alien Ant Farm’s “Bad” from
Michael Jackson’s “Bad” (B), using “Smooth Criminal”
as an example. The translation of the guitar from synth
to electric is clearly audible in the final result. Further-
more, a track which was exclusively drums in A included
some extra screams in A′ that Alien Ant Farm performed
as embellishments. These embellishments transferred over
to B′ in the “Bad” example, further reinforcing Alien Ant
Farm’s style. Note that these screams would not have been
preserved had we simply used inverted the CQT ΛW2,H2 ,
but they are present in one of the filtered tracks and avail-
able as audio grains during musaicing for that track.

In addition to the “Bad” example, we also synthesize
Alien Ant Farm’s version of “Wanna Be Startin Some-
thing,” using “Smooth Criminal” as an example for A and
A′ once again. In this example, Alien Ant Farm’s screams
occur consistently with the fast drum beat every measure.

Finally, we explore an example with a more extreme
tempo shift between A and A′ (tA′ < tA). We use Mari-
lyn Manson’s cover of “Sweet Dreams” by the Eurythmics
to synthesize a Marilyn Manson cover of “Who’s That
Girl” by the Eurythmics. We found that in this particular
example, we obtained better results when we performed
2DNMF on |CA| by itself first, and then we performed the
optimizations in Equation 5 and Equation 6, holding W1

fixed. This is a minor tweak that can be left to the discre-
tion of the user at runtime.

Overall, our technique works well for instrument trans-
lation in these three examples. However, we did notice that
the vocals did not carry over at all in any of them. This
is to be expected, since singing voice separation often as-
sumes that the instruments are low rank and the voice is
high rank [21], and our filters and final mosaicing are both
derived from low rank NMF models.

4. DISCUSSION / FUTURE DIRECTIONS

In this work, we demonstrated a proof of concept, fully
automated end to end system which can synthesize a cover
song snippet of a songB given an example coverA andA′,
where A is by the same artist as B, and B′ should sound
like B but in the style of A′. We showed some promising
initial results on a few examples, which is, to our knowl-
edge, one of the first steps in the challenging direction of
automatic polyphonic audio musaicing.

Our technique does have some limitations, however.
Since we use W1 for both A and B, we are limited to
examples in which A and B have similar instruments. It
would be interesting to explore how far one could push
this technique with different instruments between A and
B, which happens quite often even within a corpus by the

same artist.
We have also noticed that in addition to singing voice,

other “high rank” instruments, such as the fiddle, cannot be
properly translated. We believe that that translating such
instruments and voices would be an interesting and chal-
lenging future direction of research, and it would likely
need a completely different approach to the one we pre-
sented here.

Finally, out of the three main steps of our pipeline, syn-
chronization (Section 2.1), blind joint factorization/source
separation (Section 2.2), and filtering/musaicing (Sec-
tion 2.3), the weakest step by far is the blind source separa-
tion. The single channel source separation problem is still
far from solved in general even without the complication of
cover songs, so that will likely remain the weakest step for
some time. If one has access to the unmixed studio tracks
for A, A′, and B, though, that step can be entirely cir-
cumvented; the algorithm would remain the same, and one
would expect higher quality results. Unfortunately, such
tracks are difficult to find in general for those who do not
work in a music studio, which is why blind source separa-
tion also remains an important problem in its own right.
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ABSTRACT

Automatic music generation has been gaining more at-
tention in recent years. Existing approaches, however, are
mostly ad hoc to specific rhythmic structures or instrumen-
tation layouts, and lack music-theoretic rigor in their eval-
uations. In this paper, we present a neural language (mu-
sic) model that tries to model symbolic multi-part music.
Our model is part-invariant, i.e., it can process/generate
any part (voice) of a music score consisting of an arbi-
trary number of parts, using a single trained model. For
better incorporating structural information of pitch spaces,
we use a structured embedding matrix to encode multiple
aspects of a pitch into a vector representation. The gener-
ation is performed by Gibbs Sampling. Meanwhile, our
model directly generates note spellings to make outputs
human-readable. We performed objective (grading) and
subjective (listening) evaluations by recruiting music the-
orists to compare the outputs of our algorithm with those
of music students on the task of bassline harmonization
(a traditional pedagogical task). Our experiment shows
that errors of our algorithm and students are differently
distributed, and the range of ratings for generated pieces
overlaps with students’ to varying extents for our three pro-
vided basslines. This experiment suggests some future re-
search directions.

1. INTRODUCTION

In recent years, there has been a growing interest in auto-
matic music composition. Automatic music composition
is a challenging problem, and it remains an open research
topic regardless of many overblown statements in the press
since the early days of artificial intelligence.

Apart from purely rule-based models that are difficult
to craft, log-linear models, e.g., Hidden Markov Models
(HMM), Conditional Random Fields (CRF), and Proba-
bilistic Context-Free Grammars (PCFG) form a set of tra-
ditional methods for sequence modeling involving discrete

c© Yujia Yan[, Ethan Lustig\, Joseph VanderStel\, Zhiyao
Duan[. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Yujia Yan[, Ethan Lustig\, Joseph
VanderStel\, Zhiyao Duan[. “Part-invariant Model for Music Generation
and Harmonization”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

variables (e.g., [13] [19] [18] [20]). When used for model-
ing music, they typically model each aspect of music (e.g.,
melody, harmony, durations) separately, or condition one
variable on a small set of other variables (e.g, [1]). This is
because, in music, when multiple aspects join together, the
number of resulting combinations is prohibitively large,
and the dataset is too small for learning every combina-
tion. Moreover, over-sized probability tables make infer-
ence extremely slow. Neural network based approaches
solve this problem by expressing functions with a general
high capacity approximator at the cost of higher computa-
tional requirements (relative to the small factorized model,
but not always), less interpretability and fewer theoretic
guarantees.

In [9] and [14], multi-layered LSTMs are used to model
Bach’s four-part chorales. For generation, the former uses
Gibbs sampling and the later uses greedy search. In [10],
a neural autoregressive distribution estimator is used to
model the same Bach Chorales dataset, and for generation,
authors compare Gibbs sampling, block Gibbs sampling,
and ancestral sampling. In [22] and [6], Generative Ad-
versarial Networks (GAN) are used to model and generate
music pieces in their MIDI piano-roll form, and for genera-
tion, GAN based models sample the result directly without
the need for an iterative sampling procedure.

However, most existing models, during training, adapt
to specific music structures of the corpus being modeled.
As our first attempt to extend the expressiveness of a music
language model, we wonder if there is some invariance that
can be exploited to obtain better generality. It is commonly
believed that Bach wrote his chorale harmonizations by
firstly writing out basslines for given melodies and then
filling in inner voices (Alto, Tenor) [15]. Also, rules for
each part (voice) share much in common, for example, a
single part tends to move in the reverse direction after a
leap. This motivated our idea of treating parts as the basic
entity to model.

In this paper, we propose a part-invariant model for
multi-part music 1 . Our generation framework follows the
Markov Blanket formalism used in DeepBach [9]. Our
model is a part-based model. As a basic consideration of
counterpoint, each part should be in a good shape by it-
self, and when multiple parts are put together, the resulting

1 Supplementary materials and some generation examples can be
found at http://www.ece.rochester.edu/projects/air/
projects/model0.html
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aggregated sonority should be good. By part-invariance,
we mean that the structure of our model explicitly cap-
tures the relationship among notes within every single part,
and we share this structure with all parts of the score. A
separate structure aggregates the information of how dif-
ferent parts would look like when joined together. As a
result, our model is capable of expressing/processing mu-
sic scores with any number of parts using a single trained
model.

2. MULTI-PART MUSIC

In this work, we focus on music containing multiple mono-
phonic parts (voices). For example, most of Bach chorales
were written in the SATB format (Soprano, Alto, Tenor,
and Bass), with each part containing a monophonic stream
of notes. It is a traditional pedagogical practice to teach
fundamental concepts of music theory by having students
analyze and compose (i.e. “part write”) this kind of music.
When analyzing or composing music, we often separate
a musical score into streams of notes [2], consciously or
unconsciously. This part-separated form of music scores
is easier to analyze and manipulate algorithmically, and
many symbolic music analysis tasks use this separation
as one of their preprocessing steps [7]. There are some
existing approaches to perform part (voice) segmentation;
see [7, 8] for more details. Therefore, our proposed tech-
nique focuses on encoding a part-segmented representation
assuming the segmentation is known.

2.1 Representation

In traditional western music notation, durations of notes
are derived by uniformly dividing a duration of a unit
length recursively. Notes start and end on a subdivided
position. It is thus reasonable to represent a music score
as events on a grid, with each grid point representing a
time frame. This process is commonly known as quan-
tization. This practice can be seen in many works, e.g.,
[1, 9, 14, 22]. In this work, we keep the quantization step
size fixed throughout the piece.

We encode two aspects of a music score: pitch and met-
rical structure. We make the following requirements for
this representation:

1. This representation is able to encode a minimal set
of musical notational elements, from which the re-
constructed music score is human-readable.

2. Values at the same beat position under different
quantization step sizes are the same.

Existing works make use of MIDI pitch numbers for en-
coding pitch. However, MIDI pitch numbers discard one
element that is important for context determination: note
spelling. In the proposed representation, pitch is repre-
sented by a tuple (diatonic note number, accidental),
where diatonic note number is the index of a note name
with accidental removed (imagine the indices for white
keys on a piano keyboard), and accidental has a range of
[−2, 2], that is, up to 2 flats and 2 sharps. For representing

a whole note event, similar to [9,17], we use a special con-
tinuation symbol, which is −1 in the diatonic note number
field. For positions of rest notes, we artificially set their
diatonic note number to 0. Accidentals are undefined in
these two cases, therefore zeros can be filled in.

We encode the metrical structure into three simultane-
ous sequences sharing the same time resolution as the pitch
frames: 1) Bar Line is a binary sequence encoding mea-
sure boundaries. A value of 1 is assigned to the frame at
the first beat of a measure, and 0 is assigned elsewhere. 2)
Beat Level encodes a frame’s beat (sub-)division level in
the metric hierarchy within a measure. Frames at the high-
est beat division level are assigned a value of 0; frames
at the next level are assigned −1, etc. 3) Accent Level
encodes the relative strength of beat positions of frames
within a measure, with 0 representing the highest strength
and −1 representing the second highest strength, etc. For
example, for a classical 4/4 time signature, the frame at the
first beat of a measure is assigned 0, the frame at the third
beat is assigned −1, etc.

The first two encoding sequences work together to make
it possible to reconstruct bar lines and the time signa-
ture. The third sequence further encodes metrical ac-
cents that are indicative of different music styles, and reg-
ular/irregular metrical structures.

Bar Line 1 0 0 0 0 0 0 0
Beat Level 0 -1 0 -1 0 -1 0 -1
Accent Level 0 -3 -2 -3 -1 -3 -2 -3

3. THE PART-INVARIANT MODEL

3.1 Model Architecture

Following the general practice of language models, our
model predicts one symbol at a position given its (musi-
cal) context, that is,

P (xt,k|contextt,k),

where t is the time frame index, k is the part index, and xt,k
is the pitch representation at position (t, k). We further as-
sume contextt,k to be able to separate xt,k from influences
of all other variables (Markov Blanket assumption). This
Markov Blanket formalism is also used in [9].

For obtaining a vector summarizing the context for part
k and frame t, after masking the symbol at the posi-
tion (t, k) as a special UNK symbol, we first use a part-
wise summarizer, which is a single-layered bidirectional
RNN 2 , to produce a part-wise context vector for each part.
Then all part-wise context vectors are aggregated by one of
reduction operations, e.g., max, min, sum, along the axis
of part indexes, to produce an aggregated context vector.
We also summarize the metrical structure (bar line, beat
level, and accent level) with another single-layered bidirec-
tional RNN to produce a metrical context vector. Finally,
for time frame t, the part-wise context vector for part k, the

2 Bidirectional here means that the output is a concatenation of outputs
for the same time step from two RNNs with opposite directions.
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aggregated context vector, and the metrical context vec-
tor are concatenated and fed into a feed-forward network
with a softmax output layer to obtain the final prediction
P (xt,k|contextt,k).

Our model is illustrated in Figure 1. Inputs to the part-
wise context summarizer are vector embeddings described
in Section 3.1.1, Inputs to the metrical context summarizer
are raw metrical sequences, and the RNN structure used in
our experiment is described in Section 3.1.2.

C3
E4

G3
D4

C3
C4

C3
E4

G3
D4

C3
C4

(a) Sequence of Sets vs. Bag of Parts. Our model is
built upon the idea of bag of parts.

 context vector for
pos (t, k)

metrical context
vector for time t

Note Predictor

P( | )xt,k contextt,k

aggregated Context
Vector for time t

(b) Predicting a note given its context.

Frame t

Part k+1··· ···
Part k ··· ···
Part k-1··· ···

Part-wise Context Summarizer

Context Vector  
for Part k, Frame t

(c) Part-wise context vector: each part is summarized
by a bidirectional RNN.

projected context vector
for Part 1 

Reduce
along

this axis

Projection
This can be max, sum,

min,mean, etc.

projected context vector
for Part 2 

projected context vector
for Part 3 

aggregated context vector

(d) Aggregated context vector: taking a reduction op-
eration along the axis of projected part-wise context
vectors and then projecting to a desired dimension.

Figure 1: Model Architecture.

3.1.1 Structured Pitch Vector Embedding

An embedding layer, which is usually the first layer of neu-
ral networks for modeling discrete symbols, learns a vector
representation for each symbol. For embedding pitches, if
each pitch is treated as a separate symbol, some general
relationships that are already known (e.g., octave equiva-
lence, intervals) will be lost. Therefore, we propose to use
a factorized vector embedding representation (i.e., multi-
ple terms in Eq. (1)) for each pitch for better generality.

For readers not familiar with embedding layers, one can
treat Vk’s below as lookup tables, each of which creates

one entry (vector) for every possible value it takes.
The final vector embedding V (p) is the sum of a series

of embedding vectors, with each encoding a different “as-
pect” of a pitch.

V (p) = V1(diatonicPitchClass(d)) + V2(d)

+V3(p) + V4(MIDI(p))

+V5(chromaticPitchClass(MIDI(p))),

(1)

where p = (d, acc) is the pitch tuple defined in Sec-
tion 2, with d being the diatonic note number and
acc being the accidental; MIDI(·) is the MIDI pitch
number; diatonicPitchClass(·) and chromaticPitchClass(·)
wrap numbers according to octave equivalence; V is the
final vector embedding; V1, V2, V3, V4, V5 are vector em-
beddings for different aspects. These vector embeddings
are jointly learned during training.

3.1.2 Stack Augmented Multiplicative Gated Recurrent
Unit

The temporal dependency can be long for a representation
using fine quantized time frames. In this work, instead of
using standard LSTMs, we use a stack augmented mul-
tiplicative Gated Recurrent Unit as the RNN block. The
GRU part implements the short-term memory. We choose
the stack mechanism [11] for the long-term memory be-
cause of its resemblance to the pushdown automata, which
has more expressive power than a finite state machine and
is able to recognize context-free languages, which are of-
ten used to model some elements in music.

We make the following convention for our notation: un-
bolded lowercase letters, e.g, a, denote scalars; bolded
lowercase letters, e.g, x, h, denote vectors; bolded upper-
case letters, e.g, W, S, denote matrices.

The original GRU, as introduced in [4], transforms the
input sequence of 〈xt〉 into a sequence of 〈ht〉, where t is
the time step index:

rt = σ(Wr[xt;ht−1] + br),

ut = σ(Wu[xt;ht−1] + bu),

ct = tanh(Wc[xt; rt � ht−1] + bc),

ht = ut � ht−1 + (1− ut)� ct,

(2)

where rt is the reset gate, ut is the update gate, ct is the
update candidate, σ(x) = 1

1+e−x is the Sigmoid func-
tion. W’s and b’s are all trainable parameters, repre-
senting weights and biases respectively, � here represents
element-wise multiplication, [xt;ht−1] concatenates vec-
tors into a longer column vector.

Multiplicative integration [21] adds quadratic terms into
RNN update equations in order to improve the expressive
power. In our implementation, we replace the equation for
the update candidate with

ct,x = Wcxxt,

ct,r1 = Wcr1(rt � ht−1) + bcr1,

ct,r2 = Wcr2(rt � ht−1) + bcr2,

ct = tanh(ct,x � (ct,r1 + 1) + ct,r2).

(3)
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A stack-based external memory for RNN is introduced
in [11], which is reported to be able to learn some se-
quences that are not learnable by a traditional RNN, e.g,
LSTM.

We denote the stack as a matrix St, with dimensions of
N ×M , where N is the length of one entry in the stack,
and M is the capacity of the stack. In our implementation,
a stack augmented memory performs the following proce-
dure at each time step:

1. Fetch vt from the stack by positional attention,
which is a linear combination of columns in St with
weights kt:

kt = softmax(Wread[xt;ht−1] + bread),

vt = Stkt;
(4)

where softmax(x) = exp(x)
1T exp(x)

;

2. Augment the input with the fetched value:

x̃t = [xt;vt], (5)

and then run one step RNN with input x̃t, which
produces ht;

3. Generate the input to the stack:

zt = tanh(Wz[x̃t;ht] + bz); (6)

4. Make decisions on how to update the stack:at,no-op

at,push

at,pop

 = softmax(Wa[x̃t;ht] + ba), (7)

where a’s are probabilities that sum up to 1 repre-
senting the probability of stack operations (no oper-
ation, push, pop);

5. Update the stack by expectation of operations:

St,pushed = [zt,firstk(St−1)],

St,popped = [lastk(St−1),0],

St = at,no-opSt−1

+ at,pushSt,pushed

+ at,popSt,popped,

(8)

where firstk(·) extracts the first k columns, and
lastk(·) extracts the last k columns. Here k =M−1.
Operator [, ] concatenates vectors/matrices horizon-
tally.

3.1.3 Context Aggregation: Obtaining Part-Invariance

As mentioned above, the aggregated context vector is ob-
tained by reduction operations on projected part-wise con-
text vectors, and is then projected to the desired dimension.

Caggregated
t = Wproj2(

K⊕
k=1

Wproj1C
part
t,k ), (9)

where Caggregated
t and Cpart

t,k are aggregated context vector

and partwise context vector respectively,
⊕K

k=1 denotes a

reduction operator over k from 1 to K, where K is the
number of parts, Wproj1 and Wproj2 are projection ma-
trices for transforming the context vector into a higher di-
mension and back in order to improve the expressiveness
of this reduction operation. In our experiment, we use max
reduction. The proof of the universal approximation prop-
erty for approximating a continuous set function when max
reduction is used can be found in [3].

The reduction operation applied here produces a contin-
uous bag of parts (bag means (multi-)set). This terminol-
ogy draws similarity to continuous bag of words (CBOW,
[16]), which averages all vector embeddings for all words
(mean reduction) within a window to obtain the vector
representation for this context. For comparison, existing
works conceptually make use of sequence-of-set paradigm
for context modeling (see Figure 1a), therefore the con-
text model is confined to learning sequential relationships
between sets. Our conceptual paradigm is on a different
direction. We built a model for processing monophonic
parts and a model for putting them into a bag. One impor-
tant feature for doing this is that it allows learning shared
properties of parts. Also, the ordering of parts, which is
redundant for a context encoder, is discarded and only the
content information of all parts is aggregated. As a result,
it reduces the model complexity required.

3.2 Sampling and Generation

After training the Markov blanket model for approximat-
ing the probability of a note conditioned on its context,
P (xt,k|contextt,k), the process of generation is performed
by Gibbs sampling with an annealing schedule. This pro-
cedure is almost the same as the one used in [9].

Firstly, we initialize notes xt,k of all positions in the
empty parts randomly. Then we iterate:

1. Randomly or deterministically select the next posi-
tion (t, k) that is not fixed 3 to sample;

2. Sample new xt,k, according to

P̃ ( · |contextt,k) ∝ ( P ( · |contextt,k) )1/T , (10)

i.e, the annealed distribution with temperature T >
0;

For vanilla Gibbs sampling, T ≡ 1. However, as
pointed out in [9], conditional distributions outputted are
likely to be incompatible and there is no guarantee that the
Gibbs sampler will converge to the desired joint distribu-
tion.

In Gibbs sampling with an annealing schedule, the tem-
perature starts from a high value and gradually decreases to
a low value. By incorporating this annealing scheme, the
algorithm can escape from initial bad values much easier at
the beginning, and the average likelihood for the selected
new samples increases as the temperature decreases. For
illustration, in the limiting case that T → 0, the algorithm

3 Fixed positions are used as conditions. For example, if the task of
melody harmonization, the melody part is fixed.
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greedily selects new samples that maximizes the local like-
lihood.

Since in our model parts are orderless, the generated re-
sult does not ensure all parts in their usual notated staffs.
Also, the imperfection of Gibbs sampler often makes the
configuration get stuck in a region where voice crossing
occurs even if parts in the training set rarely cross. In
the experiment, we enforce one constraint during sampling
as a workaround: in each time frame, the pitch of each
part cannot go above/below the part that is immediately
above/below it, i.e., no voice crossing is allowed. This
constraint is achieved by limiting the range of candidates
to sample. How to design a better sampling procedure is
left for future investigation.

4. EXPERIMENT

4.1 Training

4.1.1 Dataset

We trained our model on the Bach Chorale dataset in-
cluded in Music21 [5]. We chose this dataset to perform
our experiment for the following reasons: firstly, it is pub-
licly available; secondly, it matches the objective evalua-
tion methods we designed 4 ; thirdly, there is no need to
perform voice separation in this dataset. Different parts
are separately encoded in the file format.

We performed data augmentation by transposition with
a range such that the transposed piece is within the lowest
pitch minus 5 semitones to a highest pitch plus 5 semitones
for the whole dataset. Enharmonic spellings are resolved
by selecting the one that creates the minimum number of
accidentals for the entire transposed piece.

4.1.2 Model Specification

In our experiment, we use a quantization step size of a
sixteenth note. Embedding layers have a dimension of
200. We use single-layered RNNs as the partwise con-
text summarizer and metrical sequence summarizer. All
RNNs have a hidden state size of 200, stack vector length
200, stack size 24. The intermediate dimension for the
part aggregating layer is 1000. The final predictor is a
feed-forward neural network with 3 layers, each of which
contains 400 hidden units. The final softmax layer has a
dimension of 400, each corresponding to a specific pitch
tuple (diatonic note number, accidental). We use cross en-
tropy as the loss function. Curriculum learning is used in
our training: we started from a small half-window width of
8 and gradually doubled the half-window width to a max-
imum of 128. During training, pitches within the context
window are randomly set to a rest with probability 0.1. All
layers except for the RNN layers use a dropout rate of 0.1.

In our evaluation, we use an half-window width of 64
for generation. We use a simple linear cooling schedule
to decrease the temperature from an initial value of 1.2 to

4 The objective evaluation follows rules used in textbook part writing,
which are greatly influenced by Bach Chorales, however, these rules are
not strictly followed by Bach himself.

0.25. The total number of iterations is selected such that
every position is sampled 40 times.

Music scores are reconstructed by directly using acci-
dentals, diatonic note numbers and the original encoded
metrical sequences. Key signatures and clefs are automat-
ically determined by Music21’s [5] built-in functions.

4.2 Evaluation

       44 
(a) bassline1         34 
(b) bassline2            44
(c) bassline3

Figure 2: Basslines used in our evaluation.

To perform evaluation, we compared our algorithm’s
harmonizations of basslines with harmonizations of those
same basslines completed by music students. We used
three basslines which vary in difficulty, ranging from di-
atonic (bassline 1) to moderately chromatic (bassline 2) to
highly chromatic (bassline 3). 5 For each bassline, our al-
gorithm generated 30 outputs, for a total of 30*3 outputs.
As a side note, 4 bars is the usual length for a harmo-
nization exercise. This length is different from lengths of
pieces in the training set.

We recruited 33 second-semester sophomore music
majors, offering them extra credit for harmonizing each
bassline. We gave each student a .xml file containing
the three basslines, with three blank upper staves . We
instructed students to harmonize each of the basslines in
four-part, SATB chorale style, following the usual rules of
voice-leading and harmony. We used valid responses from
27 students (those not empty and returned timely) in the
following evaluation tasks.

We recruited two teams for evaluation: graders and lis-
teners. The graders were three music theory PhD students.
They were given the 57 valid outputs (57 ∗ 3 in total) in
.pdf format; we created a grading rubric 6 . A deduction
less than 0 was computed by each grader for each output.
The lower the value, the greater the number of errors. One
graded example can be found in Figure 3.

Figure 3: Example annotation from one of our graders.

5 Basslines 1 and 2 were taken from Exercises 10.3C and 21.2, respec-
tively, from [12]. In Bassline 2, the B was originally a Bb in [12], but we
changed it to increase chromaticism. Bassline 3 was created by us, and
intended to represent highly modulatory chromatic harmony.

6 The rubric is typical of traditional music theory textbooks and
classes. For the detailed rubric, see the supplementary website.
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While the grading method was fairly objective (corre-
lations between error values from the three graders were
.85, .88, and .92), we also wanted subjective ratings. In ad-
dition, we recruited a listening team of another three mu-
sic theory PhD students. We gave them the same 57 * 3
outputs in .mp3 format, synthesized with a software piano
synthesizer and tempo 93, and these instructions:

For each output, answer the following four questions:
1. As you listen, how much are you enjoying this solu-

tion (on a scale of 1 to 4, where 1 = not enjoying at
all and 4 = greatly enjoying)?

2. As you listen, how confident are you that this solu-
tion is by a computer vs. a sophomore (on a scale
of 1 to 4, where 1 = probably a computer and 4 =
probably a sophomore)?

3. As you listen, to what extent does this solution
conform to textbook/common-practice voice-leading
and harmony (on a scale of 1 to 4, where 1 = not very
idiomatic and 4 = quite idiomatic)?

4. Please share any other comments or thoughts (for
example, why does it sound like it’s a computer vs. a
sophomore?)

To summarize, for each output we had 3 gradings (1
value * 3 graders) and 9 subjective ratings (3 ratings*3 lis-
teners) plus additional open-ended comments.

To minimize bias, graders only received .pdf outputs;
listeners only received .mp3 outputs. The outputs were
presented to the graders and listeners in random order.
Both teams were blind to the output source (computer or
student), and were allowed to take as much time as they
needed to make their assessments.

Our experiment result is summarized in Figure 4. Our
experiment shows that gradings and listening ratings for
our algorithm and students overlap to different extents (our
algorithm performs best on the second bassline). For the
listening test, our algorithm consistently performs a bit
worse than average second-year second-semester music
majors.

The comments from the listener who contributed most
of the open-ended comments (question 4) suggest that the
presence of tonality was one of the main factors in their
Turing judgements. This listener attributed harmoniza-
tions that feature small stylistic errors (e.g., oddly repeated
notes, parallel voice leading, etc.) to both human and com-
puter, but those harmonizations that sounded resolutely
tonal were only attributed to humans. Another listener
seemed to ground their judgments on a different feature:
“A lot of the ones I think are computer-generated do ca-
dences super well.” Indeed, for the most part the computer
did generate well-formed cadences.

By examining the detailed responses from our graders,
we have the following rudimentary observations:

1. Errors of our algorithm and students are differently
distributed.

2. Parallel octave/fifth (Error 3) is one frequent error
produced by our algorithm, more often than stu-
dents. This type of error is also observed in gen-
eration examples shown in [9].
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(b) Results for the subjective listening test.

Figure 4: Objective and subjective comparisons between
our algorithm’s and music students’ harmonization on the
three basslines.

3. Our algorithm produces more non-stylistic progres-
sions (Error 6 and Error 7). In our algorithm, it is
observed that, smooth/melodic voice leading may
sometimes suppress the requirement of the vertical
sonority.

4. Students are much more likely to exceed the octave
range limit between nearby upper voices (Error 9)

From our experiment result, it is revealed that the pro-
posed algorithm cannot learn what is bad/incorrect just by
watching correct examples. Therefore, there is a need to
train with negative examples. Our experiment provides
useful data for future development.

5. CONCLUSION

In this work, we proposed a part-invariant model for music
generation and harmonization that operates on multi-part
music scores, which are scores containing multiple mono-
phonic parts. We trained our model on Bach Chorales
dataset. We performed objective and subjective evalua-
tions by comparing the outputs of our algorithm against the
textbook-style part writings of undergraduate music ma-
jors. Our experiment result provides insights and data that
will be useful for future development.
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ABSTRACT

This study borrows and extends probabilistic language
models from natural language processing to discover the
syntactic properties of tonal harmony. Language models
come in many shapes and sizes, but their central purpose is
always the same: to predict the next event in a sequence
of letters, words, notes, or chords. However, few stud-
ies employing such models have evaluated the most state-
of-the-art architectures using a large-scale corpus of West-
ern tonal music, instead preferring to use relatively small
datasets containing chord annotations from contemporary
genres like jazz, pop, and rock.

Using symbolic representations of prominent instru-
mental genres from the common-practice period, this study
applies a flexible, data-driven encoding scheme to (1)
evaluate Finite Context (or n-gram) models and Recur-
rent Neural Networks (RNNs) in a chord prediction task;
(2) compare predictive accuracy from the best-performing
models for chord onsets from each of the selected datasets;
and (3) explain differences between the two model archi-
tectures in a regression analysis. We find that Finite Con-
text models using the Prediction by Partial Match (PPM)
algorithm outperform RNNs, particularly for the piano
datasets, with the regression model suggesting that RNNs
struggle with particularly rare chord types.

1. INTRODUCTION

For over two centuries, scholars have observed that tonal
harmony, like language, is characterized by the logical
ordering of successive events, what has commonly been
called harmonic syntax. In Western music of the common-
practice period (1700-1900), pitch events group (or co-
here) into discrete, primarily tertian sonorities, and the
succession of these sonorities over time produces mean-
ingful syntactic progressions. To characterize the passage
from the first two measures of Bach’s “Aus meines Herzens
Grunde”, for example, theorists and composers developed
a chord typology that specifies both the scale steps on
which tertian sonorities are built (Stufentheorie), and the

c© Sears, Korzeniowski, Widmer. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Sears, Korzeniowski, Widmer. “Evaluating language models
of tonal harmony”, 19th International Society for Music Information Re-
trieval Conference, Paris, France, 2018.
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Figure 1. Bach, “Aus meines Herzens Grunde”, mm. 1–2;
from the Riemenschneider edition, No. 1. Key and Roman
numeral annotations appear below.

functional (i.e., temporal) relations that bind them (Funk-
tionstheorie). Shown beneath the staff in Figure 1, this Ro-
man numeral system allows the analyst to recognize and
describe these relations using a simple lexicon of symbols.

In the presence of such language-like design features,
music scholars have increasingly turned to string-based
methods from the natural language processing (NLP) com-
munity for the purposes of pattern discovery [6], classifi-
cation [7], similarity estimation [18], and prediction [19].
In sequential prediction tasks, for example, probabilistic
language models have been developed to predict the next
event in a sequence — whether it consists of letters, words,
DNA sequences, or in our case, chords.

Although corpus studies of tonal harmony have become
increasingly commonplace in the music research commu-
nity, applications of language models for chord prediction
remain somewhat rare. This is likely because language
models take as their starting point a sequence of chords,
but the musical surface is often a dense web of chordal and
nonchordal tones, making automatic harmonic analysis a
tremendous challenge. Indeed, such is the scope of the
computational problem that a number of researchers have
instead elected to start with a particular chord typology
right from the outset (e.g., Roman numerals, figured bass
nomenclature, or pop chord symbols), and then identify
chord events using either human annotators [3], or rule-
based computational classifiers [25]. As a consequence,
language models for tonal harmony frequently train on rel-
atively small, heavily curated datasets (< 200, 000 chords)
[3], or use data augmentation methods to increase the size
of the corpus [15]. And since the majority of these corpora
reflect pop, rock, or jazz idioms, vocabulary reduction is
a frequent preliminary step to ensure improved model per-
formance, with the researcher typically including specific
chord types (e.g., major, minor, seventh, etc.), thus ignor-
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ing properties of tonal harmony relating to inversion [15]
or chordal extension [11].

Given the state of the annotation bottleneck, we propose
a complementary method for the implementation and eval-
uation of language models for chord prediction. Rather
than assume a particular chord typology a priori and train
our models on the chord classes found therein, we will in-
stead propose a data-driven method for the construction of
harmonic corpora using chord onsets derived from the mu-
sical surface. It is our hope that such a bottom-up approach
to chord prediction could provide a springboard for the im-
plementation of chord class models in future studies [2],
the central purpose of which is to use predictive methods
to reduce the musical surface to a sequence of syntactic
progressions by discovering a small vocabulary of chord
types.

We begin in Section 2 by describing the datasets used
in the present research and then present the tonal encod-
ing scheme that reduces the combinatoric explosion of po-
tential chord types to a vocabulary consisting of roughly
two hundred types for each scale-degree in the lowest in-
strumental part. Next, Section 3 describes the two most
state-of-the-art architectures employed in the NLP com-
munity: Finite Context (or n-gram) models and Recurrent
Neural Networks (RNNs). Section 4 presents the experi-
ments, which (1) evaluate the two aforementioned model
architectures in a chord prediction task; (2) compare pre-
dictive accuracy from the best-performing models for each
dataset; (3) attempt to explain the differences between the
two models using a regression analysis. We conclude in
Section 5 by considering limitations of the present ap-
proach, and offering avenues for future research.

2. CORPUS

This section presents the datasets used in the present re-
search and then describes the chord representation scheme
that permits model comparison across datasets.

2.1 Datasets

Shown in Table 1, this study includes nine datasets of
Western tonal music (1710–1910) featuring symbolic rep-
resentations of the notated score (e.g., metric position,
rhythmic duration, pitch, etc.). The Chopin dataset con-
sists of 155 works for piano that were encoded in Mu-
sicXML format [10]. The Assorted symphonies dataset
consists of symphonic movements by Beethoven, Berlioz,
Bruckner, and Mahler that were encoded in MATCH for-
mat [26]. All other datasets were downloaded from the
KernScores database in MIDI format. 1 In total, the
composite corpus includes the complete catalogues for
Beethoven’s string quartets and piano sonatas, Joplin’s
rags, and Chopin’s piano works, and consists of over 1,000
compositions containing more than 1 million chord tokens.

1 http://kern.ccarh.org/.

Composer Genre Npieces N tokens N types

Bach Chorale 370 35,237 786
Haydn Quartet 210 159,579 1472
Mozart Quartet 82 78,201 1289
Beethoven Quartet 70* 132,896 1699
Mozart Piano 51 92,279 833
Beethoven Piano 102* 176,370 1332
Chopin Piano 155* 147,827 1790
Joplin Piano 47* 43,848 854
Assorted Symphony 29 147,549 2420

Total 1116 1,013,786 2590

Note. * denotes the complete catalogue.

Table 1. Datasets and descriptive statistics for the corpus.

2.2 Chord Representation Scheme

To derive chord progressions from symbolic corpora using
data-driven methods, music analysis software frameworks
typically perform a full expansion of the symbolic en-
coding, which duplicates overlapping note events at every
unique onset time. Shown in Figure 2, expansion identifies
9 unique onset times in the first two measures of Bach’s
chorale harmonization, “Aus meines Herzens Grunde.”

Previous studies have represented each chord accord-
ing to the simultaneous relations between its note-event
members (e.g., vertical intervals) [23], the sequential re-
lations between its chord-event neighbors (e.g., melodic
intervals) [6], or some combination of the two [22]. For
the purposes of this study, we have adopted a chord typol-
ogy that models every possible combination of note events
in the corpus. The encoding scheme consists of an ordered
tuple (S, I) for each chord onset in the sequence, where S
is a set of up to three intervals above the bass in semitones
modulo the octave (i.e., 12), resulting in 133 (or 2197) pos-
sible combinations; 2 and I is the chromatic scale degree
(again modulo the octave) of the bass, where 0 represents
the tonic, 7 the dominant, and so on.

Because this encoding scheme makes no distinction be-
tween chord tones and non-chord tones, the syntactic do-
main of chord types is still very large. To reduce the
domain to a more reasonable number, we have excluded
pitch class repetitions in S (i.e., voice doublings), and we
have allowed permutations. Following [22], the assump-
tion here is that the precise location and repeated appear-
ance of a given interval are inconsequential to the identity
of the chord. By allowing permutations, the major triads
〈4, 7, 0〉 and 〈7, 4, 0〉 therefore reduce to 〈4, 7,⊥〉. Simi-
larly, by eliminating repetitions, the chords 〈4, 4, 10〉 and
〈4, 10, 10〉 reduce to 〈4, 10,⊥〉. This procedure restricts
the domain to 233 unique chord types in S (i.e., when I is
undefined).

To determine the underlying tonal context of each chord
onset, we employ the key-finding algorithm in [1], which
tends to outperform other distributional methods (with an

2 The value of each vertical interval is either undefined (denoted by
⊥), or represents one of twelve possible interval classes, where 0 denotes
a perfect unison or octave, 7 denotes a perfect fifth, and so on.
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<0,4,7,⊥> <11,3,8,⊥> <9,3,7,⊥>

Figure 2. Full expansion of Bach, “Aus meines Herzens
Grunde”, mm. 1–2. Three chord onsets are shown with the
tonal encoding scheme described in Section 2.2 for illus-
trative purposes.

accuracy of around 90% for both major and minor keys).
Since the movements in this dataset typically feature mod-
ulations, we compute the Pearson correlation between the
distributional weights in the selected key-finding algorithm
and the pitch-class distribution identified in a moving win-
dow of 16 quarter-note beats and centered around each
chord onset in the sequence. The algorithm interprets the
passage in Figure 2 in G major, for example, so the bass
note of the first harmony is 0 (i.e., the tonic).

3. LANGUAGE MODELS

The goal of language models is to estimate the probabil-
ity of event ei given a preceding sequence of events e1
to ei−1, notated here as ei−1

1 . In principle, these models
predict ei by acquiring knowledge through unsupervised
statistical learning of a training corpus, with the model
architecture determining how this learning process takes
place. For this study we examine the two most common
and best-performing language models in the NLP commu-
nity: (1) Markovian finite-context (or n-gram) models us-
ing the PPM algorithm, and (2) recurrent neural networks
(RNNs) using both long short-term memory (LSTM) lay-
ers and gated recurrent units (GRUs).

3.1 Finite Context Models

Context models estimate the probability of each event in a
sequence by stipulating a global order bound (or determin-
istic context) such that p(ei) depends only on the previous
n − 1 events, or p(ei|ei−1

(i−n)+1). For this reason, context
models are also sometimes called n-gram models, since
the sequence ei(i−n)+1 is an n-gram consisting of a context
ei−1
(i−n)+1, and a single-event prediction ei. These models

first acquire the frequency counts for a collection of se-
quences from a training set, and then apply these counts to
estimate the probability distribution governing the identity
of ei in a test sequence using maximum likelihood (ML)
estimation.

Unfortunately, the number of potential n-grams de-
creases dramatically as the value of n increases, so high-
order models often suffer from the zero-frequency prob-
lem, in which n-grams encountered in the test set do not
appear in the training set [27]. The most common solution
to this problem has been the Prediction by Partial Match
(PPM) algorithm, which adjusts the ML estimate for ei by
combining (or smoothing) predictions generated at higher

orders with less sparsely estimated predictions from lower
orders [5]. Specifically, PPM assigns some portion of the
probability mass to accommodate predictions that do not
appear in the training set using an escape method. The
best-performing smoothing method is called mixtures (or
interpolated smoothing), which computes a weighted com-
bination of higher order and lower order models for every
event in the sequence.

3.1.1 Model Selection

To implement this model architecture, we apply the
variable-order Markov model (called IDyOM) developed
in [19]. 3 The model accommodates many possible con-
figurations based on the selected global order bound, es-
cape method, and training type. Rather than select a global
order bound, researchers typically prefer an extension to
PPM called PPM*, which uses simple heuristics to de-
termine the optimal high-order context length for ei, and
which has been shown to outperform the traditional PPM
scheme in several prediction tasks (e.g., [21]), so we ap-
ply that extension here. Regarding the escape method, re-
cent studies have demonstrated the potential of method C
to minimize model uncertainty in melodic and harmonic
prediction tasks [12, 21], so we also employ that method
here.

To improve model performance, Finite Context mod-
els often separately estimate and then combine two sub-
ordinate models trained on differed subsets of the corpus:
a long-term model (LTM+), which is trained on the en-
tire corpus; and a short-term (or cache) model (STM),
which is initially empty for each individual composition
and then is trained incrementally (e.g., [8]). As a result,
the LTM+ reflects inter-opus statistics from a large corpus
of compositions, whereas the STM only reflects intra-opus
statistics, some of which may be specific to that composi-
tion. Finally, the model implemented here also includes a
model that combines the LTM+ and STM models using a
weighted geometric mean (BOTH+) [20]. Thus, we report
the LTM+, STM, and BOTH+ models for the analyses that
follow. 4

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are powerful models
designed for sequential modelling tasks. RNNs transform
an input sequence xN

1 to an output sequence oN
1 through

a non-linear projection into a hidden layer hN
1 , parame-

terised by weight matrices Whx, Whh and Woh:

hi = σh (Whxxi +Whhhi−1) (1)

oi = σo (Wohhi) , (2)

where σh and σo are the activation functions for the hid-
den layer (e.g. the sigmoid function), and the output layer

3 The model is available for download: http://code.
soundsoftware.ac.uk/projects/idyom-project

4 The models featuring the + symbol represent both the statistics from
the training set and the statistics from that portion of the test set that has
already been predicted.
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Figure 3. The basic architecture for an RNN-based
language model. This model can easily accommodate
more recurrent hidden layers or include additional skip-
connections between the input and each hidden layer or
the output. The first input, e0, is a dummy symbol without
an associated chord.

(e.g. the softmax), respectively. We excluded bias terms
for simplicity.

RNNs have become popular models for natural lan-
guage processing due to their superior performance com-
pared to Finite Context models [17]. Here, the input at each
time step i is a (learnable) vector representation of the pre-
ceding symbol, v(ei−1). The network’s output oi ∈ RNtypes

is interpreted as the conditional probability over the next
symbol, p

(
ei | ei−1

1

)
. As outlined in Figure 3, this proba-

bility depends on all preceding symbols through the recur-
rent connection in the hidden layer.

During training, the categorical cross-entropy between
the output oi and the true chord symbol is minimised by
adapting the weight matrices in Eqs. 1 and 2 using stochas-
tic gradient descent and back-propagation through time.
However, this training procedure suffers from vanishing
and exploding gradients because of the recursive dot prod-
uct in Eq. 1. The latter problem can be averted by clipping
the gradient values; the former, however, is trickier to pre-
vent, and necessitates more complex recurrent structures
such as the long short-term memory unit (LSTM) [13] or
the gated recurrent unit (GRU) [4]. These units have be-
come standard features of RNN-based language modeling
architectures [16].

3.2.1 Model Selection

Selecting good hyper-parameters is crucial for neural net-
works to perform well. To this end, we performed a num-
ber of preliminary experiments to tune the networks. Our
final architecture comprises two layers of 128 recurrent
units each (either LSTM or GRU), a learnable input em-
bedding of 64 dimensions (i.e. v(·) maps each chord class
to a vector in R64), and skip connections between the input
and all other layers.

RNNs are prone to over-fit the training data. We use
the network’s performance on held-out data to identify this
issue. Since we employ 4-fold cross-validation (see Sec. 4
for details), we hold out one of the three training folds as
a validation set. If the results on these data do not improve
for 10 epochs, we stop training and select the model with
the lowest cross-entropy on the validation data.

We trained the networks for a maximum of 200 epochs,
using stochastic gradient descent with a mini-batch size of
4. Each of these 4 data points is a sequence of at most 300
chords. The gradient updates are scaled using the Adam
update rule [14] with standard parameters. To prevent ex-
ploding gradients, we clip gradient values larger than 1.

4. EXPERIMENTS

4.1 Evaluation

To evaluate performance using a more refined method than
one simply based on the accuracy of the model’s predic-
tion, we use a statistic called corpus cross-entropy, denoted
by Hm.

Hm(pm, e
j
1) = −

1

j

j∑
i=1

log2 pm(ei|ei−1
1 ). (3)

Hm represents the average information content for the
model probabilities estimated by pm over all e in the se-
quence ej1. That is, cross-entropy provides an estimate of
how uncertain a model is, on average, when predicting a
given sequence of events [21], regardless of whether the
correct symbol for each event was assigned the highest
probability in the distribution.

Finally, we employ 4-fold cross-validation stratified by
dataset for both model architectures, using cross-entropy
as a measure of performance.

4.2 Results

We first compare the average cross-entropy estimates
across the entire corpus using Finite Context models and
RNNs, and then examine the estimates across datasets for
the best performing model configuration from each archi-
tecture. We conclude by examining the differences be-
tween these models in a regression analysis.

4.2.1 Comparing Models

Table 2 presents the average cross-entropy estimates for
each model configuration. For the purposes of statisti-
cal inference, we also include the 95% bootstrap confi-
dence interval using the bias-corrected and accelerated per-
centile method [9]. For the Finite Context models, BOTH+

Model Type Hm CIa

Finite Context
LTM+ 4.895 4.811–4.978
STM 6.710 6.600–6.820
BOTH+ 4.893 4.800–4.966

Recurrent Neural Network
LSTM 5.583 5.539–5.626
GRU 5.600 5.551–5.645

a CI refers to the 95% bootstrap confidence interval of Hm using the
bias-corrected and accelerated percentile method with 1000 replicates.

Table 2. Model comparison using cross-entropy as an eval-
uation metric.

214 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



Chopin
Piano

Bach
Chorale

Mozart
Piano

Beethoven
Piano

Joplin
Piano

Haydn
Quartet

Mozart
Quartet

Beethoven
Quartet

Assorted
Symphony

BOTH+
LSTM

0
1
2
3
4
5
6
7
8

H
m

(b
its

)

Figure 4. Bar plots of the best-performing model configurations from the Finite Context (BOTH+) and RNN (LSTM)
models. Whiskers represent the 95% bootstrap confidence interval of the mean using the bias-corrected and accelerated
percentile method with 1000 replicates.

produced the lowest cross-entropy estimates on average,
though the difference between BOTH+ and LTM+ was
negligible. STM was the worst performing model over-
all, which is unsurprising given the restrictions placed on
the model’s training parameters (i.e., that it only trains on
the already-predicted portion of the test set).

Of the RNN models, LSTM slightly outperformed
GRU, but again this difference was negligible. What is
more, the long-term Finite Context models (BOTH+ and
LTM+) significantly outperformed both RNNs. This find-
ing could suggest that context models are better suited to
music corpora, since the datasets for melodic and harmonic
prediction are generally miniscule relative to those in the
NLP community [15]. The encoding scheme for this study
also produced a large vocabulary (2590 symbols), so the
PPM* algorithm might be useful when the model is forced
to predict particularly rare types in the corpus.

4.2.2 Comparing Datasets

To identify the differences between these models for each
of the datasets in the corpus, Figure 4 presents the bar
plots for the best-performing model configurations from
each model architecture: BOTH+ from the Finite Context
model, and LSTM from the RNN model. On average,
BOTH+ produced the lowest cross-entropy estimates for
the piano datasets (Mozart, Beethoven, Joplin), but much
higher estimates for the other datasets. This effect was not
observed for LSTM, however, with the datasets’ genre —
chorale, piano work, quartet, and symphony — apparently
playing no role in the model’s overall performance.

The difference between these two model architectures
for the Joplin and Mozart piano datasets is particularly
striking. Given the degree to which piano works gener-
ally consist of fewer homorhythmic textures relative to the
other genres in this corpus, it could be the case that the
piano datasets feature a larger proportion of rare, mono-
phonic chord types relative to the other datasets. The next
section examines this hypothesis using a regression model.

4.2.3 A Regression Model

Given the complexity of the corpus, a number of factors
might explain the performance of these models. Thus,

we have included the following five predictors in a mul-
tiple linear regression (MLR) model to explain the average
cross-entropy estimates for the compositions in the corpus
(N = 1136): 5

Ntokens Cache (i.e., STM) and RNN-based language mod-
els often benefit from datasets that feature longer se-
quences by exploiting statistical regularities in the
portion of the test sequence that was already pre-
dicted. Thus, Ntokens represents the number of to-
kens in each sequence. Compositions featuring more
tokens should receive lower cross-entropy estimates
on average.

Ntypes Language models struggle with data sparsity as n
increases (i.e., the zero-frequency problem). One
solution is to select corpora for which the vocab-
ulary of possible distinct types is relatively small.
Thus, Ntypes represents the number of types in each
sequence. Compositions with larger vocabularies
should receive higher cross-entropy estimates on av-
erage.

Improbable Events that occur with low probability in the
zeroth-order distribution are particularly difficult to
predict due to the data sparsity problem just men-
tioned. Thus, Improbable represents the proportion
of tokens in each sequence that appear in the bottom
10% of types in the zeroth-order probability distribu-
tion. Compositions with a large proportion of these
particularly rare types should receive higher cross-
entropy estimates on average.

Monophonic Chorales feature homorhythmic textures in
which each temporal onset includes multiple coin-
cident pitch events. The chord types representing
these tokens should be particularly common in this
corpus, but some genres might also feature poly-
phonic textures in which the number of coincident
events is potentially quite low (e.g., piano). Thus,

5 Four of the 1116 compositions were further subdivided in the se-
lected datasets, producing an additional 20 sequences in the analyses:
Beethoven, Quartet No. 6, Op. 18, iv (2); Chopin, Op. 12 (2); Mozart,
Piano Sonata No. 6, K. 284, iii (13); Mozart, Piano Sonata No. 11, K.
331, i (7).
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Monophonic represents the proportion of tokens in
each sequence that consist of only one pitch event.
Compositions with a large proportion of these mono-
phonic events should receive higher cross-entropy
estimates on average.

Repetition Compared to chord-class corpora, data-driven
corpora are far more likely to feature adjacent rep-
etitions of tokens. Thus, Repetition represents the
proportion of tokens in each sequence that feature
adjacent repetitions. Compositions with a large pro-
portion of repetitions should receive lower cross-
entropy estimates on average.

Table 3 presents the results of a stepwise regression
analysis predicting the average cross-entropy estimates
with the aforementioned predictors. R2 refers to the fit of
the model, where a value of 1 indicates that the model ac-
counts for all of the variance in the outcome variable (i.e., a
perfectly linear relationship between the predictors and the
cross-entropy estimates). The slope of the line measured
for each predictor, denoted by β, represents the change in
the outcome resulting from a unit change in the predictor.

For the Finite Context model (BOTH+), four of the
five predictors explained 53% of the variance in the cross-
entropy estimates. As predicted, cross-entropy decreased
as the number of tokens increased, suggesting that the
model learned from past tokens in the sequence. What is
more, cross-entropy increased as the vocabulary increased,
as well as when the proportion of monophonic or improb-
able tokens increased, though the latter two predictors had
little effect on the model.

For the RNN model, the effect of these predictors was
strikingly different. In this case, cross-entropy increased
with the proportion of improbable events. Note that this
predictor played only a minor role for the Finite Context
model, which suggests PPM* may be responsible for the
model’s superior performance. For the remaining predic-
tors, cross-entropy estimates decreased when the propor-
tion of adjacent repeated tokens increased. Like the Finite
Context model, the RNN model also struggled when the
proportion of monophonic tokens increased, but benefited
from longer sequences featuring smaller vocabularies.

5. CONCLUSION

This study examined the potential for language models to
predict chords in a large-scale corpus of tonal compositions
from the common-practice period. To that end, we devel-
oped a flexible chord representation scheme that (1) made
minimal a priori assumptions about the chord typology un-
derlying tonal music, and (2) allowed us to create a much
larger corpus relative to those based on chord annotations.
Our findings demonstrate that Finite Context models out-
perform RNNs, particularly in piano datasets, which sug-
gests PPM* is responsible for the superior performance,
since it assigns a portion of the probability mass to poten-
tially rare, as-yet-unseen types. A regression analysis gen-
erally confirmed this hypothesis, with LSTM struggling to
predict the improbable types from the piano datasets.

Model Predictors β R2

BOTH+
Ntokens −2.079 .212
Ntypes 1.860 .506
Monophonic 0.233 .506
Improbable 0.076 .530

LSTM
Improbable 0.463 .318
Repetition −0.558 .375
Ntypes 0.817 .504
Monophonic 0.452 .568
Ntokens −0.554 .591

Note. Each predictor appears in the order specified by stepwise selection,
with R2 estimated at each step. However, β presents the standardized
betas estimated in the model’s final step.

Table 3. Stepwise regression analysis predicting the av-
erage Hm estimated for each composition from the best-
performing model configurations with characteristic fea-
tures of the corpus.

To our knowledge, this is the first language-modeling
study to use such a large vocabulary of chord types, though
this approach is far more common in the NLP community,
where the selected corpus can sometimes contain millions
of distinct word types. Our goal in doing so was to bridge
the gulf between the most current data-driven methods for
melodic and harmonic prediction on the one hand [24], and
applications of chord typologies for the creation of cor-
pora using expert analysts on the other [3]. Indeed, despite
recent efforts to determine the efficacy of language mod-
els for annotated corpora [11, 15], relatively little has been
done to develop unsupervised methods for the discovery of
tonal harmony in predictive contexts.

One serious limitation of the architectures examined
in this study is their unwavering commitment to the sur-
face. Rather than skipping seemingly inconsequential on-
sets, such as those containing embellishing tones or repeti-
tions, these models predict every onset in their path. As a
result, the model configurations examined here attempted
to predict tonal (pitch) content rather than tonal harmonic
progressions per se. In our view, word class models could
provide the necessary bridge between the bottom-up and
top-down approaches just described by reducing the vo-
cabulary of surface simultaneities to its most essential har-
monies [2]. Along with prediction tasks, these models
could then be adapted for sequence generation and auto-
matic harmonic analysis, and in so doing, provide converg-
ing evidence that the statistical regularities characterizing
a tonal corpus also reflect the order in which its constituent
harmonies occur.
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ABSTRACT

Generating expressive body movements of a pianist for
a given symbolic sequence of key depressions is important
for music interaction, but most existing methods cannot in-
corporate musical context information and generate move-
ments of body joints that are further away from the fingers
such as head and shoulders. This paper addresses such lim-
itations by directly training a deep neural network system
to map a MIDI note stream and additional metric structures
to a skeleton sequence of a pianist playing a keyboard in-
strument in an online fashion. Experiments show that (a)
incorporation of metric information yields in 4% smaller
error, (b) the model is capable of learning the motion be-
havior of a specific player, and (c) no significant difference
between the generated and real human movements is ob-
served by human subjects in 75% of the pieces.

1. INTRODUCTION

Music performance is a multimodal art form. Visual ex-
pression is critical for conveying musical expression and
ideas to the audience [4,5]. Furthermore, visual expression
is critical for communicating musical ideas among musi-
cians in a music ensemble, such as predicting the leader-
follower relationship in an ensemble [15].

Despite the importance of body motion in music perfor-
mance, much work in automatic music performance gen-
eration has focused on synthesizing expressive audio data
from a corresponding symbolic representation of the music
performance (e.g., a MIDI file). We believe that, however,
body motion generation is a critical component that opens
door to multiple applications. For educational purposes,
for example, replicating the visual performance character-
istics of well-known musicians can serve as demonstra-
tions for instrument beginners to learn from. Musicol-
ogists can apply this framework to analyze the role of
gesture and motion in music performance and perception.
For entertainment purposes, rendering visual performances
along with music audio enables a more immersive music
enjoyment experience as in live concerts. For automatic

c© Bochen Li, Akira Maezawa, Zhiyao Duan. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Bochen Li, Akira Maezawa, Zhiyao Duan. “Skele-
ton plays piano: online generation of pianist body movements from MIDI
performance”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.
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3.1 CNNʊʧʪС৭றສાࡰ

С৭றສʱાࡰɸʪɾʠʊƒ˦ʴˠС৭ʍˋ˚˼ƪ

˲ɪʨƒࡀՎ ∆T ʆ˦ʴˠ˿ƪ˽ Xt,n ʱࡰޟɸʪƓ˦ʴ

ˠ˿ƪ˽ʇʎƒܗߢ t∆T ʆё܊ nɫС৭ɴʫʅɣɾߢʊ

Xt,n = 1ʇʉʪʧɥʉ˙ƪˑʆɡʪƓߣʊƒҺ˧˾ƪ˲

tʊɩɣʅƒ˧˾ƪ˲ t − 2τ ɪʨ tʝʆʍ˦ʴˠ˿ƪ˽ʱ

2τ × N ʉɶƒৰʍٵѾਔʇٿߣʍٿߣ CNNʇৌٗ

ৰʍࢇʆ૾ɸɲʇʆƒ˧˾ƪ˲ tʊɩɰʪƒ50ٿߣʍС৭

றສʱமʪƓ

С৭றສʊʎƒ഻ࡀܗߢݥڇʊɩɰʪࠬΦપʱߪɶ

ʅɣʪʇ۵ɧʨʫʪƓʉɻʉʨʏƒCNNʎஞݴॲ२ʊɩ

ɣʅࡥ๗ʉࢊחʉ˧˾ƪˌʇƒɼʍౙॲΦપʱ˴˙˽ѓ

ɸʪɪʨɿƓ

3.1.1 CNNʊʧʪছۥਚறສ

ছۥਚறສʱાࡰɸʪɾʠƒ഻ࡀܗߢݥڇʆʍছ

˧ˁ˚˽ʆɸɲʇʱ۵ɧʪƓɼɲʆƒҺ˫ٿߣਚʱକۥ

˾ƪ˲ tʊɶʅƒɼʍ˧˾ƪ˲ɫࢬছࣣʍѕʱચɣ

ʅɣʪɪʱ֑ʠƒ1ʍ࣪ 1ಀʍ๗য়ƒࢬছসʍ 1

ৈʍ࣪ 2ಀʍ๗য়ƒɼʫΤҤʍ࣪ʎ 3ಀʍ๗য়

ɫ 1 ʇʉʩƒɼʫΤҤɫ 0 ʇʉʪʧɥʉȥٿߣʍ˫ˁ˚

˽ ct ʱࡰޟɸʪƓߣʊƒҺ˧˾ƪ˲ tʊɩɣʅƒ˧˾ƪ˲

t − 2τ ɪʨ tʝʆʍ˫ˁ˚˽ʱୋʠɾʡʍʱ 2τ × ʍٿߣ3

ٿߣѾਔʇٵʉɶƒCNNʇৌٗৰʱؼʪɲʇʆƒ˧

˾ƪ˲ tʊɩɰʪƒ10ٿߣʍছۥਚறສʱமʪƓ

3.2 LSTMʊʧʪܤҾஞݴॲ२

ਚறສʱۥʍॲ२ʍɾʠƒС৭றສʇছݴҾஞܤ

௬ອʇɶɾػߢ໑˴˙˽ʱ۵ɧʪƓஞݴʊɩɣʅʎܤҾΦ

પʊɩɰʪߢԨ߶ࣣʆʍໞ१ɫࡥ๗ʆɡʪɾʠƒɲʫʨ

ʍறສʱ௬ອʇɶɾ 2ৰʍ LSTMʱۥયɸʪƓLSTM

ʍࡰອ˫ˁ˚˽ʱৌٗৰʊ฿ɧʪƒ˧˾ƪ˲ tʊɩɰʪ

Ԫছ kʍ݈ೀ dʍ२ഒ yt,k,d ʱமʪƓ

ɲʍʧɥʊҺ˧˾ƪ˲ʊɩɣʅƒ૫ɴ 2τ ʍ˦ʴˠ˿ƪ

˽ x֊ʒছ࣮൙ cɪʨƒԪছ݈ೀ y ʱࡰອɸʪ˟˕˚

́ƪˁʱƏ y(x, c|θ)ʇɸƓɲɲʆƒθʎ˟˕˚́ƪˁʍ

ˣ˻˳ƪˑʆɡʪƓ
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ऺ 1 චࠬʍҩ๗Ɠ⾁ಁС৭ʍз⾁࣮൙ػߢ໑ɪʨƒܤҾΦપʍߢ

໑ʱॲ२ɸʪƓػ

˴˙˽ʱӌࡌɸʪɲʇʆƒ௰ίʍС৭ࠖʊɩɰʪஞݴʍற

१ʱƒ௰ίʍԪছʊɶʅ౩ϿɴɺʪɲʇɫʆɬʪƓʝɾƒ

ছۥਚʇɣʂɾࠬϷஞʊʎߪʊ౩Ͽɴʫʉɣ๗য়

ʇƒз⾁࣮൙ʇɣʂɾࠬϷஞʊ౩Ͽɴʫʪ๗য়ʱɸ

ʪɲʇɫњఉʊʉʪƓ

2. Ԫໞٰ֖

ʍ໑ॲ२ʎƒࠬػݴҾ࣮൙ʍஞܤƒС৭ʊɸʪ࡞

݈ೀ࣮൙ʱॣตʇɶɾօϷஞӌฆʇɶʅଜ߲ѓɴʫʅ

ɣʪƓօϷஞӌʊ଼ঔʉॣตʱঙɰʪɲʇʆƒ߭োʉஞݴ

ʱॲ२ɶɾʩ [4]ƒˣƪˏ˜˻ʶˌɴʫɾஞݴʱॲ२ʆɬ

ʪ [5]ƓɶɪɶƒօϷஞӌʴ˩˿ƪ˓ʊʎ 3ʃʍɬʉѳ

ɫɡʪƓਫ਼φʊƒறଜʍڎऩʊɸʪஞݴʍற१ʎƒॣ

ตʍঙكʣࠬஞʍˣ˻˳ƪˑ˓˷ƪ˝̅˂ʉʈʊʧʩڇࠄ

ɴʫʅɣɾɾʠƒறଜʍڎऩʍஞݴʱӁமɸʪɲʇɫܪ

ʆɡʪɲʇƓਫ਼ʊƒॲ२ɴʫʪஞݴʎٴɪʨঢʝʆʍ

ʞʆɡʩƒசʣࣣʍإɬʉʈʎ˴˙˽ѓɴʫʅɣʉɣ

ɲʇƓਫ਼ޔʊƒࠬΦપʊʎ૰খԪؤɶʉɣƒছۥਚʇ

ɣʂɾёӎʉഞැ࣮൙ʱࠪʩ௬ʫʪɲʇɫʆɬʉɣɲ

ʇƓС৭ஞݴʇʎёӎʉഞැʊʡϾɴʫʪɾʠ [1, 2]ƒ

ɲʍʧɥʉഞැ࣮൙ʱࠪʩ௬ʫʪɲʇɫۍʝɶɣƓёӎʍ

ഞැʱகʝɧʅ଼ঔʉз⾁࣮൙ʱॲ२ɸʪฆঙଜʇɶʅ

ʎС৭࣮ೝɰɫɡʪɫ [6]ƒС৭࣮ೝɰʆʎஞݴॲ२

ʱࣛʇɶʅɣʉɪʂɾƓ

3. ࠬ

චࠬʆʎƒऩԨɫС৭ɶɾ˦ʴˠС৭ʍз⾁࣮൙ʇࢬ

ছসɪʨؼѷɶɾॐʍˋ˚˼ƪ˲ʱ௬ອʇɶƒ௬ອʊட

ՎɶɾऩԨʍܤҾ݈ೀʍˋ˚˼ƪ˲ʱφଜʍભМʱؼʅɪ

ʨࡰອɸʪƓ࡞ʍࠬϷஞʍॲ२ࠬʇʎࣆʊƒݟ

ɪʉࠬϷஞ߭ʎ˴˙˽ѓɶʉɣਜ਼ʮʩʊƒӎטʊʂ

ɾƒʝɪʉৌतʍС৭ஞݴʱॲ२ɸʪɲʇʱೀʇɸʪƓ

ʮʫ๗ʇࡥҾ݈ೀʇɶʅʎƒ˦ʴˠС৭ʊɩɣʅܤ

ʪƒசƔ࠵ƔຜٴƔຜಲƔຜࠬ࠵ʍ 8 Ԫছʍ݈ೀʱ˴

˙˽ѓɸʪƓ݈ೀʎઅφʍʴ̅˂˽ʆއϾɴʫɾ˦ʴ

ˠС৭ஞѾʊɸʪ݈ٿߣೀʇɸʪƓΤ݈گೀʶ̅

˙˕ˁˋʱ d ∈ {1, 2 = D}ʇɶƒԪছʍʶ̅˙˕ˁˋʱ
k ∈ {1, · · · , 8 = K}ʇɸʪƓ௬ອʊʎMIDIʍౙёޮɪ

ʨமʨʫʪˠƪ˚ಀʇ˫˿ˉ˘ʵʱ๑ɣʪƓஞݴʍۡओ

ʎφଜʍࡀՎ∆T ʆۼʮʫƒτ ˧˾ƪ˲ʍભМɫॲɷʪʡ

ʍʇɸʪƓʉɻʉʨʏС৭ʆʎಡஞݴɫʝʫʪɾʠƒ

з⾁࣮൙ʱᳪʂʅஞݴʱॲ२ɸʪ๗ɫɡʪɾʠɿƓ

චࠬʆʎƒࢊחʉС৭࣮൙ɪʨС৭ʱறೝɰʪʧ

ɥʉକٿߣ˙ƪˑƸǄС৭றສǅʇڐʕƹʇƒছۥਚʱ

๗ตɶɾʧɥʉକٿߣ˙ƪˑƸǄছۥਚறສǅʇڐʕƹ

ʱાࡰɶƒɲʫʨʍறສʍػߢ໑ʊՂʄɣʅܤҾ݈ೀػ

໑ʱॲ२ɸʪƓறສʍࠬஞঙكʎܪʆɡʪɲʇʇƒ଼

ঔʉܤҾػߢ໑ʍ˴˙˽ѓɫܪʆɡʪɲʇɪʨƒऺ 2ʊ

˼˛ɸʧɥʉ˝˷ƪ˻˽˟˕˚́ƪˁʱ๑ɣʅƒ˙ƪˑߪ

˨̅ʊறાࡰʣػߢ໑˴˙˽ѓʱۼɥɲʇʱ۵ɧʪƓ

3.1 CNNʊʧʪС৭றສાࡰ

С৭றສʱાࡰɸʪɾʠʊƒ˦ʴˠС৭ʍˋ˚˼ƪ

˲ɪʨƒࡀՎ ∆T ʆ˦ʴˠ˿ƪ˽ Xt,n ʱࡰޟɸʪƓ˦ʴ

ˠ˿ƪ˽ʇʎƒܗߢ t∆T ʆё܊ nɫС৭ɴʫʅɣɾߢʊ

Xt,n = 1ʇʉʪʧɥʉ˙ƪˑʆɡʪƓߣʊƒҺ˧˾ƪ˲

tʊɩɣʅƒ˧˾ƪ˲ t − 2τ ɪʨ tʝʆʍ˦ʴˠ˿ƪ˽ʱ

2τ × N ʉɶƒৰʍٵѾਔʇٿߣʍٿߣ CNNʇৌٗ

ৰʍࢇʆ૾ɸɲʇʆƒ˧˾ƪ˲ tʊɩɰʪƒ50ٿߣʍС৭

றສʱமʪƓ

С৭றສʊʎƒ഻ࡀܗߢݥڇʊɩɰʪࠬΦપʱߪɶ

ʅɣʪʇ۵ɧʨʫʪƓʉɻʉʨʏƒCNNʎஞݴॲ२ʊɩ

ɣʅࡥ๗ʉࢊחʉ˧˾ƪˌʇƒɼʍౙॲΦપʱ˴˙˽ѓ

ɸʪɪʨɿƓ

3.1.1 CNNʊʧʪছۥਚறສ

ছۥਚறສʱાࡰɸʪɾʠƒ഻ࡀܗߢݥڇʆʍছ

˧ˁ˚˽ʆɸɲʇʱ۵ɧʪƓɼɲʆƒҺ˫ٿߣਚʱକۥ

˾ƪ˲ tʊɶʅƒɼʍ˧˾ƪ˲ɫࢬছࣣʍѕʱચɣ

ʅɣʪɪʱ֑ʠƒ1ʍ࣪ 1ಀʍ๗য়ƒࢬছসʍ 1

ৈʍ࣪ 2ಀʍ๗য়ƒɼʫΤҤʍ࣪ʎ 3ಀʍ๗য়

ɫ 1 ʇʉʩƒɼʫΤҤɫ 0 ʇʉʪʧɥʉȥٿߣʍ˫ˁ˚

˽ ct ʱࡰޟɸʪƓߣʊƒҺ˧˾ƪ˲ tʊɩɣʅƒ˧˾ƪ˲

t − 2τ ɪʨ tʝʆʍ˫ˁ˚˽ʱୋʠɾʡʍʱ 2τ × ʍٿߣ3

ٿߣѾਔʇٵʉɶƒCNNʇৌٗৰʱؼʪɲʇʆƒ˧

˾ƪ˲ tʊɩɰʪƒ10ٿߣʍছۥਚறສʱமʪƓ

3.2 LSTMʊʧʪܤҾஞݴॲ२

ਚறສʱۥʍॲ२ʍɾʠƒС৭றສʇছݴҾஞܤ

௬ອʇɶɾػߢ໑˴˙˽ʱ۵ɧʪƓஞݴʊɩɣʅʎܤҾΦ

પʊɩɰʪߢԨ߶ࣣʆʍໞ१ɫࡥ๗ʆɡʪɾʠƒɲʫʨ

ʍறສʱ௬ອʇɶɾ 2ৰʍ LSTMʱۥયɸʪƓLSTM

ʍࡰອ˫ˁ˚˽ʱৌٗৰʊ฿ɧʪƒ˧˾ƪ˲ tʊɩɰʪ

Ԫছ kʍ݈ೀ dʍ२ഒ yt,k,d ʱமʪƓ

ɲʍʧɥʊҺ˧˾ƪ˲ʊɩɣʅƒ૫ɴ 2τ ʍ˦ʴˠ˿ƪ

˽ x֊ʒছ࣮൙ cɪʨƒԪছ݈ೀ y ʱࡰອɸʪ˟˕˚

́ƪˁʱƏ y(x, c|θ)ʇɸƓɲɲʆƒθʎ˟˕˚́ƪˁʍ

ˣ˻˳ƪˑʆɡʪƓ
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ऺ 1 චࠬʍҩ๗Ɠ⾁ಁС৭ʍз⾁࣮൙ػߢ໑ɪʨƒܤҾΦપʍߢ

໑ʱॲ२ɸʪƓػ

˴˙˽ʱӌࡌɸʪɲʇʆƒ௰ίʍС৭ࠖʊɩɰʪஞݴʍற

१ʱƒ௰ίʍԪছʊɶʅ౩ϿɴɺʪɲʇɫʆɬʪƓʝɾƒ

ছۥਚʇɣʂɾࠬϷஞʊʎߪʊ౩Ͽɴʫʉɣ๗য়

ʇƒз⾁࣮൙ʇɣʂɾࠬϷஞʊ౩Ͽɴʫʪ๗য়ʱɸ

ʪɲʇɫњఉʊʉʪƓ

2. Ԫໞٰ֖

ʍ໑ॲ२ʎƒࠬػݴҾ࣮൙ʍஞܤƒС৭ʊɸʪ࡞

݈ೀ࣮൙ʱॣตʇɶɾօϷஞӌฆʇɶʅଜ߲ѓɴʫʅ

ɣʪƓօϷஞӌʊ଼ঔʉॣตʱঙɰʪɲʇʆƒ߭োʉஞݴ

ʱॲ२ɶɾʩ [4]ƒˣƪˏ˜˻ʶˌɴʫɾஞݴʱॲ२ʆɬ

ʪ [5]ƓɶɪɶƒօϷஞӌʴ˩˿ƪ˓ʊʎ 3ʃʍɬʉѳ

ɫɡʪƓਫ਼φʊƒறଜʍڎऩʊɸʪஞݴʍற१ʎƒॣ

ตʍঙكʣࠬஞʍˣ˻˳ƪˑ˓˷ƪ˝̅˂ʉʈʊʧʩڇࠄ

ɴʫʅɣɾɾʠƒறଜʍڎऩʍஞݴʱӁமɸʪɲʇɫܪ

ʆɡʪɲʇƓਫ਼ʊƒॲ२ɴʫʪஞݴʎٴɪʨঢʝʆʍ

ʞʆɡʩƒசʣࣣʍإɬʉʈʎ˴˙˽ѓɴʫʅɣʉɣ

ɲʇƓਫ਼ޔʊƒࠬΦપʊʎ૰খԪؤɶʉɣƒছۥਚʇ

ɣʂɾёӎʉഞැ࣮൙ʱࠪʩ௬ʫʪɲʇɫʆɬʉɣɲ

ʇƓС৭ஞݴʇʎёӎʉഞැʊʡϾɴʫʪɾʠ [1, 2]ƒ

ɲʍʧɥʉഞැ࣮൙ʱࠪʩ௬ʫʪɲʇɫۍʝɶɣƓёӎʍ

ഞැʱகʝɧʅ଼ঔʉз⾁࣮൙ʱॲ२ɸʪฆঙଜʇɶʅ

ʎС৭࣮ೝɰɫɡʪɫ [6]ƒС৭࣮ೝɰʆʎஞݴॲ२

ʱࣛʇɶʅɣʉɪʂɾƓ

3. ࠬ

චࠬʆʎƒऩԨɫС৭ɶɾ˦ʴˠС৭ʍз⾁࣮൙ʇࢬ

ছসɪʨؼѷɶɾॐʍˋ˚˼ƪ˲ʱ௬ອʇɶƒ௬ອʊட

ՎɶɾऩԨʍܤҾ݈ೀʍˋ˚˼ƪ˲ʱφଜʍભМʱؼʅɪ

ʨࡰອɸʪƓ࡞ʍࠬϷஞʍॲ२ࠬʇʎࣆʊƒݟ

ɪʉࠬϷஞ߭ʎ˴˙˽ѓɶʉɣਜ਼ʮʩʊƒӎטʊʂ

ɾƒʝɪʉৌतʍС৭ஞݴʱॲ२ɸʪɲʇʱೀʇɸʪƓ

ʮʫ๗ʇࡥҾ݈ೀʇɶʅʎƒ˦ʴˠС৭ʊɩɣʅܤ

ʪƒசƔ࠵ƔຜٴƔຜಲƔຜࠬ࠵ʍ 8 Ԫছʍ݈ೀʱ˴

˙˽ѓɸʪƓ݈ೀʎઅφʍʴ̅˂˽ʆއϾɴʫɾ˦ʴ

ˠС৭ஞѾʊɸʪ݈ٿߣೀʇɸʪƓΤ݈گೀʶ̅

˙˕ˁˋʱ d ∈ {1, 2 = D}ʇɶƒԪছʍʶ̅˙˕ˁˋʱ
k ∈ {1, · · · , 8 = K}ʇɸʪƓ௬ອʊʎMIDIʍౙёޮɪ

ʨமʨʫʪˠƪ˚ಀʇ˫˿ˉ˘ʵʱ๑ɣʪƓஞݴʍۡओ

ʎφଜʍࡀՎ∆T ʆۼʮʫƒτ ˧˾ƪ˲ʍભМɫॲɷʪʡ

ʍʇɸʪƓʉɻʉʨʏС৭ʆʎಡஞݴɫʝʫʪɾʠƒ

з⾁࣮൙ʱᳪʂʅஞݴʱॲ२ɸʪ๗ɫɡʪɾʠɿƓ

චࠬʆʎƒࢊחʉС৭࣮൙ɪʨС৭ʱறೝɰʪʧ

ɥʉକٿߣ˙ƪˑƸǄС৭றສǅʇڐʕƹʇƒছۥਚʱ

๗ตɶɾʧɥʉକٿߣ˙ƪˑƸǄছۥਚறສǅʇڐʕƹ

ʱાࡰɶƒɲʫʨʍறສʍػߢ໑ʊՂʄɣʅܤҾ݈ೀػ

໑ʱॲ२ɸʪƓறສʍࠬஞঙكʎܪʆɡʪɲʇʇƒ଼
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Figure 1. Outline of the proposed system. It generates
expressive body movements as skeleton sequences like hu-
man playing on a keyboard instrument, given the input of
MIDI note stream and metric structure information.

accompaniment systems, appropriate body movements of
machine musicians provide visual cues for human musi-
cians to coordinate with, leading to more effective human-
computer interaction in music performance settings.

For generating visual music performance, i.e., body po-
sition and motion data of a musician, it is important to
create an expressive and natural movement of the whole
body in an online fashion. To consider both expressiveness
and naturalness, the challenge is to maintain some com-
mon principles in music performance constrained by the
musical context being played. Most previous work for-
mulates it as an inverse kinematics problem with physi-
cal constraints, where the generated visual performance is
limited to hand shapes and finger positions. Unfortunately,
this kind of formulation fails to address the two challenges;
specifically, (1) it fails to generate the whole body move-
ments that are relevant to music expression, such as the
head and body tilt, and (2) it fails to take into account the
musical context constraints for generation, which do not
contribute to ergonomics.

Therefore, we propose a body movement generation
system as outlined in Figure 1. The input is a real-time
MIDI note stream and a metric structure, without any addi-
tional indication of phrase structures or expression marks.
The MIDI note stream provides the music characteristics
and the artistic interpretations, such as note occurrence,
speed, and dynamics. The metric structure indicates bar-
lines and beat positions as auxiliary information. Given
these the system can automatically generate expressive and
natural body movements from any performance data in the
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MIDI format. We design two Convolutional Neural Net-
works (CNN) to parse the two inputs and then feed the ex-
tracted feature representations to a Long Short-Term Mem-
ory (LSTM) network to generate proper body movements.
The generated body movements are represented as a se-
quence of positions of the upper body joints 1 . The two
complementary inputs serve to maintain a correct hand po-
sition on the keyboard while conveying musical ideas in
the upper body movements. To learn a natural movement,
we employ a two-stage training strategy, where the model
is trained to learn the joint positions first, then later trained
to also learn the body limb lengths.

2. RELATED WORK

There has been work on cross-modal generation, mostly
for speech signals tracing back to the 1990s [1], where a
person’s lips shown in video frames are warped to match
the given phoneme sequence. Given the speech audio, sim-
ilar work focuses on synthesizing photo-realistic lip move-
ments [14], or landmarks of the whole face [6]. Some other
work focuses on the generation of dancers’ body move-
ments [9, 12] and behaviors of animated actors [11].

Similar problem settings for music performances have
been rarely studied. When the visual modality is available,
the system proposed in [8] explores the correlation be-
tween the MIDI score and visual actions, and is able to tar-
get the specific player in an ensemble for any given track.
Purely from the audio modality, Chen et al. [3] propose to
generate images of different instrumentalists in response to
different timbres using cross-modal Generative Adversar-
ial Networks (GAN). Regarding the generation of videos,
related work generates hand and finger movements of a
keyboard player from an MIDI input [17] through inverse
kinematics with appropriate constraints. All of the above-
mentioned works, however, do not model musicians’ cre-
ative body behavior in expressive music performances.

Given the original MIDI score, Widmer et al. [16]
propose to predict three expressive dimensions (timing,
dynamics, and articulations) on each note event using a
Bayesian model trained on a corpus of human interpreta-
tions of piano performances. It further gives a comprehen-
sive analysis of computer’s creative ability in generating
expressive music performances, and proves that certain as-
pects of personal styles are identifiable and even learnable
from MIDI performances. Regarding to the expressive per-
formance generation in visual modality, Shlizerman et al.
[13] propose to generate expressive body skeleton move-
ments and adapt them into textured characters for pianists
and violinists. Different from our proposed work, they
take the input of audio waveforms rather than MIDI perfor-
mances. We argue that MIDI data is a more scalable for-
mat to carry context information, regardless of recording
conditions and piano acoustic characteristics. And most of
piano pieces have the sheet music in MIDI format, which
can be aligned with a waveform recording.

1 We do not generate lower body movements as they are often paid less
attention by the audience.
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Figure 2. The proposed network structure.

3. METHOD

The goal of our method is to generate a time sequence of
body joint coordinates, given a live data stream of note
events from the performer’s actions on the keyboard (MIDI
note stream), and synchronized metric information. We
seek to create the motion at 30 frames-per-second (FPS),
a reasonable frame-rate to ensure a perceptually smooth
motion. In this section, we introduce the technical details
of the proposed method, including the network design and
training conditions. We first use two CNN structures to
parse the raw input of the MIDI note stream and the metric
structure, and feed the extracted feature representations to
an LSTM network to generate the body movements, as a
sequence of upper-body joint coordinates forming a skele-
ton. The network structure is shown in Figure 2.

3.1 Feature Extraction by CNN

In contrast to traditional methods, our goal is to model ex-
pressive body movements that are associated with the key-
board performance. In this sense, the system should be
aware of the general phrases and the metric structure in
addition to each individual note event. Instead of design-
ing hand-crafted features, we use CNNs to extract features
from the raw input of the MIDI note stream and the metric
structure, respectively.

3.1.1 MIDI Note Stream

We convert the MIDI note stream into a series of two-
dimensional representations known as the piano-roll ma-
trix, and for each of them extract a feature vector φx as the
piano-roll feature.

To prepare the piano roll, the MIDI note stream input is
sampled at 30 frames-per-second (FPS) to match the target
frame rate. This quantizes the time resolution into the unit
of 33 ms, as a video frame. Then for each time frame t
we define a binary piano-roll matrix X ∈ R128×2τ , where
element (m,n) is 1 if there is a key depression action at
pitch m (in MIDI note number) and frame t − τ + n − 1,
and 0 otherwise. We set τ = 30. The key depression tim-
ing is quantized to the closest unit boundary. Note that the
sliding window covers both past τ frames and future τ − 1
frames, and the note onset interval in X captures enough
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Figure 3. The CNN structures and parameters for feature
extraction from the (a) MIDI note stream and (b) metric
structure information.

information for motion generation to “schedule” its tim-
ing. Looking into the future is necessary for the generation
of proper body movements, which is also true for human
musicians: to express natural and expressive body move-
ments, a human musician should either look ahead on the
sheet music, or be acquainted with it beforehand. Later in
Section 3.2 we will introduce in which cases we can avoid
the potential delays in real-time applications.

We then use a CNN to extract features from the binary
piano-roll matrix X, as CNNs are capable of capturing lo-
cal context information. The design of our CNN struc-
ture is illustrated in Figure 3.a. The input is the piano-
roll matrix X and the output is a 50-d feature vector φx as
the piano-roll feature. There are two convolutional layers
followed by max-pooling layers, and we use leaky recti-
fied linear units (ReLU) for activations. The kernel spans
5 semitones and 5 time steps, assuming that the whole
body movement is not sensitive to detailed note occur-
rence. Overall, it is thought that in addition to generating
expressive body movements, the MIDI note stream con-
strains the hand positions on the keyboard.

3.1.2 Metric Structure

Since the body movements are likely to correlate with the
musical beats, we also input the metric structure to the pro-
posed system to obtain another feature vector. This metric
structure indexes beats within each measure, which is not
encoded in the MIDI note stream. The metric structure can
be obtained by aligning the live MIDI note stream with
the corresponding symbolic music score with explicitly-
annotated beat indices and downbeat positions.

Similar to the MIDI note stream feature, we sample
them with the same FPS and window length, and, at each
frame t, define the metric information as a binary metric
matrix C ∈ RM×2τ , with M = 3. Here, element (m,n)
is a one-hot encoding of the metric information at frame
t − τ + n − 1, where the three rows correspond to down-
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Figure 4. The LSTM network structure for body move-
ment generation.

beats, pick-up beats, and other positions, respectively. We
then build another CNN to parse the metric matrix C and
obtain a 10-d output vector φc as the metric feature, as il-
lustrated in Figure 3.b.

3.2 Skeleton Movement Generation by LSTM

To generate the skeleton sequence, we apply the LSTM
network, which is capable of preserving the temporal co-
herence of the output skeleton sequence while learning
the pose characteristics associated with the MIDI input.
The input to the LSTM is a concatenation of the piano-
roll feature φx and the metric feature φc, and the out-
put is the normalized coordinates of the body joints y.
Since musical expression of a human pianist is mainly re-
flected through upper body movements, we model the x-
and y- visual coordinates of K joints in the upper body as
y = 〈y1, y2, · · · , y2K〉, where K is 8 in this work, corre-
sponding to nose, neck, both shoulders, both elbows, and
both wrists. The first K indices denote the x-coordinates
and the remaining denote the y-coordinates. Note that
all the coordinate data in y, for each piece, are shifted
such that the average centroid is at the origin, and scaled
isotropically such that the average variance along x- and
y-axis sums to 1. The network structure is illustrated in
Figure 4. It has two LSTM layers, and the output layer
is fully-connected to get the 16-d vector approximating y
for the current frame. The output skeleton coordinates are
temporally smoothed using a 5-frame moving window. We
denote the predicted body joint coordinates, given X, C
and network parameters θ, as ŷ(X,C|θ).

Since the LSTM is unidirectional, the system is capable
of generating motion data in an online manner, with a la-
tency of 30 frames (i.e., 1 second). However, feeding the
pre-existing reference music score (after aligned to the live
MIDI note stream online) to the system enables an antic-
ipation mechanism like human musicians, which makes it
applicable in real-time scenarios without the delay.

3.3 Training Condition

To train the model, we minimize, over θ, the sum of a loss
function J(y,C,X, θ) evaluated over the entire training
dataset. The loss function expresses a measure of discrep-
ancy between the predicted body joint coordinates ŷ and
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Figure 5. The two constraints applied during training.

the ground-truth coordinates y.
We use different loss functions during the course of

training. In the first 30 epochs, we simply minimize the
Manhattan distance between the estimated and the ground-
truth body joint coordinates with weight decay:

J(y,C,X, θ) =
∑
k

|ŷk(X,C|θ)− yk|+ β‖θ‖2, (1)

where k is the index for the body joints and β = 10−8 is a
weight parameter. We call this kind of loss the body joint
constraint (see Figure 5.a). After 30 training epochs, we
add another loss to ensures that not only the coordinates are
correct but also consistent with the expected limb lengths:

J(y,C,X, θ) =
∑
k

|ŷk(X,C|θ)− yk|

+
∑

(i,j)∈E

|ẑij(X,C|θ)− zij |+ β‖θ‖2, (2)

where zij = (yi−yj)+(yK+i−yK+j) is the displacement
between two joints i and j on a limb (e.g., elbow-wrist),
E = {(i, j)} is the set of possible limb connections (i, j)
of a human body. We call the added term the body limb
constraint (see Figure 5.b). This is similar to the geometric
constraint as described in [10]. There are 7 limb connec-
tions in total, given the 8 upper body joints. We then train
another 120 epochs using the limb constraint. We use the
Adam [7] optimizer, which is a stochastic gradient descent
method, to minimize the loss function.

Here we propose to combine the two kinds of con-
straints in our training epochs. The body limb constraints
are important because the loss of joint positions are min-
imized independently of each other in the body joint con-
straint. Figure 6 demonstrates several generated skeleton
samples on the normalized plane, where the limb con-
straint is not applied in the following 120 epochs. Limb
constraint adds dependencies between the loss among dif-
ferent joints, encouraging the model to learn a natural
movement that considers the consistency of limb lengths.
We only use this constraint at later epochs, however, be-
cause the body joint constraint is an easier optimization
problem; if we optimize with body limb constraints from
the very beginning, the training sometimes fails and re-
mains a state of what seems a local optima, perhaps be-
cause the loss function wants to minimize the body joint
errors but the gradient must pass through regions where the
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Figure 6. Several generated unnatural skeleton samples
without the limb constraint.

limb constraint increases. In this case, the arrangements of
the body joints tend to be arbitrary and not ergonomically
reasonable.

4. EXPERIMENTS

We perform objective evaluations to measure the accuracy
of the generated movements, and subjective evaluations to
rate their expressiveness and naturalness.

4.1 Dataset

As there is no existing dataset for the proposed task, we
recorded a new audio-visual piano performance dataset
with synchronized MIDI stream information on a MIDI
keyboard. The dataset contains a total of 74 performance
recordings (3 hours and 8 minutes) of 16 different tracks
(8 piano duets) played by two pianists, one male and one
female. The two players were respectively assigned the
primo and the secondo parts of 8 piano duets. Each player
then played the 8 tracks multiple times (1-7 times) to ren-
der different expressive styles, e.g., normal, exaggerated,
etc. At each time the primo and secondo are recorded to-
gether to ensure enough visual expressiveness on the play-
ers for interactions. The key depression information (pitch
, timing, and velocity) is automatically encoded into the
MIDI format by the MIDI keyboard. For each record-
ing, the quantized beat number and the downbeat positions
were annotated by semi-automatically aligning the MIDI
stream and the corresponding MIDI score data. The cam-
era was placed on the left-front side of the player and the
perspective was fixed throughout all of the performances.
The video frame rate was 30 FPS. The 2D skeleton coordi-
nates were extracted from the video using a method based
on OpenPose [2]. The video stream and the MIDI stream
of each recording were manually time-shifted to align with
the key depression actions. Note that we extract the 2D
body skeleton data purely from computer vision techniques
instead of capturing 3D data using motion sensors, which
makes it possible to use the massive online video record-
ings of great pianists (e.g., Lang Lang) to train the system.

4.2 Objective Evaluations

We conduct two experiments to assess our method. Since
there is no similar previous work to model the players’
whole body pose from MIDI input, we set different experi-
mental conditions for the proposed model as baselines and
compare them. First, we investigate the effect of incor-
porating the metric structure information, which is likely
to be relevant for expressive motion generation but does
not directly affect the players’ key depression actions on
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the keyboard. Second, we compare the performance of the
network when training on a specific player versus training
on multiple players. To numerically evaluate the quality of
the system output, we use the mean absolute error (MAE)
between the generated and the ground-truth skeleton coor-
dinates at each frame.

4.2.1 Effectiveness of the Metric Structure

The system takes as the inputs the MIDI note stream and
the metric information. Here we investigate if the latter
one can help in the motion generation process, by setting a
baseline system that takes the MIDI note stream as the in-
put, ignoring the metric structure by fixing φc to 0. We
evaluate the MAE of the two models, using piece-wise
leave-one-out testing over all the 16 tracks.

Results show that adding the metric structure informa-
tion into the network can decrease the MAE from 0.180
to 0.173. The unit is in the scale of the normalized plane,
where the length of an arm-wrist limb is around 1.2 (see
Figure 6). The result is significant because it not only
demonstrates that our proposed method can effectively
model the metric structure, but also that features that are
not indirectly related to physical placement of the hand
does have an effect on expressive body movements. Al-
though our dataset for evaluation is small, we argue that
overfit should not exist since the pieces are quite different.

On the other hand, we also observe that even without the
metric structure information, the system output is still rea-
sonable by learning the music context from the MIDI note
stream. This setting broadens the use scenarios of the pro-
posed system, such as when the MIDI note stream is from
an improvised performance without corresponding metric
structure information. Nevertheless, including a reference
music score is beneficial for the system not only because
it improves the MAE measure, but it also enables an antic-
ipation mechanism to favor real-time generation without
potential delays.

4.2.2 Training on A Specific Player

In this experiment, we evaluate the model’s performance
when fixing the same player for training and testing. Now
the experiments are carried out on the two players sepa-
rately. We first divide the dataset into two subsets, each
obtaining the 8 different tracks performed by the two play-
ers respectively. On each subset we use the leave-one-out
testing for the 8 tracks and calculate the MAE between the
generated and ground-truth coordinates of body skeletons.
The average of the MAE from the two subsets is 0.170.
Comparing the MAE of 0.173 in Section 4.2.1 and the
MAE of 0.170 in this experiment, we see that training on
a generic model only on a target player is slightly better
than training over different players. This slight improve-
ment may not be statistically significant. The marginal dif-
ference also suggests that even when trained on multiple
players as in Section 4.2.1, the system is capable of re-
membering the motion characteristic of each player.

Figure 7. One sample frame of the assembled video for
subjective evaluation.

4.3 Subjective Evaluation

Although the objective evaluation using MAE reflects
the system’s capability of reproducing the players’ body
movements on a new MIDI performance stream, this mea-
sure is still limited. There can be multiple creative ways
on body motions to expressively interpret the same music,
and the ground-truth body motion is just one possibility.
In addition, from MAE we cannot infer the naturalness of
the generated body movements, which is even more impor-
tant than simply learning to reproduce the motion. In this
section, we conduct subjective tests to evaluate the qual-
ity of the generated body movements, addressing both ex-
pressiveness and naturalness. The strategy is to mix the
ground-truth body movements with the generated ones and
let the testers to tell if each sample is real (ground-truth
from human) or fake (generated).

4.3.1 Arrangements

In the subjective evaluation, we mix the two players to-
gether and cross-validate on the 16 tracks, as in Sec-
tion 4.2.1. Here we do not add the metric structure input
because positive feedbacks on the generation results purely
from the keyboard actions will promise broader use cases
of the system, i.e., improvised performance without a ref-
erence music score.

From the generated skeleton coordinates, we recover
them to the original pixel positions on real video frames us-
ing the same scaling factor when normalizing the ground-
truth skeleton before training. Then we generate an anima-
tion showing body joints as circles and limb connections as
straight lines on the background environment image taken
by the camera from the same perspective. In the same
generated video, we also render a dynamic piano-roll that
covers a rolling 5-second segment around the current time
frame together with the synthesized audio. For a fair com-
parison, instead of using the original video recordings of
real human performances, we generate human body skele-
tons by repeating the same process using the ground-truth
skeletal data. Figure 7 shows one sample frame of the as-
sembled video as a visualization.

We arrange 16 pairs of the generated and ground-truth
skeleton motions on all the 16 tracks, and randomly crop
a 10-second excerpt from each one (excluding several
chunks containing long silence parts or page turning mo-
tions). This results in 32 video excerpts. We shuffle the 32
excerpts before showing them to subjects for evaluation.

We recruit 18 subjects from Yamaha employees, who
are in their 20’s to 50’s, all with rich experience in musical
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Figure 8. Subjective evaluation on expressiveness and nat-
uralness of the generated and human skeleton performance
videos. The tracks with significant different ratings are
marked with “*”.

acoustics or music audio signal processing. 17 subjects
have instrument performance experiences (15 on keyboard
instruments). This guarantees that most of them have a
general knowledge of how a human pianist performance
may look like based on a given MIDI stream, considering
different factors such as hand positions on the keyboard
according to pitch height, dominant motions for leading
onsets, etc. Based on expressiveness and naturalness they
rated the videos on a 5-point scale: absolutely generated
(1), probably generated (2), unsure (3), probably human
(4), and absolutely human (5).

4.3.2 Results

Figure 8 shows the average subjective ratings as bar plots
and their standard deviations as whiskers. A Wilcoxon
signed rank test on each piece shows that no significant
difference is found in 12 out of the 16 pairs (p = 0.05).
This suggests that for 3/4 of the observation videos, the
generated body movements achieve the same level of ex-
pressiveness and naturalness as the real human videos.

In Figure 8, the pieces with significant differences in
the subjective ratings between generated and real human
videos are marked with “*”. On the 1st piece, we observe
an especially significant difference. Further investigation
reveals that this piece is in a fast tempo (130 BPM), where
the eighth notes are alternatively played by the right and
left hand with an agile motion, as shown in Figure 9.a.
The generated performance lacks this kind of dexterity. In

Real Human Time

(a) The agile fashion in left-right hand alternative playing is not learned.

Real Human Generated

(b) The exaggerated head nodding on the leading bass note (in red mark)
is not learned.

Figure 9. The two typical failure cases.

addition, the physical body motions from the human play-
ers are distinct and exaggerated around the phrase bound-
aries, but the generated ones tend to create more conser-
vative motions. Figure 9.b gives an example, where in the
real human’s performance the head moves forward exten-
sively on the leading bass note (marked in red), whereas
the generated one does not. Another observed drawback
is the improper wrist positioning of a resting hand; a ran-
dom position is often predicted in these cases. This is be-
cause the left/right hand information is not encoded in the
MIDI file, and when only one hand is used, the system
does not know which hand to use and how to position the
other hand. Generally speaking, the generated movements
that are rated significantly lower than real human move-
ments tend to be somewhat dull, which might provide the
subjects a cue to discriminate between human and gener-
ated movements. We present all of the generated videos
online 2 .

5. CONCLUSION

In this paper, we proposed a system for generating a
skeleton sequence that corresponds to an input MIDI note
stream. Thanks to data-driven learning between the MIDI
note stream and the skeleton, the system is capable of gen-
erating natural playing motions like a human player with
no explicit constraints on the physique or fingering, reflect-
ing musical expressions, and attuning the generated motion
to a particular performer.

For future work, we will apply more music contextual
features to generate richer skeleton movements, and ex-
tend our method to the generation of 3D joint coordinates.
Generating textured characters based on these skeletons is
another future direction.

2 http://www.ece.rochester.edu/projects/air/
projects/skeletonpianist.html
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ABSTRACT

Detecting music notation symbols is the most immediate
unsolved subproblem in Optical Music Recognition for
musical manuscripts. We show that a U-Net architecture
for semantic segmentation combined with a trivial detec-
tor already establishes a high baseline for this task, and
we propose tricks that further improve detection perfor-
mance: training against convex hulls of symbol masks,
and multichannel output models that enable feature shar-
ing for semantically related symbols. The latter is help-
ful especially for clefs, which have severe impacts on the
overall OMR result. We then integrate the networks into an
OMR pipeline by applying a subsequent notation assembly
stage, establishing a new baseline result for pitch inference
in handwritten music at an f-score of 0.81. Given the au-
tomatically inferred pitches we run retrieval experiments
on handwritten scores, providing first empirical evidence
that utilizing the powerful image processing models brings
content-based search in large musical manuscript archives
within reach.

1. INTRODUCTION

Optical Music Recognition (OMR), the field of automat-
ically reading music notation from images, has long held
the significant promise for music information retrieval of
making a great diversity of music available for further
processing. More compositions have probably been writ-
ten than recorded, and more have remained in manuscript
form rather than being typeset; this is not restricted to the
tens of thousands of manuscripts from before the age of
recordings, but holds also for contemporary music, where
many manuscripts have been left unperformed for rea-
sons unrelated to their musical quality. Making the con-
tent of such manuscript collections accessible digitally
and searchable is one of the long-held promises of OMR,
and at the same time OMR is reported to be the bottle-
neck there [17]. On printed music or simpler early mu-
sic notation, this has been attempted by the PROBADO

c© Jan Hajič jr., Matthias Dorfer, Gerhard Widmer, Pavel
Pecina. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Jan Hajič jr., Matthias Dorfer, Ger-
hard Widmer, Pavel Pecina. “Towards Full-Pipeline Handwritten OMR
with Musical Symbol Detection by U-Nets”, 19th International Society
for Music Information Retrieval Conference, Paris, France, 2018.

Figure 1. OMR pipeline in this work. Top-down: (1) input
score, (3) symbol detection output, (4) notation assembly
output. Obtaining MIDI from output of notation assem-
bly stage (for evaluating pitch accuracy and retrieval per-
formance) is then deterministic. Our work focuses on the
symbol detection step (1)→ (3); notation reconstruction is
done only with a simple baseline.

[17, 28] or SIMSSA/Liber Usualis [3] projects. However,
for manuscripts, results are not forthcoming.

The usual approach to OMR is to break down the prob-
lem into a four-step pipeline: (1) preprocessing and bina-
rization, (2) staffline removal, (3) symbol detection (local-
ization and classification), and (4) notation reconstruction
[2]. Once stage (4) is done, the musical content — pitch,
duration, and onsets — can be inferred, and the score itself
can be encoded in a digital format such as MIDI, MEI 1

or MusicXML. We term OMR systems based on explicitly
modeling these stages Full-Pipeline OMR.

Binarization and staff removal have been successfully
tackled with convolutional neural networks (CNNs) [4,11],
formulated as semantic segmentation. Symbol classifica-
tion achieves good results as well [12, 13, 33]. However,
detecting the symbols on a full page remains the next ma-
jor bottleneck for handwritten OMR. As CNNs have not
been applied to this task yet, they are a natural choice.

Full-Pipeline OMR is not necessarily the only viable ap-
proach: recently, end-to-end OMR systems have been pro-
posed. [16, 24]. However, they have so far been limited to
short excerpts of monophonic music, and it is not clear how
to generalize their output design from MIDI equivalents to

1 http://music-encoding.org/
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lossless structured encoding such as MEI or MusicXML,
so full-pipeline approaches remain justified.

Our work mainly addresses step (3) of the pipeline, ap-
plied in the context of a baseline full-pipeline system, as
depicted in Fig. 1. We skip stage (2): we treat stafflines as
any other object, since we jointly segment and classify and
do not therefore have to remove them in order to obtain a
more reasonable pre-segmentation. We claim the follow-
ing contributions:

(1) U-Nets used for musical symbol detection. Apply-
ing fully convolutional networks, specifically the U-Net ar-
chitecture [38], for musical symbol segmentation and clas-
sification, without the need for staffline removal. We ap-
ply improvements in the training setup that help overcome
OMR-specific issues. The results in Sec. 5 show that the
improvements one expects from deep learning in computer
vision are indeed present.

(2) Full-Pipeline Handwritten OMR Baseline for
Pitch Accuracy and Retrieval. We combine our stage
(3) symbol detection results with a baseline stage (4) sys-
tem for notation assembly and pitch inference. This OMR
system already achieves promising pitch-based retrieval re-
sults on handwritten music notation; to the best of our
knowledge, its pitch inference f-score of 0.81 is the first
reported result of its kind, and it is the first published full-
pipeline OMR system to demonstrably perform a useful
task well on handwritten music.

2. RELATED WORK

U-Nets. U-Nets [38] are fully convolutional networks
shaped like an autoencoder that introduce skip-connections
between corresponding layers of the downsampling and
upsampling halves of the model (see Fig. 2). For each
pixel, they output a probability of belonging to a specific
class. U-Nets are meant for semantic segmentation, not
instance segmentation/object detection, which means that
they require an ad-hoc detector on top of the pixel-wise
output. On the other hand, this formulation avoids domain-
specific hyperparameters such as choosing R-CNN anchor
box sizes, is agnostic towards the shapes of the objects we
are looking for, and does not assume any implicit priors
on their sizes. This promises that the same hyperparameter
settings can be used for all the visually disparate classes
(the one neuralgic point being the choice of receptive field
size). Furthermore, U-Nets process the entire image in a
single shot — which is a considerable advantage, as music
notation often contains upwards of 500 symbols on a single
page. A disadvantage of U-Nets (as well as most CNNs)
is their sensitivity to the training data distribution, includ-
ing the digital imaging process. Because of the variability
of musical manuscripts, it is likely real-world applications
will require case-specific training data, and data augmen-
tation would therefore be used to mitigate this sensitivity;
fortunately, fully convolutional networks are known to re-
spond well to data augmentation over sheet music [30] as
well as over other application scenarios [9, 23]. Therefore,
we consider this choice reasonable, at the very least to es-
tablish a strong baseline for handwritten musical symbol

detection with deep learning.
Object Detection CNNs. A standard architecture for

object detection is the Regional CNN (R-CNN) family,
most notably Faster R-CNN [40] and Mask R-CNN [26]).
These networks output probabilities of an object’s pres-
ence in each one of a pre-defined sets of anchor boxes, and
make the bounding box predictions more accurate with re-
gression. In comparison, the U-Net architecture may have
an advantage in dealing with musical symbols that have
significantly varying extents, such as beams or stems, as
it does not require specifying the appropriate anchor box
sizes, and it is significantly faster, requiring only one pass
of the network (the detector then requires one connected
component search). Furthermore, Faster R-CNN does not
output pixel masks, which are useful for archival- and
musicology-oriented applications downstream of OMR,
such as handwriting-based authorship attribution. Mask
R-CNN, admittedly, does not have this limitation, but still
requires the same bounding box setup.

Another option is the YOLO architecture [25], specifi-
cally the most recent version YOLOv3 [36], which predicts
bounding boxes and confidence degrees without the need
to specify anchor boxes. A similar approach was proposed
in [22], achieveing a notehead detection f-score of 0.97,
but only with a post-filtering step.

Convolutional Networks in OMR. Convolutional net-
works have been applied in OMR to symbol classifica-
tion [33], indicating that they can in principle handle the
variability of music notation symbols, but not yet in also
finding the symbols on the page. Fully convolutional net-
works have been successfully applied to staff removal [4],
and to resolving the document to a background, staff, text,
and symbol layers [11]. However, these are semantic seg-
mentation tasks; whereas we need to make decisions about
individual symbols. The potential of U-Nets for sym-
bol detection was preliminarily demonstrated on noteheads
[22, 31], but compared to other symbol classes, noteheads
are “easy targets”, as they look different from other ele-
ments, have constant size, and appear only in one pose (as
opposed to, e.g., beams).

OMR Symbol Detection. Localizing symbols on the
page has been previously addressed with heuristics rather
than machine learning, e.g. with projections [8, 18],
Kalman Filters [14], Line Adjacency Graphs [37], or other
combinations of low-level image features [39]. On hand-
written music, due to its variability, more complex heuris-
tics such as the algorithm of [1] that consists of 14 interde-
pendent steps have been applied.

OMR for Content-Based Retrieval. The idea of us-
ing imperfect OMR for retrieval is not new, although orig-
inally OMR was attempted in the context of transcribing
individual scores. In the PROBADO project [17, 28], an
off-the-shelf OMR system was applied to printed Com-
mon Western Music Notation (CWMN) scores, allowing
retrieval and measure-level score following in a database of
1200 printed scores. The Liber Usualis project at SIMSSA
is another such project, on square plainchant notation; it
operates at a more fine-grained level that allows for ex-
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Figure 2. Baseline U-Net model architecture.

ample accurate motif retrieval [3]. However, for CWMN
manuscripts, we are not aware of similar experiments.

3. MODEL

For all experiments, we use as a basis the same fully con-
volutional network architecture [38] as shown in Figure 2.
There are three down-sampling blocks and three corre-
sponding up-sampling blocks. Each down-sampling block
consists of two convolutional layers with batch normal-
ization using the same number of filters; down-sampling
is done through 2x2 Max Pooling. After each downsiz-
ing step, we use twice the number of filters. The output
layer uses sigmoid activation; otherwise, ELU nonlinear-
ity is used. Additionally, we add element-wise-sum resid-
ual connections between symmetric layers of the encoder
and decoder part of the network.

In the rest of this section, we propose modifications for
both architecture and training strategy for symbol detection
in handwritten sheet music.

3.1 Convex Hull Segmentation Targets

Our first proposal is to use the convex hull region of indi-
vidual symbols as a target for training instead of the orig-
inal segmentation masks. Figure 3 shows an example of
the modified training targets. This simple adaptation is an
elegant way of dealing with symbols such as f-clefs or c-
clefs, which by definition consist of multiple components.
As we employ a connected components detector for recog-
nizing the symbols in our experiments in Section 4 we cir-
cumvent the need for treating these symbol classes in any
special way. This advantage also holds “pre-emptively”
for complex symbols which for example contain “holes”
and might break up into multiple components after imper-
fect automatic segmentation, or may be disconnected due
to handwriting style (e.g., flats).

3.2 Multichannel Training

Our second proposal is to train multichannel U-Nets pre-
dicting the segmentation simultaneously for multiple sym-
bol classes. This design choice has two advantages over

Figure 3. Training on convex hulls circumvents detection
problems for symbols consisting of multiple connected
components (see f-clef).

training separate detectors for each class. Firstly, at run-
time we can predict the segmentation for multiple symbols
with a single forward pass of the network. Furthermore, by
simultaneously training on multiple symbols at the same
time, we allow the model to share low-level feature maps
for a certain symbol group (i.e., noteheads, beams, flags
and stems), and on the other hand force the model to
learn upper-layer features that discriminate well between
the various symbols, which – because the capacity of the
model stays fixed, and the output layer only uses 1x1 con-
volutions – could lead to more descriptive representations
of the image. In other words, due to the strong correlations
across classes induced by music notation syntax, whatever
features are learned for one output channel will at the same
time be relevant for a different channel; the 1x1 convolu-
tion will simply weigh them differently.

However, this setup presents an optimization problem
due to imbalanced classes: both in terms of how many
foreground pixels there are (i.e. beams vs. duration dots),
and with respect to how often they occur on an “average”
page of sheet music (noteheads vs. clefs). We address the
first issue by splitting the multichannel model into groups
of symbols with roughly similar amount of foreground pix-
els across the dataset. To overcome the second issue, as the
training setup operates on randomly chosen windows of
the input image (see Sec. 4), we use oversampling: when
drawing the random window when a training batch is be-
ing built, we check whether the window contains at least
one pixel of the target class, and we retry up to five times if
there is none. If no target class pixel is found in five tries,
we concede and use the last sampled window, even though
no pixel of target class is in it. (As opposed to this over-
sampling, adjusting the weights of the output channels did
not lead to improvements.)

Furthermore, if model capacity becomes a limiting fac-
tor, we can opt out of sharing the up-sampling part of the
model and keep a separate “decoder” for each output chan-
nel. This is a compromise that retains some of the speed,
space and feature-sharing advantages, but at the same time
does not so severely restrict the capacity of the model.

4. EXPERIMENTAL SETUP

We restrict ourselves to the subset of symbol classes that
are necessary for pitch inference and basic duration infer-
ence (we currently do not detect tuplets – detecting hand-
written digits is straightforward enough, the difficulty with
tuplets lies in the notation assembly stage). Already this
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selection contains symbols with heterogeneous appear-
ance: constant-size, trivial shape (specifically, noteheads,
ledger lines, whole and half rests, duration dots), constant-
size, non-trivial shape (clefs, flags, accidentals, quarter-,
8th- and 16-th rests), and symbols that have simple shapes,
but varying extent (stems, beams, barlines). 2 We assume
binary inputs, not least because large-scale OMR symbol
detection ground truth is only available for binary images;
however, binarization can be done with the same model.

Dataset. We use the MUSCIMA++ dataset, version 1.0
[20]. This is the only publicly available dataset of hand-
written music notation with ground truth for symbol de-
tection at a scale that is feasible for machine learning.
The dataset contains over 90 000 manually annotated sym-
bols with pixel masks. We use the designated writer-
independent test set from MUSCIMA++.

Training Details. We set the network input size to a
256× 512 window and randomly sample crops of this size
as training samples. We train all our models using the
Adam update rule with an initial learning rate of 0.001 [27]
and a batch size of 2 (with the 256 × 512 input window,
this is equivalent to batches of a single 512 × 512 image
of [38]). After there is no update on the validation loss for
25 epochs, we divide the learning rate by 5 and continue
training from the previously best model. This procedure is
repeated two times.

5. RESULTS

As there is no work to which we can compare directly, we
first gather at least related OMR solutions, in order to pro-
vide whatever context we can for the reader. Then, we
report results for symbol detection, and evaluate it in con-
text of downstream tasks: pitch inference in a baseline full-
pipeline OMR scenario, as well as first experiments apply-
ing our models in retrieval settings.

5.1 Comparison to Existing Systems

Comparison to existing systems is hard, because there are
few symbol detection results reported, and even fewer full-
pipeline OMR results. Direct comparison is not possible,
as the MUSCIMA++ dataset we use has been released only
very recently, and previous OMR pipelines (see Sec. 2)
generally do not have publicly available code. Further-
more, earlier literature on OMR rarely provides evalua-
tion scores, most of previous work on OMR has (sensi-
bly) focused on printed music rather than manuscripts, and
there are few established evaluation practices in OMR any-
way [15, 21]. We do our best to at least gather literature
where some results on related tasks are given, in order to
provide context for our work.

Pitch accuracy, printed music. In printed music, re-
sults for pitch accuracy have been consistently very good,
when reported. Already in [32], the GAMUT system is
said to correctly recover 96 % of pitches in printed music.

2 There are also notation symbols that can have non-trivial shape and
varying extent, such as slurs or hairpins; however, these are not required
for neither pitch, nor duration inference, and we therefore leave them out.

The complex fuzzy system of [39] achieves near-perfect
pitch accuracy (98.7 %). Similarly, the CANTOR system
evaluated in [5] achieves 98 % semantic accuracy — this
time, including polyphonic music. On printed square nota-
tion, [19] achieves 95 % pitch accuracy. A combination of
systems in [42] achieves over 85 % joint pitch and duration
accuracy.

Symbol detection, handwritten music. The most ex-
tensive evaluation of symbol detection in handwritten mu-
sic has been carried out in [1]. Using a complex combi-
nation of robust heuristics for segmentation and machine
learning for classification, they achieve an average sym-
bol detection f-score of 0.75. These results seem ripe to
be surpassed with CNNs: in [31], 98 % handwritten note-
head detection accuracy has been reported. For staff detec-
tion, a similar architecture has been used in [4] with over
97 % pixel-wise f-score, and similar results are available
with a ConvNet pixel classification approach for seman-
tic segmentation into background, text, staffs, and notation
symbols [11]. At the same time, [33] reports symbol clas-
sification (without localization) accuracy over 98 %, indi-
cating that CNNs are well capable of generalizing over the
variety of handwritten musical symbols. However, we are
not aware of pitch accuracy results reported on handwritten
CWMN scores.

OMR for Retrieval. For retrieval, it is even harder to
find comparable results, since evaluation metrics for re-
trieval depend on the test collection, and there is no such
established collection for OMR. Using the open-source
Audiveris 3 OMR software, [7] matches 9803 printed
monophonic fragments from A Dictionary of Musical
Themes to their electronic counterparts, using a compara-
ble DTW alignment that also (mostly) ignores note dura-
tion, reporting a top-1 accuracy of 0.44; however, the col-
lection of themes is a difficult one, since it often contains
very similar melodies.

Figure 4. Results for binary segmentation models for indi-
vidual symbols. Blue: baseline training with mask output;
green: training with convex hulls.

5.2 Symbol Detection

We report detection f-scores for the chosen subset of sym-
bols. Aggregating the results is not too meaningful: some
rare symbols have an outsized impact on downstream pro-
cessing (clefs). In Fig. 4, we show the baseline results and
compare them to the convex hull setup. Training against

3 https://github.com/audiveris/audiveris
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Method c-clef g-clef f-clef

single channel – no convex hull 0.48 0.58 0.52
single channel 0.70 0.83 0.95

multi-channel – all 0.16 0.37 0.49
multi-decoder – clefs, oversampling 0.77 0.96 0.93

Table 1. Comparison of detection performance (F-score)
of clefs using different segmentation strategies.

convex hulls of objects does address the issue of detecting
otherwise disjoint symbols using connected components;
otherwise it achieves mixed results.

Compressing the detector with multichannel training
without a loss of performance was possible on corre-
lated sub-groups of symbols that bypass the class imbal-
ance problem, such as training together noteheads, stems,
beams, and flags; the results worsened when all classes
were trained at once. The clefs were most affected by all
the changes to the model described in Section 3: improved
by convex hull training, neglected when the multichannel
model was trained to predict all symbol classes at once, and
then drastically improved again when trained as a group
with separate decoders and the oversampling strategy. Ta-
ble 1 summarizes the results for clef detection. Clefs are
critical for useful OMR, since they affect the pitch inferred
from all subsequent noteheads.

6. APPLICATION SCENARIO: FULL-PIPELINE
HANDWRITTEN OMR IN RETRIEVAL

We now explore the utility of the symbol detectors within
an OMR pipeline. It is known in OMR that low-level er-
rors can lead to effects on recognition of wildly different
magnitudes [15, 35]; in the presence of detection errors,
one should therefore see how severely they impact down-
stream applications. We choose a retrieval scenario as the
application context for evaluating symbol detection. As
opposed to applications where we produce the transcribed
score [15, 21, 41], this is straightforward to evaluate.

To verify that our symbol detection approach can yield
useful results in an application context, we add a simple
notation assembly and pitch inference system on top of the
symbol detection results. We choose retrieval as the most
feasible application of handwritten OMR: there are music
manuscript archives with thousands of scores that contain
manual copies, and matching them cannot be done without
their musical content.

For inferring pitch, we must re-introduce stafflines.
However, we can safely assume they have been detected
correctly: both [4] and our replication of their experiments
with stafflines on this dataset exhibit extremely few er-
rors, and these can be filtered away with a trivial projection
heuristic such as that of [18].

6.1 Notation Assembly and Music Inference

Symbol detection alone is not sufficient for decoding mu-
sical information: meaningful units are configurations of

symbols rather than the symbols themselves [6, 20]. The
notation assembly stage is the step where these configura-
tions are recovered (step (4) in the OMR pipeline: see 1).
In the MUSCIMA++ dataset, they are represented as an
oriented graph; once this graph is recovered, one can per-
form deterministic pitch inference. 4

Symbol detection outputs vertices of the notation graph;
we therefore need to recover graph edges. Replicating the
baseline established in [20], we train a binary classifier
over ordered symbol pairs. While this classifier achieves
an f-score of 0.92, it makes embarrassing errors: noteheads
connected to irrelevant ledger lines in chords, to beams that
belong to an entirely different staff, and sometimes to mul-
tiple adjacent stems. We discard these obviously wrong
edges using straightforward heuristics. We also discard de-
tected objects that are entirely contained within another de-
tected object. The last step is recovering precedence edges:
we just order rest and noteheads on each staff left-to-right;
noteheads connected to the same stem are considered si-
multaneous, but actual polyphony is ignored.

Once the pitches, durations, and onsets are inferred for
the detected noteheads, we then export them as a MIDI file.
MIDI is appropriate for retrieval, since it presents straight-
forward ways of computing similarity. This file then can
serve as both the query and the database key for the given
score. To compute the similarity of two MIDI files, we
align them using Dynamic Time Warping [29] (DTW) over
sequences of time frames that contain onsets. The DTW
score function for a pair of frames is 1 minus the Dice coef-
ficient of the onset pitch sets in the frames. Then, we match
individual pitches within the frame sets that are aligned by
DTW and measure the f-score of predicted pitches. DTW
is used as the similarity function in [7]; however, we do not
reduce polyphonic music to its upper pitch envelope.

6.2 Results

We now report how the full-pipeline baseline on top of the
object detection U-Nets predicts pitches, and how it can be
used to retrieve related scores.

Pitch accuracy. We use the DTW alignment to directly
evaluate pitch classification. 5 Performing DTW on the
inference outputs for page images, we achieve a (micro-
)average F-score of only 0.59. Rather than due to errors in
symbol detection, this is mostly due to the polyphony de-
synchronization effects of bad duration inference; indeed,
on (mostly) monophonic music, pitch F-score jumps to
0.78. In order to bypass de-synchronization problems that
in fact obscure correct pitch recognition, we split the scores
into individual staffs (118 in total) and evaluate pitch accu-
racy on these. The results for the test set staffs are reported
in Fig. 5. On average, we obtain pitch F-score 0.81, with
0.83 for monophonic staffs (and ignoring clef errors, 0.88).

Finally, we evaluate our detector in the context of a
retrieval application. We run experiments both on gold-

4 A proof-of-concept implementation: https://github.com/
hajicj/muscima.

5 We could evaluate duration classification as well, but due to errors by
the notation assembly baseline, this is too low to be worth reporting.
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Figure 5. Pitch F-score after DTW alignments on the 118
individual staffs in the writer-independent test set, ordered
by result. Monophonic staffs (darker green) predictably
score better than staffs with multiple voices or chords (yel-
low). We found no clear relationship between pitch accu-
racy and handwriting style.

standard MIDI retrieval and duplicate score retrieval, us-
ing the predicted scores; since the similarity metric is pitch
f-score, all retrieval experiments work in both directions.
Experiments with ground truth MIDI correspond to cross-
modal retrieval, where the modalities are a symbolic rep-
resentation, and the score projected into the MIDI modal-
ity using the OMR system; queries with predictions corre-
spond to a simpler scenario where we are querying scores
with scores, using the OMR system as a hash function.

Retrieving gold MIDI with scores. Given how small
the test set is, retrieving the correct ground truth page —
and even staff — should be near-perfect. For staff-to-staff
retrieval, Prec@1 is 0.93; for page-to-page and staff-to-
page retrieval, this is 1.0, indicating that with our U-Net
object detection stage, retrieving gold-standard MIDI us-
ing handwritten scores (and vice versa, as the similarity
metric is symmetrical) is feasible.

Retrieving scores with scores. The next scenario is
to run retrieval not against the ground truth, but against
MIDIs predicted from different versions of the test set
scores. While errors related to differences in handwriting
get compounded, the rest of the pipeline imposes consis-
tent limitations on both the database and query recognition
outputs and may make the same errors on both query and
database scores, making the task actually easier. There-
fore, we select a confuse-retrieval subset of 7 scores from
MUSCIMA++ that are as similar to each other as possi-
ble: mostly monophonic, and with 0 – 2 sharps. Some of
these pieces are musically closely related. For these exper-
iments, our database consists of recognition outputs com-
puted from all confuse-retrieval pages in the training sub-
set of MUSCIMA++. Queries are taken from predictions
on the writer-independent test set: we use both the 7 entire
pages and individual staffs (34 of those).

The system achieves perfect Prec@1 when pages are
used as queries, and 0.94 when using staff queries (2 staff
queries did not return the right piece as the top result). The
retrieval scores are plotted in Fig. 6. We checked this score
also with ground truth queries; this system made only 2 er-
rors as well, but in different queries, which we take as cir-
cumstantial evidence that the ground truth MIDI has differ-
ent issues when matching against a predicted MIDI than a
different prediction. When measuring MAP with the cutoff
k=6 (as there are 7 versions of each page in MUSCIMA++

Figure 6. Pitch f-score between predictions on test set
staffs and (predictions on) training set pages. Notice the
pages 07, 09 and 11: these are three movements from
J. S. Bach’s Cello suite no. 1, which contain musically
highly related material.

and one of them is used for querying), it drops to 0.86.

7. DISCUSSION & CONCLUSIONS

We consider our work a successful step towards enabling
applications of hitherto problematic handwritten OMR.
The retrieval scenario results are an indication that U-Nets
are a workable solution to the handwritten symbol detec-
tion bottleneck in the context of full-pipeline OMR. (Here,
we must re-state that these results should not be interpreted
as more than supporting evidence that our object detection
method is viable for such scenarios!)

However, U-Nets are still in principle limited by the size
of the receptive field: for instance the middle of a long
stem looks exactly the same as a barline. We could fur-
ther leverage syntactic properties of music notation: e.g.,
the self-attention layer of [34] allows building up the fi-
nal output from partial recognition results. Fragmenting of
long symbols could be overcome with instance segmenta-
tion embeddings [10].

To the best of our knowledge, this is also the first time
OMR was done with a machine-learning method for nota-
tion assembly. We in fact consider this the most interest-
ing line of follow-up work. Recovering the notation graph
itself seems like the next bottleneck, especially for dura-
tion inference. The non-independent nature of the edges
poses an interesting structured prediction challenge, and
one could also work towards models that jointly detect
symbols and recover their relationships.

Despite their limitations, U-Nets can be used to de-
tect handwritten music notation symbols. They establish
a new CNN-based baseline for the object detection task,
and we believe the results in pitch inference and a proof-
of-concept retrieval scenario indicate that a significant step
has been taken towards full-pipeline OMR systems, so that
the content of musical manuscripts can become accessible
digitally.

8. ACKNOWLEDGMENTS
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ABSTRACT 

We define three retrieval tasks requiring efficient search 
of the musical content of a collection of ~32k page-
images of 16th-century music to find: duplicates; pages 
with the same musical content; pages of related music. 

The images are subjected to Optical Music Recognition 
(OMR), introducing inevitable errors. We encode pages 
as strings of diatonic pitch intervals, ignoring rests, to re-
duce the effect of such errors. We extract indices com-
prising lists of two kinds of ‘word’. Approximate match-
ing is done by counting the number of common words 
between a query page and those in the collection. 

The two word-types are (a) normal ngrams and (b) 
minimal absent words (MAWs). The latter have three im-
portant properties for our purpose: they can be built and 
searched in linear time, the number of MAWs generated 
tends to be smaller, and they preserve the structure and 
order of the text, obviating the need for expensive sorting 
operations. 

We show that retrieval performance of MAWs is com-
parable with ngrams, but with a marked speed improve-
ment. We also show the effect of word length on retriev-
al. Our results suggest that an index of MAWs of mixed 
length provides a good method for these tasks which is 
scalable to larger collections.  

1. INTRODUCTION 

The historical repertory of Western classical music is in-
creasingly being made publicly available in the form of 
downloadable (or merely viewable) digital images; these 
represent pages of the manuscripts or printed books in 
which they are preserved, and are no different in this re-
spect from other typical online library materials such as 
texts or maps.  

Search facilities within the individual library systems 
are entirely text-based, usually making use of existing or 
specially commissioned catalogue data. In a few cases, 
special viewing interfaces are provided to enhance the 
user-experience, such as the parallel presentation of mul-
tiple part-books on the web-site of the Bayerische Staats-

bibliothek in Munich.1 However, the data markup neces-
sary to achieve this has to be done by human experts, 
which is impractical in general for large collections. 

Musicologists need to be able to browse such collec-
tions and to search for specific musical parallels within 
them; librarians need similar facilities for cataloguing 
purposes (e.g. to identify unknown or unattributed items). 
This in turn demands fast search methods of adequate ac-
curacy as a first step in the research process to reduce the 
number of items needing to be examined more exhaust-
ively. 

With very few exceptions, music libraries offer online 
images rather than encoded scores. Providing the latter 
involves transcription, which can either be done manually 
by experts, a time-consuming and expensive process, or 
automatically by OMR, which inevitably introduces er-
rors of various kinds. As OMR techniques improve in fu-
ture, these errors are likely to diminish, but highly unlike-
ly to disappear altogether. 

For fast searching, we need to extract indexes from the 
OMR output which enable fast searching at high recall. 
This depends on the musical data extracted and encoded 
in the indexes being carefully selected to suit a given use-
case. For efficient search of the indexes we can benefit 
from recent advances in string- and pattern-matching al-
gorithms developed for use in bioinformatics for DNA 
and protein analysis. 

In this paper we focus on three musicologically-
motivated user tasks given a corpus of digital images of 
16th-century printed music: finding duplicate images 
within the collection (called dupl below); finding pages 
containing substantially the same music as in a query 
page (same); and identifying pages which have non-
identical but related or closely relevant music content, 
such as in different sections or voice parts than the query 
(relv). 

We briefly review earlier work on musical corpus-
building, content-based music searching and indexing in 
section 2. We describe our test collection, relevant as-
pects of the OMR process and our music indexing strate-
gy in section 3. In section 4, we describe the retrieval 
tasks and our search method in more detail and our exper-
iments and their evaluation in sections 5 & 6. In section 7 
we discuss some of the main findings leading to the pro-
posals for further work in section 8. 

                                                             
1. E.g.: https://stimmbuecher.digitale-sammlungen.de/view?id=bsb00086863 
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2. PREVIOUS WORK 

Corpora of historical music 

For musicologists, the amount of historical material 
available online has exploded in recent years, in line with 
the general availability of data of all kinds, including au-
dio and video files of performances. This does not mean 
that their requirements for study and analysis are yet ade-
quately met. The sub-discipline of computational, or digi-
tal, musicology tends to devote a great deal effort to data-
preparation before the powerful tools of MIR, pattern-
matching and statistical analysis can be brought to bear. 
This is because the majority of the data-resources consist 
of collections of digital images of the source material, 
rather than files of its musical content. Traditionally, 
scores, which attempt to represent the overall musical 
content of the original documents (which is often, as in 
the case of the music studied in this paper, distributed be-
tween multiple part-books), have been made by human 
experts; this is inevitably a time-consuming and thus ex-
pensive process. The translation (automatic or manual) of 
musical content from documents or their digital-image 
surrogates into machine-readable ‘texts’ is generally re-
ferred to as music encoding. While digital tools such as 
score-editing programs have made this easier, by ena-
bling export to standard formats such as MusicXML2 and 
MEI, 3  the process is in general impractically slow for 
building large collections. 

However, there exist some significant and freely avail-
able collections of encoded music, such as those main-
tained by the Center for Computer Assisted Research in 
the Humanities at Stanford University,4 which present a 
wide range of classical music encoded in a number of 
formats. These encodings permit a variety of ways of 
searching the data for musical features which are offered 
by software packages such as Humdrum5 or Music21.6 

The online offerings of many digital music libraries in 
classical music are aggregated in the International Music 
Score Library Project (IMSLP),7 adding curated metada-
ta. The resulting meta-collection (almost nine million 
pages of music) has rapidly become more-or-less indis-
pensable for performers, teachers and students. Searching 
within IMSLP for most users is done via metadata rather 
than musical content. An experimental interface for con-
tent-based searching, the Peachnote Ngram Viewer, 8 
works on the output of commercial OMR software run 
over a large part of the collection; while this is subject to 
the significant amount of errors introduced in the OMR 
process, it powerfully demonstrates the potential of effi-
cient search over a large collection. 

In the current work, just as in Peachnote, we are not 
immediately concerned with an abstract or generalized 
notion of musical similarity. Rather, we select an encod-
ing that represents the musical feature we wish to match. 

                                                             
2. http://www.musicxml.com 
3. http://music-encoding.org 
4. http://www.musedata.org and http://kern.ccarh.org 
5. http://humdrum.ccarh.org 
6. http://web.mit.edu/music21/ 
7. http://imslp.org 
8. http://www.peachnote.com 

Our aim is to reduce the search space to a manageable 
number of musical documents which can be compared or 
analyzed in more detail manually or by a specialized al-
gorithm. For large collections this task can best be 
achieved by searching indexes rather than full encodings 
of each document. 

Where the musical features extracted from a document 
can be represented as some kind of ‘text’, there are many 
ways of generating useful indexes which can be searched 
far more quickly than full texts. These have been the sub-
ject of information retrieval research for almost half a 
century, and provide the mechanisms enabling the almost 
instaneous search familiar to all who use today’s internet. 
Indexing methods for music – either symbolic or audio – 
have received less attention, but a number of viable 
methods have been proposed and/or have found use [1]. 

 For most of the sixteenth and seventeenth centuries, 
almost all original material comes in the form of separate 
voice-parts rather than scores. For the purposes of re-
trieval these can be treated as linear strings of characters 
depending on the encoding method. There is a vast litera-
ture on string-matching, largely motivated by problems 
from bioinformatics. Some of the resulting, highly-
efficient methods have been proposed for music retrieval. 

Music retrieval algorithms inspired by bioinformatics 

A very recent survey of MIR applications for algorithms 
developed in bioinformatics research is contained in [2], 
although this does not include the method adopted in this 
paper. 
The need for pairwise comparison of potentially extreme-
ly long, strings representing the structure of molecules 
such as DNA or proteins, has been addressed by the de-
velopment of algorithms such as FASTA [3] and its de-
scendants, such as BLAST,9  which are in common use 
for DNA analysis. The latter algorithm has found musical 
uses in the audio [4] and symbolic [5] domains. BLAST 
has also found use in recent work on audio cover-song 
recognition in [6], where the major speedup in retrieval it 
brought was found to compensate for a slight degradation 
in retrieval accuracy. Most recently, [7] reports on the 
application to music of methods originally designed for 
bioinformatics. These include multiple sequence-
alignment methods such as MAFFT [8]. 

The present work uses a method which is finding in-
creasing acceptance within bioinformatics, but has not, as 
far as the authors are aware, previously been applied to 
music: minimal absent words (MAWs). Here we briefly 
introduce the concept. 

A word is an absent word of a sequence if it does not 
occur in the sequence. An absent word is minimal if all 
its proper factors occur in the sequence. Absent words are 
negative information about the sequence. These objects 
have been extensively studied in combinatorics on words 
and it is known that although the number of absent words 
of a sequence is exponential with respect to the size of the 
sequence, the number of minimal absent words is only 
linear with respect to the length of the sequence [9].  

                                                             
9. Basic Local Alignment Search Tool; http://blast.ncbi.nlm.nih.gov/ 
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Crochemore et al. in [10] presented a linear-time algo-
rithm to compare two documents by considering all their 
minimal absent words, using a length-weighted index 
measure.   

In recent years, the significance of minimal absent 
words has been studied in several biological studies. In 
[11] absent words for four human genomes were comput-
ed, and it was shown that intra-species variations in min-
imal absent words were lower than inter-species varia-
tions.   

Furthermore, minimal absent words have been exploit-
ed for building phylogenies [12], for measuring dissimi-
larities/similarities between bio-sequences [13] and for 
many other applications [14]. 

3. TEST COLLECTION & OMR 

The collection consists of 31,721 page-images of 16th-
century printed music, which have all been subjected to 
OMR. The music was scanned from archival microfilms, 
in which the several individual part-books for a given 
item (usually four but up to as many as 12), one for each 
voice, follow in sequence as preserved under their single 
shelfmark. In almost every case they show two facing 
pages in a single image; these were each separated by us 
into two single page-images. 

The collection has associated metadata which gives 
bibliographical information for each book, but not to the 
level of musical items; so, for example, while the general 
sequence of musical items in each book is listed, with ti-
tles and original composer ascriptions, the locations of 
items in the part-books is not recorded. Thus, it is in gen-
eral impossible to associate automatically a page image 
with the music on it. This provides the motivation for the 
present work, aimed at designing a finding aid for re-
searchers or librarians wishing to identify similar or relat-
ed music within the collection. 

The OMR tool we use is Aruspix, a program specifi-
cally designed for early printed music.10 While this repre-
sents the current state of the art for this repertory [15], 
recently reported work suggests that significant progress 
is possible in the near future [16]. However, it is unlikely 
that 100% accuracy in OMR will ever be consistently 
achieved for any repertory; for this reason we maintain 
that fast, error-robust search methods will always be in 
demand. Aruspix saves its recognized output as MEI 
(mensural)11 from which we can extract various kinds of 
musical sequence. (See Fig 1.) 

Typical errors made by OMR systems can be of dura-
tion (wrong/missing time-signatures; wrong/missing 
note-values) and of pitch (wrong/missing clefs; 
wrong/missing key-signatures; wrong/missing acciden-
tals). The vertical location of symbols such as note-heads 
on the staff is usually recognized securely; this corre-
sponds to diatonic pitch. Changes of clef tend to com-
pound this effect as pitches are affected over a span of 
notes (usually until the next line of music), so it is helpful 
to use relative pitches, i.e. intervals. We have found se-

                                                             
10. http://www.aruspix.net 
11. http://music-encoding.org/schema/2.1.1/mei-Mensural.rng 

quences of diatonic intervals to be the most useful for our 
purposes. 

We generate a single diatonic-interval string for each 
page using a simple alphabetic code devised by RISM12 

for rapid searching of musical incipits (See Figure 1). 
Letters in upper case represent ascending intervals, lower 
case descending; same note is indicated by a hyphen.[17] 
 A typical item, opening only: 

 
MEI output from Aruspix (opening only, simplified): 

<clef line="3" shape="C" /> 
<mensur sign="C" slash="1" /> 
<note pname="e" oct="4" dur="brevis" /> 
<note pname="d" oct="4" dur="semibrevis" lig="recta" /> 
<note pname="f" oct="4" dur="semibrevis" /> 
<note pname="e" oct="4" dur="semibrevis" /> 
<dot ploc="f" oloc="4" /> 
<note pname="d" oct="4" dur="semiminima" /> 
<note pname="c" oct="4" dur="semiminima" /> 
<note pname="d" oct="4" dur="minima" /> 
<custos pname="c" oct="4" />  [Spurious:Note missing!] 
<note pname="e" oct="3" dur="minima" /> 
<note pname="e" oct="3" dur="minima" /> 
<note pname="e" oct="4" dur="minima" />  

(NB Because the clef has been mis-recognized, all pitches are a third 
too low; also, in line 11, a note has been mis-read as a custos.) 

 

 
 
Figure 1. The (erroneous) MEI output from Aruspix, and 
the correct encoding, for a typical item (opening only),13 
and the sequences we derive from it. 

4. TASKS AND METHOD 

The three tasks we approach are to recognise page-
images which: (a) are duplicates (i.e. different shots/scans 
of the same page); (b) contain substantially the same mu-
sic (which may be distributed differently across adjacent 
pages); (c) contain related but not identical music (this 
may be from a different voice-part, from a different sec-
tion of the same piece, or from a derivative work). 
Task (a) involves finding near-identical matches; howev-
er, the OMR output, and hence the indexes we extract, are 
not necessarily exactly the same, owing to recognition 
errors or small differences in photographic conditions, 
etc. For task (b), although in principle the encodings on 
which we base our searches should be largely identical, 
we cannot be sure that each page of different editions of a 
pieces of music has exactly the same content; often, the 
page layout is different, or the music is distributed over 
multiple pages in one or other copy. Furthermore, there 
                                                             
12. Répértoire Internationale des Sources Musicales; see 

http://www.rism.info/home.html 
13 D. Phinot (c.1510-c.1555), Altus part of ‘Virga Jesse floruit’, from 

Primus liber cum quatuor vocibus : Mottetti del frutto a quarto (Ven-
ice: Gardane, 1539) 

Diatonic pitch sequence:
 MEI: e4 d4 f4 e4 d4 c4 d4  e3 e3 e4 

Correct: g4 g4 a4 g4 f4 e4 f4 g4 g3 g3 g4 

Diatonic interval sequence: 

MEI: -1 +2 -1 -1 -1 +2 -7  0  +7 
Correct: 0 +1 -1 -1 -1 +1 +1 -8 0  +8 

Encoded diatonic interval sequence:
 MEI: a B a a a B f  - G 

Correct: - A a a a A A g - G 
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may be extraneous material ‘foreign’ to the query page 
printed on the same page at the beginning or the end of 
the piece in question. 
The ‘related music’ category is best illustrated by exam-
ple; all of the following were found as high-ranking 
matches to the query page (2a) using our methods despite 
the fact that they tend to diverge after a statement of the 
opening motif: 

(a) Query: 

 
(b)  

 
(c)  

 
(d)  

 
(e) 

 
 
Figure 2. Examples of music ‘related’ to a query (a). 
(N.B. These matches were based on full pages of music, 
not just on the incipits displayed here.) 

 
Our query page (2a) was the Superius part of 

‘D’amours me plains’, a chanson by Maistre Rogier.14 
The following item in the same book is a replicque, or 
response, to the chanson, with a different text, by Tylman 
Susato, based on the same musical motifs; this was 
ranked second. Another piece based on Rogier’s chanson, 
this time with the same text, by Larcier was in fact ranked 
first. The third-ranked item was the ‘Agnus Dei’ from 
Thomas Crequillon’s parody mass on the song, Missa 
Damours me plains; the ‘Sanctus’ from the same mass 
was ranked in fourth place. 

Further examples of ‘related’ music might include sep-
arate sections of a work, or arrangements with completely 
different texts which were catalogued as separate items. 
In fact, in early testing of our method, we discovered that 
the Recercar Undecimo by an unidentified composer in a 
1593 miscellany,15 is in fact a previously unrecognized 
instrumental arrangement of a motet, ‘In die tribula-

                                                             
14 Premier livre des cha[n]so[n]s a quatre parties (Antwerp: Susato, 
1543, f. xi 
15 Fantasie recercari et contrapunti a tre voci (Venice: Gardane, 1593) 

tionis,’ by ‘Damianus’, probably Damien Havericq (ac-
tive 1538-56), published half a century earlier in 1549.16 

At first we extracted ngrams from the page-encodings, 
i.e. fixed-length substrings of length k extracted sequen-
tially starting at each character in the string in turn. These 
were built into a trie (suffix-tree) structure for efficient 
searching. We then counted the number of ngrams in 
common between the query and each page of the collec-
tion in turn. Although this worked well enough for task 
(a), we encountered difficulties with tasks (b) and (c) for 
two reasons: firstly, this naïve ranking did not take ac-
count of the fact that longer pages are more likely to con-
tain ngrams which appear in the query by chance, and 
secondly, we were ignoring the order of locations of the 
ngrams, which should be the same in query and target 
documents, for obvious musical reasons. 

The first difficulty was overcome by using Jaccard dis-
tance17 rather than a raw count of coincident ngrams; all 
results reported here use this measure as a basis for 
search-result ranking. The second problem can be tackled 
by including ngram-location in the index and sorting the 
array of results. However, the process of ensuring an or-
dered match from the ngram set adds undesirable compu-
tational complexity. 

Turning to a method that has found wide acceptance in 
recent bioinformatics, we used minimal absent words 
(MAWs)18 instead of ngrams. We have found this to be 
highly successful, both in terms of the reduction of the 
amount of data that has to be searched and because of the 
fact that MAWs retain the order and structure of the orig-
inal document, avoiding the necessity for the secondary 
expensive sorting routine. 

5. EXPERIMENTS 

For the purposes of the comparison between retrieval us-
ing ngrams and MAWs, we ran experiments based on the 
three user tasks outlined above using a version of the 
software implemented in Javascript on a MacBook Pro 
(2.5 GHz Intel Core i7 with 8GB RAM),  running OS X 
10.13.3. The software was run in a standard web browser 
(Safari) via localhost. While we would not consider this 
to be a sensible setup for production work, it had the ad-
vantage of not requiring network access with consequent 
latency issues.19 

For each task we ran the searches using indexes of dif-
ferent word-lengths (3-10 characters) and the two word-
types (ngrams and MAWs). In addition (as explained be-
low) we used an index of MAWs of mixed length (4-8 
characters). 

For ngrams we did not include the result-sorting rou-
tine. We expect that sorted ngram results will give the 
overall best retrieval performance, but this will come at a 
significant cost in terms of speed, not evaluated here. In 

                                                             
16 Libro secondo de li motetti a tre voce da diversi (Venice: Scotto, 
1549), item XVIII 
17. https://en.wikipedia.org/wiki/Jaccard_index 
18. http://www.lix.polytechnique.fr/SeminaireDoctorants/AliceHeliouMots 
Absents.pdf 
19. The code and encoded data are accessible at: 
http://doc.gold.ac.uk/~mas01tc/ISMIR2018/ 
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fact, we believe that these will find their best use on re-
duced result lists after the initial indexed search. 

Before each experiment, the appropriate full index 
needs to be loaded into a trie (suffix-tree) structure. This 
process can take up to a minute or so for the larger index-
es which also use a lot of memory. Index loading is not 
considered as part of our experiments, since the indexes 
would need to be retained as a persistent service (proba-
bly distributed between machines) in a production sys-
tem. 

Each task has its associated query-list derived from the 
predetermined ground truth (see below). These contain 
different numbers of queries (48, 107 and 334 for the 
dupl, relv and same tasks, respectively). Each query, con-
sisting of a set of index words, was run by searching in 
turn for each word on the complete index, counting the 
words in common between query and target pages, with 
results sorted by Jaccard distance. Where the number of 
common words was less than 6 the search was regarded 
as unsuccessful and no results were returned.20 For cer-
tain word lengths, no MAWs were generated for some 
pages (see Discussion, below); for these cases, too, no 
results were returned. 

6. EVALUATION 

We had previously gathered ground truth using a web-
interface allowing a user to annotate documents in ranked 
results as (a) a duplicate image of the same page (dupl); 
(b) a page containing substantially the same music 
(same); or (c) related or relevant music, such as that be-
longing to a different voice-part or section of a work 
(relv). 
In the three graphs that follow we present the average 
rank at which known matches from the ground truth lists 
for a given word length were retrieved in the three exper-
iments. Since we were mainly interested in high-ranking 
matches, we gave all items falling beneath the rank of 20 
a uniform rank of 25. 
 

  
Figure 3. Average ranks for matches of ‘duplicate’ pages. 

 
In our experiments with our test dataset, retrieval per-

formance for the dupl task was found to be similar for 

                                                             
20. This arbitrary number was arrived at in early testing as lower num-
bers gave essentially useless results. 

ngrams and MAWs of length 5 characters. We do not ex-
pect, however, that this will remain true for all other col-
lections, and it is not the case for the other tasks. For this 
reason, we also performed all the tasks with a mixed-
length index of MAWs (4-8 characters) which gave re-
sults almost identical to ngrams in the dupl task, consist-
ently high in the ranked results in the case of the same 
task, and the overall best for the relv task. 
 

  
Figure 4. Average ranks for matches of ‘same music’ 
pages 
 

  
Figure 5. Average ranks for matches of ‘related music’ 
 

The experiments are named using ‘ng’ and ‘ma’ to in-
dicate the use of ngrams or MAWs. The dashed lines on 
the graphs represent the average rank for the searches us-
ing mixed-length MAWs (4-8 chars); these are not quite 
as good as the best results for ngrams, but very close, and 
the speed is much faster. 

 

7. DISCUSSION 

The usefulness of MAWs is highly data-dependent. Over 
a length-range of 3 to 10 characters, the number of 
MAWs generated for each page, while lower than the 
number of ngrams of those lengths, falls off in a way that 
means that there is simply not enough data for consistent 
recognition beyond a certain length.  
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Figure 6. Number of minimal absent words per page-
image (average, maximum and minimum) 
 

However, a database of MAWs with mixed lengths (4-
8) always produces enough data for matching and per-
forms almost as well as the best ngram length, but is 
much faster in operation. 

 

  
Figure 7. Number of words in the trie structure for the 
entire collection. NB Log scale! 

 
Finally, we show the average search time per word in 

the collection for each word-length: 

  
Figure 8. Average search time (ms) per word for each 
word length 

 
Bearing in mind that we need to search for each word 

in the query page in turn, it can be seen that the lower 
numbers per page of MAWs compared to ngrams, and the 
consequently smaller index size brings a significant speed 

advantage. This is particularly important in a search tool 
which is to be operated by human researchers, who in-
creasingly expect retrieval response comparable to that 
encountered in everyday web searching.  

A possibly interesting finding, whose significance 
needs further investigation, is that there is a fairly con-
sistent range of ngram and MAW lengths (viz. roughly 
between 4 and 8 characters) that produces useful results - 
this may relate to the nature of the musical data, i.e. to the 
‘language’ or style of the music, but this needs to be test-
ed formally with a range of different repertories.  

8. FURTHER WORK 

In future work, we intend to compare the efficacy and 
performance of MAWs with standard algorithms such as 
BLAST.  

Since our use of ngrams in this research was to provide 
a benchmark for the efficacy of MAWs, limited attempts 
have been made to optimise them for retrieval speed. We 
are confident that with the data that we now have on the 
most effective ngram lengths, effort can be put into algo-
rithmic efficiency for a comparison of the two technolo-
gies based on their real-world speed.  

In many retrieval tasks, it is sufficient simply to return 
a ranked list of the k best matches for a query, but in the 
tasks we investigate here, there is an approximately bina-
ry relevance judgement to be made. The number of rele-
vant documents can vary from 0 to over 100, so finding 
an appropriate thresholding value is important. Statistical 
approaches to thresholding have proved useful in the 
high-dimensional spaces associated with audio searching 
[18], and this is a sine qua non in text retrieval. 

We intend to increase the size of our test collection to 
investigate how well it scales. In order to achieve this, we 
hope to establish a consortium of international music li-
braries to contribute images and metadata, with the ulti-
mate goal of providing a comprehensive search tool for 
musicologists. This requires further work on system ar-
chitecture and management of distributed data and pro-
cessing. 

In principle, there is no reason why similar techniques 
could not be used on other monophonic repertories, and 
we hope to widen the scope of our work through our con-
tinuing association with projects such as SIMSSA21 and 
TROMPA.22 

MAWs present a valuable new method for music re-
search which is scalable to collections a good deal bigger 
than our test set of 32k pages. The technique is generally 
applicable to any repertory which is reducible to mono-
phonic parts or streams, allowing fast approximate re-
trieval of large queries over web-scale collections of 
noisy data.  
  

                                                             
21. Single Interface for Music Score Searching and Analysis (project 
funded by Social Sciences and Humanities Research Council, Canada)  
22. Towards Richer Online Music Public-domain Archives (Horizon 
2020 project funded by the EU, 2018-21) 
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ABSTRACT

In this work, we present an approach for the task of opti-
cal music recognition (OMR) using deep neural networks.
Our intention is to simultaneously detect and categorize
musical symbols in handwritten scores, written in mensu-
ral notation. We propose the use of region-based convo-
lutional neural networks, which are trained in an end-to-
end fashion for that purpose. Additionally, we make use
of a convolutional neural network that predicts the rela-
tive position of a detected symbol within the staff, so that
we cover the entire image-processing part of the OMR
pipeline. This strategy is evaluated over a set of 60 ancient
scores in mensural notation, with more than 15000 anno-
tated symbols belonging to 32 different classes. The results
reflect the feasibility and capability of this approach, with a
weighted mean average precision of around 76% for sym-
bol detection, and over 98% accuracy for predicting the
position.

1. INTRODUCTION

The preservation of the musical heritage over the cen-
turies makes it possible to study a certain artistic or cul-
tural paradigm. Most of this heritage exists in written form
and is stored in cathedrals or music libraries [10]. In addi-
tion to the possible issues related to the ownership of the
sources, this storage protects the physical preservation of
the sources over time, but also limits their accessibility.
That is why efforts are being made to improve this situa-
tion through initiatives to digitize musical archives [17,21].
These digital copies can easily be distributed and studied
without compromising their integrity.

Nevertheless, this digitalization, which indeed repre-
sents a progress with respect to the aforementioned situ-
ation, is not enough to exploit the actual potential of this
heritage. To make the most out of it, the musical content
itself must be transcribed into a structured format that can
be processed by a computer [6]. In addition to indexing

c© Alexander Pacha, Jorge Calvo-Zaragoza. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Alexander Pacha, Jorge Calvo-Zaragoza. “Optical
Music Recognition in Mensural Notation with Region-based Convolu-
tional Neural Networks”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

the content and thereby enabling tasks such as content-
based search, this could also facilitate large-scale data-
driven musicological analysis in general [39].

Given that the transcription of sources is extremely
time-consuming, it is desirable to resort to automatic sys-
tems. Optical music recognition (OMR) is a field of re-
search that investigates how to build systems that decode
music notation from images. Regardless of the approach
used to achieve such objective, OMR systems vary signif-
icantly due to the differences amongst musical notations,
document layouts, or printing mechanisms.

The work presented here deals with manuscripts writ-
ten in mensural notation, specifically with sources from
the 17th century, attributed to the Pan-Hispanic framework.
Although this type of mensural notation is generally con-
sidered as an extension of the European mensural notation,
the Pan-Hispanic situation of that time underwent a par-
ticular development that fostered the massive use of hand-
written copies. Due to this circumstance, the need for de-
veloping successful OMR systems for handwritten nota-
tion becomes evident.

Figure 1. A sample page of ancient music, written in men-
sural notation.

We address the optical music recognition of scores writ-
ten in mensural notation (see Figure 1) as an object detec-
tion and classification task. In this notation, the symbols
are atomic units, 1 which can be detected and categorized
independently. Although there are polyphonic composi-

1 Except for beamed notes, in which the beam can be considered an
atomic symbol itself.
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tions from that era, each voice was placed on its own page,
so we can consider the notation as monophonic on the
graphical level. Assuming the aforementioned simplifica-
tions allows us to formulate OMR as an object detection
task in music score images, followed by a classification
stage that determines the vertical position of each detected
object within a staff. If the clef and other alterations are
known, the vertical position of a note encodes its pitch.

We propose using region-based convolutional neural
networks, which represent the state of the art in computer
vision for object detection, and demonstrate their capabili-
ties of detecting and categorizing the musical symbols that
appear in the image of a music score with a high precision.
We believe that this work provides a solid foundation for
the automatic encoding of scores into a machine-readable
music format like Music Encoding Initiative (MEI) [38]
or MusicXML [15]. At present, there are thousands of
manuscripts of this type that remain to be digitized and
transcribed. Although each manuscript may have its own
particularities (such as the handwriting style or the lay-
out organization), the approach developed in this work
presents a common and extensible formulation to all of
them.

2. RELATED WORK

Most of the proposed solutions to OMR have focused on
a multi-stage approach [34]. This traditional workflow in-
volves steps that have been addressed isolatedly, such as
image binarization [4,47], staff and text segmentation [44],
staff-line detection and removal [5, 11, 46], and symbol
classification [3, 30, 33]. In other works, a full pipeline is
proposed for a particular type of music score [31, 32, 43].

Recent works have shown that the image-processing
pipeline can largely be replaced with machine-learning ap-
proaches, making use of deep learning techniques such
as convolutional neural networks (CNNs) [1, 16, 29, 45].
CNNs denote a breakthrough in machine learning, espe-
cially when dealing with images. They have been applied
with great success to many computer vision tasks, often
reaching or even surpassing human performance [18, 22].
These neural networks are composed of a series of filters
that operate locally (i.e. convolutions, pooling) and com-
pute various representations of the input image. These fil-
ters form a hierarchy of layers, each of which represents
a different level of abstraction [20]. The key is that these
filters are not fixed but learnt from the raw data through a
gradient descent optimization process [23], meaning that
the network can learn to extract data-specific, high-level
features.

Here, we formulate OMR for mensural notation as an
object detection task in music score images. Object detec-
tion in images is one of the fundamental problems in com-
puter vision, for which deep learning can provide excel-
lent solutions. Traditionally, the task has been addressed
by means of heuristic strategies based on the extraction of
low-level, general-purpose features such as SIFT [28] or
HOG [7]. Szegedy and colleagues [8, 42] redefined the
use of CNNs for object detection for the first time. Instead

of classifying the image, the neural network predicted the
bounding box of the object within the image. Around
the same time, the ground-breaking work of Girshick et
al. [14] definitely changed the traditional paradigm. In
their work, a CNN was in charge of predicting whether
each object of the vocabulary appeared in selected bottom-
up regions of the image. This scheme has been referred
to as region-based convolutional neural network (R-CNN).
Afterwards, several extensions and variations have been
proposed with the aim of improving both the quality of the
detection and the efficiency of the process. Well-known
examples include Fast R-CNN [13], Faster R-CNN [37],
R-FCN [24], SSD [27] or YOLO [35, 36].

In this work, we use these region-based convolutional
neural networks for OMR, which are trained for the direct
detection and categorization of music symbols in a given
music document. Thereby allowing for an elegant formula-
tion of the task, since the training process only needs score
images along with their corresponding set of symbols and
the regions (bounding boxes) in which they appear.

3. AN OMR-PIPELINE FOR MENSURAL SCORES

Music scores written in mensural notation share many
properties with scores written in modern notation: the se-
quence of tones and pauses is captured as notes and rests
within a reference frame of five parallel lines, temporally
ordered along the x-axis with the y-axis representing the
pitch of notes. But unlike modern notation, mensural
scores are notated monophonically with a smaller vocabu-
lary of only around 30 different glyphs, reducing the over-
all complexity significantly and thus allowing for a simpli-
fied pipeline that consists of only three stages. A represen-
tative subset of the symbols that appear in the considered
notation is depicted in Table 1.

Group Symbol

Note
Semibrevis Minima Col. Minima Semiminima

Rest
Longa Brevis Semibrevis Semiminima

Clef
C Clef G Clef F Clef (I) F Clef (II)

Time
Major Minor Common Cut

Others
Flat Sharp Dot Custos

Table 1. Subset of classes from mensural notation. The
symbols are depicted without considering their pitch or
vertical position on the staff.

3.1 Music Object Detection

The first stage takes as input an entire high-quality image
that contains music symbols. The entire image is fed into
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a deep convolutional neural network for object detection
and yields the bounding boxes of all detected objects along
with their most likely class (e.g., g-clef, minima, flat).

3.2 Position classification

After detecting the symbols and classifying them, the sec-
ond stage performs position classification of each detected
object to obtain the relative position with respect to the
reference frame (staff) which is required to recover a notes
pitch. For this process, we extract a local patch from the
full image with the object of interest in the center and feed
the image into another CNN, which outputs the vertical
position, encoded as shown in Figure 2.

L1
L2

L0

L4
L5

L3

L6

S1
S2

S0

S4
S5

S3

S6

Figure 2. Encoding of the vertical staff line position into
discrete categories. The five continuous lines in the middle
form the regular staff and the dashed lines represent ledger
lines, that are inserted locally as needed. A note between
the second and third line from the bottom would be classi-
fied as S2 (orange).

3.3 Semantics Reconstruction and Encoding

Given the detected objects and their relative position to the
staff line, the final step is to reconstruct the musical se-
mantics and encode the output into the desired format (e.g.,
into modern notation [48]). This step has to translate the
detected objects into an ordered sequence for further pro-
cessing. Depending on the application and desired output,
semantic rules need to be taken care of, such as grouping
beams with their associated notes to infer the right duration
or altering the pitch of notes when accidentals are encoun-
tered.

4. EXPERIMENTS

To evaluate the proposed approach, we conducted exper-
iments 2 for the first two steps of the pipeline. While a
full system would also require the third step, we refrain
from implementing it, to not restrict this approach to a par-
ticular applications. It is also noteworthy, that translating
mensural notation into modern notation can be seen as its
own field of research that requires a deep understanding of

2 Source code is available at https://github.com/apacha/
Mensural-Detector

both notational languages, which exceeds the scope of this
work.

4.1 Dataset

Our corpus consists of 60 fully-annotated pages in mensu-
ral notation from the 16th-18th century. The manuscript
represents sacred music, composed for vocal interpreta-
tion. 3 The compositions were written in music books by
copyists of that time. To ensure the integrity of the phys-
ical sources, the images were taken with a camera instead
of scanning the books in a flatbed scanner, leading to sub-
optimal conditions in some cases. An overview of the con-
sidered corpus is given in Table 2.

Pages 60

Total number of symbols 15258

Different classes 32

Different positions
within a staff

14

Average size of a
symbol (w × h)

44× 84 pixels

Number of symbols per
image

42–447 (∅ 250)

Image resolution
(w × h)

∼ 3000× 2000 pixels

Dots per inch (DPI) 300

Table 2. Statistics of the considered corpus.

The ground-truth data is collected using a framework, in
which an electronic pen is used to trace the music symbols,
similar to that of [2]. The bounding boxes of the symbols
are then obtained by computing the rectangular extent of
the users’ strokes.

4.2 Setup

Our experiments are based on previous research by [29],
where a sliding-window-approach is used to detect hand-
written music symbols in sub-regions of a music score. In
contrast to their work, we are able to detect hundreds of
tiny objects in the full page within a single pass. To train
a network in a reasonable amount of time within the con-
straints of modern hardware, it is currently necessary to
shrink the input image to be no longer than 1000px on the
longest edge, which corresponds to a downscaling opera-
tion by a factor of three on our dataset.

For detecting music objects, the Faster R-CNN ap-
proach [37] with the Inception-ResNet-v2 [41] feature ex-
tractor has been shown to yield very good results for de-
tecting handwritten symbols [29]. It works by having a
region-proposal stage for generating suggestions, where an

3 The dataset is subject to ongoing musicological research and can not
be made public at this point in time, so it is only available upon request.
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object might be, followed by a classification stage, which
confirms or discards these proposals. Both stages are im-
plemented as CNNs and trained jointly on the provided
dataset. The first stage scans the image linearly along a
regular grid with user-defined box proposals in each cell of
that grid.

To be able to generate meaningful proposals, the shape
of these boxes has to be similar to the actual shape of the
objects that should be found. Since the image contains a
large number of very tiny objects (sometimes only a few
pixels), a very fine grid is required. After a statistical anal-
ysis of the objects appearing in the given dataset, including
dimension clustering [35], several experiments were con-
ducted to study the effects of size, scale, and aspect ratios
of the above-mentioned boxes, concluding that sensibly
chosen priors for these boxes work similarly good as the
boxes obtained from the statistical analysis. For the down-
scaled image, boxes of 16x16 pixels, iterating with a stride
of 8 pixels and using the scales 0.25, 0.5, 1.0, and 2.0, with
aspect ratios of 0.5, 1.0, and 2.0 represent a meaningful
default configuration. Accounting for the high density of
objects, the maximum number of box proposals is set to
1200 with a maximum of 600 final detections per image.

For the second step of our proposed pipeline, another
CNN is trained to infer the relative position of an object
to its staff line upon which it is notated (see Figure 2).
Different off-the-shelf network architectures are evaluated
(VGG [40], ResNet [19], Inception-ResNet-v2 [41]) with
the more complex models slightly outperforming the sim-
pler ones. Using pre-trained weights instead of random
initialization accelerates the training, improves the over-
all result, and is therefore used throughout all experiments.
The input to the classification network is a 224×448 pixels
patch of the original image with the target object in the cen-
ter (see Figure 3). The exact dimensions of the patch are
not important, as long as the image contains enough verti-
cal and horizontal context to classify even symbols notated
above or below the staff. When objects appear too close to
the border, the image is padded with the reflection along
the extended edge to simulate the continuation of the page
as shown in Figures 3(d) and 3(e).

(a) (b) (c) (d) (e)

Figure 3. Sample inputs for the position classification net-
work depicting a g-clef (a), semiminima (b), brevis rest (c),
custos (d) and semibrevis (e), with vertical (d) and horizon-
tal (e) reflections of the image to enforce the target object
to be in the center, while preserving meaningful context.

It is important to notice that the vertical position de-
fines the semantical meaning only for some symbols (e.g.,

the pitch of a note or the upcoming pitch with a custos).
Classes for which the position is either undefined or not
of importance include barlines, fermatas, different time-
signatures, beams and in particular for mensural notation:
the augmentation dot. Symbols from these classes can be
excluded from the second step.

4.3 Evaluation metrics

Concerning the music object detection stage, the model
provides a set of bounding box proposals, as well as the
recognized class of the objects therein. The model also
yields a score of its confidence for each proposal. A bound-
ing box proposal Bp is considered positive if it overlaps
with the ground-truth bounding box Bg exceeding 60%,
according to the Intersection over Union (IoU) criterion: 4

area(Bp ∩Bg)

area(Bp ∪Bg)

If the recognized class matches the actual category of the
object, it is considered a true positive, being otherwise a
false positive. Additional detections of the same object
are computed as false positives as well. Those objects for
which the model makes no proposal are considered false
negatives. Given that the prediction is associated with a
score, different values of precision and recall can be ob-
tained for each possible threshold. To obtain a single met-
ric, Average Precision (AP) can be computed, which is de-
fined as the area under this precision-recall curve. An AP
value can be computed independently for each class, and
then we provide the mean AP (mAP) as the mean across all
classes. Since our problem is highly unbalanced with re-
spect to the number of objects of each class, we also com-
pute the weighted mAP (w-mAP), in which the mean value
is weighted according to the frequency of each class. For
the second part of the pipeline (position classification), we
evaluate the performance with the accuracy rate (ratio of
correctly classified samples).

5. RESULTS

Both experiments yielded very promising results while
leaving some room for improvement. The detection of
objects in the full image (see Figure 4) was evaluated by
training on 48 randomly selected images and testing on the
remaining 12 images with a 5-fold cross-validation. This
task can be performed very well and yielded 66% mAP
and 76% w-mAP. When considering practical applications,
the weighted mean average precision indicates the effort
needed to correct the detection results, because it reflects
the fact that symbols from classes that appear frequently
are generally detected better than rare symbols.

When reviewing the error cases, a few things can be
observed: Very tiny objects such as the dot, semibrevis
rest and minima rest pose a significant challenge to the
network, due to their small size and extremely similar ap-
pearance (see Figure 5). This problem might be mitigated,

4 as defined for the PASCAL VOC challenge [9]
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Figure 4. Detected objects in the full image with the detected class being encoded as the color of the box. This example
achieves a mAP of approximately 68% and a w-mAP of 85%.

(a) (b) (c)

Figure 5. The smallest objects from the dataset that are
hard to detect and often confused (from left to right): dot,
semibrevis rest, and minima rest.

by allowing the network to access the full resolution im-
age, which potentially has more discriminative information
than the downsized image. Unsurprisingly, classes that
are underrepresented such as dots, barlines, or all types
of rests are also frequently missed or incorrectly classified,
leading to average precision rates of only 10–40% for these
classes.

Another interesting observation can be made, that in
many cases, objects were detected but the IoU with the
underlying ground-truth was too low for considering them
a true positive detection (see Figure 6 with a red box being
very close to a white box).

For the second experiment, a total of 13246 sym-

bols were split randomly into a training (80%), valida-
tion (10%) and test set (10%). The pre-trained Inception-
ResNet-v2 model is then fine-tuned on this dataset and
achieves over 98% accuracy on the test set of 1318 sam-
ples. Analyzing the few remaining errors reveals that the
model makes virtually no errors and that the misclassified
samples are mostly human annotation errors or data incon-
sistencies.

For inference, both networks can be connected in series.
Running both detection and classification takes about 30
seconds per image when running on a GPU (GeForce 1080
Ti) and 210 seconds on a CPU.

6. CONCLUSION

In this work, we have shown that the optical music recogni-
tion of handwritten music scores in mensural notation, can
be performed accurately and extendible by formulating it
as an object detection problem, followed by a classification
stage to recover the position of the notes within the staff.
By using a machine learning approach with region-based
convolutional neural networks, this problem can be solved
by simply providing annotated data and training a suitable
model on that dataset. However, we are aware that our pro-
posal still has room for improvement. In future work we
would like to:

244 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



(a) (b)

(c) (d)

Figure 6. Visualization of the performance of the object detection stage with selected patches of the music documents:
green boxes indicate true positive detections; white boxes are false negatives, that the network missed during detection; red
boxes are false positive detections, where the model reported an object, although there is no ground-truth; yellow boxes are
also false positives, where the bounding-box is valid, but the assigned class was incorrect.

• evaluate the use of different network architectures,
such as feature pyramid networks [25,26], that might
improve the detection of small objects, which we
have identified as the biggest source of error at the
moment. These networks allow the use of high-
resolution images directly, without the inherent in-
formation loss, that is caused by the downscaling
operation.

• merge the staff position classification with the object
detection network, by adding another output to the
neural network, so the model simultaneously pre-
dicts the staff position, the bounding box and the
class label.

• apply and evaluate the same techniques for other no-
tations, including modern notation

• study models or strategies that reduce (or remove)
the need for specific ground-truth data of each type
of manuscript. For example, unsupervised training

schemes such as the one proposed in [12], which al-
lows the network to adapt to a new domain by simply
providing new, unannotated images.

We believe that this research avenue represents a
ground-breaking work in the field of OMR, as the pre-
sented approach would potentially deal with any type of
music scores by just providing undemanding ground-truth
data to train the neural models.
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ABSTRACT

The optical music recognition (OMR) field studies how
to automate the process of reading the musical notation
present in a given image. Among its many uses, an in-
teresting scenario is that in which a score captured with
a camera is to be automatically reproduced. Recent ap-
proaches to OMR have shown that the use of deep neural
networks allows important advances in the field. However,
these approaches have been evaluated on images with ideal
conditions, which do not correspond to the previous sce-
nario. In this work, we evaluate the performance of an
end-to-end approach that uses a deep convolutional recur-
rent neural network (CRNN) over non-ideal image condi-
tions of music scores. Consequently, our contribution also
consists of Camera-PrIMuS, a corpus of printed mono-
phonic scores of real music synthetically modified to re-
semble camera-based realistic scenarios, involving distor-
tions such as irregular lighting, rotations, or blurring. Our
results confirm that the CRNN is able to successfully solve
the task under these conditions, obtaining an error around
2% at music-symbol level, thereby representing a ground-
breaking piece of research towards useful OMR systems.

1. INTRODUCTION

The optical music recognition (OMR) discipline was born
several decades ago [28], and nowadays there are still too
many open problems to consider it a solved task. This ap-
plies not only for handwritten notation but also for the case
of printed scores [4]. Unfortunately, unlike other auto-
matic content transcription domains, such as speech recog-
nition [23] or optical character recognition [24], the latest
advances in pattern recognition and machine learning—
namely deep learning—have not definitively broken the
long-term glass ceiling.

Actually, other computer music domains are taking ad-
vantage of these advances, but quite often, especially in
symbolic music research, the lack of big enough datasets

c© Jorge Calvo-Zaragoza, David Rizo. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Jorge Calvo-Zaragoza, David Rizo. “Camera-PrIMuS:
Neural End-to-End Optical Music Recognition on Realistic Monophonic
Scores”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

block their improvement. If OMR technologies were able
to convert the massive printed scores libraries 1 into struc-
tured, symbolic scores, all those fields would obtain inter-
esting corpora to work on.

Furthermore, out of the scientific community, the avail-
ability of tools that transcribe sheet music without errors
into symbolically-encoded music would help professional
and amateur musicians to take advantage of the plenty of
computer music tools at hand that cannot work directly
with digital images.

Following the steps of other aforementioned disciplines,
we claim that the problem can be appropriately addressed
with holistic approaches, i.e., end-to-end, where systems
learn with just pairs of inputs and their corresponding tran-
scripts. Here, these pairs consists of sheet music and their
symbolic encoding.

In this work, we extend previous proposals that applied
neural network models over monodic digitally-rendered
music scores [8]. However, we evaluate here their per-
formance with a set of scores that are rendered simulat-
ing camera-based conditions. Our objective is to study
whether the approach is feasible for non-ideal image con-
ditions. Although we do not experiment with fully-fledged
scores yet, we believe that this avenue is promising for
reaching the final objective of dealing with any kind of
input score. Thus, in this work we introduce the so-
called Camera-Printed Images of Music Staves (Camera-
PrIMuS) dataset of monodic single-staff printed scores,
that have been distorted to resemble photographed scores
and encoded in such a way a neural network recognizer can
manage.

Our experiments demonstrate that the considered neural
models are able to learn even in difficult situations where
none of the current commercial OMR systems might be
successful. The results reflect that an error rate below 2%,
at symbol level, can be attained.

The paper is organized as follows: first, a brief back-
ground about OMR is given in Sect. 2; then, the construc-
tion of Camera-PrIMuS dataset is detailed in Sect. 3; the
neural end-to-end framework is described and formalized
in Sect. 4; the experimental results that demonstrate the
suitability of the approach are reported in Sect. 5; and fi-
nally, the conclusions are discussed in Sect. 6.

1 Libraries such as http://imslp.org
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2. BACKGROUND

Most of the existing OMR approaches work in a multi-
stage fashion [38]. These systems typically perform an ini-
tial processing of the image that consists of several steps of
document analysis, not always strictly related to the musi-
cal domain. Examples of this stage comprise the binariza-
tion of the image [10], the detection of the staves [11], the
delimitation of the staves in terms of bars [45], or the sep-
aration among the different sources of information [5].

The staff-line removal stage requires a special mention.
Although staff lines represent a very important element in
music notation, their presence hinders the automatic seg-
mentation of musical symbols. Therefore, much effort has
been devoted to successfully solving this stage [14,15,18].
Recently, results have reached values closer to the opti-
mum over standard benchmarks [7, 17].

In the next step, remaining symbols are classified into
music-notation categories. A number of works can be
found in the literature that deal with this task [30, 37], in-
cluding deep learning classification as well [6, 32].

Recently, it has been demonstrated that the traditional
pipeline up to symbol classification can be replaced by
deep region-based neural networks [31], which both local-
ize and classify music-notation primitives from the input
image. Either way, once graphical symbol are identified,
they must be assembled to eventually obtain actual music
notation. Previous attempts to this stage proposed the use
of heuristic strategies based on graphical and syntactical
rules [13, 36, 40, 43].

Full approaches are more common when recognizing
mensural notation, where the OMR challenge is more re-
stricted than that of modern Western notation because of
the absence of simultaneous written voices in the same
staff and a lower number of symbols to be recognized [9,
33, 44].

3. THE CAMERA-PRIMUS DATASET

The training of a machine learning based system requires
a good quality training dataset with enough size to statis-
tically include a representative sample of the problem to
be solved. The Camera-based Printed Images of Music
Staves (Camera-PrIMuS) dataset has been devised to ful-
fil both requirements 2 . Thus, the objective pursued when
creating this ground-truth data is not to represent the most
complex musical notation corpus, but to collect the high-
est possible number of scores readily available to be repre-
sented in formats suitable for heterogeneous OMR experi-
mentation and evaluation.

Camera-PrIMuS is an extension of a previously pub-
lished PrIMuS dataset [8]. It contains 87 678 real-music
incipits, 3 each one represented by six files: the Plaine and
Easie Code (PAEC) source [3], an image with the rendered
score, the same image distorted resembling a camera-based
scenario, the music symbolic representation of the incipit

2 The dataset is freely available at https://grfia.dlsi.ua.
es/primus/.

3 An incipit is a short sequence of notes from the beginning of a
melody or musical work usually used for identifying it

Order Filter Ranges of used parameters

1 -implode [0, 0.07]

2 -chop [1, 5], [1, 6], [1, 300], [1, 50]

3 -swirl [−3, 3]

4 -spread -2
5 -shear [−5, 5], [−1.5, 1.5]

6 -shade [0, 120], [80, 110]

7 -wave [0, 0.5], [0, 0.4]

8 -rotate [0, 0.3]

9 -noise [0, 1.2]

10 -wave [0, 0.5], [0, 0.4]

11 -motion-blur [−7, 5], [−7, 7], [−7, 6]

12 -median [0, 1.1]

Table 1. GraphicsMagick filter sequence

both in Music Encoding Initiative format (MEI) [39] and
in an on-purpose simplified encoding (semantic encoding),
and a sequence containing the graphical symbols shown in
the score with their position in the staff, without any musi-
cal meaning (agnostic encoding). These two agnostic and
semantic representations, that will be described below, are
especially designed to be considered in our framework.

Pursuing the objective of considering real music, and
being restricted to use short single-staff scores, an export
in PAEC format of the RISM dataset [29] has been used
as source. The PAEC is then formatted to be fed into the
musical engraver Verovio [34], that outputs both the musi-
cal score in SVG format—that is posteriorly converted into
PNG format (Fig. 1(a))—and the MEI encoding containing
the symbolic semantic representation of the score in XML
format. Verovio is able to render scores using three differ-
ent fonts, namely: Leipzig, Bravura, and Gootville. This
capability has been used by randomly choosing one of the
those fonts in the rendering of the different incipits, lead-
ing to a higher variability in the dataset. The on-purpose
semantic and agnostic representations (Figs. 1(c) and 1(d))
have been obtained as a conversion from the MEI files. Fi-
nally, the PNG image file is distorted, as described below,
in order to simulate imperfections introduced by taking a
picture of the sheet music from a (bad) camera (Fig. 1(b)).

To simulate distortions, the GraphicsMagick image pro-
cessing tool 4 has been used. Among the huge amount of
filters this tool contains, a number of them have been used
and tweaked empirically. Table 1 contains the filters used
and the ranges considered for each parameter, from which
random values are selected at each instance. Filters have
been applied using the order shown in the table.

3.1 Semantic and agnostic representations

The suitable encoding of input data for the neural network
determines the scope of its performance. Most of the avail-
able symbolic representations [41], being devised for other
purposes such as music analysis (e.g. **kern), or music

4 http://www.graphicsmagick.org
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(a) Clean image. (b) Distorted image.

clef-G2, keySignature-GM, timeSignature-2/4, note-G4 sixteenth., note-B4 thirty second, barline, note-D5 eighth, rest-sixteenth,
note-B4 sixteenth, note-D5 eighth., note-C5 thirty second, note-A4 thirty second, barline, note-F#4 quarter, rest-eighth,
note-A4 sixteenth., note-C5 thirty second, barline, note-E5 eighth, rest-sixteenth, note-C#5 sixteenth, note-E5 eighth.,
note-D5 thirty second, note-B4 thirty second, barline, note-G4 eighth, rest-eighth

(c) Semantic encoding.

clef.G-L2, accidental.sharp-L5, digit.2-L4, digit.4-L2, note.beamedRight2-L2, dot-S2, note.beamedLeft3-L3, barline-L1,
note.eighth-L4, rest.sixteenth-L3, note.sixteenth-L3, note.beamedRight1-L4, dot-S4, note.beamedBoth3-S3, note.beamedLeft3-S2, barline-L1,
note.quarter-S1, rest.eighth-L3, note.beamedRight2-S2, dot-S2, note.beamedLeft3-S3, barline-L1,
note.eighth-S4, rest.sixteenth-L3, accidental.sharp-S3, note.sixteenth-S3, note.beamedRight1-S4, dot-S4,
note.beamedBoth3-L4, note.beamedLeft3-L3, barline-L1, note.eighth-L2, rest.eighth-L3

(d) Agnostic encoding.

Figure 1. Example of a short item in the corpus: Incipit RISM ID no. 000100367, Incipit 28.1.1 30 Canons, Luigi
Cherubini. MEI and Plaine and Easie Code files are also included in the corpus but omitted here.

notation (such as MEI [39] or MusicXML [20])—for nam-
ing just a few—do not encode a self-contained chunk of in-
formation for each musical element. This is why two repre-
sentations devised on-purpose compliant with this require-
ment were introduced in [8], namely the semantic and the
agnostic ones. For practical issues, none of the representa-
tions is musically exhaustive, but representative enough to
serve as a starting point from which to build more complex
systems.

The semantic representation contains symbols with mu-
sical meaning, e.g., a G Major key signature (see Fig. 1(c));
the agnostic encoding (see Fig. 1(d)) consists of musical
symbols without musical meaning that should be eventu-
ally interpreted in a final parsing stage [16], e.g. a D Major
key signature is represented as a sequence of two sharp
symbols. This way, the alphabet used for the agnostic
representation is much smaller, which allows to study the
impact of the alphabet size and the number of examples
shown to the network for its training. Note that in the ag-
nostic representation, a sharp symbol in the key signature
is the same pictogram as a sharp accidental altering the
pitch of a note. A complete description of the grammars
describing these encodings can be found in [8].

More specifically, the agnostic representation contains a
list of graphical symbols in the score, each of them tagged
given a catalogue of pictograms without a predefined mu-
sical meaning, and located in a position in the staff (e.g.,
third line, first space). The Cartesian plane position of
symbols has been encoded relatively, following a left-to-
right, top-down ordering (see encoding of fractional me-
ter in Fig. 1(d)). In order to represent beaming of notes,
they have been vertically sliced generating non-musical
pictograms (see elements with prefix note.beamed in
Fig. 1(d)).

As mentioned above, this new way of encoding com-
plex information in a simple sequence allows us to feed
the network in a relatively easy way. Note that the agnostic
representation is different from a primitive-based segmen-
tation of the image, which is the usual internal representa-
tion of traditional OMR systems [12, 25].

The agnostic representation has an additional advan-
tage: in other less known music notations, such as the
early neumatic and mensural notations, or in the case of
non-Western notations, it might be easier to transcribe
the manuscript through two stages: one stage performed
by any non-musical expert that only needs to identify
pictograms (agnostic representation), and a second stage
where a musicologist, maybe aided by a computer, inter-
prets them to yield a semantic encoding.

4. NEURAL END-TO-END APPROACH FOR
OPTICAL MUSIC RECOGNITION

As introduced above, some previous work have proved that
it is possible to successfully accomplish the recognition of
monodic staves in an end-to-end approach by using neural
networks [8]. This section contains a brief description of
such framework.

A single-voice monophonic staff is assumed to be the
basic unit; that is, a single monodic staff will be processed
at each instance. Formally, let S = {(x1, y1), (x2, y2), ...}
be our end-to-end application domain, where xi represents
a single staff image and yi is its corresponding sequence of
music symbols, each of which belongs to a fixed alphabet
set Σ.

Given an input staff image, the OMR problem can be
solved by retrieving its most likely sequence of music sym-
bols ŷ:

ŷ = arg max
y∈Σ∗

P (y|x) (1)

A graphical scheme of the considered framework is
given in Figure 2. The input image depicting a monodic
staff is fed into a Convolutional Recurrent Neural Network
(CRNN), which consists of two sequential parts: a con-
volutional block and a recurrent block. The convolutional
block is in charge of learning how to deal with the input
image [47]. In this way, the user is prevented from per-
forming a pre-processing of the image because this block is
able to learn adequate features from the training set. These
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Figure 2. Graphical scheme of the end-to-end neural approach considered.

extracted features are provided to the recurrent block [21],
producing the sequence of musical symbols that approxi-
mates Eq. 1.

Since both convolutional and recurrent blocks are con-
figured as feed-forward models, the training stage can be
carried out jointly. This scheme can be easily implemented
by connecting the output of the last layer of the convolu-
tional block with the input of the first layer of the recurrent
block, concatenating all the output channels of the convo-
lutional part into a single image. Then, columns of the
resulting image are treated as individual frames for the re-
current block.

The traditional training mechanisms for a CRNN need a
framewise expected output, where a frame is a fixed-width
vertical slice of the image. However, as the goal is to not
recognize frames but complete symbols, either semantic or
agnostic, and Camera-PriMuS does not contain sequences
of labelled frames, a Connectionist Temporal Classifica-
tion (CTC) loss function [22] has been used to solve this
mismatch.

Basically, CTC drives the CRNN to optimize its pa-
rameters so that it is likely to give the correct sequence
y given an input x. As optimizing this likelihood exhaus-
tively is computationally expensive, CTC performs a lo-
cal optimization using an Expectation-Maximization al-
gorithm similar to that used for training Hidden Markov
Models [35]. Note that CTC is only used for training,
while at the decoding stage the framewise CRNN output
can be straightforwardly decoded into a sequence of music
symbols (details are given below).

4.1 Implementation details

The specific organization of the neural model is given
in Table 2. As observed, variable-width single-channel
(grayscale) input image are rescaled at a fixed height of
128 pixels, without modifying their aspect ratio. This in-
put is processed through a convolutional block inspired
by a VGG network, a typical model in computer vision
tasks [42]: four convolutional layers with an incremental
number of filters and kernel sizes of 3 × 3, followed by
a 2 × 2 max-pool operator. In all cases, Batch Normal-
ization [27] and Rectified Linear Unit activations [19] are
considered.

Input(128×W × 1)

Convolutional block
Conv(32, 3× 3), MaxPooling(2× 2)

Conv(64, 3× 3), MaxPooling(2× 2)

Conv(128, 3× 3), MaxPooling(2× 1)

Conv(256, 3× 3), MaxPooling(2× 1)

Recurrent block
BLSTM(256)

BLSTM(256)

Dense(|Σ|+ 1)

Softmax()

Table 2. Instantiation of the CRNN used in this work,
consisting of 4 convolutional layers and 2 recurrent lay-
ers. Notation: Input(h × w × c) means an input image of
height h, width w and c channels; Conv(n, h×w) denotes
a convolution operator of n filters and kernel size of h×w;
MaxPooling(h×w) represents a down-sampling operation
of the dominating value within a window of size (h× w);
BLSTM(n) means a bi-directional Long Short-Term Mem-
ory unit of n neurons; Dense(n) denotes a dense layer of n
neurons; and Softmax() represents the softmax activation
function. Σ denotes the alphabet of musical symbols con-
sidered.

At the output of this block, two bidirectional recurrent
layers of 256 neurons, implemented as Long Short-Term
Memory (LSTM) units [26], try to convert the resulting
filtered image into a discrete sequence of musical sym-
bols that takes into account both the input sequence and
the modelling of the musical representation. Note that
each frame performs an independent classification, mod-
elled with a fully-connected layer with as many neurons as
the size of the alphabet plus 1 (a blank symbol necessary
for the CTC function). The activation of these neurons is
given by a softmax function, which allows interpreting the
output as a posterior probability over the alphabet of music
symbols [2].

The learning process is carried out by means of stochas-
tic gradient descent (SGD) [1], which modifies the CNN
parameters through back-propagation to minimize the
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CTC loss function. In this regard, the mini-batch size is
established to 16 samples per iteration. The learning rate
of the SGD is updated adaptively following the Adadelta
algorithm [46].

Once the network is trained, it is able to provide a pre-
diction in each frame of the input image. These predictions
must be post-processed to emit the actual sequence of pre-
dicted musical symbols. Thanks to training with the CTC
loss function, the final decoding can be performed greed-
ily [22]: when the symbol predicted by the network in a
frame is the same as the previous one, it is assumed that
they represent frames of the same symbol, and only one
symbol is concatenated to the final sequence. There are
two ways to indicate that a new symbol is predicted: either
the predicted symbol in a frame is different from the pre-
vious one, or the predicted symbol of a frame is the blank
symbol, which indicates that no symbol is actually found.

Thus, given an input image, a discrete musical symbol
sequence is obtained. Note that the only limitation is that
the output cannot contain more musical symbols than the
number of frames of the input image, which in our case is
highly unlikely to happen.

5. EXPERIMENTS

5.1 Experimental setup

Once introduced the Camera-PrIMuS dataset, and a model
able to learn the OMR task from it, some experiments have
been performed whose results may serve as a baseline to
which other works can be compared. 5

Currently, there is an open debate on which evaluation
metrics should be used in OMR [4]. This is especially
arguable because of the different points of view that the
use of its output has: it is not the same whether the inten-
tion of the OMR is to automatically play the content or to
archive it in a digital library. Here we are only interested in
the computational aspect itself. Hence, we shall consider
metrics focused on the symbol and sequence recognition,
avoiding any music-specific consideration, such as:

• Sequence Error Rate (ER) (%): ratio of incorrectly
predicted sequences (at least one error).

• Symbol Error Rate (SER) (%): the average number
of elementary editing operations (insertions, dele-
tions, or substitutions) needed to produce the refer-
ence sequence from the one predicted by the model,
normalized by its length.

Note that the length of the agnostic and semantic se-
quences are usually different because they are encoding
different aspects of the same source. Therefore, the com-
parison in terms of Symbol Error Rate, in spite of being
normalized, may not be totally fair. On the other hand,
the Sequence Error Rate allows a more reliable compar-
ison because it only takes into account the perfectly pre-

5 For the sake of reproducible research, source code and trained
models are available at https://github.com/calvozaragoza/
tf-deep-omr.

dicted sequences (in which case, the outputs in different
representations are equivalent).

5.2 Performance

We show in this section the results obtained in our experi-
ments. We consider three different data partitions: 80% of
the data is used as training set, to optimize the network ac-
cording to the CTC loss function; 10% of the data is used
as validation set, which is used to decide when to stop the
optimization to prevent over-fitting; the evaluation results
are computed with the remaining 10%, which constitutes
the test partition.

In order to study the ability of the system to learn in
different situations, four scenarios have been evaluated de-
pending upon which set of images are used for training and
testing, either the clean original files or the synthetically
distorted ones. We report in Table 3 the whole evaluation.

The results show that the system, trained with the ap-
propriate set, is able to correctly recognize in almost all
scenarios, with error rates at symbol level below 2%. In
an ideal scenario, where only clean images are given, the
semantic encoding outperforms the agnostic one. The be-
haviour is different when distorted images are used, for
which the agnostic representations behave much better.
What seems most interesting from these results is the abil-
ity of the system to learn from distorted images and cor-
rectly classify both distorted and clean versions. This leads
us to conclude that the networks are being able to abstract
the content from the image condition. As a qualitative ex-
ample of the performance attained, the sample of Figure 1
was correctly classified using both encodings.

In an informal analysis, we observed that the most re-
peated error, both in agnostic and semantic encodings, is
the incorrect classification of the ending bar line. In ad-
dition to it, no other repeating mistake has been found.
Also, we checked that most of the wrongly recognized
samples only failed at 1 symbol. Another interesting fea-
ture to emphasize is that we observed an independence of
the mistakes with respect to the length of the ground-truth
sequence, i.e., errors are not accumulated and, therefore,
the number of mistakes do not necessarily increase with
longer sequences. Figures 3 and 4 depict two examples of
wrongly recognized sequences.

6. CONCLUSIONS

The suitability of a neural network approach to solve the
OMR task in an end-to-end fashion has been evaluated
on realistic single-staff printed monodic scores from a
real world dataset. To this end, the new Camera-PrIMuS
dataset has been introduced, containing 87 678 images syn-
thetically distorted to resemble a camera-based scenario.

The neural network model considered consists of a
CRNN, in which convolutions process the input image
and recurrent blocks deal with the sequential nature of the
problem. In order to train this model directly using symbol
sequences, instead of fine-grained annotated images, the
so-called CTC loss function has been utilized.
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Evaluation
Clean Distortions

Agnostic Semantic Agnostic Semantic

Training
Clean 1.1 / 21.7 0.8 / 12.5 44.3 / 94.1 59.7 / 97.9

Distortions 1.4 / 24.9 3.3 / 44.6 1.6 / 24.7 3.4 / 38.3

Table 3. Average SER (%) / ER (%) reported in all possible combinations of training and evaluation conditions.

(a) Distorted image file of Incipit RISM ID no. 000104754, Incipit 1.1.1 Achille in Sciro. Excerpts. Niccolò
Jommelli.

clef-G2, keySignature-DM, timeSignature-C, note-D5 half, tie, note-D5 quarter., note-F#4 eighth, barline, note-G4 half,
note-F#4 quarter, rest-quarter, barline, note-B4 eighth, rest-eighth, note-A4 eighth, rest-eighth, note-B4 half, [rest-eighth-L3]
note-E5 eighth., note-C#5 sixteenth, barline, note-F#5 half, tie, note-F#5 quarter., note-F#4 eighth,
barline, note-G4 half, note-F#4 quarter, rest-quarter, barline

(b) Semantic encoding network output. The symbol in italics should be classified as note-B4 eighth, and the bold symbol between brackets has
been omitted by the network.

clef.G-L2, accidental.sharp-L5, accidental.sharp-S3, metersign.C-L3, note.half-L4, slur.start-L4, slur.end-L4,
note.quarter-L4, dot-S4, note.eighth-S1, barline-L1, note.half-L2, note.quarter-S1, rest.quarter-L3, barline-L1,
note.eighth-L3, rest.eighth-L3, note.eighth-S2, rest.eighth-L3, fermata.above-S6, note.quarter-L3, note.beamedRight1-S4,
dot-S4, note.beamedLeft2-S3, barline-L1, note.half-L5, slur.start-L5, slur.end-L5, note.quarter-L5, dot-S5, note.eighth-S1,
barline-L1, note.half-L2, note.quarter-S1, rest.quarter-L3, barline-L1

(c) Agnostic encoding network output. Wrong symbols have been highlighted in italic face symbols. They should be note.eighth-L3 and
rest.eighth-L3, respectively.

Figure 3. This incipit contains distortions that are very hard to recognize, such as the scratch at the beginning of the staff
and some overlapped ink. Despite these difficulties, just two symbols in each encoding have been wrongly recognized.

(a) Distorted image file of Incipit RISM ID no. 000100170, Incipit 1.1.1 Trios. Joseph Haydn.

clef-G2, keySignature-FM, timeSignature-C, note-F4 quarter, rest-quarter, rest-eighth, note-A4 sixteenth, note-Bb4 sixteenth, note-C5 eighth,
note-C5 eighth, barline, note-C5 eighth, note-F5 eighth, note-A4 eighth, note-A4 eighth, note-A4 eighth, note-C5 eighth, note-F4 eighth,
note-F4 eighth, barline, note-E4 eighth, note-D4 eighth, note-D4 quarter, tie, note-D4 eighth, note-C5 sixteenth, note-Bb4 sixteenth,
note-A4 sixteenth, note-G4 sixteenth, note-F4 sixteenth, note-D4 thirty second, barline

(b) Semantic encoding network output. The italic font face symbol should be classified as a sixteenth note.

clef.G-L2, accidental.flat-L3, metersign.C-L3, note.quarter-S1, rest.quarter-L3, rest.eighth-L3, note.beamedRight2-S2, note.beamedLeft2-L3,
note.beamedRight1-S3, note.beamedLeft1-S3, barline-L1, note.beamedRight1-S3, note.beamedBoth1-L5, note.beamedBoth1-S2, note.beamedLeft1-S2,
note.beamedRight1-S2, note.beamedBoth1-S3, note.beamedBoth1-S1, note.beamedLeft1-S1, barline-L1, note.beamedRight1-L1, note.beamedLeft1-S0,
note.quarter-S0, slur.start-S0, slur.end-S0, note.beamedRight1-S0, note.beamedBoth2-S3, note.beamedLeft2-L3, note.beamedRight2-S2,
note.beamedBoth2-L2, note.beamedBoth2-S1, note.beamedLeft2-S0, barline-L1

(c) Agnostic encoding network output. All symbols are correctly detected.

Figure 4. Incipit correctly recognized using the agnostic representation but with one mistake using the semantic encoding.

Our experiments have reflected the correct construction
and the usefulness of the corpus. The end-to-end neural
optical recognition model has demonstrated its ability to
learn from adverse conditions and to correctly classify both
perfectly clean images and imperfect pictures. In regard to
the output encoding, the agnostic representation has been
shown to be more robust against the image distortions,
while semantic encoding maintains a fair performance.

Given these promising results, from the musical point of
view, the next steps seem obvious: first, we would like to
complete the catalogue of symbols, thus including chords
and multiple-voice polyphonic staves. In the long-term, the
intention is to consider fully-fledged real piano or orches-
tral scores. Concerning the most technical aspect, it would
be interesting to study a multi-prediction model that uses

all the different representations at the same time. Given the
complementarity of the agnostic and semantic representa-
tions, it is feasible to think of establishing a synergy that
ends up with better results in all senses.

7. ACKNOWLEDGEMENT

This work was partially supported by the Spanish Ministe-
rio de Economı́a, Industria y Competitividad through His-
paMus project (TIN2017-86576-R) and Juan de la Cierva
- Formación grant (Ref. FJCI-2016-27873), and the Social
Sciences and Humanities Research Council of Canada.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 253



8. REFERENCES

[1] L. Bottou. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

[2] H. Bourlard and C. Wellekens. Links between markov
models and multilayer perceptrons. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
12(11):1167–1178, 1990.

[3] B. Brook. The Simplified ’Plaine and Easie Code Sys-
tem’ for Notating Music: A Proposal for Interna-
tional Adoption. Fontes Artis Musicae, 12(2-3):156–
160, 1965.

[4] D. Byrd and J. G. Simonsen. Towards a Standard
Testbed for Optical Music Recognition: Definitions,
Metrics, and Page Images. Journal of New Music Re-
search, 44(3):169–195, 2015.

[5] J. Calvo-Zaragoza, F. J. Castellanos, G. Vigliensoni,
and I. Fujinaga. Deep neural networks for document
processing of music score images. Applied Sciences,
8(5):654–674, 2018.

[6] J. Calvo-Zaragoza, A.-J. Gallego, and A. Pertusa.
Recognition of handwritten music symbols with con-
volutional neural codes. In 14th IAPR International
Conference on Document Analysis and Recognition,
pages 691–696, 2017.

[7] J. Calvo-Zaragoza, A. Pertusa, and J. Oncina. Staff-
line detection and removal using a convolutional neural
network. Machine Vision & Applications, 28(5-6):665–
674, 2017.

[8] J. Calvo-Zaragoza and D. Rizo. End-to-end neural op-
tical music recognition of monophonic scores. Applied
Sciences, 8(4):606–629, 2018.

[9] J. Calvo-Zaragoza, A. H. Toselli, and E. Vidal. Early
handwritten music recognition with hidden markov
models. In 15th International Conference on Frontiers
in Handwriting Recognition, pages 319–324, 2016.

[10] J. Calvo-Zaragoza, G. Vigliensoni, and I. Fujinaga.
Pixel-wise binarization of musical documents with
convolutional neural networks. In Fifteenth IAPR Inter-
national Conference on Machine Vision Applications,
pages 362–365, 2017.

[11] V. B. Campos, J. Calvo-Zaragoza, A. H. Toselli, and E.
Vidal-Ruiz. Sheet music statistical layout analysis. In
15th International Conference on Frontiers in Hand-
writing Recognition, pages 313–318, 2016.

[12] L. Chen, E. Stolterman, and C. Raphael. Human-
Interactive Optical Music Recognition. In 17th Inter-
national Society for Music Information Retrieval Con-
ference, pages 647–653, 2016.

[13] B. Couasnon. Dmos: A generic document recognition
method, application to an automatic generator of musi-
cal scores, mathematical formulae and table structures
recognition systems. In 6th International Conference
on Document Analysis and Recognition, pages 215–
220, 2001.

[14] C. Dalitz, M. Droettboom, B. Pranzas, and I. Fujinaga.
A comparative study of staff removal algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 30(5):753–766, 2008.

[15] J. Dos Santos Cardoso, A. Capela, A. Rebelo, C.
Guedes, and J. Pinto da Costa. Staff Detection with
Stable Paths. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(6):1134–1139, 2009.

[16] H. Fahmy and D. Blostein. A graph grammar program-
ming style for recognition of music notation. Machine
Vision and Applications, 6(2-3):83–99, March 1993.

[17] A. Gallego and J. Calvo-Zaragoza. Staff-line removal
with selectional auto-encoders. Expert Systems with
Applications, 89:138–48, 2017.
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ABSTRACT

The document analysis of music score images is a key step
in the development of successful Optical Music Recog-
nition systems. The current state of the art considers
the use of deep neural networks trained to classify ev-
ery pixel of the image according to the image layer it be-
longs to. This process, however, involves a high compu-
tational cost that prevents its use in interactive machine
learning scenarios. In this paper, we propose the use of
a set of deep selectional auto-encoders, implemented as
fully-convolutional networks, to perform image-to-image
categorizations. This strategy retains the advantages of us-
ing deep neural networks, which have demonstrated their
ability to perform this task, while dramatically increas-
ing the efficiency by processing a large number of pix-
els in a single step. The results of an experiment per-
formed with a set of high-resolution images taken from
Medieval manuscripts successfully validate this approach,
with a similar accuracy to that of the state of the art but with
a computational time orders of magnitude smaller, making
this approach appropriate for being used in interactive ap-
plications.

1. INTRODUCTION

The Optical Music Recognition (OMR) is a computational
process that reads musical notation from images, with the
aim of automatically exporting the content to a structured
format [1]. Given the complexity of the task, the process
is usually divided into different stages, the first of which
is the document analysis. This stage consists of detecting
and categorizing the different sources of information that
appear in images of musical scores—e.g., classifying each
pixel into one of four possible categories: background,
staff line, musical note, or lyrics—and it is important for
creating robust OMR systems [29]. That is, if subsequent

c© Francisco J. Castellanos, Jorge Calvo-Zaragoza, Gabriel
Vigliensoni, Ichiro Fujinaga. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Fran-
cisco J. Castellanos, Jorge Calvo-Zaragoza, Gabriel Vigliensoni, Ichiro
Fujinaga. “Document Analysis of Music Score Images with Selectional
Auto-Encoders”, 19th International Society for Music Information Re-
trieval Conference, Paris, France, 2018.

stages receive the image in a reliable state, systems tend to
generalize more easily.

Many researchers have proposed different algorithms
to deal with specific steps within the document process-
ing stage of the Optical Music Recognition (OMR) work-
flow. Traditionally, these strategies consist of heuristic
workflows specifically designed for the scores at hand, ex-
ploiting specific details of the images to improve the per-
formance of the detection. Music documents, however, es-
pecially from the Medieval and Renaissance era, come in
a wide variety of notational styles and formats, resulting
in a heterogeneous collection. Therefore, the previous ap-
proaches may be beneficial in the short term but they do not
scale well [4, 6]. In many cases, a workflow must be de-
veloped anew for dealing with manuscripts with different
notation, from a disparate time period, or with a differing
level of image degradation.

Recent work has demonstrated the feasibility of using
machine learning for document analysis [21, 25, 36]. In
comparison to systems with hand-crafted heuristic rules,
the advantage of using machine learning-based techniques
lies in their generalizability, only needing labeled exam-
ples to build a new classification model [12]. In addition
to this important advantage, the use of these techniques,
in particular Convolutional Neural Networks (CNN), has
proven to outperform the traditional strategies considered
for document analysis in the OMR domain [6]. The main
idea behind this approach is training a CNN to distinguish
the category to which each pixel of the image belongs.
That is, given a pixel of the image, and taking into ac-
count the pixels of its neighborhood, a model is trained
to predict the category (e.g., note, staff line, and lyrics). In
this way, the document analysis process consists of classi-
fying every single pixel of the image into its actual cate-
gory, thus separating the different layers of the document
accordingly. Given that the classification is performed at
pixel level, thin elements such as staff lines, note stems, as
well as small artifacts, can be properly detected.

The problem with the aforementioned process is that it
entails a high computational cost because it needs to clas-
sify every single pixel of an image. Since OMR is a pro-
cess that lends itself to be used interactively [8, 9], there is
a need of accelerating the processing of documents with-
out sacrificing the classification quality, in order to present
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a user-friendly environment.
We present in this paper a new framework based on ma-

chine learning that replaces the current pixel-wise model
by a patch-wise model. In this approach, we process a
complete sub-image (patch) in a single step, making pre-
dictions of many pixels simultaneously. This can be car-
ried out by means of neural networks that learns how to
compute an image-to-image prediction.

We evaluate the new approach over a set of high-
resolution images taken from Medieval music manuscripts.
The patch-wise model attains a similar accuracy to that of
the state of the art but reducing the computational cost by
several orders of magnitude.

The rest of the paper is organized as follows. We give a
brief review of related work in Section 2. A formalization
of the task, as well as the proposed solution, is detailed in
Section 3. We empirically demonstrate in Section 4 that
our model drastically reduces the computational time by
orders of magnitude without the classification quality. Fi-
nally, we summarize the main conclusions of the present
work in Section 5, pointing out some potential future work.

2. BACKGROUND

The classical workflow for OMR considers an initial doc-
ument analysis stage [29], to process the input image be-
fore proceeding to the automatic recognition of the content.
This first stage is crucial to increase the robustness of the
system and to reduce the complexity of subsequent stages
by providing correctly segmented images.

A common first step within the document analysis stage
is binarization, in which background and foreground layers
are separated. In addition to typical document image bina-
rization techniques [15,19,30], some music-specific docu-
ment binarization techniques have been proposed [28, 35].
Next, if the lyrics are part of the musical content, they need
to be recognized as well. This is why there have been
some proposals to separate the staves and the text [3, 7].
Once staff sections have been isolated, staff-line removal
may take place. Although staff lines are necessary for mu-
sic interpretation, most OMR workflows are based on de-
tecting and removing the staff lines to perform connected
component analysis on the remaining musical symbols.
A comprehensive review and comparison of the first at-
tempts for staff-line removal can be consulted in Dalitz et
al. [10], and new techniques are being continuously devel-
oped [11, 13, 16]. In addition to these stages, we also find
very specific processes that depend on the specific char-
acteristics of the manuscript of interest, such as measure
isolation [33], page-border removal [26], or frontispiece
detection in Medieval manuscripts [31].

Recently, the full document processing of music score
images has been implemented using CNNs, which learn
to classify each pixel of the image according to its cate-
gory [6]. This approach allows the analysis of entire doc-
uments with a generic method to any type of manuscript
as long as there is appropriate training data. In addition to
these advantages, this approach has proven to outperform
the traditional strategies, and so it can be considered the

state of the art in document analysis of music score im-
ages.

However, this process takes a long time because it has
to perform an independent classification for each pixel of
the image. Since images used are usually at high resolu-
tion involving millions of pixels, the resulting long com-
putational time prevents its use in an interactive machine
learning environment, where the user expects quick re-
sponses from the machine learning process while training
it. Hence, in this work, we propose an image-to-image ap-
proach using neural networks, with the aim of maintaining
the advantages of the state of the art but dramatically re-
ducing the temporal cost.

3. FRAMEWORK

Formally, we define the task of document analysis of mu-
sic score images as the process of assigning a category to
each pixel of the image based on the layer of information to
which it belongs. Specifically, we instantiate the task to the
set of categories {background, note, staff line,
text}. The reasoning behind this set is that it consist of
the layers that lead to a general analysis of the image for
the purpose of OMR, given that: musical notes are essen-
tial to recover the musical information; staff lines are nec-
essary to divide the score into staves, as well as to estimate
the pitch of the notes; text is also key for music interpreta-
tion but its information must be recognized with different
algorithms (i.e., Optical Character Recognition); the rest
of pixels can be considered as background. However, we
show below that the chosen formulation can be extended
to any other type of category set provided that sufficient
labeled data is available.

As mentioned above, the aim of this work is to alleviate
the computational cost involved in a pixel-wise classifica-
tion approach. We address the issue here by using a set of
auto-encoders, which learn an image-to-image mapping.
Within our context, this means that the image can be pro-
cessed in one step at a higher order of efficiency.

Conventional auto-encoders consist of feed-forward
neural networks for which the input and output must be
exactly the same. The network typically consists of two
stages that learn the functions f and g, which are called en-
coder and decoder functions, respectively. Formally speak-
ing, given an input x, the network must minimize a di-
vergence L(x, g(f(x))). An auto-encoder might initially
appear to be pointless because it is trained to learn the
identity function. Nevertheless, the encoder function f is
typically forced to produce a representation with a lower
dimensionality than the input. The encoder function there-
fore provides a meaningful compact representation of the
input, which might be of great interest for feature learning
or dimensionality reduction [37].

In our case, we modify this traditional behavior so that
the model specializes in selecting the pixels that belong to
each of the elements from the category set. This type of
model is referred to as Selectional Auto-Encoder (SAE)
[13]. An SAE is trained to perform a function such that
s : R(w×h) → [0, 1](w×h). In other words, it learns a
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Figure 1. Graphical scheme of the SAE-based 1-vs-all approach for document analysis of music scores images. The outputs
of the individual SAE are represented as grayscale masks in which the white color represents the maximum selectional
value. Coloring for the final combination: background in white, music symbols in black, staff lines in blue, and text in red.

binary map over a w × h image that preserves the input
shape. The predicted value for each pixel indicates its se-
lection level, representing 1 as the maximum. Then, the
network is trained to minimize the divergence between a
binary image in which only the pixels that belong to the
category of interest are activated.

Actually, an SAE represents a two-class categorizer
with one class represented by the value 0 and another rep-
resented by the value 1. To perform a multi-class document
analysis like the one formalized above, we follow a 1-vs-all
strategy, much in the same way as other binary classifiers
such as the Support Vector Machine [20]. That is, we train
a different SAE focused on each category, assuming the
category of interest as 1 and the remaining ones as 0. At
the time of inference, the outputs of all the trained SAEs
are combined to obtain a global analysis of the document.

We find two important advantages of predicting each
layer separately. On the one hand, the extraction of a spe-
cific layer only requires the ground-truth data of the tar-
geted category, thus reducing the effort involved in prepar-
ing the training set if only a subset of the categories is pur-
sued. On the other hand, the predictions provided by each
SAE could be processed separately—e.g., to apply differ-
ent thresholds to each result or to resolve inconsistencies
when many predictions disagree about a specific region—
which might be interesting depending on the way the sub-
sequent stages of the OMR workflow operate.

Below we discuss more details about the actual imple-
mentation of the described framework for the present work.

3.1 Implementation details

An SAE can be configured in many ways. We specifically
consider a Fully-Convolutional Network (FCN) topology,
given the good results obtained by this type of neural net-
works in this task [32], and in general for any image-
related task [23].

An FCN is a type of neural network that is entirely
based on filters (i.e., convolutions). These filters are con-
figured in a hierarchy of layers that provide multiple rep-
resentations from the input image with different levels of
abstraction: while the first layers emphasize details of the
image, the last layers focus on high-level entities [22]. The
parameters of the convolutions are typically optimized by
backpropagation [24] through a training set, with the ob-
jective of generalizing to unseen data.

Consequently, the hierarchy of layers of our SAE con-
sists of a series of convolutional plus pooling layers, until
an intermediate layer is attained. As these layers are ap-
plied, filters are able to relate parts of the image that were
initially far apart. Then, it follows a series of convolu-
tional plus up-sampling layers that reconstruct the image
up to the same input size copying neighboring pixels. The
last layer consists of a set of neurons with sigmoid activa-
tion that predict a value in the range of [0, 1], depending on
the selectional level predicted for the corresponding input
pixel. This selectional level is expected to approach 1 as
the model is more confident that the pixel belongs to the
category of interest. This specific configuration needs to
be tweaked for the problem at issue, and so we will per-
form some preliminary experiments to evaluate different
options.

The training stage consists of providing the SAE with
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Corpus Salzinnes Einsiedeln

Pages 10 10

Avg. height and width

per page (in pixels)
5 100× 3 200 5 550× 3 650

%

Background 80.6 79.1

Note 11.2 10.0

Staff line 4.5 6.9

Text 3.7 4.0

Table 1. Overview of the corpus used in our experiments:
number of pages, average size per page, and class distribu-
tion (in %).

examples of images and their corresponding ground truth,
that is, binary maps over the pixels that belong to the cat-
egory of interest. The cross-entropy loss function between
each output activation and its expected activation is com-
puted. Then, filters are tuned using stochastic gradient de-
scent optimization [2] with a mini-batch size of 16 and the
adaptive learning rate strategy proposed by Zeiler [38].

Once all the corresponding SAEs for the categories
considered in this work (SAEbackground, SAEnote, SAEstaff,
SAEtext) are trained, they can be used to perform the doc-
ument analysis process. In order to compute a single cat-
egory for each pixel, we select the category whose SAE
retrieves the highest selection value. A graphical scheme
of this operation is depicted in Figure 1.

Given that our SAE is configured as a fully-
convolutional model (i.e., without any dense layer), the
input and the output layers can be of an arbitrary size.
In practice, however, processing a high-resolution musi-
cal score has a high memory consumption. This is why in
our case we need to divide the input music score into equal
patches of 256×256 pixels, which was the largest size fea-
sible with our computational resources. Theoretically, this
limitation should not affect the performance of the mod-
els except for the case of the edges of the input patches.
This can be palliated by considering overlap at the time
of splitting the input image, and ignoring the edges of the
predictions made.

4. EXPERIMENTS

4.1 Experimental setup

For the evaluation of our approach, we consider high-
resolution image scans of two ancient music manuscripts.
The first corpus is a subset of 10 pages of the Salzinnes
Antiphonal manuscript (CDM-Hsmu M2149.14), 1 music
score dated 1554–5. The second corpus is 10 pages of the
Einsiedeln, Stiftsbibliothek, Codex 611(89), from 1314. 2

Table 1 gives an overview of this corpora with some of
their specific features. For our experiments, the images
have been considered in their grayscale format.

1 https://cantus.simssa.ca/manuscript/133/
2 http://www.e-codices.unifr.ch/en/sbe/0611/

The ground-truth data was created manually by labeling
pixels into the four categories mentioned above. Although
in this work we circumscribe the experiments to corpora
from Medieval music manuscripts, we believe that their
difficulty and wealth of information (at the image level) al-
lows us to generalize the conclusions to any type of music
score image.

In order to provide a more reliable assessment, we fol-
low a corpus-wise 5-fold cross validation scheme. In each
iteration of each corpus, 2 complete pages—not necessar-
ily consecutive ones—are used for test evaluation, 2 pages
are used as validation, and 6 pages for training the SAE
models. The reported results will represent averages over
these 5 independent evaluation processes. It be should
noted that the experiments in both corpora have been per-
formed individually, since in the context of machine learn-
ing, it could be assumed that the samples belong to the
same domain. Despite this assumption, future research
aims to expand the experimental setup to include more re-
alistic scenario with cross-manuscript experiments.

As can be observed, the distribution of each class is
highly biased, background being the most represented
class. Given this distribution, we consider appropriate met-
rics for such imbalanced datasets. For instance, the F1 typ-
ically represents a fair metric in these scenarios. In a two-
class classification problem, this measure can be computed
as

F1 =
2 · TP

2 · TP + FP + FN
, (1)

where True Positive (TP) stands for the correctly classi-
fied elements of the relevant class, False Positive (FP) rep-
resents the misclassified elements from the relevant class,
and False Negative (FN) stands for the misclassified ele-
ments of non-relevant class.

To compute single values encompassing all possible
categories, this metric can be reformulated into macro F1

[27], which is computed as the average of all class-wise
metrics.

4.2 Network selection

In this section we carry out a preliminary study to evalu-
ate how some of the parameters of the SAE configuration
affect the accuracy of the classification. It is worth men-
tioning that the different configurations may behave dif-
ferently according to the category of interest (background,
text, note, or staff). In this regard, however, we assume
for this study a general assessment taking into account all
classes simultaneously.

There exist a huge number of possibilities for establish-
ing the organization of the neural model [18]. In order to
reduce the search, we restrict ourselves to evaluate only
the most interesting hyper-parameterization, namely the
depth of the encoding/decoding blocks and whether encod-
ing and decoding layer actually perform down-sampling
and up-sampling operators. The latter points to an inter-
esting issue: performing down- and up-sampling opera-
tions allows intermediate filters to focus on different levels
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Down/Up-Sampling

Depth No Yes

1 90.0 90.7

2 91.5 94.9

3 93.3 96.0

4 94.2 95.4

Table 2. Macro average F1 (%) of the 5-fold cross-
validation over the validation partitions, with respect to the
depth of the encoding/decoding layers and whether or not
considering sampling operators.

of abstraction within the image, also reducing the intrin-
sic complexity—since the image in the intermediate lay-
ers would be smaller. However, keeping the original size
throughout the process avoids having to learn to recon-
struct the image, at the cost of losing the benefits discussed
above for the opposite case.

The rest of the parameters are fixed manually, based on
informal testing, as follows: the number of filters per con-
volution are set to 128 and the size of the convolutional
kernels to 5 × 5. Also, all intermediate convolutional fil-
ters use Rectified Linear Unit (ReLU) activations [17].

Table 2 shows the macro average F1 attained by each
different SAE configuration on the validation sets.

Concerning the depth of the encoding/decoding blocks,
a progress towards an upward trend is observed. In the case
of using sampling operations, this trend finds a peak at 3
layers. In the opposite case (i.e., with no sampling), the
improvements are more subtle and the peak is not reached
within the number of layers considered. Due to computa-
tional resources, we were not able to carry out experiments
with more layers, so it is not possible to know when the
peak would be reached.

On the other hand, regardless of the number of layers
chosen, we can observe that there is a clear tendency in
the advantage of doing down- and up-sampling operations,
since the latter case is always better than its analog for the
same depth in the experiments carried out.

According to these results, the final SAE configuration
for all the categories is shown in Table 3.

4.3 Results

In this section we analyze in detail the performance that
was attained using the best SAE configuration of the pre-
vious section in comparison to the pixelwise CNN-based
approach, that currently represents the state of the art in
this task [5]. All experiments have been performed in
similar conditions on a general-purpose computer with the
following technical specifications: Intel(R) Core(TM) i7-
7700HQ CPU @2.8GHz×4, 32GB RAM, GTX1070 GPU
and Linux Mint 18.2 (64 bits) operating system. The code
has been written using Python language (v2.7) and Keras
framework.

Given that the objective of this paper is not only to mea-
sure the accuracy of the new model but also its efficiency,

Table 5 shows a comparison of both aspects in terms of
macro F1 and the approximated time needed to process a
document. Traditionally, the training cost is not taken into
account when evaluating these systems because the pro-
cess is usually performed offline. Note, however, that both
approaches involved a similar training cost in the order of
several hours on Graphical Processing Units.

Accuracy results show a visible difference between the
corpora considered. While results are closer to the opti-
mum in Salzinnes, both approaches seem to find more dif-
ficulties in Einsiedeln. However, this difference is not ob-
vious in a qualitative evaluation, as depicted in Table 4.

It can be observed that the SAE-based strategy gener-
ally obtains a higher F1 than that based on CNNs. Note,
however, that the objective of this experiment is not to
demonstrate that the SAE-based approach outperforms sig-
nificatively the state of the art, but to obtain results that can
be considered similar, which is clearly reported according
to these figures. On the other hand, the computation time
needed to process a complete manuscript page is drasti-
cally lower with the SAE, going from several hours to a
few minutes. This happens because the CNN approach
has to classify each pixel of the image, whereas the SAE
approach can make predictions of many pixels simultane-
ously (in our experiments, 256× 256). Obviously, the net-
work of the latter approach is more complex, but it clearly
compensates with respect to the temporal cost.

Thus, this comparison with the state of the art demon-
strates that the proposed approach allows obtaining a sim-
ilar performance when performing the document analysis,
with a radically lower computational cost, thus making an
important contribution to the field of OMR.

5. CONCLUSIONS

In this paper we have presented a machine-learning strat-
egy for the document analysis of music score images. The
strategy consists in training SAE, configured as convo-
lutional neural networks, that allow to extract the differ-
ent layers of information found in documents through an
image-to-image formulation.

In a preliminary study, we have determined some of
the parameters that lead to a better configuration of the
SAE. In particular, we have evaluated the depth of the en-
coder/decoder layers, as well as the relevance of whether
performing or not down- and up-sampling operations.
Generally, increasing the number of layers is beneficial, to
a certain extent, while sampling operators lead to a much
more effective network.

Although we did not exhaustively test the various pos-
sible network configurations for this first study, we have
shown that the proposed approach can achieve the accu-
racy similar to the state-of-the-art algorithms, and more
importantly, with an efficiency improvement of orders of
magnitude.

Our results represent the first step towards an interac-
tive scenario in which the user and the system can interact
to solve the OMR task. This scenario has already been de-
vised before [34]; however, our approach allows us to be
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Input Encoding Decoding Output

Conv(128,5,5,ReLU) Conv(128,5,5,ReLU)

MaxPool(2,2) UpSamp(2,2)

[0, 255]256×256 Conv(128,5,5,ReLU) Conv(128,5,5,ReLU) [0, 1]256×256

MaxPool(2,2) UpSamp(2,2)

Conv(128,5,5,ReLU) Conv(128,5,5,ReLU)

MaxPool(2,2) UpSamp(2,2)

Conv(1,5,5,Sigmoid)

Table 3. Detailed description of the selected SAE architecture, implemented as a FCN. Conv(f,h,w,a) stands for a convolu-
tion operator of f filters, with h×w pixel kernels with an a activation function; MaxPool(h,w) stands for the max-pooling
operator with a w × h kernel and stride; UpSamp(h,w) denotes an up-sampling operator of h rows and w columns; ReLU
and Sigmoid denote Rectifier Linear Unit and Sigmoid activations, respectively.

Original
Prediction

Result
Background Staff Note Text

Table 4. Qualitative examples of document analysis over selected patches of the corpora (Salzinnes, first row; Einsiedeln,
second row), depicting the original piece of the document along with the individual SAE predictions, and the resulting
analysis. The predictions of the individual SAE are represented as grayscale masks in which the white color represents the
maximum selectional value. Coloring for the final result: background in white, music symbols in black, staff lines in blue,
and text in red.

Strategy
Macro F1 Time per page

Salzinnes Einsiedeln

SAE 95.5 90.3 ∼ 1 minute

CNN 91.3 88.4 ∼ 6 hours

Table 5. Comparison of our SAE-based approach with
the state-of-the-art (CNN) performance taking into account
both accuracy and efficiency of the document analysis pro-
cess.

closer to real practice since the document analysis process-
ing stage no longer implies a bottleneck.

Nevertheless, the costly training process is still an ob-
stacle for this scenario in which models must re-trained
according to user’s corrections. Therefore, addressing this
matter is essential in future work. Among the possible op-
tions, we want to consider the use of pre-trained models
that can be adapted with few new samples and less de-
manding training procedures.

Also, we are especially interested in the aspect of cross-
manuscript adaptation. That is, how to exploit models

specifically trained for a manuscript in other manuscripts
with a different layout organization. In this way, the ini-
tial effort to obtain ground-truth data from the manuscript
at issue can be reduced. We believe that semi-supervised
learning algorithms could be of interest in this case, for
which the models learn to adapt to a new manuscript by
just providing them with new (unlabeled) images. This
can be performed by promoting convolutional filters that
are both useful for the classification task and invariant with
respect to the differences among manuscript types [14].
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[16] T. Géraud. A morphological method for music score
staff removal. In International Conference on Image
Processing, pages 2599–2603, 2014.

[17] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rec-
tifier neural networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, Fort Lauderdale, FL, pages 315–323, 2011.

[18] D. Graupe. Principles of Artificial Neural Networks.
World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 2nd edition, 2007.

[19] N. R. Howe. Document binarization with automatic
parameter tuning. International Journal on Document
Analysis and Recognition, 16(3):247–258, 2013.

[20] C.-W. Hsu and C.-J. Lin. A comparison of methods
for multiclass support vector machines. IEEE Trans-
actions on Neural Networks, 13(2):415–425, 2002.

[21] F. D. Julca-Aguilar and N. S. T. Hirata. Image oper-
ator learning coupled with CNN classification and its
application to staff line removal. In 14th IAPR Interna-
tional Conference on Document Analysis and Recogni-
tion, ICDAR 2017, Kyoto, Japan, pages 53–58, 2017.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural net-
works. In 26th Annual Conference on Neural Informa-
tion Processing Systems, pages 1106–1114, 2012.

[23] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[25] B. Moysset, C. Kermorvant, C. Wolf, and J. Louradour.
Paragraph text segmentation into lines with recurrent
neural networks. In 13th International Conference on
Document Analysis and Recognition, pages 456–460.
IEEE, 2015.

[26] Y. Ouyang, J. A. Burgoyne, L. Pugin, and I. Fujinaga.
A robust border detection algorithm with application
to medieval music manuscripts. In Proceedings of the
2009 International Computer Music Conference, pages
101–104, 2009.
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ABSTRACT

We propose modifications to the model structure and train-
ing procedure to a recently introduced Convolutional Neu-
ral Network for musical key classification. These modifi-
cations enable the network to learn a genre-independent
model that performs better than models trained for specific
music styles, which has not been the case in existing work.
We analyse this generalisation capability on three datasets
comprising distinct genres. We then evaluate the model
on a number of unseen data sets, and show its superior
performance compared to the state of the art. Finally, we
investigate the model’s performance on short excerpts of
audio. From these experiments, we conclude that models
need to consider the harmonic coherence of the whole piece
when classifying the local key of short segments of audio.

1. INTRODUCTION

The musical key is the highest-level harmonic representa-
tion in Western tonal music. It thus plays a central role in
understanding the semantic content of a piece. Such under-
standing drives not only theoretical analyses of music, but is
also relevant for modern music creators, who mix samples
from various different pieces that fit well harmonically into
a new composition. However, deriving the key of a musical
piece is a demanding task that only experts can perform. It
is thus impractical to annotate large music collections by
hand. Therefore, we need computational key classification
systems.

Most key classification systems (e.g. [9, 16, 17, 21]) con-
form to the same principle: they extract a time-frequency
representation of the audio, filter out nuisances, map this
representation to chroma vectors, and accumulate them
over time. The resulting feature vector is then compared to
template vectors for each key. The drawbacks of such ap-
proaches include that key templates differ for different mu-
sical genres [9] and favour one key mode over another [1].
This leads to key classification systems that perform well
only on the musical styles they were designed for. Although

© Filip Korzeniowski and Gerhard Widmer. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Filip Korzeniowski and Gerhard Widmer. “Genre-Agnostic
Key Classification With Convolutional Neural Networks”, 19th Interna-
tional Society for Music Information Retrieval Conference, Paris, France,
2018.

there are attempts to address these issues [2], ideally, we
would want a model that handles different kinds of input
autonomously, and does not need human intervention to e.g.
balance mode probabilities.

Data-driven methods bear the potential to meet this re-
quirement. Recently, an end-to-end neural-network-based
key classification model was introduced [14]. Although it
generalised better across musical genres than hand-crafted
approaches, it still achieved the best results when tuned
specifically for a musical style. In this paper, we present
modifications to the model structure and its training pro-
cedure that enable the model to learn a key classifier that
is agnostic to genre. Not only does it perform better than
the model proposed in [14] on all genres the latter is opti-
mised for; it does so not despite, but because it is trained
on various musical styles, instead of a specific one (see
Sec. 3.4).

2. METHOD

We build upon the same audio processing pipeline used
in [14], and input to the network a log-magnitude log-
frequency spectrogram (5 frames per second, frame size
8 192, sample rate 44 100 Hz, 24 bins per octave). We limit
the frequency range to the harmonically most relevant 65 Hz
to 2 100 Hz, as found in [12].

The network structure proposed in [14] was modelled
after typical processing pipelines used for key classification.
It features five convolutional layers of 5 × 5 kernels for
spectrogram processing, followed by a dense projection
into a frame-wise embedding space, which is then averaged
over time and classified using a softmax layer. All layers
except the last use the exponential-linear activation func-
tion [4] (ELU). The architecture, which we name KeyNet,
is summarised in Table 1a.

During training, the model is shown the complete spec-
trogram of a piece. Its weights are then adapted using
stochastic gradient descent to minimise the categorical
cross-entropy between the predicted key distribution and
the ground truth. We will refer to the KeyNet architecture,
when trained using full spectrograms, as KeyNet/F.

2.1 Adaptations of the Training Procedure

The outlined training scheme has two drawbacks. First, the
computation of a single update is expensive; the network
has to process the full spectrogram (e.g. 600×105 values for
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a two-minute piece), and keep intermediate results for back-
propagating the error. Training is thus slow and requires
much memory. Second, it keeps the variety of the data lower
than necessary, as the network sees the same spectrograms
at every epoch.

To circumvent these drawbacks, we show the network
only short snippets instead of the whole piece at train-
ing time (similar to random cropping in computer vision).
These snippets should be as short as possible to reduce com-
putation time, but have to be long enough to contain the
relevant information to determine the key of a piece. From
our datasets, we found 20 s to be sufficient (with the excep-
tion of classical music, which we need to treat differently,
due to the possibility of extended periods of modulation—
see Sec. 3.1 below). Each time the network is presented a
song, we cut a random 20 s snippet from the spectrogram.
The network thus sees a different variation of each song
every epoch.

During testing, the network processes the whole piece.
This gives better results than when using only a snippet.
Since we do not have to store intermediate results and pro-
cess each piece many times as in training, memory space
and run time are not an issue. We will refer to KeyNet
models trained using spectrogram snippets as KeyNet/S.

We expect this modification to have the following effects.
a) Back-propagation will be faster and require less memory,
because the network sees shorter snippets; we can thus
train faster, and process larger models. b) The network
will be less prone to over-fitting, since it almost never sees
the same training input; we expect the model to generalise
better. c) The network will be forced to find evidence for a
key in each excerpt of the training pieces, instead of relying
on parts where the key is more obvious; by asking more of
the model, we expect it to pick up more subtle relationships
between the audio and its key.

2.2 Adaptations of the Model Structure

The KeyNet architecture uses a dense layer to project the
processed spectrogram into a key embedding space. In
its original formulation, which uses an embedding space
with 48 dimensions and 8 feature maps in the convolutional
layers, this projection accounts for 65 % of the network’s
parameters. Dense layers are also more prone to over-fitting
than convolutional layers.

We thus propose to use a network architecture that does
away with dense layers, and relies on convolutions and
pooling only. At the same time, we move away from mod-
elling the network based on traditional key classification
methods—recall that the components of KeyNet were de-
signed to correspond to components in typical key classi-
fication pipelines—and instead use a general network ar-
chitecture for classification, based on the all-convolutional
net [19]. The new architecture is summarised in Table 1b,
and will be referred to as AllConv. As with KeyNet/S, we
will train this architecture only with the snippet method.

We expect this change to improve results and generalisa-
tion because a) convolutional layers over-fit less than dense
layers; b) given the same number of parameters, deeper

(a) KeyNet Architecture

Layer Type FMaps Params

Input
Conv-ELU Nf 5× 5

Conv-ELU Nf 5× 5

Conv-ELU Nf 5× 5

Conv-ELU Nf 5× 5

Conv-ELU Nf 5× 5

Dense-ELU 2 ·Nf

Pool-Time Avg.
Dense-Softmax 24

(b) AllConv Architecture

Layer Type FMaps Params

Input
Conv-ELU Nf 5× 5
Conv-ELU Nf 3× 3
Pool-Max 2× 2

Conv-ELU 2Nf 3× 3
Conv-ELU 2Nf 3× 3
Pool-Max 2× 2

Conv-ELU 4Nf 3× 3
Conv-ELU 4Nf 3× 3
Pool-Max 2× 2

Conv-ELU 8Nf 3× 3

Conv-ELU 8Nf 3× 3

Conv-ELU 24 1× 1
Pool-Global Avg.
Softmax

Table 1. Neural Network architectures. Nf is a parameter
that controls the model complexity. Horizontal lines denote
dropout layers [20]. Here, dropout is applied on complete
feature maps, not individual units. Each convolution is
followed by batch normalisation [11]. FMaps indicates the
number of feature maps, while Params the parameters of
the layer (kernel size, pool size, or number of units).

networks are more expressive than shallower ones [8, 15];
c) comparable architectures have shown to perform well in
other audio-related tasks [7, 13].

3. EXPERIMENTS

We first evaluate how the proposed modifications affect
the key classification performance in Sec. 3.3. Then, we
analyse how the number and genre of training data influence
results in Sec. 3.4.

3.1 Data

Since we are interested in how well the models generalise
across different genres, we use datasets that encompass
three distinct musical styles. As in [14], we apply pitch
shifting in the range of -4 to +7 semitones to increase the
amount of training data.

Electronic Dance Music: Here, we use songs from the
GiantSteps MTG Key dataset 1 , collected by Ángel
Faraldo. It comprises 1486 distinct two-minute audio
previews from www.beatport.com, with key ground
truth for each excerpt. We only use excerpts labelled
with a single key and a high confidence (1077 pieces),
and split them into 80 % training and 20 % validation.
For testing, we use the GiantSteps Key Dataset 2 . It
comprises 604 two-minute audio previews from the
same source (but distinct from the training set).

1 https://github.com/GiantSteps/giantsteps-mtg-key-dataset
2 https://github.com/GiantSteps/giantsteps-key-dataset
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Pop/Rock Music: For this genre, we use the McGill Bill-
board dataset [3] 3 . It consists of 742 unique songs
sampled from the American Billboard charts between
1958 and 1991. We split these songs into subsets of
62.5% for training, 12.5% for validation, and 25% for
testing. We determine the global key for each song
using the procedure described in [14], which leaves
us with 625 songs with key annotations in total. The
exact division and key ground truths are available
online 4 .

Classical Music: To cover this genre, we collected 1504
(mostly piano) pieces from our internal database for
which we could derive the key from the piece’s title.
Classical pieces often modulate their key, but usually
start in the key denoted in the title. We thus only
use the first 30 s of each recording. Tracking key
modulations is left for future work. We then select
81 % for training, 9 % for validation, and 10 % for
testing.

3.2 Metrics

We adopt the standard evaluation score for Key Classifica-
tion as defined in the MIREX evaluation campaign 5 . It
goes beyond simple accuracy, as it considers harmonic sim-
ilarities between key classes. A prediction can fall into one
of the following categories:

Correct: if the tonic and the mode (major/minor) of pre-
diction and target correspond.

Fifth: if the tonic of the prediction is the fifth of the target
(or vice versa), and modes correspond.

Relative Minor/Major: if modes differ and either a) the
predicted mode is minor and the predicted tonic is 3
semitones below the target, or b) the predicted mode
is major and the predicted tonic is 3 semitones above
the target.

Parallel Minor/Major: if modes differ but the predicted
tonic matches the target.

Other: Prediction errors not caught by any category, i.e.
the most severe errors.

Then, a weighted score can be computed as w = rc + 0.5 ·
rf + 0.3 · rr + 0.2 · rp, where rc, rf , rr, and rp are the
ratios of the correct, fifth, relative minor/major, and parallel
minor/major, respectively. We will use this weighted score
for our comparisons.

3.3 Evaluation of the Adaptations

To evaluate the effect of our proposed adaptations, we train
the three setups (KeyNet/F, KeyNet/S, AllConv) with the
combined data of all datasets. We will consider validation
results in the first sets of experiments, and show results on

3 http://ddmal.music.mcgill.ca/research/billboard
4 http://www.cp.jku.at/people/korzeniowski/bb.zip
5 http://www.music-ir.org/mirex
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Figure 1. Average validation score over 10 runs for the
different model setups. Whiskers represent 95 % confi-
dence intervals computed by bootstrapping. Transparent
dots show results of the individual runs. We see that given
similar network sizes, the AllConv model performs best.
Also, using snippet training (KeyNet/S) improves results
compared to full spectrogram training (KeyNet/F), and en-
ables training larger networks.

the testing sets only for our analyses and final evaluations.
This way, we ensure that the final results are unbiased.

The capacity of a neural network depends not only on
the architecture, but also on its size. For a fair compari-
son, we evaluate each architecture with varying network
sizes. For the AllConv architecture, we select the num-
ber of feature maps Nf ∈ {2, 4, 8, 12, 16, 20, 24}. For
the KeyNet architecture, the network size depends on the
number of feature maps in the convolutional layers and
the size of the embedding space. For practical reasons,
we set the size of the embedding space to be 2Nf , and se-
lect Nf ∈ {8, 16, 24, 32, 40}. Note that if we train on full
spectrograms (KeyNet/F), we could not train networks with
Nf > 24 due to memory constraints. For each model, we
tried dropout probabilities of p ∈ {0.0, 0.1, 0.2}.

Figure 1 presents the results of the three model config-
urations. For each model and model capacity, we select
the best dropout probability based on the validation results.
The experiments show that both adaptations are beneficial.
Training with snippets instead of full spectrograms gives
better results at smaller network capacities and enables train-
ing of larger networks. The AllConv architecture achieves
even better results, regardless of its size.

We can quantify two reasons for this, which are conse-
quences of the expected benefits of the adaptations: better
generalization through increased data variety and the ab-
sence of dense layers, and better expressivity through deeper
architectures and by training the network on a more difficult
task. For the first, better generalisation, we compare the
average ratio of validation accuracy to training accuracy
for each of the models (higher indicates less over-fitting):
0.945, 0.969, and 0.982 for KeyNet/F, KeyNet/S, and All-
Conv, respectively. For the second, model expressiveness,
we compare the model’s capability to fit the training data in
terms of accuracy: 0.837, 0.858, and 0.907 for KeyNet/F,
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Figure 2. Average test scores over 10 runs for each architec-
ture (columns), split by dataset (rows). The smaller models
are on the left of each column. Colors indicate the training
data used: Bb stands for the Billboard dataset, Cm for the
classical music dataset, and Gs for the GiantSteps dataset.
Each row shows the results of runs where the training set
also contained the training data of the respective test set
genre (e.g. in the first row, we only see runs where McGill
Billboard data was included in training).

KeyNet/S, and AllConv, respectively. Stronger models that
generalise better achieve better results.

3.4 Influence of Training Data

We then want to see how the number and genre of the
datasets used for training affects results. To this end, we se-
lect the hyper-parameter settings for AllConv and KeyNet/S
that achieved the best average results in the previous exper-
iment: Nf = 20, p = 0.1 for AllConv, Nf = 40, p = 0.1
for KeyNet/S. Additionally, we consider smaller models
of each type, i.e. Nf = 8 for AllConv and Nf = 16
for KeyNet/S, both without dropout. Under these settings,
both architectures have a comparable number of parame-
ters. We train these models using all possible 1, 2, and
3-combinations of the datasets, and evaluate them on all
data. The results are shown in Fig. 2.

The main observations are: a) increasing model capacity
is more beneficial to the AllConv model than KeyNet/S, re-

gardless of dataset; b) adding capacity to the AllConv model
enables it to better deal with diverse data—the biggest gains
of additional parameters are achieved if the model is trained
on a combined dataset (pink line)—while this is not always
the case for KeyNet/S (see the Billboard results, where it
seems that adding classical music to the training set impairs
the performance of this model); c) given enough capacity
in the AllConv model, training using the complete data
performs better than (or almost equal to) fitting a specific
genre, while the opposite is the case for KeyNet/S, where
specialised models outperform the general ones. We thus
argue that the AllConv model not only copes better with
diverse training data, but that it leverages the diversity in
the training data to perform as well as it does.

4. EVALUATION

Motivated by the results above, the remainder of our analy-
sis focuses on the AllConv model. To thoroughly investigate
its performance and compare it to the state of the art, we
evaluate it on the following unseen datasets:

KeyFinder 6 : 1 000 songs from a variety of popular music
genres. Unfortunately, we have only the audio for
998 of the songs available.

Isophonics 7 : 180 songs by The Beatles, 19 songs by
Queen, and 18 songs by Zweieck. Since these songs
contain key modulations, we split them into single
key segments and retain only segments annotated
as major or minor keys, as was done for the 2017
MIREX evaluation campaign 8 .

Robbie Williams [6]: 65 songs by Robbie Williams,
which we also split into single key segments as out-
lined above.

Rock 9 [5]: 200 songs taken from Rolling Stone’s “500
Greatest Songs of All Time” list. As with the McGill
Billboard dataset, only the tonics are annotated. We
first split the songs according to the annotated ton-
ics, and then follow a similar procedure as described
in [14]: if more than 80 % of the tonic chords are in
either major or minor, the mode is set accordingly; if
there are no tonic chords in a segment, we consider
dominant chords in the same way.

We select the best AllConv model based on the validation
score over the compound data of Electronic, Pop/Rock and
Classical music. On average, models with Nf = 20 and
dropout probability of 0.1 performed best. However, the
best single model used Nf = 24 (see Fig. 1), and was
consequently chosen as final model.

In Table 2, we compare this model to other models pro-
posed in the academic literature. For each dataset, we
show the results of the best competing system, if available.

6 http://www.ibrahimshaath.co.uk/keyfinder/
7 http://isophonics.net/datasets
8 http://www.music-ir.org/mirex/wiki/2017:Audio Key Detection

Results
9 http://rockcorpus.midside.com/
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Dataset Model Weighted Correct Fifth Relative Parallel Other

GiantSteps AllConv 74.6 67.9 7.0 8.1 4.1 12.9
CK1 [14] 74.3 67.9 6.8 7.1 4.3 13.9

Billboard AllConv 85.1 79.9 5.6 4.2 6.2 4.2
CK2 [14] 83.9 77.1 9.0 4.9 4.2 4.9

Classical AllConv 96.6 95.2 1.4 1.4 1.4 0.7
- - - - - - -

KeyFinder AllConv 76.1 70.0 5.7 7.4 4.7 12.1
bgate [10] 72.4 65.0 8.6 6.5 5.4 14.4

Isophonics AllConv 82.5 76.3 7.6 5.4 3.7 7.1
BD1 [2] 75.1 66.0 13.6 5.1 3.9 9.2

R. Williams AllConv 81.2 72.4 10.8 10.3 1.3 5.2
HS1 [18] 77.1 68.8 10.1 9.0 3.2 9.0

Rock AllConv 74.3 69.3 6.5 1.7 6.0 16.5
- - - - - - -

Table 2. Evaluation results. Best results are in boldface.
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Figure 3. Distributions of the length of correctly and in-
correctly classified excerpts depending on the dataset they
come from. Densities are estimated using kernel density
estimation. Horizontal lines with long dashes indicate the
median, those with short dashes the quartiles. The den-
sities are normalised, i.e. they do not indicate how many
instances were classified correctly (or incorrectly), but only
the distribution of except lengths within each group.

For the GiantSteps and Billboard datasets, the best com-
peting systems were variants of the neural-network-based
model from [14]. For the pre-segmented Isophonics and
Robbie Williams datasets, we use the results available on
the MIREX 2017 website 8 . For the KeyFinder dataset,
we report the best results achieved using the open-source
reference implementation 10 of the algorithms from [10].

As we can see, the proposed model performs best for
all datasets for which comparisons were possible. Keep
in mind that the systems we compare to are often specifi-

10 https://github.com/angelfaraldo/edmkey

cally tuned for a genre (CK1, CK2, HS1, bgate) or set up
to favour certain key modes prevalent in a dataset (BD1),
while we use the same, general model for all datasets. For
example, CK1 performs badly on the Billboard dataset
(w = 72.8), BD1 on the GiantSteps (w = 59.6), and HS1
on the Isophonics dataset (w = 64.1). In this light, it is re-
markable that the proposed model consistently out-performs
the others.

However, the results also point us to a deficiency of the
model. Recall that for some datasets (e.g. Rock), we split
the files according to key annotations, and process each
excerpt individually. If we compare the results on the Rock
dataset with those on the Billboard dataset, we see a large
discrepancy, although both sets comprise similar musical
styles. As Fig. 3 demonstrates, the duration of a classified
excerpt plays a major role here: for the Billboard set, the
median length of excerpts classified correctly matches the
one of incorrect classifications; for the Rock set, however,
the median lengths differ greatly: 131 s vs. 51 s, for cor-
rectly and incorrectly classified excerpts, respectively. The
distribution of excerpt lengths that are classified correctly
is thus very different from the one of incorrectly classified
excerpts in the Rock set. The shorter an excerpt, the more
likely it is classified incorrectly.

This is not surprising per se. Determining the key of a
piece requires a certain amount of musical context. How-
ever, it shows that in order to move beyond global key
classification, and towards recognising key modulations, it
will not suffice to detect key boundaries and apply known
methods within these boundaries. To recognise key modu-
lations, classifying short excerpts individually will reach a
glass ceiling. Instead, we will need models that consider
the hierarchical harmonic coherence of the whole piece.
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5. CONCLUSION

We have presented a genre-agnostic key classification model
based on the system developed in [14], with improvements
of the training procedure and network structure. These im-
provements enable faster training, better generalisation, and
training larger and thus more powerful models, which can
leverage diverse training data instead of being impaired by
it. The resulting key classifier generalises well over datasets
of different musical styles, and out-performs systems that
are specialised for specific genres (see Table 2).
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ABSTRACT

Optical Music Recognition (OMR) is an important and
challenging area within music information retrieval, the
accurate detection of music symbols in digital images is
a core functionality of any OMR pipeline. In this paper,
we introduce a novel object detection method, based on
synthetic energy maps and the watershed transform, called
Deep Watershed Detector (DWD). Our method is specifi-
cally tailored to deal with high resolution images that con-
tain a large number of very small objects and is therefore
able to process full pages of written music. We present
state-of-the-art detection results of common music sym-
bols and show DWD’s ability to work with synthetic scores
equally well as with handwritten music.

1. INTRODUCTION AND PROBLEM STATEMENT

The goal of Optical Music Recognition (OMR) is to trans-
form images of printed or handwritten music scores into
machine readable form, thereby understanding the seman-
tic meaning of music notation [2]. It is an important and
actively researched area within the music information re-
trieval community. The two main challenges of OMR are:
first the accurate detection and classification of music ob-
jects in digital images; and second, the reconstruction of
valid music in some digital format. This work is focusing
solely on the first task, meaning that we recover position
and class (based on the shape only) of every object without
inferring any higher level information.

Recent progress in computer vision [9] thanks to the
adaptation of convolutional neural networks (CNNs) [8,
15] provide a solid foundation for the assumption that
OMR systems can be drastically improved by using CNNs
as well. Initial results of applying deep learning [26] to
heavily restricted settings such as staffline removal [25],
symbol classification [20] or end-to-end OMR for mono-
phonic scores [5], support such expectations.

c© Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber,
Thilo Stadelmann. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Lukas Tuggener, Is-
mail Elezi, Jürgen Schmidhuber, Thilo Stadelmann. “Deep Watershed
Detector for Music Object Recognition”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

In this paper, we introduce a novel general object detec-
tion method called Deep Watershed Detector (DWD) mo-
tivated by the following two hypotheses: a) deep learning
can be used to overcome the classical OMR approach of
having hand-crafted pipelines of many preprocessing steps
[21] by being able to operate in a fully data-driven fashion;
b) deep learning can cope with larger, more complex inputs
than simple glyphs, thereby learning to recognize musical
symbols in their context. This will disambiguate meanings
(e.g., between staccato and augmentation dots) and allow
the system to directly detect a complex alphabet.

DWD operates on full pages of music scores in one pass
without any preprocessing besides interline normalization
and detects handwritten and digitally rendered music sym-
bols without any restriction on the alphabet of symbols to
be detected. We further show that it learns meaningful rep-
resentation of music notation and achieves state-of-the art
detection rates on common symbols.

The remaining structure of this paper is as follows: Sec.
2 puts our approach in context with existing methods; in
Sec. 3 we derive our original end-to-end model, and give
a detailed explanation on how we use the deep watershed
transform for the task of object recognition; Sec. 4 reports
on experimental results of our system on the DeepScores
digitally rendered dataset in addition to the MUSCIMA++
handwritten dataset before we conclude in Sec. 5 with a
discussion and give pointers for future research.

2. RELATED WORK

The visual detection and recognition of objects is one of
the most central problems in the field of computer vision.
With the recent developments of CNNs, many competing
CNN-based approaches have been proposed to solve the
problem. R-CNNs [10], and in particular their succes-
sors [23], are generally considered to be state-of-the-art
models in object recognition, and many developed recog-
nition systems are based on R-CNN. On the other hand, re-
searchers have also proposed models which are tailored to-
wards computational efficiency instead of detection accu-
racy. YOLO systems [22] and Single-Shot Detectors [18]
while slightly compromising on accuracy, are significantly
faster than R-CNN models, and can even achieve super
real-time performance.

A common aspect of the above-mentioned methods is
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Input: N*M*1

Refine-Net

Output Featuremaps:
N*M*256

Energy map Me:
N*M*#energy_levels

Class map Mc:
N*M*#classes

BBox map Mb:
N*M*2

Base Network

= 1x1 convolution

Figure 1. Illustration of the DWD network and its sub-components together with input and outputs. The outputs have been
cropped to improve visibility

that they are specifically developed to work on cases where
the images are relatively small, and where images contain
a small number of relatively large objects [7, 17]. On the
contrary, musical sheets usually have high-resolution, and
contain a very large number of very small objects, making
the mentioned methods not suitable for the task.

The watershed transform is a well understood method
that has been applied to segmentation for decades [4].
Bai and Urtasun [1] were first to propose combining the
strengths of deep learning with the power of this classi-
cal method. They proposed to directly learn the energy
(in our application the distance to an object center) for the
watershed transform such that all dividing ridges are at the
same height. As a consequence, the components can be ex-
tracted by a cut at a single energy level without leading to
over-segmentation. The model has been shown to achieve
state of the art performance on object segmentation.

For the most part, OMR detectors have been rule-based
systems working well only within a hard set of constraints
[21]. Typically, they require domain knowledge, and work
well only on simple typeset music scores with a known
music font, and a relatively small number of classes [24].
When faced with low-quality images, complex or even
handwritten scores [3], the performance of these models
quickly degrades, to some degree because errors propagate
from one step to another [20]. Additionally, it is not clear
what to do when the classes change, and in many cases,
this requires building the new model from scratch.

In response to the above mentioned issues some deep
learning based, data driven approaches have been devel-
oped. Hajic and Pecina [13] proposed an adaptation of
Faster R-CNN with a custom region proposal mechanism
based on the morphological skeleton to accurately detect
noteheads, while Choi et al. [6] were able to detect ac-
cidentals in dense piano scores with high accuracy, given
previously detected noteheads, that are being used as input-
features to the network. A big limitation of both ap-
proaches is that the experiments have been done only on
a tiny vocabulary of the musical symbols, and therefore
their scalability remains an open question.

To our knowledge, the best results so far has been re-
ported in the work of Pacha and Choi [19] where they ex-
plored many models on the MUSCIMA++ [11] dataset of
handwritten music notation. They got the best results with

a Faster R-CNN model, achieving an impressive score on
the standard mAP metric. A serious limitation of that work
is that the system was not designed in an end-to-end fash-
ion and needs heavy pre- and post-processing. In particu-
lar, they cropped the images in a context-sensitive way, by
cutting images first vertically and then horizontally, such
that each image contains exactly one staff and has a width-
to-height-ratio of no more than 2 :1, with about 15% hor-
izontal overlap to adjacent slices. In practice, this means
that all objects significantly exceeding the size of such a
cropped region will neither appear in the training nor test-
ing data, as only annotations that have an intersection-over-
area of 0.8 or higher between the object and the cropped
region are considered part of the ground truth. Further-
more, all the intermediate results must be combined to one
concise final prediction, which is a non-trivial task.

3. DEEP WATERSHED DETECTION

In this section we present the Deep Watershed Detector
(DWD) as a novel object detection system, built on the
idea of the deep watershed transform [1]. The watershed
transform [4] is a mathematically well understood method
with a simple core idea that can be applied to any topo-
logical surface. The algorithm starts filling up the surface
from all the local minima, with all the resulting basins cor-
responding to connected regions. When applied to image
gradients, the basins correspond to homogeneous regions
of said image (see Fig. 2a). One key drawback of the wa-
tershed transform is its tendency to over segment. This
issue can be addressed by using the deep watershed trans-
form. It combines the classical method with deep learning
by training a deep neural network to create an energy sur-
face based on an input image. This has the advantage that
one can design the energy surface to have certain proper-
ties. When designed in a way that all segmentation bound-
aries have energy zero, the watershed transform is reduced
to a simple cutoff at a fixed energy level (see Fig. 2b). An
objectness energy of this fashion has been used by Bai and
Urtasun for instance segmentation [1]. Since we want to
do object detection, we further simplify the desired energy
surface to having small conical energy peaks of radius n
pixels at the center of each object and be zero everywhere
else (see Fig. 2c).
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a b c d e

a) One-dimensional energy function of five
classes without any structural constraints.
a b c d e

b) Energy function for the same five classes
with fixed boundary energy.

a b c d e

c) Energy function for the same five classes this time
with small energy markers at the class centers.

Figure 2. Illustration of the watershed transform applied
to different one-dimensional functions.

More formally, we define our energy surface (or: energy
map) Me as follows:

Me
(i,j) = max

 argmax
c∈C

[Emax · (1−
√

(i−ci)2+(j−cj)2
r )]

0
(1)

where Me
(i,j) is the value of Me at position (i, j), C

is the set of all object centers and ci, cj are the center co-
ordinates of a given center c. Emax corresponds to the
maximum energy and r is the radius of the center marking.

At first glance this definition might lead to the misin-
terpretation that object centers that are closer together than
r cannot be disambiguated using the watershed transform
on Me. This is not the case since we can cut the energy
map at any given energy level between 1 and Emax. How-
ever, using this method it is not possible to detect multiple
bounding boxes that share the exact same center.

3.1 Retrieving Object Centers

After computing an estimate M̂e of the energy map, we re-
trieve the coordinates of detected objects by the following
steps:

1. Cut the energy map at a certain fixed energy level
and then binarize the result.

2. Label the resulting connected components, using the
two-pass algorithm [30]. Every component receives
a label l in 1...n, for every component ol we define
Ol

ind as the set of all tuples (i, j) for which the pixel
with coordinates j and i is part of ol.

3. The center ĉl of any component ol is given by its
center of gravity:

ĉl = olcenter = |Ol
ind|−1 ·

∑
(i,j)∈Ol

ind

(i, j) (2)

We use these component centers ĉ as estimates for the ob-
ject centers c.

3.2 Object Class and Bounding Box

In order to recover bounding boxes we do not only need
the object centers, but also the object classes and bounding
box dimensions. To achieve this we output two additional
maps M c and M b as predictions of our network. M c is
defined as:

M c
(i,j) =

{
Λ(i,j), if Me

(i,j) > 0

Λbackground, otherwise
(3)

where Λbackgroud is the class label indicating back-
ground and Λ(i,j) is the class label associated with the cen-
ter c that is closest to (i, j). We define our estimate for
the class of component ol by a majority vote of all values
M̂ c

(i,j) for all (i, j) ∈ Ol
ind, where M̂ c is the estimate of

M c. Finally, we define the bounding box map M b as fol-
lows:

M b
(i,j) =

{
(yl, xl), if Me

(i,j) > 0

(0, 0), otherwise
(4)

where yl and xl are the width and height of the bound-
ing box for component ol. Based on this we define our
bounding box estimation as the average of all estimations
for label l:

(ŷl, x̂l) = |Ol
ind|−1 ·

∑
(i,j)∈Ol

ind

M̂ b
(i,j) (5)

3.3 Network Architecture and Losses

As mentioned above we use a deep neural network to pre-
dict the dense output maps Me, M c and M b (see Fig. 1).
The base neural network for this prediction can be any fully
convolutional network with the same input and output di-
mensions. We use a ResNet-101 [12] (a special case of a
Highway Net [27]) in conjunction with the elaborate Re-
fineNet [16] upsampling architecture. For the estimators
defined above it is crucial to have the highest spacial pre-
diction resolution possible. Our network has three output
layers, all of which are an 1 by 1 convolution applied to the
last feature map of the RefineNet.

3.3.1 Energy prediction

We predict a quantized and one-hot encoded version of
Me, called Meo, by applying a 1 by 1 convolution of depth
Emax to the last feature map of the base network. The
loss of the prediction M̂eo, losse, is defined as the cross-
entropy between Meo and M̂eo.
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a) Example result from DeepScores with detected bounding boxes as overlays. The tiny numbers are class labels from the
dataset introduced with the overlay. This system is roughly one forth of the size of a typical DeepScores input we process at once.

b) Example result from MUSCIMA++ with detected bounding boxes and class labels as overlays. This system is roughly
one half of the size of a typical processed MUSCIMA++ input. The images are random picks amongst inputs with many symbols.

Figure 3. Detection results for DeepScores and MUSCIMA++ examples, drawn on crops from corresponding input images.

3.3.2 Class prediction

We again use the corresponding one-hot encoded version
M co and predict it using an 1 by 1 convolution, with the
depth equal to the number of classes, on the last feature
map of the base network. The cross-entropy lossc is calcu-
lated between M co and M̂ co. Since it is not the goal of this
prediction to distinguish between foreground and back-
ground, all the loss stemming from locations with Me = 0
will get masked out.

3.3.3 Bounding box prediction

M b is predicted in its initial form using an 1 by 1 convolu-
tion of depth 2 on the last feature map of the base network.
The bounding box loss lossb is the mean-squared differ-
ence between M b and M̂ b. For lossb, the components
stemming from background locations will be masked out
analogous to lossc.

3.3.4 Combined prediction

We want to jointly train in all tasks, therefore we define a
total loss losstot as:

losstot = w1 ∗
losse

ve
+ w2 ∗

lossc

vc
+ w3 ∗

lossb

vb
(6)

where the v. are running means of the corresponding losses
and the scalars w. are hyper-parameters of the DWD net-
work. We purposefully use very short extraction heads of
one convolutional layer; by doing so we force the base net-
work to do all three tasks simultaneously. We expect this
leads to the base network learning a meaningful represen-
tation of music notation, from which it can extract the so-
lutions of the three above defined tasks.

4. EXPERIMENTS AND RESULTS

4.1 Used Datasets

For our experiments we use two datasets: DeepScores [29]
and MUSCIMA++ [11].

DeepScores is currently the largest publicly available
dataset of musical sheets with ground truth for various ma-
chine learning tasks, consisting of high-quality pages of
written music, rendered at 400 dots per inch. The dataset
has 300, 000 full pages as images, containing tens of mil-
lions of objects, separated in 123 classes. We randomly
split the set into training and testing, using 200k images
for training and 50k images each for testing and valida-
tion. The dataset being so large allows efficient training of
large convolutional neural networks, in addition to being
suitable for transfer learning [32].

MUSCIMA++ is a dataset of handwritten music no-
tation for musical symbol detection. It contains 91, 255
symbols spread into 140 pages, consisting of both nota-
tion primitives and higher-level notation objects, such as
key signatures or time signatures. It features 105 object
classes. There are 23, 352 notes in the dataset, of which
21, 356 have a full notehead, 1, 648 have an empty note-
head, and 348 are grace notes. We randomly split the
dataset into training, validation, and testing, with the train-
ing set consisting of 110 pages, while validation and test-
ing each consists of 15 pages.

4.2 Network Training and Experimental Setup

We pre-train our network in two stages in order to achieve
reasonable results. First we train the ResNet on music
symbol classification using the DeepScores classification
dataset [29]. Then, we train the ResNet and RefineNet
jointly on semantic segmentation data also available from
DeepScores. After this pre-training stage we are able to
use the network on the tasks defined above in Sec. 3.3.

Since music notation is composed of hierarchically or-
ganized sub-symbols, there does not exist a canonical way
to define a set of atomic symbols to be detected (e.g., indi-
vidual numbers in time signatures vs. complete time sig-
natures). We address this issue using a fully data-driven
approach by detecting atomic classes as they are provided
by the two datasets.
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Class AP@ 1
2

Class AP@ 1
4

rest16th 0.8773 tuplet6 0.9252
noteheadBlack 0.8619 keySharp 0.9240

keySharp 0.8185 rest16th 0.9233
tuplet6 0.8028 noteheadBlack 0.9200

restQuarter 0.7942 accidentalSharp 0.8897
rest8th 0.7803 rest32nd 0.8658

noteheadHalf 0.7474 noteheadHalf 0.8593
flag8thUp 0.7325 rest8th 0.8544

flag8thDown 0.6634 restQuarter 0.8462
accidentalSharp 0.6626 accidentalNatural 0.8417

accidentalNatural 0.6559 flag8thUp 0.8279
tuplet3 0.6298 keyFlat 0.8134

noteheadWhole 0.6265 flag8thDown 0.7917
dynamicMF 0.5563 tuplet3 0.7601

rest32nd 0.5420 noteheadWhole 0.7523
flag16thUp 0.5320 fClef 0.7184
restWhole 0.5180 restWhole 0.7183
timeSig8 0.5180 dynamicPiano 0.7069

accidentalFlat 0.4949 accidentalFlat 0.6759
keyFlat 0.4685 flag16thUp 0.6621

Table 1. AP with overlap 0.5 and overlap 0.25 for the
twenty best detected classes of the DeepScores dataset.

We rescale every input image to the desired interline
value. We use 10 pixels for DeepScores and 20 pixels for
MUSCIMA++. Other than that we apply no preprocessing.
We do not define a subset of target objects for our exper-
iments, but attempt to detect all classes for which there
is ground truth available. We always feed single images
to the network, i.e. we only use batch size = 1. During
training we crop the full page input (and the ground truth)
to patches of 960 by 960 pixels using randomized coordi-
nates. This serves two purposes: it saves GPU memory and
performs efficient data augmentation. This way the net-
work never sees the exact same input twice, even if we train
for many epochs. For all of the results described below we
train individually on losse, lossc and lossb and then refine
the training using losstot. It turns out that the prediction of
Me is the most fragile to effects introduced by training on
the other losses, therefore we retrain on losse again after
training on the individual losses in the order defined above,
before moving on to losstot. All the training is done using
the RMSProp optimizer [28] with a learning rate of 0.001
and a decay rate of 0.995.

Since our design is invariant to how many objects are
present on the input (as long as their centers do not over-
lap) and we want to obtain bounding boxes for full pages
at once, we feed whole pages to the network at inference
time. The maximum input size is only bounded by the
memory of the GPU. For typical pieces of sheet music this
is not an issue, but pieces that use very small interline val-
ues (e.g. pieces written for conductors) result in very large
inputs due to the interline normalization. At about 10.5
million pixels even a Tesla P40 with 24 gigabytes runs out
of memory.

4.3 Results and Discussion

Table 1 shows the average precision (AP) for the twenty
best detected classes with an overlap of the detected

Class AP@ 1
2

Class AP@ 1
4

half-rest 0.8981 whole-rest 0.9762
flat 0.8752 ledger-line 0.9163

natural 0.8531 half-rest 0.8981
whole-rest 0.8226 flat 0.8752

notehead-full 0.8044 natural 0.8711
sharp 0.8033 stem 0.8377

notehead-empty 0.7475 staccato-dot 0.8302
stem 0.7426 notehead-full 0.8298

quarter-rest 0.6699 sharp 0.8121
8th-rest 0.6432 tenuto 0.7903

f-clef 0.6395 notehead-empty 0.7475
numeral-4 0.6391 duration-dot 0.7285

letter-c 0.6313 numeral-4 0.7158
letter-c 0.6313 8th-flag 0.7055

8th-flag 0.6051 quarter-rest 0.6849
slur 0.5699 letter-c 0.6643

beam 0.5188 letter-c 0.6643
time-signature 0.4940 8th-rest 0.6432

staccato-dot 0.4793 beam 0.6412
letter-o 0.4793 f-clef 0.6395

Table 2. AP with overlap 0.5 and overlap 0.25 for the
twenty best detected classes from MUSCIMA++.

bounding box and ground truth of 50% and 25%, respec-
tively. We observe that in both cases there are common
symbol classes that get detected very well, but there is also
a steep fall off. The detection rate outside the top twenty
continues to drop and is almost zero for most of the rare
classes. We further observe that there is a significant per-
formance gain for the lower overlap threshold, indicating
that the bounding-box regression is not very accurate.

Fig. 3 shows an example detection for qualitative anal-
ysis. It confirms the conclusions drawn above. The rarest
symbol present, an arpeggio, is not detected at all, while
the bounding boxes are sometimes inaccurate, especially
for large objects (note that stems, bar-lines and beams are
not part of the DeepScores alphabet and hence do not con-
stitute missed detections). On the other hand, staccato dots
are detected very well. This is surprising since they are typ-
ically hard to detect due to their small size and the context-
dependent interpretation of the symbol shape (compare the
dots in dotted notes or F-clefs). We attribute this to the op-
portunity of detecting objects in context, enabled by train-
ing on larger parts of full raw pages of sheet music in con-
trast to the classical processing of tiny, pre-processed im-
age patches or glyphs.

The results for the experiments on MUSCIMA++ in
Tab. 2 and Fig. 3b show a very similar outcome. This is in-
triguing because it suggests that the difficulty in detecting
digitally rendered and handwritten scores might be smaller
than anticipated. We attribute this to the fully data-driven
approach enabled by deep learning instead of hand-crafted
rules for handling individual symbols. It is worth noting
that ledger-lines are detected with very high performance
(see AP@ 1

4 ). This explains the relatively poor detection of
note-heads on MUSCIMA++, since they tend to overlap.

Fig. 4 shows an estimate for a class map with its corre-
sponding input overlayed. Each color corresponds to one
class. This figure proofs that the network is learning a sen-
sible representation of music notation: even though it is
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Figure 4. Estimate of a class map M̂ c for every input pixel
with the corresponding MUSCIMA++ input overlayed.

only trained to mark the centers of each object with the cor-
rect colors, it learns a primitive segmentation mask. This is
best illustrated by the (purple) segmentation of the beams.

5. CONCLUSIONS AND FUTURE WORK

We have presented a novel method for object detection that
is specifically tailored to detect many tiny objects on large
inputs. We have shown that it is able to detect common
symbols of music notation with high precision, both in
digitally rendered music as well as in handwritten music,
without a drop in performance when moving to the ”more
complicate” handwritten input. This suggests that deep
learning based approaches are able to deal with handwrit-
ten sheets just as well as with digitally rendered ones, addi-
tionally to their benefit of recognizing objects in their con-
text and with minimal preprocessing as compared to clas-
sical OMR pipelines. Pacha et al. [19] show that higher de-
tection rates, especially for uncommon symbols, are pos-
sible when using R-CNN on small snippets (cp. Fig. 5).
Despite their higher scores, it is unclear how recognition
performance is affected when results of overlapping and
potentially disagreeing snippets are aggregated to full page
results. A big advantage of our end-to-end system is the
complete avoidance of error propagation in longer recog-
nition pipeline of independent components like classifiers,
aggregators, etc [14]. Moreover, our full-page end-to-end
approach has the advantages of speed (compared to a slid-
ing window patch classifier), change of domain (we use
the same architecture for both the digital and handwrit-
ten datasets) and is easily integrated into complete OMR
frameworks.

Arguably the biggest problem we faced is that sym-
bol classes in the dataset are heavily unbalanced. In the
DeepScores dataset in particular, the class notehead con-
tains more than half of all the symbols in the entire dataset,
while the top 10 classes contain more than 85% of the sym-
bols. Considering that we did not do any class-balancing
whatsoever, this imbalance had its effect in training. We

Figure 5. Typical input snippet used by Pacha et al. [19]

Figure 6. Evolution of lossb (on the ordinate) of a suf-
ficiently trained network, when training for another 8000
iterations (on the abscissa).

observe that in cases where the symbol is common, we get
a very high average precision, but it quickly drops when
symbols become less common. Furthermore, it is inter-
esting to observe that the neural network actually forgets
about the existence of these rarer symbols: Fig. 6 depicts
the evolution of lossb of a network that is already trained
and gets further trained for another 8, 000 iterations. When
faced with an image containing rare symbols, the initial
loss is larger than the loss on more common images. But
to our surprise, later during the training process, the loss
actually increases when the net encounters rare symbols
again, giving the impression that the network is actually
treating these symbols as outliers and ignoring them.

Future work will thus concentrate on dealing with the
catastrophic imbalance in the data to successfully train
DWD to detect all classes. We believe that the solution
lies in a combination of data augmentation and improved
training regimes (i.e. sample pages containing rare objects
more often, synthesizing mock pages filled with rare ob-
jects etc.).

Additionally, we plan to investigate the ability of our
method beyond OMR on natural images. Initially we will
approach canonical datasets like PASCAL VOC [7] and
MS-COCO [17] that have been at the front-line of object
recognition tasks. However, images in those datasets are
not exactly natural, and for the most part they are simplistic
(small images, containing a few large objects). Recently,
researchers have been investigating the ability of state-of-
the-art recognition systems on more challenging natural
datasets, like DOTA [31], and unsurprisingly, the results
leave much to be desired. The DOTA dataset shares a lot of
similarities with musical datasets, with images being high
resolution and containing hundreds of small objects, mak-
ing it a suitable benchmark for our DWD method to recog-
nize tiny objects.
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ABSTRACT

In this study we explore the use of deep feedforward neu-
ral networks for voice separation in symbolic music rep-
resentations. We experiment with different network archi-
tectures, varying the number and size of the hidden layers,
and with dropout. We integrate two voice entry estimation
heuristics that estimate the entry points of the individual
voices in the polyphonic fabric into the models. These
heuristics serve to reduce error propagation at the begin-
ning of a piece, which, as we have shown in previous work,
can seriously hamper model performance.

The models are evaluated on the 48 fugues from Johann
Sebastian Bach’s The Well-Tempered Clavier and his 30
inventions—a dataset that we curated and make publicly
available. We find that a model with two hidden layers
yields the best results. Using more layers does not lead to
a significant performance improvement. Furthermore, we
find that our voice entry estimation heuristics are highly
effective in the reduction of error propagation, improv-
ing performance significantly. Our best-performing model
outperforms our previous models, where the difference is
significant, and, depending on the evaluation metric, per-
forms close to or better than the reported state of the art.

1. INTRODUCTION

In the domain of symbolic music representation, the term
voice separation denotes the identification of individual
lines (voices) in polyphonic music. More formally, it
can be defined as “the task of separating a musical work
consisting of multi-note sonorities into independent con-
stituent voices” [3]. With regard to the term voice itself,
whose meaning is left ambiguous in the above definition,
a distinction can be made between (i) a voice as a mono-
phonic sequence of successive, non-overlapping notes, and
(ii) a voice as a perceptually independent, but not nec-
essarily monophonic, sequence of notes or multi-note si-
multaneities [3]. The former definition corresponds to the

c© Reinier de Valk, Tillman Weyde. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Reinier de Valk, Tillman Weyde. “Deep neural networks
with voice entry estimation heuristics for voice separation in symbolic
music representations”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

music-theoretical notion of a voice (also part) [3,9], while
the latter corresponds to the music-psychological notion of
an auditory stream [2]. For certain genres of music—e.g.,
piano sonatas or string quartets—it is more appropriate to
think of the polyphonic fabric as consisting of multiple
streams that may or may not be (partly) monophonic.

Voice separation, especially in monotimbral polyphonic
music (e.g., harpsichord or lute music) for more than three
concurrent voices, has been recognised as a difficult task
even for professional musicians [15, 16, 30]. From a mu-
sic information retrieval (MIR) perspective, voice separa-
tion is considered a challenge that has not yet been ad-
dressed satisfactorily. It is, however, an important task:
an adequate identification of the individual voices is a pre-
requisite for tackling several open MIR and musicological
problems, such as automatic transcription [1], pattern re-
trieval [11, 26, 29], and melodic querying [24, 36].

Over the past decade, deep neural networks (DNNs)
have been successfully applied to various computer vision,
speech recognition, and natural language processing tasks,
and, increasingly, to MIR tasks [5]. Consisting of multi-
ple processing layers, DNNs can learn representations of
data with multiple levels of abstraction [25], which makes
them better suited than their shallow counterparts to model
complex input-output relationships. Despite their success-
ful application to a number of MIR tasks, DNNs have not
yet been used for voice separation.

The main contributions of this paper are:
• the implementation and evaluation of DNNs for

voice separation in symbolic music representations;
• the implementation and evaluation of improved

voice entry estimation heuristics;
• the creation of a public benchmark dataset for voice

separation, which currently does not exist.
We show that a model that combines a DNN with the voice
entry estimation heuristics performs close to or better than
the reported state of the art.

In what follows, in Section 2, related work is discussed.
In Section 3, the model and the integrating framework are
presented, and in Section 4, the evaluation method is ex-
plained. Section 5 is dedicated to the voice entry estima-
tion heuristics, and Section 6 to the dataset. In Section 7,
the experimental results are discussed, and in Section 8,
conclusions and directions for future work are presented.
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2. RELATED WORK

The existing models addressing the task of voice separation
can be divided into two categories: rule-based models and
machine learning models. A characteristic that the models
in both categories share is that they almost all lean heavily
on at least one of two perceptual principles fundamental
in auditory stream segregation, coined the Pitch Proximity
Principle and the Principle of Temporal Continuity in [16].
These principles dictate that the closer two notes are to one
another in terms of pitch or time, respectively, the more
likely they are perceived as belonging to the same voice.

2.1 Rule-based models

The rule-based models form the largest category, contain-
ing a wide array of approaches. In [34], a preference rule
system for contrapuntal analysis is presented. Preference
rules are criteria by which a possible analysis is evalu-
ated. Dynamic programming techniques are used to limit
the amount of possible analyses to be evaluated. In later
work [35], a probabilistic model of polyphonic music anal-
ysis, incorporating a stream segregation component that
builds on the earlier work, is introduced. Inspired by [34]
is the algorithm presented in [27], which consists of a voice
configuration unit generating well-formed local solutions,
and a note assignment unit calculating a preferred solution.

In [4], a contig mapping approach is presented, in which
the music is divided into segments where a constant num-
ber of voices is active, the contigs. Starting from the con-
tigs where the number of voices active equals the nominal
number of voices, the optimal connections to the neigh-
bouring contigs are determined. Gradually branching out,
this process is repeated until all contigs are connected.
A modified version of this approach is proposed in [17],
where the connection of contigs that share a boundary at
which the number of voices increases is prioritised. The
idea is that the distinctiveness (in terms of pitch distance)
of the new voice will prevent it from being connected in-
correctly to one of the voices active in the smaller-size con-
tig. A further improvement of the approach is described
in [14], where, taking into account more context informa-
tion, additional criteria that underly the contig connection
policy are proposed. The criteria are weighted using a ge-
netic algorithm with mutation and crossover operators.

In [33], voice separation is modelled as a clustering
problem. Using an agglomerative single-link clustering al-
gorithm, in an iterative process that starts from an initial
distribution in which each note is a cluster, all clusters are
combined into larger clusters until n simultaneous clusters,
the voices, remain. In [10], the music is modelled as a di-
rected graph. The goal is to create a set of disjoint paths,
the voices, through the graph. To this end, the graph is di-
vided into segments, which are analysed through constraint
satisfaction optimisation. Using a sequence alignment al-
gorithm, the analyses are then connected.

Two models stand out as they allow for non-
monophonic voices. In the local optimisation approach
proposed in [21], a piece is partitioned into slices that
are processed iteratively, assigning the notes to voices. A

stochastic local search algorithm is used to find assign-
ments that minimise a parametric cost function assessing
the assignments; weighting the parameters in a certain
way can result in non-monophonic assignments. In the
Voice Integration/Segregation Algorithm (VISA) as pro-
posed in [19, 20] and later refined in [31], vertical inte-
gration—concurrent notes with the same onset and dura-
tion merging perceptually into a single sonority—is con-
sidered to be prior to horizontal integration—successive
notes close in pitch and time merging perceptually into a
single voice. VISA thus first identifies concurrent notes
that merge into single sonorities, and, using a bipartite
matching algorithm, then assigns the sonorities to separate
streams.

2.2 Machine learning models

In [23], VoiSe, a system for separating voices in both im-
plicit and explicit polyphony, is presented. The system
consists of two components: a same-voice predicate im-
plemented as a learned decision tree, which determines
whether or not two notes belong to the same voice, and
a hard-coded algorithm that maps notes to voices.

A probabilistic, Markov chain-like, system is proposed
in [18]. Based on pitch information only, the system learns
how likely a note is to occur for a voice, as well as how
likely a transition between two notes is to occur. The sys-
tem is inspired by [4] in that the music is processed in
a similar manner—starting at chords in which all voices
are present. Another probabilistic approach is described
in [6], where the music is represented as a sequence of
chords, and a discrete hidden Markov model (HMM) is
used to determine the most likely sequence of mappings
to voices (the hidden states) for the chords (the observa-
tions). A similar, although more sophisticated, approach
using an HMM is proposed in [28]. This model explicitly
allows notes within a single voice to overlap. This not only
makes preprocessing (quantisation) redundant, but also en-
ables application to data generated from live performance.

In [6], the task of voice separation is modelled both as a
multi-class classification problem (see also [7]), where the
music is represented as a sequence of notes, which are as-
signed to voices (the classes), and as a regression problem,
where the music is represented as a sequence of chords,
for which mappings to voices are rated. Standard single-
hidden layer feedforward neural networks are used as the
classifier and regressor, respectively. In [13], too, the mu-
sic is represented as a sequence of chords, and a single-
hidden layer feedforward neural network is used to greed-
ily assign each chord note to the voice that maximises a
trained assignment probability.

3. PROBLEM FORMULATION, MODEL, AND
FRAMEWORK

As in [6, 7], in this paper we formulate the task of voice
separation as a multi-class classification problem, where
each note in a piece is assigned to one of v voices (the
classes). We assume that a voice is always monophonic

282 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



(see Section 1), and that the number of voices in a piece is
equal to its nominal number of voices, which we infer from
the size of its largest chord. (These assumptions do not al-
ways hold true, but in pure contrapuntal music one gener-
ally finds only few exceptions. We resolve such cases by
removing the offending notes from the dataset; this is dis-
cussed in Section 6.) Furthermore, for practical reasons we
set the maximum value of v to 5. This enables us to pro-
cess pieces containing up to five voices, which currently
suffices. The maximum number of voices determines the
number of classes and hence the size of the neural net-
work’s output layer; for the sake of efficiency, it should
thus be kept as small as possible.

3.1 Model

We use the open source TensorFlow machine learning li-
brary 1 (version 1.6.0) to implement a multi-layer deep
feedforward neural network that uses the rectified linear
unit activation function for all L − 1 hidden layers and
the softmax activation function for the output layer, and
that has five output neurons, each representing a class.
Given that our dataset is relatively small, we use batch
training, where we check the performance on the valida-
tion set (comprising every fifth training example) every
10 epochs as early stopping strategy, and store the earliest
best-performing model. We use Xavier initialisation [12]
for the weights and initialisation with zeros for the bi-
ases, the Adam optimisation algorithm [22] to minimise
the cross-entropy loss, and dropout [32] to prevent overfit-
ting. We set the learning rate to 0.01 and the number of
training epochs to 600, values we observed to work well.
Three further hyperparameters are optimised using a grid
search (see Section 7): the dropout keep probability, the
number of hidden layers, and the size of the hidden layers.

3.2 Framework

We integrate the model in our previously developed frame-
work for data preprocessing, feature extraction, and cross-
validated training and evaluation [6], implemented in
Java. 2 In this framework, the music is represented as a se-
quence of notes, by default ordered by (i) onset time (low
to high) and (ii) pitch (low to high). When evaluating the
model, this sequence is processed in linear fashion, where
for each note a feature vector is calculated that is given as
input to the model, which then makes a class decision—
thus assigning the note to a voice.

3.2.1 Feature vector

Each note is represented by a 33-dimensional feature vec-
tor, containing properties of that note in its polyphonic
context. The features are handcrafted and can be divided
into four categories of increasing scope: (i) note-level fea-
tures, encoding individual properties of the note; (ii) note-
chord features, encoding the note’s position in the chord;
(iii) chord-level features, encoding properties shared by all

1 https://www.tensorflow.org/
2 https://www.github.com/reinierdevalk/voice_

separation/

notes in the chord; and (iv) polyphonic embedding fea-
tures, encoding the note’s polyphonic relation to the notes
in the previous as well as the current chord. All feature
values (except certain default values) are scaled to fall in
the range [0, 1]. An overview is presented in Table 1; more
detail is provided in [6].

Index Feature Description
0 pitch pitch, as a MIDI number
1 duration duration, in whole notes
2 isOrnamentation true (1) if a 16th note or

shorter, false (0) if not
3 indexInChord index (pitch-based) in

the chord
4 pitchDistBelow distance to note below
5 pitchDistAbove distance to note above
6 chordSize number of chord notes
7 metricPosition metric position in the bar
8 numNotesNext number of notes (onsets)

in the next chord
9-12 intervals intervals in the chord
13-17 pitchProx for each voice v, the

pitch proximity to the
adjacent left note in v

18-22 interOnsetProx idem, inter-onset
23-27 offsetOnsetProx idem, offset-onset
28-32 voicesOccupied for each voice v, whether

it is currently occupied
(1) or not (0)

Table 1. The feature vector, containing note-level (0-2),
note-chord (3-5), chord-level (6-12), and polyphonic em-
bedding features (13-32). Pitch distances and intervals are
measured in semitones; proximities are inverted distances.

4. EVALUATION

We evaluate the models using k-fold cross-validation. Be-
cause it is not desirable that identical or highly similar sam-
ples extracted from one piece end up in both the training
and the test set, we partition a dataset along its individual
pieces rather than randomly. k thus equals the number of
pieces in a dataset; each piece in it serves as test set once.

4.1 Evaluation metrics

We use four metrics to assess model performance. Accu-
racy is a per-note metric that measures the proportion of
notes that have been assigned to the correct voice:

acc =
|C|
|N |

, (1)

where C is the set of notes assigned to the correct voice,
and N the set of all notes.

Soundness and completeness are complementary met-
rics that measure transitions between note pairs. We use
the definitions provided in [23]. If f is an assigned
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voice and g a correct voice, then a pair of adjacent notes
(nt, nt+1) in f is considered sound if g(nt) = g(nt+1)
holds. (Note that, according to this definition, f and g need
not be the same voice.) Extending the definition, we take
soundness to be the proportion of sound pairs in all voices:

snd =
|S|
|P |

, (2)

where S is the set of sound pairs, and P the set of all pairs
in all assigned voices f . Similarly, a pair of adjacent notes
(nt, nt+1) in correct voice g is considered complete if as-
signed voice f(nt) = f(nt+1) holds. We take complete-
ness to be the proportion of complete pairs in all voices:

cmp =
|C|
|P |

, (3)

where C is the set of complete pairs, and P the set of all
pairs in all correct voices g. 3

Average voice consistency (AVC), coined in [4], mea-
sures, “on average, the proportion of notes from the same
voice that have been assigned . . . to the same voice”. The
voice consistency (VC) for voice v is calculated as follows:

VC(v) =
1

|S(v)|
max
u∈V
{|n ∈ S(v) : vN(n) = u|}, (4)

where S(v) is the set of notes assigned to v, V the set of all
voices, and vN(n) the correct voice for note n. The AVC,
then, is the average VC over all voices:

AVC =
1

|V |
∑
v∈V

VC(v). (5)

The per-fold percentages for each metric m are
weighted by the number of notes (or note pairs) in the piece
for the fold, so that the average values over all folds are al-
ways per-note (or per-pair):

avg(m) =

∑k
i=1(mi · |Ni|)∑k

i=1 |Ni|
, (6)

where k is the number of folds, and N the set of notes in a
piece.

4.2 Evaluation modes

We use two evaluation modes: test mode and application
mode. In test mode, the feature vectors are calculated us-
ing the correct voice information for the preceding notes.
Test mode serves a gauging function in that it reflects the
optimal model performance on unseen data. In application
mode, the feature vectors are calculated using the model-
generated voice information. This mode corresponds to the
real-world application scenario where no correct voice in-
formation is available, and where all voice decisions must
be based on previous decisions—it thus reflects the ex-
pected model performance on unseen data. In application
mode, model performance can suffer from error propaga-
tion.

3 The definitions are equal to those given for precision and recall in
[10], metrics used in [13, 14, 18, 27, 28]. The terms appear to be used
interchangeably.

5. VOICE ENTRY ESTIMATION HEURISTICS

Error propagation is the phenomenon in which an incorrect
voice assignment influences the voice decision for the fol-
lowing notes negatively. Given the accuracy in test (accT)
and application mode (accA), the proportion of misassign-
ments due to error propagation, q, is calculated as follows:

q =
accT − accA

1− accA
. (7)

In previous work [6, 7], depending on the dataset we ob-
served q values up to 0.87, indicating that model perfor-
mance is indeed seriously hampered by error propagation.

Although error propagation can occur throughout a
piece, it tends to be particularly strong in thinly-textured
openings of pieces, where the model may start ‘on the
wrong foot’. This often leads to a chain of misassignments.
To address this problem, we propose a preprocessing step
that applies two heuristics, h1 and h2 (improving on [8]).
They estimate which notes belong to the new voices at each
density increase, that is, each point where the maximal
number of simultaneous notes so far increases. h1 and,
partly, h2 are based on the prior assumptions that (i) voices
tend to move in small steps, and that when new voice(s)
enter, (ii) none of the already active voices has a rest, and
(iii) none of the voices is involved in voice crossing.

01 function estimate(list notes) returns list x
02 density increases d := [d1, ..., dm] x
03 available voices av := [1, ..., dm] x
04 add av to new list fw x
05 for i from m to 2: x
06 if h1: find lowest-cost configuration x
07 at pos(di) x
08 if h2: find pattern at pos(di) x
09 remove new voices from av x
10 prepend av to fw x
11 av := copy(av) x
12 return fw x

Figure 1. Algorithm outline. Underlined concepts are ex-
plained in the main text.

h1 and h2 share a similar overall algorithmic structure,
as shown in Figure 1. The algorithm takes as input the
sequence of notes representing a piece (see Section 3.2),
and returns, for each density increase (including the open-
ing), a vector of voice assignments for the first chord of
the increased density. If the voices enter successively, h2
is called; if not, or if h2 fails, h1 is called. The voice as-
signments returned remain fixed when the DNN is applied.

(1) • • • • • (2) • • • • • (3) • • ◦ ◦
(1) • • • • • (2) • • ◦ ◦ • (3) • • • •
(1) • • ◦ ◦ • (2) • • • • • (3) • • • •

Figure 2. Chord configurations (n = 2). Columns repre-
sent chords; rows represent layers.

h1 is the more generic heuristic. It determines the
new voices by calculating, at each density increase start-
ing at the last, the lowest-cost configuration. A configura-
tion organises the last n chords (i.e., ordered sequences of
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pitches) of density di−1 and the first n chords of density di
into horizontal layers, as shown in Figure 2. The cost for a
configuration is calculated as follows:

n∑
j=1

di−1∑
k=1

n∑
l=1

|pj,k − pl,k|, (8)

where pj,k is the pitch at the kth 2n-sized layer in the jth
chord of density di−1, and pl,k the pitch at the kth 2n-sized
layer in the lth chord of density di. The positions of the
remaining n-sized layers in the lowest-cost configuration,
then, determine the new voices.

h2 caters specifically to imitative pieces, and attempts
to determine the new voices by finding, at each density
increase starting at the last, a match for the pattern (as de-
fined by the first n notes of the piece, the opening motif’s
head) in the first n chords of density di. The first match-
ing criterion is rhythmic sequence; if this yields multiple
matches, melodic contour (up, same, down) is added as a
second matching criterion. If a single match is thus found,
the new voice is identified; if multiple matches are still
found, the lowest-cost configuration (as in h1) is used to
disambiguate. If no match is found, which can happen if
the prior assumptions do not hold true, the new voice is as-
sumed to enter below the existing voice(s). If at more than
half of the density increases no match is found, h2 fails.

6. DATASET

The models are evaluated on the 48 fugues from Johann
Sebastian Bach’s The Well-Tempered Clavier (BWV 846-
893), containing one two-, 26 three-, 19 four-, and two
five-voice pieces, as well as his 30 inventions (BWV 772-
801), containing 15 two- and 15 three-voice pieces (also
known as sinfonias). The dataset, in MIDI format, was
originally retrieved from the MuseData repository of the
Center for Computer Assisted Research in the Humani-
ties, 4 and has been slightly modified. First, all in-voice
chords—instances where a voice is non-monophonic—
were reduced to single notes, and all temporarily added
extra voices were removed. Figure 3 shows an example
of both. Second, because of liberties in performance or
rounding errors leading to note overlap within a voice,
occasionally some quantisation was required. This was
achieved by adjusting each offending left note’s offset to
equal its adjacent right note’s onset. These first two modi-
fications are necessary in order for the data to comply with
the assumptions that underly our modelling approach (a
voice is always monophonic, and the number of voices in
a piece is equal to its nominal number of voices—see Sec-
tion 3). Third, to create a more equal distribution of train-
ing and test data in cross-validation, the two-voice fugue
was split into two parts, and the two five-voice fugues
were split into four (BWV 849) and two (BWV 867) parts.
Fourth, for a number of pieces starting with an anacrusis,
some padding with rests was required to ensure a correct
metrical alignment. Fifth, where necessary, time signature
or key signature information was corrected or added.

4 http://www.musedata.org/

Figure 3. The Well-Tempered Clavier, Fugue 17 in A[
major (BWV 886), closing bars. Temporarily added ex-
tra voice, chromatically descending from G3 to E[3 (lower
staff), and in-voice chord (upper staff, final chord).

Thus, a total of 206 notes were pruned from the orig-
inal 53230 notes in the fugues, and a total of five notes
from the original 19872 notes in the inventions—yielding
a dataset containing 72891 notes. We publish this dataset
as a curated benchmark dataset for voice separation, 5 that
enables the comparison of results in a rigorous manner, and
that thus facilitates reproducible research [37].

7. EXPERIMENTAL RESULTS AND DISCUSSION

In a first experiment, we performed a grid search to opti-
mise three hyperparameters: the number of hidden layers
(HL), the size of the hidden layers (HLS), and the value of
the dropout keep probability (KP). We explored a small hy-
perparameter space determined in earlier experimentation,
consisting of four HL values (2, 3, 4, and 5), four HLS val-
ues (25, 33, 50, and 66), and three KP values (0.75, 0.875,
and 0.9375). The grid search was performed on the 19
four-voice fugues; as the deciding metric, accuracy in test
mode was used (metrics in test mode are more stable in-
dicators of model performance; see Section 4.2). For each
HL value, we selected the best-performing model, which
we then trained and evaluated on all 48 fugues and all 30
inventions. This was done separately on the different sub-
sets (two-voice, three-voice, etc.); the performance on all
fugues or inventions is the per-note (or per-pair) average
over their subsets as calculated using Equation (6). Ta-
ble 2 shows that on the fugues, the two-layer model yields
the highest performance in both test and application mode.
On the inventions, the results are less clear—although the
two more shallow models seem to perform better here too.
Overall, however, the results are fairly similar, indicating a
limited effect of the number of layers.

Focussing on the best model (HL = 2; HLS = 66, KP
= 0.875), in a second experiment, we then investigated
the effect of using a deep(er) neural network, as well as
the effect of the integration of the voice entry estimation
heuristics. To this end, we compared four models: the
single-hidden layer neural network as described in [6, 7]
(N), the same model with the heuristics integrated (N/h),
the two-layer model (D), and the two-layer model with the
heuristics integrated (D/h). The heuristics were not used in
test mode, as error propagation does not occur there. Ta-
ble 3 shows that D always outperforms N, and that N/h and
D/h always outperform N and D, respectively. A test for

5 https://www.github.com/reinierdevalk/data/
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HL HLS KP Test Application
acc snd cmp AVC acc snd cmp AVC

2 66 0.875 98.34 97.11 97.26 98.27 90.72 96.43 96.39 90.76
3 66 0.75 98.36 97.12 97.24 98.27 89.96 96.30 96.30 90.05
4 50 0.75 98.32 97.07 97.23 98.25 89.97 96.36 96.36 90.12
5 50 0.75 98.27 96.98 97.13 98.20 89.96 96.38 96.35 90.23
2 66 0.875 99.09 98.52 98.58 99.06 96.64 98.14 98.09 96.49
3 66 0.75 99.17 98.64 98.62 99.13 96.53 98.22 98.21 96.35
4 50 0.75 99.20 98.64 98.66 99.15 96.54 98.17 98.13 96.34
5 50 0.75 99.00 98.40 98.39 98.96 96.44 97.95 97.93 96.28

Table 2. Experiment 1. Best-performing models per HL value, 48 fugues (top) and 30 inventions (bottom). Values are
averages over the different subsets (see Section 7 and Equation (6); all values are percentages.

Model Test Application q
acc snd cmp AVC acc snd cmp AVC F1

N 97.86 96.54 96.70 97.78 86.36 95.46 95.33 86.73 95.39 0.84
N/h 90.44 95.86 95.69 90.62 95.78 0.77
D 98.34 97.11 97.26 98.27 87.69 96.26 96.20 87.43 96.23 0.86
D/h 90.72 96.43 96.39 90.76 96.41 0.82
[28] 88.23 97.00
[17] 89.21
[10] 92.5

Table 3. Experiment 2 and 3. N, N/h, D, and D/h models, 48 fugues (top); [10, 17, 28] models, 48 fugues (bottom). Values
are averages over the different subsets (see Section 7 and Equation (6); all values except q are percentages. The F1 score is
the harmonic mean of soundness and completeness.

statistical significance (we used the one-tailed Wilcoxon
signed-rank test with p < 0.05 as the significance crite-
rion) reveals that these performance differences are always
significant. We thus conclude that both using a deep(er)
neural network and integrating the heuristics yield a signif-
icant performance improvement. Furthermore, the q values
show that the heuristics indeed reduce error propagation—
but the effect is weaker in case of the D model, where error
propagation is also slightly worse. Finally, we note that in-
tegrating the heuristics leads to a strong improvement in
terms of accuracy and AVC. The improvement in terms of
soundness and completeness—which are by definition less
affected by error propagation—, on the other hand, is only
small.

Additionally, we compared the performance of our
overall best model (D/h) on the 48 fugues with the per-
formances reported for the three voice separation models
that, to our knowledge, represent the current state of the
art, and that have also been evaluated on the 48 fugues. As
Table 3 shows, D/h outperforms the [17] and [10] models.
It also outperforms the [28] model in terms of AVC, but
not in terms of F1 score—which may be because the lat-
ter model is specifically optimised for that metric, whereas
D/h is optimised for accuracy.

It should be noted, finally, that a strict comparison with
the state of the art is problematic due to the heterogeneity
of datasets and metrics used. We address this by making
our dataset publicly available as a benchmark dataset (see
Section 6).

8. CONCLUSIONS AND FUTURE WORK

In this paper, we present the implementation and evalua-
tion of DNNs for voice separation in symbolic music rep-
resentations as well as the implementation and evaluation
of two voice entry estimation heuristics. We evaluate the
models on 78 keyboard works by Johann Sebastian Bach,
which we publish as a curated benchmark dataset for com-
paring voice separation models. We observe that both the
use of deep(er) neural networks for the task and the inte-
gration of the heuristics into the models improve perfor-
mance significantly. The best model outperforms our pre-
vious models, and performs close to or better than the re-
ported state of the art.

A first analysis of the results reveals that the model
has difficulties processing musically challenging passages,
containing, for example, voice crossings or reduced tex-
tures. Furthermore, despite the success of the voice entry
estimation heuristics, error propagation remains problem-
atic. An in-depth analysis of the results, planned for fu-
ture work, is required to gain better insight into these mat-
ters. Possible explanations are that the model is not given
enough context information, and that it does not have any
memory. We therefore also plan to encode a larger poly-
phonic window into the features as to increase the context
information, and we plan to experiment with other types
of DNNs, such as recurrent neural networks, which allow
information to persist, or long short-term memory models,
which are capable of learning long-time dependencies.
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ABSTRACT

In this paper, we propose a simple yet effective method
for multiple music source separation using convolutional
neural networks. Stacked hourglass network, which was
originally designed for human pose estimation in natural
images, is applied to a music source separation task. The
network learns features from a spectrogram image across
multiple scales and generates masks for each music source.
The estimated mask is refined as it passes over stacked
hourglass modules. The proposed framework is able to
separate multiple music sources using a single network.
Experimental results on MIR-1K and DSD100 datasets
validate that the proposed method achieves competitive re-
sults comparable to the state-of-the-art methods in multi-
ple music source separation and singing voice separation
tasks.

1. INTRODUCTION

Music source separation is one of the fundamental research
areas for music information retrieval. Separating singing
voice or sounds of individual instruments from a mixture
has grabbed a lot of attention in recent years. The separated
sources can be further used for applications such as auto-
matic music transcription, instrument identification, lyrics
recognition, and so on.

Recent improvements on deep neural networks (DNNs)
have been blurring the boundaries between many applica-
tion domains, including computer vision and audio sig-
nal processing. Due to its end-to-end learning character-
istic, deep neural networks that are used in computer vi-
sion research can be directly applied to audio signal pro-
cessing area with minor modifications. Since the magni-
tude spectrogram of an audio signal can be treated as a
2D single-channel image, convolutional neural networks
(CNNs) have been successfully used in various music
applications, including the source separation task [1, 8].
While very deep CNNs are typically used in computer vi-
sion literature with very large datasets [4, 25], CNNs used
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for audio source separation so far have relatively shallow
architectures.

In this paper, we propose a novel music source separa-
tion framework using CNNs. We used stacked hourglass
network [18] which was originally proposed to solve hu-
man pose estimation in natural images. The CNNs take
spectrogram images of a music signal as inputs, and gener-
ate masks for each music source to separate. An hourglass
module captures both holistic features from low resolution
feature maps and fine details from high resolution feature
maps. The module outputs 3D volumetric data which has
the same width and height as those of the input spectro-
gram. The number of output channels equals the number
of music sources to separate. The module is stacked for
multiple times by taking the results of the previous mod-
ule. As passing multiple modules, the results are refined
and intermediate supervision helps faster learning in the
initial state. We used a single network to separate multiple
music sources, which reduces both time and space com-
plexity for training as well as testing.

We evaluated our framework on a couple of source sep-
aration tasks: 1) separating singing voice and accompa-
niments, and 2) separating bass, drum, vocal, and other
sounds from music. The results show that our method
outperforms existing methods on MIR-1K dataset [5] and
achieves competitive results comparable to state-of-the-art
methods on DSD100 dataset [30] despite its simplicity.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review the literature of audio source sep-
aration focusing on DNN based methods. The proposed
source separation framework and the architecture of the
network are explained in Section 3. Experimental results
are provided in Section 4, and the paper is concluded in
Section 5.

2. RELATED WORK

Non-negative matrix factrization (NMF) [12] is one of the
most widely-used algorithms for audio source separation.
It has been successfully applied to monaural source sepa-
rtion [32] and singing voice separation [29, 38]. However,
despite its generality and flexibility, NMF is inferior to re-
cently proposed DNN-based methods in terms of perfor-
mance and time complexity.

Simple deep feed-forward networks consisting of multi-
ple fully-connected layers showed reasonable performance
for supervised audio source separation tasks [27]. Wang et
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Figure 1. Structure of the hourglass module used in this paper. We follow the structure proposed in [17] except that the
number of feature maps are set to 256 for all convolutional layers.

al. [34] used DNNs to learn an ideal binary mask which
boils the source separation problem down to a binary clas-
sification problem. Simpson et al. [24] proposed a con-
volutional DNN to predict a probabilistic binary mask for
singing voice separation. Recently, a fully complex-valued
DNN [13] is proposed to integrate phase information into
the magnitude spectrograms. Deep NMF [11] combined
DNN and NMF by designing non-negative deep network
and its back-propagation algorithm.

Since an audio signal is time series data, it is natural
to use a sequence model like recurrent neural networks
(RNNs) for music source separation tasks to learn tempo-
ral information. Huang et al. [6] proposed an RNN frame-
work that jointly optimizes masks of foreground and back-
ground sources, which showed promising results for var-
ious source separation tasks. Other approaches include
a recurrent encoder-decoder that exploits gated recurrent
unit [15] or discriminative RNN [33].

CNNs are also an effective tool for audio signal anal-
ysis when the magnitude spectrogram is used as an input.
Fully convolutional networks (FCNs) [14] are initially pro-
posed for semantic segmentation in the computer vision
area, which is also effective for solving human pose esti-
mation [18,35] or super-resolution [2]. FCNs usually con-
tain downsampling and upsampling layers to learn mean-
ingful features at multiple scales. Strided convolution or
pooling is used for downsampling, while transposed con-
volution or nearest neighbor interpolation is mainly used
for upsampling. It is proven that FCNs are also effective
in signal processing. Chandna et al. [1] proposed encoder-
decoder style FCN for monoaural audio source separation.
Recently, singing voice separation using an U-Net archi-
tecture [8] showed impressive performance. U-Net [22]
is a FCN which consists of a series of convolutional lay-
ers and upsampling layers. There is a skip connection
which connects the convolutional layers of the same res-
olution. They trained vocal and accompaniment parts sep-
arately on different networks. Miron et al. [16] proposed
the method that separates multiple sources using a single
CNN. They used score-filtered spectrograms as inputs and
generated masks for each source via an encoder-decoder
CNN. Multi-resolution FCN [3] was proposed for monau-
ral audio source separation. Recently proposed CNN ar-
chitecture [26] based on DenseNet [7] achieved state-of-
the-art performance on DSD100 dataset.

3. METHOD

3.1 Network Architecture

The stacked hourglass network [18] was originally pro-
posed to solve human pose estimation in RGB images. It
is an FCN consisting of multiple hourglass modules. The
hourglass module is similar to U-Net [22], of which feature
maps at lower (coarse) resolution are obtained by repeat-
edly applying convolution and pooling operations. Then,
the feature maps at the lowest resolution are upsampled
via nearest neighbor interpolation with a preceding con-
volutional layer. Feature maps at the same resolution in
the downsampling and the upsampling steps are connected
with an additional convolutional layer. The hourglass mod-
ule captures features at different scales by repeating pool-
ing and upsampling with convolutional layers at each reso-
lution. In addition, multiple hourglass modules are stacked
to make the network deeper. As more hourglass modules
are stacked, the network learns more powerful and infor-
mative features which refine the estimation results. Loss
functions are applied at the end of each module. This in-
termediate supervision improves training speed and perfor-
mance of the network.

The structure of a single hourglass module used in this
paper is illustrated in Fig 1. Considering the efficiency and
the size of the network, we adopt the hourglass module
used in [17] which is a smaller network than the origi-
nally proposed one in [18]. A notable difference is that
the residual blocks [4] used in [18] are replaced with a sin-
gle convolutional layer. This light-weight structure showed
competitive performance to the original network in human
pose estimation with much smaller number of parameters.
In the module, there are four downsampling and upsam-
pling steps. All convolutional layers in downsampling and
upsampling steps have filter size of 3 × 3. The 2 × 2 max
pooling is used to halve the size of the feature maps, and
the nearest neighbor interpolation is used to double the size
of the feature maps in the upsampling steps. We fixed the
size of the maximum feature maps in convolutional layers
to 256 which is different from [17]. After the last upsam-
pling layer, a single 3× 3 convolution and two 1× 1 con-
volution is performed to generate network outputs. Then,
an 1× 1 convolution is applied to the outputs to match the
number of channels to that of the input feature maps. An-
other 1× 1 convolution is also applied to the feature maps
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Figure 2. Overall music source separation framework proposed in this paper. Multiple hourglass modules are stacked, and
each module outputs masks for each music source. The masks are multiplied with the input spectrogram to generate pre-
dicted spectrograms. Differences between the estimated spectrograms and the ground truth ones are used as loss functions
of the network.

which used for output generation. Finally, the two feature
maps that passed the respective 1 × 1 convolution and the
input of the hourglass module is added together, and the re-
sulting feature map is used as an input to the next hourglass
module.

In the network used in this paper, input image firstly
passes through initial convolutional layers that consist of a
7× 7 convolutional layer and four 3× 3 convolutional lay-
ers where the number of output feature maps for each layer
is 64, 128, 128, 128, and 256 respectively. To make the
output mask and the input spectrogram have the same size,
we did not use the pooling operations in the initial convo-
lutional layers before the hourglass module. The feature
maps generated from the initial layers are fed to the first
hourglass module. The proposed overall music source sep-
aration framework is depicted in Fig. 2.

3.2 Music Source Separation

As shown in Fig. 2, to apply the stacked hourglass network
to music source separation, we aim to train the network to
output soft masks for each music source given the magni-
tude spectrogram of the mixed source. Hence, the output
dimension of the network is H ×W ×C where H and W
are the height and width of the input spectrogram respec-
tively, and C is the number of music sources to separate.
The magnitude spectrogram of separated music source is
obtained by multiplying the mask and the input spectro-
gram. Our framework is scalable in that it requires almost
no additional operation as the number of sources increases.

The input for the network is the magnitude of spectro-
gram obtained from Short-Time Fourier Transform (STFT)
with a window size of 1024 and a hop size of 256. The
input source is downsampled to 8kHz to increase the du-
ration of spectrograms in a batch and to speed up training.
For each sample, magnitude spectrograms of mixed and

separated sources are generated, which are divided by the
maximum value of the mixed spectrogram for data normal-
ization. The spectrograms have 512 frequency bins and the
width of the spectrogram depends on the duration of the
music sources. For all the music sources, the width of the
spectrogram is at least 64. Thus, we fix the size of an input
spectrogram to 512 × 64. Hence, the size of the feature
maps at the lowest resolution is 32×4. Starting time index
is randomly chosen when the input batches are created.

Following [22], we designed the loss function as an
L1,1 norm of the difference between the ground truth spec-
trogram and the estimated spectrogram. More concretely,
given an input spectrogram X, ith ground truth music
source Yi, and the generated mask for the ith source in
the jth hourglass module M̂ij , the loss for the ith source
is defined as

J (i, j) = ‖Yi −X� M̂ij‖1,1, (1)

where � denotes element-wise multiplication of the ma-
trix. L1,1 norm is calculated as the sum of absolute values
of matrix elements. The loss function of the network be-
comes

J =
C∑
i=1

D∑
j=1

J (i, j), (2)

where D is the number of hourglass modules stacked in the
network. We directly used the output of the last 1× 1 con-
volutional layer as the mask, which is different from [22]
where they used the sigmoid activation to generate masks.
While it is natural to use the sigmoid function to restrict
the value of the mask to [0,1], we empirically found that
not applying the sigmoid function boosts the training speed
and improves the performance. Since sigmoid activations
vanish the gradient of the inputs that have large absolute
values, they may diminish the effect of intermediate super-
vision.
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We have stacked hourglass modules up to four and pro-
vide analysis of the effect of stacking multiple modules
in Section 4. The network is trained using Adam opti-
mizer [10] with a starting learning rate of 10−4 and a batch
size of 4. We trained the network for 15,000 and 150,000
iterations for MIR-1K dataset and DSD100 dataset respec-
tively, and the learning rate is decreased to 2× 10−5 when
80% of the training is finished. No data augmentation is
applied during training. The training took 3 hours for MIR-
1K dataset and 31 hours for DSD100 dataset using a single
GPU when the biggest model is used. For the singing voice
separation task, C is set to 2 which corresponds to vocal
and accompaniments. For the music source separation task
in DSD100 dataset, C = 4 is used where each output mask
corresponds to drum, bass, vocal, and others. While it can
be advantageous in terms of performance to train a net-
work for a single source individually, it is computationally
expensive to train a deep CNN for each source. Therefore,
we trained a single network for each task.

In the test phase, the magnitude spectrogram of the in-
put source is cropped to network input size and fed to
the network sequentially. The output of the last hourglass
module is used for testing. We set the negative values of
output masks to 0 in order to avoid negative magnitude
values. The masks are multiplied by the normalized mag-
nitude spectrogram of the test source and unnormalized to
generate spectrograms of separated sources. We did not
change the phase spectrogram of the input source, and it
is combined with the estimated magnitude spectrogram to
retrieve signals for separated sources via inverse STFT.

4. EXPERIMENTS

We evaluated performance of the proposed method on
MIR-1K and DSD100 datasets. For quantitative evalua-
tion, we measured signal-to-distortion ratio (SDR), source-
to-interference ratio (SIR), and source-to-artifacts ratio
(SAR) based on BSS-EVAL metrics [31]. Normalized
SDR (NSDR) [20] is also measured for the singing voice
separation task which measures improvement between the
mixture and the separated source. The values are obtained
using mir-eval toolbox [21]. Global NSDR (GNSDR),
global SIR (GSIR), and global SAR (GSAR) are calcu-
lated as a weighted mean of NSDR, SIR, and SAR respec-
tively whose weights are length of the source. The sepa-
rated sources generated from the network are upsampled
to the original sampling rate of the dataset and compared
with ground truth sources for all experiments.

4.1 MIR-1K dataset

MIR-1K dataset is designed for singing voice separation
research. It contains a thousand song clips extracted from
110 Chinese karaoke songs at a sampling rate of 16kHz.
Following the previous works [6, 37], we used one male
and one female (abjones and amy) as a training set which
contains 175 clips in total. The remaining 825 clips are
used for evaluation. For the baseline CNN, we trained the
FCN that has U-Net [22]-like structure and evaluated its

Singing voice
Method GNSDR GSIR GSAR

MLRR [37] 3.85 5.63 10.70
DRNN [6] 7.45 13.08 9.68

ModGD [23] 7.50 13.73 9.45
U-Net [8] 7.43 11.79 10.42
SH-1stack 10.29 15.51 12.46
SH-2stack 10.45 15.89 12.49
SH-4stack 10.51 16.01 12.53

Accompaniments
Method GNSDR GSIR GSAR

MLRR [37] 4.19 7.80 8.22
U-Net [8] 7.45 11.43 10.41
SH-1stack 9.65 13.90 12.27
SH-2stack 9.64 13.69 12.39
SH-4stack 9.88 14.24 12.36

Table 1. Quantitative evaluation of singing voice separa-
tion on MIR-1K dataset.

performance. We followed the structure of [8], in which
singing voice and accompaniments are trained on differ-
ent networks. For the stacked hourglass networks, both
singing voice and accompaniments are obtained from a sin-
gle network.

The evaluation results on test sets are shown in Table 1.
We trained the networks with varying number of stacked
hourglass modules 1, 2, and 4. It is proven that our stacked
hourglass network (SH) significantly outperforms existing
methods in all evaluation criteria. Our method gains 3.01
dB in GNSDR, 2.28 dB in GSIR, and 1.83 dB in GSAR
compared to the best results of the existing methods. It
is also proven that the structure of the stacked hourglass
module is more efficient and beneficial than U-Net [8] for
music source separation. U-Net has 9.82 million parame-
ters while single stack hourglass network has 8.99 million
parameters considering only convolutional layers. Even
with the absence of batch normalization, smaller number
of parameters, and multi-source separation in a single net-
work, the stacked hourglass network showed superior per-
formance to U-Net. While the network with a single hour-
glass module shows outstanding source separation per-
formance, even better results are provided when multiple
hourglass modules are stacked. This indicates that SH net-
work does not overfit even when the network gets deeper
despite small amount of the training data. Our method pro-
vides good performance on separating both singing voice
and accompaniments with a single forward step.

Qualitative results of our method and comparison with
U-Net are shown in Fig. 3. The estimated log spectrograms
of singing voice and accompaniments from SH-4stack and
U-Net and the ground truth log spectrograms are provided.
It can be seen that our method captures fine details and
harmonics compared to the U-Net. The voice spectrogram
from U-Net has more artifacts in the time slot of 0∼1 and
4∼5 compared to the result of SH-4stack. On the other
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Figure 3. Qualitative comparison of our method (SH-4stack) and U-Net for singing voice and accompaniments separation
on annar 3 05 in MIR-1K dataset. Ground truth and estimated spectrograms are displayed in a log-scale. Our method is
superior in capturing fine details compared to U-Net.

hand, harmonics from voice signals can be clearly seen in
the spectrogram of SH-4stack. For accompaniments spec-
trogram, it is observed that U-Net contains voice signals
around the time slot of 3.

4.2 DSD100 dataset

DSD100 dataset consists of 100 songs that are divided into
50 training sets and 50 test sets. For each song, four differ-
ent music sources, bass, drums, vocals, and other as well as
their mixtures are provided. The sources are stereophonic
sound with a sampling rate of 44.1kHz. We converted
all sources to monophonic and performed single channel
source separation using stacked hourglass networks. We
used a 4-stacked hourglass network (SH-4stack) for the ex-
periments.

The performance of music source separation using
stacked hourglass network is provided in Table 2. We mea-
sured SDR of the separated sources for all test songs and
report median values for comparison with existing meth-
ods. The methods that use single channel inputs are com-
pared to our method. While the stacked hourglass network
gives second-best performance following the state-of-the-
art methods [26] for drums and vocals, it shows poor per-
formance for separating bass and other. This is mainly
due to the similarity between bass and guitar sound in
other sources, which confuses the network especially when
trained together in a single network. Since the losses for all
sources are summed up with equal weights, the network
tends to be trained to improve the separation performance
of vocal and drum, which is easier than separating bass and
other sources.

Next, we trained the stacked hourglass network for a

Method Bass Drums Other Vocals
dNMF [36] 0.91 1.87 2.43 2.56

DeepNMF [11] 1.88 2.11 2.64 2.75
BLEND [28] 2.76 3.93 3.37 5.13

MM-DenseNet [26] 3.91 5.37 3.81 6.00
SH-4stack 1.77 4.11 2.36 5.16

Table 2. Median SDR values for music source separation
on DSD100 dataset.

Method Vocals Accompaniments
DeepNMF [11] 2.75 8.90

wRPCA [9] 3.92 9.45
NUG [19] 4.55 10.29

BLEND [28] 5.23 11.70
MM-DenseNet [26] 6.00 12.10

SH-4stack 5.45 12.14

Table 3. Median SDR values for singing voice separation
on DSD100 dataset.

singing voice separation task. The three sources except vo-
cals are mixed together to form accompaniments source.
The median SDR values for each source are reported in
Table 3. Our method achieved best result for accompa-
niments separation and second-best for vocal separation.
Separation performance of vocals is improved compared to
the music source separation setting. It can be inferred that
the stacked hourglass network provides better results as
number of sources are smaller and the separating sources
are more distinguishable from each other.
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Figure 4. Examples showing the effectiveness of stacking multiple hourglass modules. Ground truth and estimated spec-
trograms of the part of the song Schoolboy Fascination in DSD100 dataset are shown. SDR values of the source generated
from the spectrograms obtained from first, second, fourth hourglass module are 10.90, 12.50, 13.30 respectively. Espe-
cially, it is observed that the estimated spectrogram captures fine details of spectrogram at low frequency range (0∼500 Hz)
as more hourglass modules are stacked.

Lastly, we investigate how the stacked hourglass net-
work improves the output masks as they pass through the
hourglass modules within the network. The example illus-
trated in Fig. 4 shows the estimated voice spectrogram of
first, second, and fourth hourglass module with the ground
truth spectrogram from one of the test sets of DSD 100
dataset. It is observed that the estimated spectrogram be-
comes more similar to the ground truth as it is generated
from a deeper side of the network. In the result of the
fourth hourglass module, spectrograms at low frequency
are clearly recovered compared to the result of the first
hourglass module. The artifacts in the range of 2000∼3000
Hz are also removed. Although it is hard to recognize the
difference in the spectrogram image, the difference of SDR
between the source estimated from the first hourglass mod-
ule and the last hourglass module is about 2.4dB which is
a significant performance gain.

5. CONCLUSION

In this paper, we proposed music source separation algo-
rithm using stacked hourglass networks. The network suc-

cessfully captures features at both coarse and fine resolu-
tion, and it produces masks that are applied to the input
spectrograms. Multiple hourglass modules refines the esti-
mation results and outputs the better results. Experimental
results has proven the effectiveness of the proposed frame-
work for music source separation. We implemented the
framework in its simplest form, and there is a lot of room
for performance improvements including data augmenta-
tion, regularization of CNNs, and ensemble learning of
multiple models. Designing a loss function that consid-
ers correlation of different sources may further improves
the performance.
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Gómez. Monoaural audio source separation using deep

294 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



convolutional neural networks. In International Con-
ference on Latent Variable Analysis and Signal Sepa-
ration, pages 258–266. Springer, 2017.

[2] Chao Dong, Chen Change Loy, Kaiming He, and Xi-
aoou Tang. Image super-resolution using deep convo-
lutional networks. IEEE transactions on pattern anal-
ysis and machine intelligence, 38(2):295–307, 2016.

[3] Emad M Grais, Hagen Wierstorf, Dominic Ward, and
Mark D Plumbley. Multi-resolution fully convolutional
neural networks for monaural audio source separation.
arXiv preprint arXiv:1710.11473, 2017.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 770–778, 2016.

[5] C. L. Hsu and J. S. R. Jang. On the improvement
of singing voice separation for monaural recordings
using the mir-1k dataset. IEEE Transactions on Au-
dio, Speech, and Language Processing, 18(2):310–
319, Feb 2010.

[6] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson,
and Paris Smaragdis. Joint optimization of masks and
deep recurrent neural networks for monaural source
separation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 23(12):2136–2147, 2015.

[7] Forrest Iandola, Matt Moskewicz, Sergey Karayev,
Ross Girshick, Trevor Darrell, and Kurt Keutzer.
Densenet: Implementing efficient convnet descriptor
pyramids. arXiv preprint arXiv:1404.1869, 2014.

[8] Andreas Jansson, Eric Humphrey, Nicola Montecchio,
Rachel Bittner, Aparna Kumar, and Tillman Weyde.
Singing voice separation with deep u-net convolutional
networks. 18th International Society for Music Infor-
mation Retrieval Conferenceng, Suzhou, China, 2017.

[9] Il-Young Jeong and Kyogu Lee. Singing voice separa-
tion using rpca with weighted l {1} -norm. In Inter-
national Conference on Latent Variable Analysis and
Signal Separation, pages 553–562. Springer, 2017.

[10] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Jonathan Le Roux, John R Hershey, and Felix
Weninger. Deep nmf for speech separation. In Acous-
tics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pages 66–70.
IEEE, 2015.

[12] Daniel D Lee and H Sebastian Seung. Algorithms for
non-negative matrix factorization. In Advances in neu-
ral information processing systems, pages 556–562,
2001.

[13] Yuan-Shan Lee, Chien-Yao Wang, Shu-Fan Wang, Jia-
Ching Wang, and Chung-Hsien Wu. Fully complex
deep neural network for phase-incorporating monau-
ral source separation. In Acoustics, Speech and Signal
Processing (ICASSP), 2017 IEEE International Con-
ference on, pages 281–285. IEEE, 2017.

[14] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3431–
3440, 2015.

[15] Stylianos Ioannis Mimilakis, Konstantinos Drossos,
Tuomas Virtanen, and Gerald Schuller. A recurrent
encoder-decoder approach with skip-filtering connec-
tions for monaural singing voice separation. CoRR,
abs/1709.00611, 2017.

[16] Marius Miron, Jordi Janer, and Emilia Gómez. Monau-
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ABSTRACT

Audio source separation is the process of isolating individ-
ual sonic elements from a mixture or auditory scene. We
present the Northwestern University Source Separation Li-
brary, or nussl for short. nussl (pronounced ‘nuzzle’)
is an open-source, object-oriented audio source separation
library implemented in Python. nussl provides imple-
mentations for many existing source separation algorithms
and a platform for creating the next generation of source
separation algorithms. By nature of its design, nussl
easily allows new algorithms to be benchmarked against
existing algorithms on established data sets and facilitates
development of new variations on algorithms. Here, we
present the design methodologies in nussl, two experi-
ments using it, and use nussl to showcase benchmarks
for some algorithms contained within.

1. INTRODUCTION

Audio source separation is the process of isolating indi-
vidual sonic elements from a mixture or auditory scene.
The underdetermined case is where there are fewer mix-
ture channels (e.g. a stereo recording) than sources (a
string quartet). Examples of underdetermined source sep-
aration include extracting a single speaker from a single-
mic recording of a crowded cocktail party, extracting a
singer from a rock band recording, or removing an extrane-
ous car horn from a field recorded interview. Applications
of source separation include end-user tools for extracting
vocals (e.g., Audionamix ADX Trax), upmixing vintage
recordings to stereo or 5.1 surround sound, and as a pre-
processing step for speech recognition [15] and other audio
tasks.

There have been many approaches taken to source sep-
aration in the underdetermined case. These include Non-
negative Matrix Factorization (NMF) [37, 38], harmon-
ic/percussive separation [7], deep learning [11, 13, 14, 16,
21, 25], pitch tracking [5, 34], spatialization [8, 32], re-
peating vs non-repeating elements [29,30,36], low-rank vs
sparse decomposition [12], and common fate [24, 39, 44].

c© Ethan Manilow, Prem Seetharaman, Bryan Pardo. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Ethan Manilow, Prem Seetharaman, Bryan
Pardo. “The Northwestern University Source Separation Library”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

The research community has centered around a col-
lection of common data sets to benchmark results from
these different approaches. Perhaps the best known are the
data sets used for the recurring Signal Separation Evalua-
tion Campaign (SiSEC) [19, 42]. SiSEC previously used
DSD100 [20],and now uses both DSD100 and MedleyDB
[1], calling the combined data set MUSDB18 [28]. Other
common data sets include iKala [2], MIR-1K [3], TIMIT
[10], and WSJ0 [9]. The community also typically uses
the signal quality measures provided by BSS-Eval [6, 42]
(SDR, SIR, and SAR) when reporting results.

Though there is some debate about this [4], it can be
argued that using common data sets and evaluation mea-
sures strengthens research through standardizing metrics
by making new and existing research directly compara-
ble. While the source separation community has common
data sets and common evaluation measures, there exists no
such common code repository for actual implementations
of proposed algorithms.

Vandewalle et al. [41] argue that in the computational
sciences, implementation details are crucial to reproduc-
ing the results of academic papers, despite being routinely
omitted from publications. They establish six degrees of
reproducibility, scored from 0 (lowest) to 5 (highest). A
score of 5 is defined as “The results can be easily repro-
duced by an independent researcher with at most 15 min of
user effort, requiring only standard, freely available tools.”
A 0 indicates research completely unreproducible by an in-
dependent researcher.

The ubiquity of code repositories like Github has al-
lowed many researchers to share their code, but using
Github is not a guarantee of easy reproducibility. A re-
cent seminar 1 convened to reproduce results from six MIR
papers (including two source separation papers) and con-
cluded that not a single paper, despite including code,
scored better than “Can be reproduced, requiring consid-
erable effort” using the reproducibility scorecard by Van-
dewalle et al. [41]. Of the two source separation papers,
both scored “Could be reproduced, requiring extreme ef-
fort.”

This work aims to provide a common platform for re-
searchers to contribute their source separation algorithms
to fill the implementation gap and promote reproducibility
within the source separation research community. Further-
more, this work strives to make every algorithm in the pro-
posed framework achieve the highest reproducibility rating
using the Vandewalle et al. scorecard: reproducible results

1 https://github.com/audiolabs/APSRR-2016
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in under 15 minutes. The Northwestern University Source
Separation Library (nussl) is the culmination of that ef-
fort.

In this paper we will explore nussl and introduce
some core aspects of its design methodology, provide an
outline about how to add a new algorithm to nussl and
benchmark many of the source separation algorithms in
nussl. We also leverage the flexibility of the nussl
framework to implement and test novel combinations of
existing source separation algorithms. We examine how
source separation algorithms interact with methods such as
overlap and add, which apply the same source separation
algorithm to overlapping windows in the mixture and re-
combine the sources afterwards, rather than applying them
to the entire mixture. More information about nussl can
be obtained at the project’s online documentation. 2 A
companion website is also provided for this paper. 3

2. RELATED WORK

The biennial Signal Separation Evaluation Campaign
(SiSEC) [19,42] is an open call for members of the MIR re-
search community to submit source separation algorithms
to be run and evaluated on a common dataset. While the
dataset is widely distributed and used, not all of the code
submissions from previous campaigns have been made
available to scrutinize. Additionally, SiSEC offers no stan-
dard API to adhere to, and only a minimal framework to
work with. We have submitted many algorithms within
nussl to the most recent SiSEC campaign.

Other source separation libraries have been presented
in the past, as well. The Flexible Audio Source Separation
Toolbox (FASST) [23, 35] 4 was written in MATLAB and
C++, but did not have a process for outside submissions.
untwist [33] is an open source Python source separa-
tion library, but it is based on a different design framework
than nussl, implements a different set of algorithms than
nussl, and has no built-in interfaces for common evalua-
tion metrics, data sets, or loading pre-trained models.

3. DESIGN FRAMEWORK OF NUSSL

nussl is built with extensibility in mind. It would be im-
possible to provide implementations for every source sep-
aration algorithm upon the announcement of this library.
As such nussl is built to an API so that the community
can easily add their own algorithms, models, datasets and
have them automatically work with every other aspect of
nussl.

Under the hood, nussl uses many common Python
tools for signal processing and machine learning,
such as librosa, numpy, scipy, scikit-learn,
mir eval, musdb, and museval, so developing with
nussl should be familiar to any MIR researcher working
in Python.

2 https://interactiveaudiolab.github.io/nussl
3 https://interactiveaudiolab.github.io/demos/nussl.html
4 Related Python library: https://github.com/wslihgt/pyfasst/

1 import nussl
2
3 # Load audio
4 signal = nussl.AudioSignal(’path/to/mix.wav’)
5
6 # Run REPET for foreground/background separation
7 algorithm = nussl.Repet(sig)
8 algorithm.run()
9 fg, bg = algorithm.make_audio_signals()

10
11 # Save results to wav files
12 fg.write_audio_to_file(’fg.wav’)
13 bg.write_audio_to_file(’bg.wav’)

Figure 1: Using nussl to run a single algorithm (REPET
[30] for foreground/background separation) on a single
mixture. In a recent seminar on reproducibility, REPET
scored “could be reproduced, requiring extreme effort.”
nussl aims to improve the reproducibility score of mul-
tiple source separation algorithms, including REPET.

In the next sections, we provide a high-level overview
of some of the more important aspects of the nussl API.
For more information, please see our full online documen-
tation.

3.1 AudioSignal

The main entry point to nussl for end-users and algo-
rithm developers is through the AudioSignal object.
The AudioSignal object has methods for reading and
writing audio, padding or truncating the audio, adding and
subtracting audio signals from one another, checking and
altering properties of the audio, computing invertible sig-
nal transforms (e.g. short time Fourier transform), and
much more. AudioSignal can read all of the most com-
mon audio codecs. Once in memory, audio is represented
as a 2-dimensional (channels and time series within a chan-
nel) numpy array of pulse-code modulated (PCM) sam-
ples.

All source separation algorithms in nussl accept as
their first argument an AudioSignal object. Each
algorithm copies the content of the audio object, per-
forms separation on that copy and returns a set of of new
AudioSignal objects, one per source, leaving the origi-
nal AudioSignal object unchanged.

3.2 Source Separation Algorithms

All source separation algorithms in nussl are encapsu-
lated in classes that are derived from SeparationBase.
For each class, the constructor does minimal set up, the
run() method does the computation required for the
source separation, and the make audio signals()
method returns AudioSignal objects containing the es-
timated signals. An example of this whole process is
shown in Figure 1.

3.2.1 MaskSeparationBase vs SeparationBase

Source separation algorithms in nussl are segregated into
two categories: those that produce a mask and apply it
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Algorithms in nussl
Repetition Other Fore/Background Spatialization Composite
Repet [31] Harmonic/Percussive (HPSS) [7] DUET [32] Overlap/Add
RepetSim [29] Melody Masking (Melodia [34]) PROJET [8] Algorithm Picker [22]
2DFT [36] Component Analysis Benchmarking Neural Networks
Matrix Decomposition ICA [18] High/Low Pass Filter Deep Clustering [11, 21]
NMF w/ MFCC Clustering [38] RPCA [12] Ideal Mask

Table 1: Source Separation algorithms by category currently implemented in nussl.

to a representation (e.g. a spectrogram) built from the
waveform, and those that do separation via other means
(e.g. time domain methods such as independent com-
ponent analysis). The former group of algorithms are
derived from the MaskSeparationBase base class,
which is a subclass of the SeparationBase base
class. The run() method in MaskSeparationBase-
derived algorithms are expected to return mask ob-
jects (see Section 3.2.2). Some algorithms inherit di-
rectly from SeparationBase and have no require-
ment about what their run() method returns. With
MaskSeparationBase separation classes, it is easy to
switch between running an algorithm with a binary or soft
mask.

3.2.2 Masks

Masks are encapsulated by the MaskBase base class.
SoftMask and BinaryMask are the two classes that de-
rive from MaskBase. MaskBase-derived objects have a
numpy array that contains the data, and utilities for apply-
ing masks to AudioSignal objects. SoftMask objects
are applied using a classical approach:

Ŝ
(i)
ω,t =

v
(i)
ω,t∑N

i=0 v
(i)
ω,t

Here, v(i)ω,t is the estimate of source i at frequency ω

and time t, Ŝ(i)
ω,t is the value of the mask for that source

at that time and frequency, and N is the total number of
sources. The BinaryMask objects simply put a 1 when
a source estimate dominates all other source estimates in a
time-frequency bin and a 0 elsewhere. More masking types
(e.g. consistent Wiener filtering [17]) can be implemented
by subclassing MaskBase.

3.3 Evaluation

nussl also has a common interface to evaluate the esti-
mates from source separation algorithms using established
metrics, such as BSS-Eval [6] using implementations from
mir eval [26] or museval [40]. nussl also has meth-
ods for comparing binary masks to an ideal binary mask
using accuracy, precision, recall, and F-Score [43]. Simi-
lar to the rest of nussl, all of the evaluation metrics are
encapsulated by the EvaluationBase base class so that
all of its child classes are built to a common API.

1 import nussl
2
3 m1k = ’path/to/MIR-1K’
4
5 # List of algorithms to test
6 sep_classes = [nussl.RepetSim, nussl.Melodia]
7
8 # Loop through all of MIR-1K
9 for mix, vox, acc in nussl.datasets.mir1k(m1k):

10 mix.to_mono(overwrite=True)
11
12 for alg in sep_classes:
13
14 # Run the algorithm
15 a = alg(mix)
16 a.run()
17 est = a.make_audio_signals()
18
19 # Evaluate results
20 gt = [acc, vox] # Ground truth
21 bss = nussl.evaluate.BssEval(mix, gt, est)
22 scores = bss.evaluate()

Figure 2: Running two algorithms on all of MIR-1K and
evaluating using BSS-Eval.

3.4 Data Sets

Although nussl does not ship with any data sets, it does
provide “hooks” for interfacing with common data sets.
The hooks are basic utilities for reading the audio files into
AudioSignal objects. The user first points nussl to
the top-level directory of the downloaded data set. The
utilities can then iterate through every audio file, a sub-
set of files, or shuffle the order in which they are read.
There structure of the directories is assumed to be Data
sets that nussl can currently interface with include iKala
[2], MIR-1K [3], MUSDB18 [28] (using musdb), and
DSD100 [20]. An example of running multiple algorithms
on the entirety of MIR-1K and evaluating the results using
BSS-Eval is shown in Figure 2.

3.5 Modelers and Deep Learning Models

nussl also contains a section for generic modeling and
matrix manipulation classes. Classes in this section are
not source separation algorithms, but are used by the al-
gorithms in nussl. An example is the Non-negative Ma-
trix Factorization (NMF) class, NMF. This receives a non-
negative numpy matrix as input, factorizes it into a tem-
plate matrix and an activation matrix, and outputs the two
results to be used by a separation algorithm. It does not in-
put or output audio, spectrograms, or masks. For those util-
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Figure 3: SDR evaluations for vocal estimates using
OverlapApp on the MIR-1K data set. Three different
window sizes are shown: 10 sec (red), 20 sec (blue), 30
sec (yellow). Hops are half of the window size.

ities, a wrapper separation class is needed, like NMF MFCC,
which clusters the templates using mel-frequency cepstral
coefficients. Other classes train deep learning models for
separation use. Classes in this section have a more lax API
because of their heterogeneous nature.
nussl currently supports deep learning models written

in PyTorch, but does not ship with any pre-trained mod-
els, only the code to train with. Similar to frameworks
like PyTorch, nussl offers a way to download pre-
trained models from nussl servers for algorithms which
require them. Developers can see what models exist on
our servers and download a models via utilities built into
nussl. There also exists a process for contributers to up-
load their own pre-trained models (see Section 4.2 for more
details).

4. ALGORITHMS IN NUSSL

4.1 Currently in nussl

At the time of this writing, the source separation algo-
rithms are implemented in nussl to the API specifica-
tion are presented in Table 1, by category. The algorithms
currently in nussl provide a good starting point for fu-
ture benchmark work, and we hope to expand the set of
offered algorithms to include many more state-of-the-art
approaches.

4.2 Adding new algorithms to nussl

The process of adding new source separation algorithms
into nusnusslsl is similar to other open source projects,
in many ways. A researcher who wishes to add an algo-
rithm must clone the Github repository, make a new branch
for their algorithm, add their code, push to Github, and
then create a pull request. At this point, the nussl con-
tributing process deviates from that standard open-source
process.

After the new code passes the style and error checks, the
researcher must provide benchmark files for tests. These

can be created by using standard metrics on a set of exam-
ple files. For example, when adding a new algorithm, a re-
searcher could provide BSS-Eval metrics on a few songs
from MIR-1K dataset. If an implementation existed else-
where prior to being incorporated into nussl, then a copy
of the original implementation will be requested to bench-
mark against. Authors of new algorithms, must also pro-
vide a reference to a paper or other documentation which
outlines the algorithm in more detail. Additionally, any
large supplemental materials that are needed for the algo-
rithm (such as pre-trained neural network models) must be
provided so that they can be distributed through nussl’s
API as outlined in Section 3.5.

All of this is outlined in more detail on the contributions
section of the nussl Github page and documentation.

5. EXAMPLE USES OF NUSSL

Because all of the algorithms and supporting infrastructure
in nussl are built to an API, this allows a very simple
way to find novel combinations of multiple source separa-
tion algorithms and evaluate them on a variety of data sets
under different evaluation metrics. In this section, we will
showcase two novel experiments using nussl and present
results from these experiments.

5.1 Cascading algorithms

The nussl API facilitates combining several different al-
gorithms. To illustrate this point, we reproduce and expand
upon work demonstrated by Rafii et al. [27] in combining
rhythm-based and pitch-based approaches to source sepa-
ration.

Rafii et al. present two methods for cascading algo-
rithms: Parallel, where the background and foreground
masks created by each algorithm are combined after the
algorithms run on the mixture; and, Series, where the fore-
ground estimation of algorithm A is fed in as the “mixture”
to algorithm B. The mask estimates, in each case, are com-
bined using weighted Weiner Filtering.

For this experiment, we use four background/fore-
ground algorithms, RepetSim, Separation via 2DFT,
RCPA, and Melodic masking with Melodia. We chose
each pair from the set of algorithms and resulting in a total
of 16 combinations. Based on values reported by Rafii et
al., for running in Parallel we set wB = 1.0 and wM = 0.3
as the weights of the background and foreground masks,
respectively. We set the weight parameter w = 0.5 for
running in Series. All algorithms created soft masks. We
evaluated results using BSS-Eval on the undivided MIR-
1K data set. 5 Mean SDR values (with 1 standard devia-
tion) are shown in Figure 5 for vocals. We find that series
configurations outperform parallel configurations overall,
and RepetSim is best as a second algorithm run especially
when it is also the first.

5 MIR-1K has 110 tracks of mean duration 72.7± 17.3 seconds, that
are divided into 1000 smaller tracks of 8.0 ± 1.8 seconds. The divided
tracks are too small to capture multiple repetitions.
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(a) Benchmarks for the iKala data set. Algorithms apply binary masks to the mixtures and the results were evaluated using
precision, recall, F-Score, and accuracy (precision is red, recall is blue, F-Score is yellow, and accuracy is pink).

(b) Benchmarks for the MIR-1K data set. Algorithms apply binary masks to the mixtures and the results were evaluated
using BSS-Eval (SDR is red, ISR is blue, SIR is yellow, and SAR is pink).

(c) Benchmarks for the MUSDB18 data set. Algorithms apply soft masks to the mixtures and the results were evaluated
using BSS-Eval (SDR is red, ISR is blue, SIR is yellow, and SAR is pink).

Figure 4: Illustrative benchmarks for a set of algorithms and configurations in nussl.
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(a) Running in algorithms in Parallel. (b) Series

Figure 5: Mean SDR for vocal estimations from cascading pairs of algorithms.

5.2 Combining algorithms with Overlap/Add

In addition to classes that run one type of algorithm
(like HPSS, etc), nussl also contains composite algorithm
classes, i.e. those that run other algorithms in nussl. One
such simple example is the OverlapAdd class, which
does the overlap add method when running an algorithm.

In this experiment, we ran two repetition-based algo-
rithms, RepetSim and Separation via 2DFT, wrapped in the
Overlap/Add class to do vocal extraction. We tested three
different window lengths, 10, 20, and 30 seconds, with hop
length at half of the window length and using Hamming
windows. We ran this experiment on the undivided MIR-
1K data set 6 and evaluated the estimates using BSS-Eval.
Results from this experiment show that smaller windows
lead to better vocal separation performance, according to
SDR. These results are shown in Figure 3.

6. BENCHMARKS

In this section, we provide a selection of benchmarks for
a set of algorithms in nussl. We benchmarked all al-
gorithms that explicitly perform vocal separation with de-
terministic output source ordering (i.e. for an output ar-
ray of sources, accompaniment is always index 0 and vo-
cals is always index 1). We ran the algorithms on the
iKala, MIR-1K, and MUSDB18 data sets. We ran REPET,
REPET-SIM, Separation by 2DFT, HPSS, Masking from
Pitch Tracking (using Melodia as the pitch tracker), RPCA,
High/Low Pass filtering (cutoff at 100Hz).

For brevity, we only report one evaluation type for each
data set here. We aim not to be complete, but rather show-
case what nussl is capable of. For iKala, we show
precision/recall/F-Score/accuracy computed from output
binary masks, Figure 4a. For MIR-1K, we show BSS-Eval
metrics computed from estimates using binary masks, Fig-
ure 4b. And for MUSDB18, we show BSS-Eval metrics
computed from estimates using soft masks, Figure 4c.

6 We excluded two signals that were shorter than the largest window
sizes.

All algorithms were run using the default parame-
ter values for the algorithm in nussl’s implementation.
Specifics of all of the parameters are contained in the
project’s documentation website.

7. FUTURE WORK AND CONCLUSION

In the future, we hope to expand upon nussl in a num-
ber of ways. First, while nussl is currently focused on
musical source separation (the expertise of its authors), we
would like to expand it to include source separation meth-
ods for speech. This would also necessitate adding hooks
for speech data sets (like TIMIT and WSJ0) and adding
pre-trained models for speech. Second, we would like to
add an extensible API for spectral transformations. Cur-
rently, the STFT is at the core of AudioSignal, but in
the future, it should be abstracted so that it is easy to run
any algorithm on a CQT, Mel-Spaced STFT, etc.

Finally, and importantly, we would like buy-in from the
MIR and audio community. The aim of nussl is to be-
come the community’s central repository for audio source
separation. This goal is impossible without the support and
contributions of the research community. We encourage
interested participants to read the guidelines for contribut-
ing on this project’s documentation page and get involved.

We have presented the Northwestern University Source
Separation Library (nussl), an open-source, object-
oriented audio source separation library implemented in
Python. nussl implements many popular source sep-
aration algorithms, and a low barrier API for end-users
and developers alike. We have demonstrated its design
framework, including its ability to interface with common
data sets and evaluation metrics. We also showcased two
novel experiments using the API and a set of benchmarks.
This project is actively seeking submissions from eager re-
searchers and avid open source developers. Readers can
find more information at interactiveaudiolab.
github.io/nussl. This work was supported by USA
National Science Foundation Award 1420971.
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ABSTRACT

In this paper, we consider two methods to improve an algo-
rithm for bass saliency estimation in jazz ensemble record-
ings which are based on deep neural networks. First, we
apply label propagation to increase the amount of training
data by transferring pitch labels from our labeled dataset to
unlabeled audio recordings using a spectral similarity mea-
sure. Second, we study in several transfer learning exper-
iments, whether isolated note recordings can be beneficial
for pre-training a model which is later fine-tuned on en-
semble recordings. Our results indicate that both strategies
can improve the performance on bass saliency estimation
by up to five percent in accuracy.

1. INTRODUCTION

Recent developments in the field of machine learning, in
particular deep learning, stimulated a significant perfor-
mance boost in various Music Information Retrieval (MIR)
tasks [7] such as audio tagging [23], audio source separa-
tion [27], and automatic music transcription (AMT) [15].
One major challenge in training deep neural networks
(DNNs) that generalize well to unseen data lies in the large
amount of required labeled training data, which is often not
available.

In this context, semi-supervised learning strategies can
help to solve this data problem. A first approach is to ap-
ply transfer learning, i. e., training a network on a related
classification task and fine-tune the model parameters for
the target task with the (usually smaller) amount of train-
ing data at hand [10, 18]. Both training steps are fully su-
pervised and therefore require labeled datasets. A second
approach is label propagation, where labels from labeled
feature vectors are propagated to unlabeled feature vectors
if some pre-defined similarity measure exceeds a particu-
lar threshold. Label propagation can help to significantly
increase the amount of available training data.

In this paper, we focus on the task of estimating the
pitch salience of the bass instrument in jazz ensemble

c© Jakob Abeßer, Stefan Balke, Meinard Müller. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Jakob Abeßer, Stefan Balke, Meinard Müller. “Im-
proving Bass Saliency Estimation using Label Propagation and Trans-
fer Learning”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.

Figure 1. Flowchart summarizing the main idea of training
a deep neural network to learn a mapping function from a
constant-Q spectrogram of a jazz ensemble recording (left)
towards a bass pitch saliency representation (right) using a
deep neural network.

recordings. In general, pitch saliency refers to a likelihood
measure of an instrument playing certain pitch frequen-
cies at given times. Figure 1 illustrates the DNN-based
approach that we use. Given a time-frequency represen-
tation of an audio recording of a jazz ensemble, the goal is
to estimate a bass salience representation in a frame-wise
fashion. As outlined in [1], these frame-wise estimates of
the bass saliency can then be aggregated using beat anno-
tations to obtain a beat-wise pitch representation, which is
a musically meaningful approximation of the commonly
played walking bass lines in jazz music.

As the main contributions of this paper, we investigate
transfer learning and label propagation strategies for im-
proving fully-connected deep neural networks for the task
of bass saliency estimation, as shown in Figure 2. Both
techniques aim to compensate the lack of available la-
beled data for the task of bass salience estimation. For
label propagation, the core idea is to enrich an unlabeled
dataset with labels from a labeled dataset. For transfer
learning, we investigate whether training models on mu-
sic data of lower timbral complexity (e. g., isolated instru-
ment tones) is beneficial for transferring them to complex
mixture recordings.

The remainder of this paper is structured as follows. In
Section 2, we review related work. In Section 3, we in-
troduce the underlying datasets used throughout our ex-
periments and propose additional data augmentation steps.
Section 4 introduces the feature extraction approach, DNN
architecture, and the evaluation methodology. In Section 5,
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Figure 2. Illustration of label propagation and transfer learning. In label propagation (left), an unlabeled audio dataset is
enriched with frame-wise pitch labels from a labeled dataset. In transfer learning (right), a DNN is first pre-trained on a
dataset with lower complexity (isolated bass recordings) and then trained further on jazz ensemble recordings.

we present experiments towards hyperparameter optimiza-
tion (Section 5.1), label propagation (Section 5.2), as well
as transfer learning (Section 5.3). Finally, Section 6 con-
cludes our work and gives perspectives towards future
work.

2. RELATED WORK

Salience representations are a common intermediate rep-
resentation in many automatic music transcription (AMT)
systems prior to the formation of note events. Most previ-
ous approaches for bass saliency estimation rely on hand-
crafted algorithms rather than on automatically learnt map-
pings. For instance, Goto derives pitch saliency values
from predominant peaks in a spectral representation based
on instantaneous frequency values [13]. Ryynänen and
Klapuri compute a saliency measure for a given pitch from
a weighted sum over the spectral magnitude values at its
harmonic frequencies [24]. Salamon et al. apply har-
monic summation based on a logarithmic frequency repre-
sentation combined with instantaneous frequency estima-
tion methods [25].

In [1], the mapping from a constant-Q spectrogram to a
bass saliency function is automatically learnt using fully-
connected deep neural networks. The authors also investi-
gated a semi-supervised learning step where parts of pre-
dicted pitch saliency estimations on unlabeled audio data
were added to the training data based on a sparsity cri-
terion. The modeling strategy was inspired by Balke et
al. [2], who used a similar approach to estimate a saliency
representation of the predominant melody instrument in
jazz music recordings. Bittner et al. [4] proposed a fully
convolutional neural network (CNN) to extract a saliency
representations from different constant-Q transforms used
as input for both multiple fundamental frequency estima-
tion and melody tracking.

Models with state-of-the-art performance in related dis-
ciplines such as image processing (mostly CNN-based
models) are rarely trained from scratch due to the large
amount of required training data. Instead, only the last

Dataset Usage Labels # Feature Vectors Duration [h]

ISO+ Training X 448,626 5.79
WJD+ Training X 305,507 3.94
WJD− Training - 500,000 6.45

WJD+-TEST Test X 8,318 0.1

Table 1. Summary of the datasets. The number of feature
vectors after data augmentation and voiced frame selection
as well as the corresponding duration in hours is given in
the last two columns. For the WJD− dataset, 500,000 fea-
ture vectors were randomly selected due to memory limi-
tations on the hardware in use for the experiments.

layers of existing “general purpose” classification models
(such as the ImageNet model [9]) are fine-tuned for re-
lated classification tasks using smaller amounts of training
data [21]. Similarly, in the field of MIR, Choi et al. [8]
used a pre-trained CNN-based feature extractor trained on
music tagging data for related music classification and re-
gression tasks. However, for the task of AMT, no such
general-purpose model was established so far.

3. DATASETS

The spectral characteristics of the targeted upright bass
tones are affected by different factors of variation such as
the pitch, the loudness, as well as the overlap with tones
from simultaneously playing instruments. In our consid-
ered datasets, we use different sets of upright bass record-
ings that try to address these variations. All considered
audio files used in this paper include an acoustic upright
bass played with the plucked (pizzicato) plucking style—
as opposed to using a bow—as this is the common playing
style for jazz bass players. Table 1 gives an overview of
the datasets used, which we discuss in the following.

3.1 Isolated Upright Bass Recordings (ISO+)

The ISO+ dataset is a collection of isolated chromatic note
recordings. The recordings stem from various commercial
and non-commercial upright bass sample datasets: Adam
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Figure 3. Pitch histogram over labeled datasets ISO+,
WJD+, and WJD+-TEST after data augmentation. Total
duration of all notes in minutes is shown for each pitch.

Monroe’s Upright Bass Sample Library , Meatbass , Tril-
lian , Steinberg Halion Symphonic Orchestra, and SWAM
Double Bass. Furthermore, we collected recordings from
the Real World Computing Music Database (RWC) [14],
the McGill University Master Samples [11] and the Iowa
Classical Instrument Samples 1 .

3.2 Jazz Ensemble Recordings (WJD)

The Weimar Jazz Database (WJD) contains 456 manually
transcribed solos from famous jazz recordings [22]. For a
subset of 40 of these recordings, excerpts of walking bass
lines using the Sonic Visualiser software [6]. All of the
selected recordings are typical jazz ensembles that consist
of upright bass, drums, piano, as well as melody instru-
ments such as trumpet or saxophone. We use 30 of these
annotated recordings for training (WJD+) and 10 for test-
ing (WJD+-TEST). The remaining 416 recordings from
the WJD are denoted by WJD−. These recordings come
without bass pitch annotations and will be used in the label
propagation experiment detailed in Section 5.2.

3.3 Data Augmentation

On the datasets that we use for supervised training (ISO+

and WJD+), we generated 15 augmented versions from
each original audio file by combining three time-stretching
settings (stretch factors 0.9, 1, and 1.1) and five pitch-
shifting settings (shifts between -2 and +2 semitones) using
the software package sox 2 .

For all labeled datasets, we discard all non-voiced
frames. Furthermore, we only keep the spectral frames
from the first 75 % of the note duration as especially higher
harmonics from upright bass tones decay much faster than
the fundamental frequency contours. In order to make the
final results comparable to [1], data augmentation is not
applied to the test set WJD+-TEST (compare Section 3).

Figure 3 illustrates the pitch distribution over the three
labeled datasets after applying data augmentation. While
the WJD+ and WJD+-TEST datasets similarly include

1 http://theremin.music.uiowa.edu/MIS.html
2 http://sox.sourceforge.net

Hyperparameter Search Space Importance

Magnitude scaling {linear, logarithmic} 0.015
# hidden layers n ∈ {3, 4, 5, 6} 0.020
Hidden layer size H = 2h, h ∈ {7, 8, 9, 10} 0.040
Learning rate α = 10r, r ∈ [−3,−6], (-4.27) 0.485
Batch normalization {no, yes} 0.017
`2 weight regularization λ ∈ {0, 10−4,10−3, 10−2} 0.038
Dropout ratio d ∈ [0, 0.5], (0.06) 0.385

Table 2. Search space for hyperparameter optimization.
Optimal parameter set for aval, opt = 0.62 is given in bold
font. Feature importance values in a random forest regres-
sion model are shown in the last column.

notes up to C4, the isolated tones in ISO+ cover a wider
pitch range and distribute among the pitches in a more bal-
anced fashion.

4. METHODOLOGY

4.1 Feature Extraction

Audio files are resampled to 22.05 kHz before constant-Q
magnitude spectrograms are computed with a hopsize of
1024 samples (46.4 ms) and a frequency resolution of 12
bins per octave between 34.65 Hz (MIDI pitch 25, note
D[1) and 1567 Hz (MIDI pitch 91, note G6) using the li-
brosa Python library [19]. Hence, the input vectors have
the dimensionality of 67. In contrast to [1], we extend the
frequency range by a small margin in the low frequency
range and by two octaves in the upper frequency range in
order to incorporate overtone frequencies of higher bass
notes. In Section 5.1 we evaluate, to which extent a loga-
rithmic compression of the magnitude spectrogram is ben-
eficial for bass saliency.

4.2 Deep Neural Network Architecture

Throughout this paper, we use a fully-connected network
architecture for the given task of bass saliency estimation,
see Table 2 for an overview of parameters. The model is a
cascade of n hidden layers of sizeH with optional interme-
diate layers for batch normalization (prior to the ReLU ac-
tivation function) [16] and dropout (dropout ratio d) [26].
In contrast to [1], we do not use frame stacking here as
we aim to directly compare local feature vectors later in
the label propagation step described in Section 5.2. The
model instead processes individual spectrogram frames as
input and predicts the corresponding pitch saliency vector.
Furthermore, all hidden layers have an optional `2 weight
regularization (with regularization parameter λ) [12]. For
each model training, we use 500 training epochs, a batch
size of 250, early stopping with a patience of 25 epochs
based on the validation accuracy, and the categorical cross-
entropy as loss function. The keras 3 Python library is used
for all experiments in this paper.

Score annotations are converted into frame-wise binary
pitch activities, which are used as targets for the model
training. In the annotated datasets used in this paper, bass
lines are strictly monophonic. In the final layer, we use a

3 https://www.keras.io
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Figure 4. Validation accuracy aval and hyperparameter val-
ues for learning rate exponent r, dropout ratio d, magni-
tude scaling, and layer size exponent h over all random pa-
rameter configurations (black dots). Cubic regression lines
(blue dashed lines) show trends in the data. Optimal values
for the other hyperparameters are given in Table 2.

sigmoid instead of a softmax activation function to be able
to model the activity of all pitches independently. This
also allows us to model polyphonic parts or rests within
bass lines. However, in order to compare our results with
[1], we only focus on bass saliency estimation from voiced
frames in this paper and leave bass voicing detection open
for future work.

As pitch range for the targets, we use [26, 69] (notes
D1 to G4) whereas in [1], a slightly smaller pitch range
[28, 67] (notes E1 to F4) was used. The dimensionality of
the target vectors is 44.

4.3 Evaluation

We derive pitch estimates by looking at the highest output
value of the final sigmoid layer. For the evaluation, we use
the standard evaluation measures Raw Pitch Accuracy (de-
noted as a) and Raw Chroma Accuracy (denoted as a12) as
used in the MIREX Audio Melody Extraction task. For the
definition of these measures, we refer to [20]. During train-
ing, we randomly split the training dataset(s) into training
and validation dataset based on a 80:20 split. Accuracy
values atrain, aval, and atest are computed on the training,
validation, and test set, respectively.

5. EXPERIMENTS

5.1 Hyperparameter Optimization

A systematic grid search of possible hyperparameter com-
binations is not feasible for deep neural networks due to
the high computational costs. In our approach, we train
160 models with different combinations of hyperparame-
ters. These combinations are randomly sampled from the
hyperparameters given in Table 2. The best hyperparame-
ter combination is then retrieved by testing the model per-
formance on the validation set (aval). Figure 4 shows the
validation set accuracy for the different hyperparameter

cosSim
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Figure 5. Label propagation example: given a query
constant-Q spectrogram frame with unknown pitch (bot-
tom, red), candidates with different cosSim similarity val-
ues are shown (above, black). The pitch label B[3 will be
transferred from the most similar candidate shown on top
(s = 0.99).

configurations. To get an intuition about the influence of
the different hyperparameters, we follow an approach pre-
viously presented in [17]. In that approach, a random forest
regression model [5] is fitted to aval over all parameter con-
figurations. From the random forest regression model, we
can obtain the relative importance of all hyperparameters,
see Table 2 (third column) for the results.

As previously found in [17], the learning rate exponent
r is by far the most important hyperparameter (0.485) with
optimal values around 10−4, as shown in Figure 4. Inter-
estingly, as indicated in Table 2, the dropout ratio d also
has a high relative importance (0.385) and an optimal value
only slightly above zero.

5.2 Label Propagation

A first approach to enrich the available amount of training
data is to use label propagation. We derive pitch labels for
feature vectors in the unlabeled WJD− dataset by transfer-
ring labels from their most similar counterparts in WJD+

dataset. To this end, we compute a similarity score si for
the i-th feature vector in the WJD− database xWJD−

i ∈ R67

by maximizing its cosine similarity (cosSim) towards all
feature vectors in the WJD+ database as

si = max
k

cosSim(xWJD−

i , xWJD+

k ). (1)

An example is shown in Figure 5. Given a query spectro-
gram frames (bottom), we show five example spectrogram
frames with different similarity values. The most similar
frame (cosSim = 0.99) shows an almost identical overtone
structure, which motivates the transfer of its pitch label.

As shown in Figure 6, most feature vectors in the un-
labeled WJD− dataset have very similar counterparts in
the WJD+ dataset, which is somewhat intuitive as both
datasets originate from the Weimar Jazz Database (WJD).
We derive three similarity thresholds τ25 = 0.914, τ50 =
0.940, and τ75 = 0.96 from the 25th, 50th, and 75th

percentile of the distribution over s. The label-enriched
WJD− dataset is denoted as (WJD−)+ in the following.

We use the best model architecture obtained via hy-
perparameter optimization (see Section 5.1) and train
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Figure 6. Histogram over best-match cosine-similarity
values for mapping feature vectors from the unlabeled
dataset WJD− to the labeled dataset WJD+. Similarity
thresholds τ25, τ50, and τ75 are derived from the respec-
tive percentiles of the distribution over s.

models from different training sets. For that purpose,
we combine the full WJD+ dataset with feature vec-
tors of the (WJD−)+ dataset based on the criterion
τ− ≤ si ≤ τ+. We test different pairs (τ−, τ+) using
combinations of the percentile-based thresholds τ25, τ50,
and τ75 as well as τ0 = 0 and τ100 = 1 as shown in the
lower subplot of Figure 7.

Feature vectors with lower similarity scores more likely
introduce label noise to the mixed training dataset. Since
the WJD+ dataset only contains voiced frames, even un-
voiced frames in the WJD− will be be mapped to voiced
frames. This is a drawback due to the given dataset config-
urations. Another possible reason for low similarity scores
are notes played by other instruments in the ensemble such
as the piano or the soloist. However, voiced frames from
the WJD− database with a lower similarity can provide
novel information for the classification task, which can
help to improve the existing model. At the same time, fea-
ture vectors with high similarity scores can be redundant
without providing much novel information for the pitch
saliency estimation task. In contrast to [1], label propa-
gation is performed based on feature vector similarity and
not based on predictions of existing models.

From the results shown in Figure 7, we make the fol-
lowing observations for all configurations. First, we ob-
serve that difference between atrain and aval (overfitting)
remains almost constant across different configurations.
Also, the raw chroma accuracy atest,12 is consistently about
0.07 higher than the raw pitch accuracy atest, which indi-
cates that octave errors make up only a small fraction of
the remaining pitch estimation errors.

Using the WJD+ dataset alone or combined with the
most similar feature vectors in WJD− (configurations 0:0
and 75:100), we observe that the training and validation ac-
curacies are clearly higher than the test accuracy. The rea-
son is that these configurations correspond to the best pa-
rameter settings found in the hyperparameter optimization
step (compare Section 5.1), where maximizing aval was the
main objective. Due to their small size, the data distribu-
tion in the WJD+ and WJD+-TEST datasets presumably
is only similar to a certain degree although both are taken
from the Weimar Jazz Database.

In contrast, by adding feature vectors from the WJD−

dataset with lower similarity values and higher novelty
(configurations 0:25, 0:50, and 0:75), the modeling task

0.5
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Figure 7. Label propagation results for different dataset
configurations (see Section 5.2). Training accuracy atrain,
validation set accuracy aval, test set accuracy atest, and
chroma pitch accuracy atest,12 are shown.

becomes harder and the training and validation accuracies
decrease. Interestingly, the models’ ability to generalize
to the test set improves and atest increases. The relatively
high difference between validation and test accuracy of up
to 0.09 indicates that the small test set size needs to be
increased in future work, as both, test and validation set,
should come from the same distribution.

For the configurations 0:50 and 0:100, we observe the
highest test accuracy of around atest = 0.57. This result
is notable as by using label propagation, we are able to
train a model which achieves a performance comparable
to the highest test accuracy reported in [1] without requir-
ing additional temporal context information using frame
stacking. Therefore, label propagation seems a promising
approach to improve the model performance.

5.3 Transfer Learning

State-of-the-art music transcription algorithms based on
spectral decomposition algorithms such as Non-Negative
Matrix Factorization (NMF) are commonly initialized with
isolated instrument tones, e. g., for learning spectral note
templates [3]. We aim to investigate to which extent a sim-
ilar strategy can be used to improve neural networks for
pitch saliency estimation tasks. As an alternative, we want
to find out if it is instead better to train the networks solely
on more complex instrumental mixtures (ensemble record-
ings, see Section 3.2) as these are more similar to the final
test data.

We compare three training scenarios in our experiment.
First, we train the model solely using the isolated bass
tones (ISO+ dataset) to evaluate the generalization poten-
tial of the trained model towards mixture signals in the test
set. Secondly, we apply transfer learning, i. e., we pre-train
an initial model for bass saliency estimation using isolated
bass tracks (ISO+ dataset) and then fine-tune the model in
a second training step on the WJD+ dataset. In a third sce-
nario, we mix and shuffle the WJD+ and ISO+ datasets
and perform a single training step. The model trained only
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on the WJD+ dataset serves as baseline for comparison.
We train for 750 epochs for both training steps but apply
early stopping as detailed in Section 4.2 if possible.

The results are shown in Table 3. Accuracy values are
computed on a macro-level by averaging across all spec-
trogram frames of the test set files. We observe that a pitch
saliency model, which is only trained on isolated tones
of the target instrument, is not capable to generalize to
more complex mixtures as it performs poorly on the test
set (atest = 0.095). Combining pre-training on the isolated
note database with fine-tuning on the mixture dataset im-
proves the performance by around four percent on the test
set accuracy (atest = 0.542) compared to a baseline model,
which is only trained on the mixture recordings. The best
configuration improves on the test set accuracy by 6 per-
cent (atest = 0.561) compared to the baseline model. It
does not involve a pre-training step but uses a mix of iso-
lated and mixed recordings (ISO+ and WJD+) for training
instead.

The results of the transfer learning experiments suggest
that combining training data with different levels of com-
plexity, i. e., different amount of instrumental overlap, can
be useful to improve DNN-based models for pitch saliency
estimation in ensemble recordings. By using a mixture of
both isolated and mixed recordings in one training step, it
appears as if the neural network learns best to “focus” on
the targeted instrument. Future work could address a dif-
ferent order in the training process, i. e., first training on
the mixture tracks and then fine-tuning the model on the
isolated note recordings.

6. CONCLUSION

We investigated strategies for label propagation and trans-
fer learning in order to improve bass saliency estimation
using deep neural networks. We could show that unla-
beled feature vectors from datasets with a similar spec-
tral distribution as the target scenario can be mapped to-
wards labeled datasets to derive pitch labels. By combin-
ing labeled datasets and unlabeled datasets through label
propagation, we were able to improve the model’s accu-
racy by around six percent compared to a baseline model.
Similarly, we could show that by combining isolated note
recordings of the targeted instrument with mixture record-
ings as training set, we gain around five percent in accu-
racy. This joint training slightly outperformed our consid-
ered transfer learning strategy with two successive training
steps. Future work could deal with strategies on how to
combine frame-stacking (compare [1]), label propagation,
and transfer learning.

For a systematic bias–variance analysis of the given
modeling task, it remains challenging to define human
level performance as we only focus on frame-wise pitch
estimation here. Human experts, i. e., musicians or mu-
sicologists, are capable to generate near-perfect note-wise
transcriptions. This related task, however, involves listen-
ing to longer audio excerpts and allows to include addi-
tional cues from the metric structure, tone duration, and
local harmony.

Pre-
Training

Training atrain aval atest atest,12

- WJD+ (baseline) 0.665 0.614 0.508 0.589

- ISO+ 0.514 0.538 0.095 0.234
ISO+ WJD+ 0.652 0.603 0.542 0.614
- ISO+ & WJD+ 0.507 0.531 0.561 0.655

Table 3. Performance comparison with and without trans-
fer learning. All experiments were evaluated using the
WJD+-TEST dataset.
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ABSTRACT

The majority of state-of-the-art methods for music infor-
mation retrieval (MIR) tasks now utilise deep learning
methods reliant on minimisation of loss functions such as
cross entropy. For tasks that include framewise binary
classification (e.g., onset detection, music transcription)
classes are derived from output activation functions by
identifying points of local maxima, or peaks. However, the
operating principles behind peak picking are different to
that of the cross entropy loss function, which minimises the
absolute difference between the output and target values
for a single frame. To generate activation functions more
suited to peak-picking, we propose two versions of a new
loss function that incorporates information from multiple
time-steps: 1) multi-individual, which uses multiple indi-
vidual time-step cross entropies; and 2) multi-difference,
which directly compares the difference between sequential
time-step outputs. We evaluate the newly proposed loss
functions alongside standard cross entropy in the popular
MIR tasks of onset detection and automatic drum tran-
scription. The results highlight the effectiveness of these
loss functions in the improvement of overall system ac-
curacies for both MIR tasks. Additionally, directly com-
paring the output from sequential time-steps in the multi-
difference approach achieves the highest performance.

1. INTRODUCTION

At present, the state-of-the-art systems for many music in-
formation retrieval (MIR) tasks utilise deep learning mod-
els. Within the domain of dynamic time-series MIR tasks
such as onset detection and music transcription, solutions
are achieved through a binary classification of each time-
step t. A binary classification output is typically limited to
a range of [0,1] using a non-linear function (e.g., sigmoid,
softmax). For classification purposes the output is subse-
quently rounded to either 0 or 1. However, in framewise
binary classification tasks using this approach has proven
to be less effective [7]. In the example presented in Fig-
ure 1, a framewise output activation function ỹ is shown in

c© Carl Southall, Ryan Stables and Jason Hockman. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Carl Southall, Ryan Stables and Jason Hock-
man. “Improving Peak-picking Using Multiple Time-step Loss Func-
tions”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

Figure 1. A true positive is missed using the rounding
approach, but is successfully selected through peak picking
(circled point). The solid line denotes the output, the dotted
line the target, the dashed line the 0.5 rounding threshold
and the dash-dotted line the peak-picking threshold.

which the values ideally associated with a class label (i.e.,
value) of 1 do not exceed 0.5. While ỹ clearly shows the
presence of an event as a peak, it would be identified as a
false negative (ỹt < 0.5).

1.1 Peak Picking

To overcome the problem posed in Figure 1, the majority of
framewise binary classification systems utilise peak pick-
ing, which differentiates between classes by identifying lo-
cal maxima. Multiple peak-picking approaches have been
proposed in the literature [1,4,12,16] and follow a general
process as shown in Figure 1. Here, a point is selected as a
peak if it is the maximum value within a local window and
above a threshold τ . In [16] the threshold is determined
by calculating the mean of a window, controlled using δ,
a user determined constant λ and maximum and minimum
values (tmax and tmin).

τ t = mean(ỹt−δ : ỹt+δ) ∗ λ (1)

τ t =

{
tmax, τ > tmax
tmin, τ < tmin

(2)
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An onset classification vector O is achieved by determin-
ing if each time-step of ỹ is the maximum value within the
surrounding number of frames, set using Ω, and above the
threshold τ :

Ot =

{
1, ỹt == max(ỹt−Ω : ỹt+Ω) & ỹt > τ t

0, otherwise.
(3)

1.2 Loss Functions

The overall loss (often referred to as the cost) L represents
the error of a system within a single value. It is calculated
by comparing the difference between the desired ground
truth y and the actual output ỹ [10]. Within audio based
time-step classification tasks it is calculated by taking the
mean of the individual time-step losses lt:

L =
1

T

T∑
t=1

lt. (4)

L is a component of back propagation (and truncated back
propagation) which is used to calculate the gradients G
used in updating the trainable parameters of the model Θ
with learning rate µ.

Θ← Θ− µ · G (5)

Commonly used loss functions for calculating lt include
mean squared error (MS) (eq. 6) and cross entropy (CE)
(eq. 7) [5].

ltms{yt, ỹt} = (yt − ỹt)2 (6)

ltce{yt, ỹt} = yt log (ỹt) + (1− yt) log (1− ỹt) (7)

Both of these loss functions are suited to differentiating
between binary classes using rounding as they aim to min-
imise the absolute difference between the targets y and
the output ỹ. In the majority of MIR tasks CE is more
suited than MS due to its greater penalization of large er-
rors [14, 16, 22].

1.3 Motivation

In the peak-picking process, multiple frames are utilized
in both the calculation of a threshold as well as the peak
selection. However, in the MS and CE calculations only the
current time-step t is used in measuring the difference be-
tween the target y and output ỹ. In order for the loss to
reflect peak salience (i.e., the clarity of the local maxima)
and to ensure that the output activation function is suit-
able for peak-picking, then multiple time-steps should be
included within the loss function calculation. To this end,
we propose two versions of a new loss function which not
only measures the absolute difference between y and ỹ, but
also allows for peak salience to be maintained. We then
evaluate the worth of these functions within the tasks of
onset detection and automatic drum transcription (ADT).

The remainder of this paper is structured as follows:
Section 2 presents the proposed loss functions and Section

3 gives an overview of the evaluation. The results and dis-
cussion are presented in Section 4 and the conclusions and
future work are presented in Section 5.

2. METHOD

For a loss function to represent an understanding of peak
salience, it must include at least three points: ỹt−1 : ỹt+1.
We propose combining CE and a peak salience measure
into a single loss function termed peakiness cross entropy
(PCE):

ltpce =
1

2

(
γltce{yt, ỹt}+ (1− γ)(ltp + ltf )

)
, (8)

where the first part of the equation is the standard cross
entropy (CE) of the current time-step t. The second part
of the function is a peak salience measure that consists of
two variables: lp, which focuses on the previous time-step
and lf , which focuses on the future (t + 1) time step. γ is
used to control the weighting between standard CE and the
peakiness measure. We propose two methods for achieving
lp and lf : a combination of multiple individual time-step
calculations and a direct comparison of the differences be-
tween multiple time-steps.

2.1 Multi-individual

The multi-individual (MI) method calculates lp and lf as
individual time step cross entropies of previous and future
time-steps:

ltp = ltce{yt−1, ỹt−1} (9)

ltf = ltce{yt+1, ỹt+1}. (10)

This ensures that updates to ỹt do not cause greater nega-
tive updates to ỹt−1 and ỹt+1.

2.2 Multi-difference

Although MI utilizes multiple time-steps it does not com-
pare absolute differences between sequential time-steps.
To achieve this, we propose an additional calculation of
lp and lf , termed multi-difference (MD), which measures
the absolute differences between sequential time-steps of
the target y and the output ỹ. The first version of MD (MMD),
utilizes MS. The second version (WMD) utilizes an updated
version of the CE equation, termed weighted cross entropy
(WCE):

ltwce{yt, ỹt} = (1−φ)yt log (ỹt)+φ(1−yt) log (1− ỹt),
(11)

which allows the strength of each half of the equation to
be controlled using the weighting parameter φ. The first
half of the WCE equation (henceforth referred to as WCE-FN)
aims to reduce false negatives by producing a loss value
proportional to the difference between sequential time-
steps of yt and ỹt. The second half of the WCE equation
(hereafter termed WCE-FP) aims to suppress false positives

314 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



Figure 2. Example activation function scenarios with corresponding loss values output from each loss function. From
left to right: a raised true positive (RTP), a flat line false negative (FFN), a large false positive (LFP), a small raised false
positive (SFP) and a raised flat line (RFL).

as it outputs a larger value if there is a large undesirable
difference between sequential frames. ltp and ltf in MMD and
WMD are calculated respectively using:

ltp =

{
ltwce{|yt − yt−1|, |ỹt − ỹt−1|}, WMD,
ltms{|yt − yt−1|, |ỹt − ỹt−1|}, MMD,

(12)

ltf =

{
ltwce{|yt − yt+1|, |ỹt − ỹt+1|}, WMD,
ltms{|yt − yt+1|, |ỹt − ỹt+1|}, MMD.

(13)
Truncated back propagation is used to calculate the gradi-
ents for all loss functions. The presented implementation
utilises the automatic differentiation functions built into
the Tensorflow 1 library for this purpose.

2.3 Example Loss Function Scenarios

Figure 2 presents five example activation function sce-
narios. The loss values achieved by CE, MI, MMD, WMD
and the two separated halves of WMD: WMD-FN (φ = 0)
and WMD-FP (φ = 1), are presented with γ = 0.5. The
targets are presented at the top and the output activation
function on the bottom. It is worth noting that all of
the loss functions that utilize CE can be directly com-
pared but MMD is relative to itself (i.e., the MMD values
might seem small relative to the other loss values but
not relative to other values of MMD). If all frames of the
output are correct then all of the loss functions output zero.

(a) Reduced true positive: The first example shows
a reduced true positive where the surrounding frames are
correct. In this case CE and WMD output the largest values
as this peak could fall below the peak-picking threshold.

1 https://www.tensorflow.org

(b) Flat line false negative: The second example
shows a false negative where the output is a flat line. In
this case high relative error values are given by all of
the loss functions, however larger error values are given
by MMD and especially the FN suppression half of WMD.
This example would generally not be selected during
peak-picking.

(c) Large false positive: The third example shows a
false positive where the surrounding frames are correct.
In this case high values are given by CE, MMD and the
false positive suppression part of WMD, as this would be an
incorrectly selected peak.

(d) Small raised false positive: The fourth example
again shows a false positive, similar to the previous
example, but the surrounding frames are raised resulting
in a less salient false positive. In this case lower values
are given by MI and WMD-FP, than CE, as this peak is not
as salient as the one in example three (i.e., large false
positive).

(e) Raised flat line: The final example presents a
raised flat line. In this case the MMD and WMD loss functions
penalize less than CE and MI. While the absolute values
are slightly wrong, the difference between the sequential
frames is correct, resulting in no peaks being correctly
chosen.

3. EVALUATION

To identify whether the new loss functions improve per-
formance, we compare the newly proposed loss functions
against standard cross entropy (CE) in two common MIR
tasks: onset detection (OD) and automatic drum transcrip-
tion (ADT). To ensure performance trends are consistent
with different systems, we implement four neural network
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Figure 3. Subset mean system F-measure results for the four implemented cost functions for onset detection and automatic
drum transcription. The individual subset F-measure results are on the left and the mean subset F-measure, precision and
recall results are on the right. The red error plots display the standard deviations across the folds.

based models which have achieved state-of-the-art results
for both of the tasks in recent years. Standard F-measure,
derived from precision and recall, is used as the evalua-
tion metric with onset candidates being accepted if they
fall within 30ms of the ground truth annotations (i.e., win-
dow of acceptance). If onset candidates fall within 30ms
of each other, they are combined into a single onset at the
middle location (i.e., window of combination).

3.1 Onset Detection (OD)

For the OD evaluation, we utilize the same datasets and
subset splits as used in [3], consisting of: complex mix-
tures (CM), pitched percussion (PP), non-pitched percus-
sion (NPP), wind instruments (WI), bowed strings (BS)
and vocals (VO). As OD is a binary classification task, all
systems are implemented with a two neuron softmax out-
put layer, one neuron corresponds to an onset and the other
neuron corresponds to the absence of an onset.

3.2 Automatic Drum Transcription (ADT)

For the ADT evaluation, we utilize four ADT datasets:
IDMT-SMT-Drums [6], ENST-Drums minus one subset
[8], MDB-Drums [18] and RBMA-2013 [21]. To observe
trends between contexts, the datasets are divided into the
three groups proposed in [23]: 1) drum only (DTD) con-
sisting of IDMT-SMT-Drums, 2) drums in the presence of
extra percussion (DTP) consisting of the drum-only ver-
sions ENST-d and MDB-d and 3) drums in the presence of
extra percussion and melodic instruments (DTM), which
consist of the polyphonic versions ENST-m, MDB-m and
RBMA-2013. ENST-m is created by combining the ENST
drum tracks and the accompaniment files using ratios of 2

3

and 1
3 respectively, as done in [6, 9, 15, 20, 24]. A three-

neuron sigmoid output layer is used for all implemented
ADT systems, with the neurons corresponding to the three
observed drum instruments (i.e., KD, SD and HH).

3.3 Systems

Four different neural network based systems are imple-
mented. All systems consist of the same overlying struc-
ture: First, input features are fed into a pre-trained neural
network model. Peak-picking is then performed to deter-
mine the locations of the onset candidates using the algo-
rithm from [16] (eq.1:3).

3.3.1 Input Features

For both tasks we use the same framewise logarithmic
spectral input features x generated using the madmom
Python library [2]. The input audio (16-bit .wav file sam-
pled at 44.1 kHz) is segmented into T frames using a Han-
ning window of m samples (m = 2048) with a m

2 hop-
size. A logarithmic frequency representation of each of the
frames is created using a similar process to [22]. The mag-
nitudes of a discrete Fourier are transformed into a loga-
rithmic scale (20Hz–20kHz) using twelve triangular filters
per octave. This results in a 84 x T logarithmic spectro-
gram.

3.3.2 lstmpB

The lstmpB system is based on the system presented in
[23] and the baseline system used in [16]. It consists of two
50-neuron hidden layers containing long short-term mem-
ory cells with peephole connections. The input features are
processed in a framewise manner.

3.3.3 lstmpSA3B

The lstmpSA3B system is based on the SA3 system pro-
posed in [16]. It is the same as the lstmpB system other
than it contains a soft attention mechanism in the output
layer. As in the original implementation the attention num-
ber a controls the number of attention connections, and is
set to three.
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Figure 4. Individual system mean subset F-measure re-
sults for the proposed cost functions in OD and ADT tasks.
Red bars denote standard deviations across folds.

Figure 5. Mean system and mean subset results for differ-
ent values of WMD parameters (γ and φ) in onset detection
(OD) and automatic drum transcription (ADT) evaluations.

3.3.4 lstmpSA3B-F5

The lstmpSA3B-F5 system is identical to the lstmpSA3B
system with a larger number of input features used. A total
of 11 frames (5 either side of the current frame (xt−5 :
xt+5)) are used for each time-step.

3.3.5 cnnSA3B-F5

The cnnSA3B-F5 [17] combines the convolutional recur-
rent neural network proposed in [22] and the soft atten-
tion mechanism proposed in [16]. It contains two convo-
lutional layers consisting of 3x3 filters, 3x3 max pooling,
dropouts [19] and batch normalization [11], with the first
layer consisting of 32 channels and the second 64 chan-
nels. It contains the same soft attention mechanism output

layer and the same input feature size as lstmpSA3B-F5 .

3.3.6 Training

All systems are trained using mini-batch gradient descent
with the Adam optimizer [13]. An initial learning rate
of 0.003 is used and three-fold cross validation is per-
formed. Each mini-batch consists of 10 randomly chosen,
100 time-step segments and the data is divided by track
into 70% training, 15% validation and 15% testing sets.
The training data is used to optimize the systems and the
validation data is used to prevent overfitting and to opti-
mize the peak-picking parameters. For datasets contain-
ing subsets (i.e., IDMT-SMT Drums and ENST Drums)
the splits are performed evenly across the subsets.

4. RESULTS AND DISCUSSION

4.1 Subset Performance

Figure 3 presents the subset results for all cost functions in
both evaluations. The red error bars represent standard de-
viation across folds. The OD results are derived from the
mean of the systems and the ADT results are derived from
the mean of the systems and the mean of the observed drum
instruments (i.e., KD, SD and HH). The left part of the fig-
ure presents the individual subset F-measures and the right
part of the figure presents the mean subset F-measure, pre-
cision and recall. In both MIR tasks, all three of the newly
proposed cost functions achieved a higher mean subset F-
measure than standard CE, with WMD performing the best in
both. Within the ADT evaluation a higher performance
is achieved for all three observed drum instruments. A
slightly larger increase in performance was witnessed in
the ADT task and both versions of the MD cost function
achieve higher mean subset F-measures than MI. This high-
lights that measuring the absolute differences between se-
quential frames does improve performance. The mean sub-
set precision and recall results highlight that in all cases
the newly proposed cost functions achieve higher precision
and recall scores than standard CE. In the OD evaluation the
highest increase in performance between WMD and CE is in
the NPP subset. In the ADT evaluation the largest increase
is seen within the DTP subsets (ENST-d and MDB-d). For
all subsets in both evaluations the highest F-measure is
achieved by one of the three newly proposed cost functions
and the error bars show that this improvement occurs in all
of the folds. Results from t-tests highlight that the WMD sys-
tems improvement over CE within the BS and mean recall
OD categories and MDB-d, mean F-measure and precision
ADT categories are significant (ρ < 0.05).

4.2 Individual System Performance

Figure 4 presents the individual system, mean subset F-
measure results for both MIR evaluations. In all cases the
highest F-measure is achieved by one of the newly pro-
posed cost functions, with the WMD cost function achiev-
ing the highest F-measure in five of the eight cases. This
reinforces that using multiple framed cost functions does
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improve performance and that this increase is not just as-
sociated with one system. The highest F-measure and
the largest increase relative to CE is achieved by the
cnnSA3B-F5 system using the WMD cost function.

4.3 WMD Parameters

Figure 5 presents the mean system, mean subset F-measure
results for different parameter settings of the WMD cost func-
tion. Plots of six φ values for γ = 0.25 and γ = 0.5 are
presented for both evaluations. For any φ values less than
one, there is a dramatic decrease in performance which
suggests that the false negative suppression half of the WCE
function has a negative effect on performance. This is pos-
sibly due to the extremely high value given to flat parts of
the activation function (see Figure 2), causing these parts
of the activation function to become noisy. This suggests
that the improvement is due to the false positive suppres-
sion half of the WMD system. As this alone achieves higher
F-measures than the other proposed cost functions, then
it also suggests that their improvement is also due to the
suppression of false positives. However, the false nega-
tive suppression in those cost functions do not cause reper-
cussions. As γ (i.e., weighting of peak salience measure)
increases (0.5 = even weighting with standard CE) then
the performance decreases. This trend continues with all
values below 0.5 and with the other two proposed loss
functions. The highest F-measures were achieved with
γ=0.25 (Standard CE is weighted twice as much as the peak
salience measure) for all three proposed loss functions. To
categorically identify ideal parameter settings for a partic-
ular scenario, a grid search would be required. However,
the results suggest that γ = 0.25 and φ = 1 would always
be optimal.

4.4 Understanding the Improvement

After visual comparison of the output activation functions
a common situation in which the newly proposed loss func-
tions achieve higher performance was observed. Figure 6
presents an example of this situation, with the top diagram
showing the output activation function using CE and the
bottom diagram showing the activation function when us-
ing the highest performing version of WMD. In the CE dia-
gram, there are two spikes to the right that are wrongly de-
tected as peaks but in the WMD version these peaks are less
salient, resulting in no false positives. The consequence of
this is that the actual true positive within in the WMD ver-
sion has a lower amplitude than the one in the CE version.
However, this has no effect on performance as the true pos-
itive is still a clear peak and correctly chosen within both
CE and WMD versions. We believe this situation occurs be-
cause within CE a higher error is given to the true positive
than the combination of the two smaller false positive er-
rors. This causes the true positive to be closer to the tar-
get y but consequentially causes the false positive spikes.
Within the WMD version, the false positive suppression as-
signs a greater loss value to the two false positive spikes
than the reduced true positive, ensuring that the spikes are

Figure 6. Example of WMD loss function reducing the num-
ber of false positives by suppressing false spikes. CE output
activation function (top) and WMD output activation function
(bottom) with output ỹ (solid lines), target y (dotted lines)
and the peak-picking threshold (dashed lines). Circles de-
note selected peaks and arrowed lines show windows of
acceptance and combination.

not selected by the peak-picking algorithm. This reduc-
tion of noise in the activation function results in less false
positives but also enables the peak-picking threshold to be
lower, enabling more true positives to be selected. This
effect could likely explain both the increase in recall and
precision.

5. CONCLUSIONS AND FUTURE WORK

We have developed three new loss functions in an at-
tempt to generate activation functions more suited to peak-
picking. The new loss functions utilise information from
multiple time-steps which allow them to measure both the
absolute values and to maintain peak salience by compar-
ing sequential time-steps. We evaluated the newly pro-
posed loss functions against standard CE using four neural
network-based systems in the MIR tasks of onset detection
and ADT. The results highlight that all three of the newly
proposed cost functions do improve performance, with the
WMD loss function achieving the highest accuracy. This
work focuses on the inclusion of a single frame on either
side of the current time-step. Future work could explore
the potential benefit of using a greater number of frames
and a version of the WMD equation in which the false nega-
tive suppression component does not negatively influence
the outcome. Additionally, to make the system end-to-end,
the evaluation methodology (i.e., F-measure and tolerance
windows) could also be incorporated within the loss func-
tions. Open source implementations of the new loss func-
tions are available online. 2

2 https://github.com/CarlSouthall/PP_loss_
functions
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scription and separation of drum recordings based on
NMF decomposition. In Proceedings of the Interna-
tional Conference on Digital Audio Effects (DAFx),
pages 187–194, Erlangen, Germany, 2014.

[7] Florian Eyben, Sebastian Böck, Björn Schuller, and
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ABSTRACT

State-of-the-art singing voice detectors are based on clas-
sifiers trained on annotated examples. As recently shown,
such detectors have an important weakness: Since singing
voice is correlated with sound level in training data, clas-
sifiers learn to become sensitive to input magnitude, and
give different predictions for the same signal at different
sound levels. Starting from a Convolutional Neural Net-
work (CNN) trained on logarithmic-magnitude mel spec-
trogram excerpts, we eliminate this dependency by forc-
ing each first-layer convolutional filter to be zero-mean
– that is, to have its coefficients sum to zero. In con-
trast to four other methods – data augmentation, instance
normalization, spectral delta features, and per-channel en-
ergy normalization (PCEN) – that we evaluated on a large-
scale public dataset, zero-mean convolutions achieve per-
fect sound level invariance without any impact on predic-
tion accuracy or computational requirements. We assume
that zero-mean convolutions would be useful for other ma-
chine listening tasks requiring robustness to level changes.

1. INTRODUCTION

Automatically annotating the presence of singing voice in a
music recording is a challenging task, as singing voice cov-
ers a wide range of notes and expressions, is often accom-
panied by several other instruments, and may be confused
with instruments capable of producing similar melody con-
tours. Recent approaches try to capture this variability by
training strong classifiers such as deep neural networks
on annotated data [9, 12, 14, 20, 22]. While they achieve
high accuracies on standard benchmark datasets, classifiers
may exploit correlations between inputs and targets that are
present in both the training and test data, but are not seman-
tically meaningful (such a classifier is sometimes called a
horse [24]) or unwanted (leading to algorithmic bias [6]).
In [13], we demonstrated that three state-of-the-art singing
voice detectors – both with hand-designed and learned fea-
tures – exploit a dependency between singing voice and
sound level present in common datasets.

c© Jan Schlüter, Bernhard Lehner. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Jan Schlüter, Bernhard Lehner. “Zero-Mean Convolutions for
Level-Invariant Singing Voice Detection”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.
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Figure 1: Spectrogram frames of the Jamendo training set
containing singing voice tend to have larger magnitudes. A
simple threshold allows distinguishing the classes with an
accuracy of 61% (8.5 percent points above the baseline).

We can reveal this dependency in a simple experiment:
We compute spectrograms for all files of the Jamendo data-
set [18] and sum up the linear magnitudes for each frame.
The distribution of magnitudes in the training set is clearly
skewed towards larger values for frames containing singing
voice (Figure 1). Choosing an optimal threshold, we can
distinguish vocal from nonvocal frames at an accuracy of
61.1%. With the same threshold, we correctly classify
59.0% of the validation and 68.7% of the test set frames.
This is a strong enough improvement over predicting the
majority class (52.6%, 51.4% and 53.7%, respectively)
that any classifier will pick up this cue. Note that for clar-
ity of presentation, we omitted typical preprocessing steps
such as mel scaling, logarithmic magnitude compression
or bandwise standardization, but results hardly differ (0.3
percent points improved) with these steps included.

Of course this confound does not stem from inherent
characteristics of singing voice, but from production habits
in commercial music – if a track contains vocals, those are
mixed to stand out. Thus, it affects many other Western-
music datasets (we verified this for RWC [8,16], MSD100
[17], and tracks containing vocals in MedleyDB [3]) that
are commonly used for singing voice detection research.

In [13], we argue that to avoid this, datasets should in-
clude a sufficient number of instrumental tracks, which
cannot feature vocals as the most prominent instrument.
And indeed, for the enlarged dataset in [13], there is hardly
any linear correlation between input magnitude and class
(Figure 2). However, there is still a strong statistical depen-
dency, with vocal frames exhibiting a different magnitude
distribution from nonvocal frames, enabling a better-than-
chance prediction of the class from the input magnitude.
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Figure 2: For a dataset including many purely-
instrumental tracks, input magnitude and class are not lin-
early correlated, but still show a clear statistical depen-
dency exploitable by a classifier.
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Figure 3: Presenting a state-of-the-art classifier with the
same music excerpt at altered sound levels reveals a strong
sound level dependency. (a) For some songs, increasing
the level by 6 dB increases the classifier’s output. (b) For
some, this dependency is inverted. (c) For some, vocals are
only detected at the original sound level (second row).

When training a state-of-the-art network on this dataset,
it develops a complex sound level dependency: for some
test files, predictions are correlated with input magnitude
(Fig. 3a), for others, they behave conversely (Fig. 3b) or
decrease for any deviation from the original level (Fig. 3c).
If and which of these cases applies to a given input seems
to depend on the content, not only the original sound level,
and sometimes varies from model to model, but the effect
appears reliably.

While a closer investigation of the underlying reasons
would be highly interesting, for now we content ourselves
with stating that this effect is unwanted. As changing the
sound level of a music recording does not change the pres-
ence of singing voice, we would like a singing voice detec-
tor to be invariant to the scale of the input signal. In [13],
we show how to achieve this for a system based on hand-
designed features. In this work, we propose and evalu-
ate different ways to achieve the same for a Convolutional
Neural Network (CNN) trained on mel spectrograms, out-
performing the hand-designed system.

The remaining paper is structured as follows: In the
next section, we review related work on singing voice de-
tection and level invariance. Section 3 explains the CNN-
based baseline system as well as five methods to improve
its robustness to level changes, and Section 4 evaluates
these methods experimentally. Finally, Section 5 summa-
rizes our findings and their implications.

2. RELATED WORK

From early approaches [2] to recent ones [9,12,14,20,22],
singing voice detection has mostly been addressed with
classifiers trained on audio features. Berenzweig et al. [2]
based their system on an existing speech recognizer, com-
bined with cepstral coefficients and classified with a simple
Gaussian model. Leglaive et al. [12] trained a bidirectional
Recurrent Neural Network (RNN) on preprocessed mel
spectra, Lehner et al. [14] trained a unidirectional RNN on
a set of hand-designed features. Schlüter et al. [22] define
the current state of the art using a CNN on logarithmic-
magnitude mel spectrograms trained with data augmenta-
tion; we will use their public implementation as a starting
point. More recent work uses CNNs in attempts to lower
annotation effort by learning from song-wise labels [20],
or by deriving labels from pairing songs with instrumental
versions [9]. The related tasks of auto-tagging (i.e., deter-
mining song-wise labels) and singing voice separation are
also tackled with CNNs, but will not be considered here.

Apart from our work [13], to the best of our knowl-
edge, invariance to the sound level has not been addressed
in the context of singing voice detection, but at least Mauch
et al. [15] and Sturm [24, Sec. III.B] recognized it as a pos-
sible confounding factor for music information retrieval
systems. In speech recognition, early approaches based
on Mel-Frequency Cepstral Coefficients (MFCCs) discard
the 0th coefficient [4, Eq. 1], effectively becoming invariant
to the scale of the input signal. Modern CNN-based sys-
tems processing spectrograms or raw signals achieve ro-
bustness by using large networks and datasets (e.g., 38 mil-
lion parameters and 7000 hours in [1]). For smaller CNNs,
Wang et al. [26] recently proposed to process spectrograms
with an automatic gain control of learnable parameters,
termed per-channel energy normalization (PCEN). We will
include this method in our experiments.

3. METHOD

In the following, we will describe the state-of-the-art
method we used as a starting point, and five modifications
aiming to reduce its sound level dependency (which was
demonstrated in Figure 3).

3.1 Baseline

We base our work on the system of Schlüter et al. [22],
in the variant they made available online 1 and described
in [21, Sec. 9.8]. From monophonic input signals sampled
at 22 kHz, it computes magnitude spectrograms (frame
length 1024, hop size 315 samples), applies a mel filter-
bank (80 bands from 27.5 Hz to 8 kHz) and scales mag-
nitudes as log(max(10−7, x)). A CNN classifies 115-
frame excerpts of these spectrograms into vocal/nonvocal.
It starts with batch normalization [10] across the batch and
time axis without learned scale and bias – this effectively
standardizes each mel band over the training set as in [22],
but can adapt to changes to the frontend during training,

1 https://github.com/f0k/ismir2015/tree/phd_
extra, accessed 2018-03-30
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which we need for PCEN. This is followed by two convo-
lutional layers of 64 and 32 3×3 filters, respectively, 3×3
max-pooling, 128 and 64 3×3 convolutions, 128 3×18
convolutions, 4×1 pooling, and three dense layers of 256,
64 and 1 units, respectively. Each convolutional and dense
layer is followed by batch normalization and leaky recti-
fication max(x/100, x) except for the final layer, which
uses a sigmoid unit for binary classification.

During training, 50% dropout is applied before each
fully-connected layer, and inputs are augmented with pitch
shifting and time stretching up to ±30%, and random fre-
quency band filters of up to ±10 dB, before mel scaling.

At test time, we turn the CNN into a fully-convolutional
net, replacing dense layers by convolutions and adding di-
lations as described in [23]. This allows computing pre-
dictions over a full spectrogram without redundant com-
putations that would occur when feeding overlapping 115-
frame excerpts. All batch normalizations use statistics col-
lected during training, not statistics from test examples.

3.2 Data Augmentation

A sure way to prevent classifiers from exploiting particular
correlations in the training data is to remove these corre-
lations from the data. Data augmentation attempts to re-
move or reduce correlations by varying the training exam-
ples along the confounding dimension. In our case, to re-
duce the dependency between input magnitude and target
shown in Figures 1, 2, we scale input signals randomly by
up to ±10 dB in addition to the existing augmentations.

3.3 Instance Normalization

As a more drastic measure, we replace the initial batch nor-
malization with instance normalization [25], i.e., we sep-
arately standardize each 115-frame excerpt to zero mean
and unit variance per mel band, both at training and at test
time. This is in contrast to batch normalization, which uses
batch-wise rather than excerpt-wise statistics during train-
ing, and fixed dataset-wise statistics 2 for testing.

Instance normalization trivially results in a representa-
tion that is fully invariant to scaling the input signal. How-
ever, it prevents using the CNN as a fully-convolutional
net at test time, since every excerpt needs to be processed
separately. In Section 4.4, we will see how this affects
computation time.

3.4 Spectral Delta Features

Scaling the input signal results in a shift of the logarithmic-
magnitude mel spectrogram. Delta features, i.e., the
elementwise difference between a frame and its predeces-
sor, are invariant to such an offset. They are commonly
used as supporting features to include temporal informa-
tion in frame-wise classification, but have also been used
successfully as the only input for RNN-based musical on-
set detection (albeit in a rectified form, [5]) and might be
sufficient for singing voice detection.

2 For simplicity, an exponential moving average of batch-wise statis-
tics collected during training, as suggested for validation in [10, Sec. 3.1].
Importantly, the normalization is independent of the input at test time.

3.5 PCEN

Proposed by Wang et al. [26], per-channel energy nor-
malization (PCEN) processes a mel spectrogram of linear
magnitudes (i.e., replacing the logarithmic scaling) as

Yt,f =

(
Xt,f

(ε+Mt,f )
αf

+ δf

)rf
− δ

rf
f , (1)

where M is an estimate of the local magnitude per time
step and frequency band computed using a simple infinite
impulse response (IIR) filter:

Mt,f = (1− sf )Mt−1,f + sfXt,f (2)

The division byM implements an automatic gain control,
which is followed by root compression (for 0 < rf < 1).
Wang et al. parameterize αf := exp(α̂f ), δf := exp(δ̂f ),
rf := exp(r̂f ) and learn α̂, δ̂, r̂ as part of a neural net-
work. Learning the logarithms ensures that α, δ, r remain
positive. Instead of learning s, Wang et al. replaceM with
a convex combination of precomputed IIR filters of differ-
ent smoothing factors s and learn the combination weights.

We deviate from their approach in two respects:

1. We fix αf := 1, as any other choice will make Y
dependent on the scale ofX .

2. We parameterize sf := exp(ŝf ) and learn ŝ directly
as part of the neural network. 3 Wang et al. noted
that option in [26, Sec. 3], but did not explore it.

The IIR filter must process the input sequentially, and
thus is not a good fit for massively parallel computation
devices such as Graphical Processing Units (GPUs). We
will see how this affects computation time in Section 4.4.

3.6 Zero-Mean Convolution

Spectral delta features are just one of many ways to com-
pute differences in the spectrogram that are invariant to
adding a constant to the input. For example, we could
just as well compute differences between neighbouring fre-
quencies. More generally, any cross-correlation with a
zero-mean filterW will remove a global offset c fromX:

((X + c) ∗W )t,f =
∑
i,j

(Xt+i,f+j + c)Wi,j

=
∑
i,j

Xt+i,f+jWi,j + c
∑
i,j

Wi,j = (X ∗W )t,f

The last step uses our assumption of a zero-mean filter,∑
i,jWi,j = 0. The first convolutional layer of our CNN

already computes 64 separate cross-correlations of the in-
put with learnable filters W (k), where k indexes the 64
filters. We enforce these to be zero-mean by parameteriz-

ing W (k)
i,j := Ŵ

(k)
i,j − 1

MN

∑
i,j Ŵ

(k)
i,j and learning Ŵ

(k)
,

where M = N = 3 is the filter size.

3 We could also use a sigmoid function to ensure 0 < sf < 1, but in
practice, the bound sf < 1 was not at a risk to be broken during learning.
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Figure 4: Classification error on our test set for each method with modified input gain between -9 dB to +9 dB. Error bars
indicate the standard deviation over five networks. To facilitate comparison, the result at 0 dB is printed at the top.

4. EXPERIMENTS

To compare the five methods and the baseline, we trained
and tested each of them on a large public singing voice de-
tection dataset, comparing the quality of their predictions,
robustness to level changes, and computational demands.

4.1 Dataset

For our previous work [13], we curated a dataset combin-
ing data from Jamendo [18], RWC [8, 16], MSD100 [17],
a music video game, YouTube and several instrumental al-
bums. Compared to existing corpora, it is larger and more
diverse, both in terms of music genres and by including
purely instrumental music pieces – it can be insightful to
test a singing voice detection system on music that does not
feature vocals as the predominant instrument (for example,
Figures 3a,b show excerpts of two instrumental pieces).

In total, the dataset contains almost 80 h of music, split
up (without artist overlaps) into 20 h for training, 17.5 h for
validation, and 42 h for testing. For a more detailed listing,
we refer the reader to [13, Table I].

4.2 Training

Networks are trained to minimize cross-entropy loss on
mini-batches of 32 excerpts with ADAM [11]. Weights are
initialized following Saxe et al. [19], PCEN parameters δ̂f
and r̂f to zeros, ŝf to log(0.025), when used. Compared to
the public implementation of the baseline system, we use
an adaptive learning rate schedule to cope with the larger
dataset. We start at a learning rate of 0.001 and drop it to
a tenth whenever the training loss 4 did not reach a new
minimum for 10 consecutive mini-epochs of 1000 updates
each. At each drop, we reset the network weights to the
previous minimum. On the third drop, we stop training.

4.3 Evaluation

After training, we compute framewise predictions (net-
work outputs between 0.0 and 1.0) for all validation and
test recordings at their original sound level as well as
all test recordings at gains of -9 dB, -6 dB, -3 dB, +3 dB,
+6 dB, +9 dB. 5 Each sequence of predictions is smoothed

4 We did not run into any overfitting, possibly because the network was
originally designed for a much smaller dataset, and found it beneficial to
base the schedule on the training loss rather than the validation loss.

5 Gains are applied to the input signal expressed as floating-point sam-
ples, so positive gains cannot result in clipping.

Nvidia Nvidia Intel
Titan Xp GTX 970 i7-4770S

baseline 1.7 s 3.0 s 15.2 s
augmentation 1.7 s 3.0 s 15.2 s
instance norm. 42.5 s 103.1 s 643.1 s
delta features 1.7 s 3.0 s 15.2 s
PCEN 6.9 s 9.0 s 15.5 s
zero-mean conv. 1.7 s 3.0 s 15.2 s

Table 1: Computation time required for predicting singing
voice in one hour of audio with each method, for two GPUs
and a CPU (using a single core).

in time with a sliding median filter of 800 ms. We deter-
mine the optimal classification threshold for the smoothed
predictions of the validation set at its original sound level,
and apply this threshold to all other predictions. Finally,
we compute the classification error for the test recordings,
separately for each applied gain.

4.4 Results

Figure 4 depicts our results. The leftmost group of bars
shows the classification error of the baseline system: It
reaches 5.8% error for the original recordings, but per-
forms worse when scaling the input signals, up to an error
of 7.6% for -9 dB (a scale factor of 10−9/10 ≈ 0.126).

Training with examples of modified gain apparently
does not help: Results at original sound level are compa-
rable to the baseline, and the sound level dependency is as
strong as before. Apparently, the augmentation does not
sufficiently weaken the dependency between input magni-
tude and target label. Furthermore, it may not add anything
over the existing frequency filtering augmentation, which
applies a random gain to a random frequency range.

All remaining methods are invariant to an input gain by
construction, so they achieve the same classification er-
ror regardless of the gain. 6 In terms of accuracy, spec-
tral delta features perform worst, at an error of 6.6%. In-
stance Normalization and PCEN (with fixed αf parameters
as explained in Section 3.5) are noticeably better, but still
fall significantly behind the baseline system at 6.2% error.

6 Note that the converse is not true: a system achieving the same classi-
fication error for altered inputs may still be level-dependent, by improving
for some examples and failing on others. In [13], we propose an evalua-
tion scheme to rule out this case, but it is not needed here.
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When not fixing α, PCEN reaches an error of 5.9% at
0 dB, but is as level-dependent as the baseline, with learned
αf between 0.5 and 0.8 (results not included in Figure 4).
Finally, zero-mean convolutions slightly exceed the classi-
fication accuracy of the baseline system while still being
robust to level changes.

As an additional criterion, Table 1 compares the test-
time computational demands of the different variants. Us-
ing the baseline system, computing framewise singing
voice predictions for one hour of audio (with spectrograms
already computed) takes 1.7 seconds with a high-end GPU,
3 seconds with a consumer GPU, and 15 seconds on a sin-
gle CPU core. Since data augmentation and zero-mean
convolutions only affect training, and since spectral delta
features are cheap to compute, all three are just as fast
as the baseline. The IIR filter of PCEN is inherently se-
rial, hindering parallelization. This is not a problem in
single-threaded CPU computation, but up to 4× slower
than the baseline on GPU. Finally, Instance Normalization
requires processing each 115-frame network input sepa-
rately, preventing reuse of computation in overlapping ex-
cerpts. While still fast enough for real-time processing,
this poses a huge disadvantage, and is up to 42× slower
than the baseline.

5. CONCLUSION

After demonstrating that singing voice detectors are sus-
ceptible to partly base their prediction on the absolute mag-
nitude of the input signal, we explore five different ways
to reduce or eliminate this dependency in a CNN-based
state-of-the-art system. They have different strengths and
weaknesses, but one method turned out to be optimal in
terms of classification error, robustness to level changes
and computational overhead: parameterizing the filters of
the first convolutional layer to be zero-mean. When pro-
cessing logarithmic-magnitude spectrograms, this removes
any constant offset resulting from changing the input gain.

Introducing level invariance with zero-mean convolu-
tions is easy and does not measurably affect training time.
This might be useful in other machine listening tasks that
should not take the sound level into account – either to sta-
bilize predictions against changes in the input gain, as in
our case, or even to improve learning from data of varying
loudness. To facilitate reuse, our implementation of all five
methods is available online. 7

A dissatisfying aspect of our solution is that it required
understanding the problem and introducing a constraint in
the parameter space of the neural network. While this is
a reasonable way to make progress, it would be helpful to
find a method that forces the network to learn this con-
straint from data. A possible candidate would be Unsuper-
vised Domain Adaptation [7], although initial experiments
did not turn out successful. Level-invariant singing voice
detection might be a useful test bed, since we already know
what a level-invariant CNN can look like.

7 https://github.com/f0k/ismir2018 or
http://jan-schlueter.de/pubs/2018_ismir.zip

In the broader context of the discussion on horses [24]
(systems that rely on confounding factors for their pre-
dictions), our work identified a system to be a horse, and
found a way to fix the aspect it identified. Most probably,
the system is still partly using the wrong cues, and future
work could iteratively find and fix this. However, this may
not be the best road to follow: both finding and avoiding
confounds is difficult. We discovered the loudness con-
found after noticing that including the 0th MFCC in the
feature set of a classifier unexpectedly improved results,
following this trail by testing classifiers with altered ex-
amples. Avoiding it required very different approaches for
a hand-designed feature set [13] and the CNN addressed
here. Another confound, a hypersensitivity of our system
to sloped lines in a spectrogram, was discovered by look-
ing at false negatives and false positives, but attempts to
avoid it were fruitless [21, p. 190]. A different angle of at-
tack on horses would be to research ways to constrain the
learning system to mimic human perception, such that it
cannot use cues that humans would not consider in the first
place.
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ABSTRACT

We introduce a Moment Matching-Scattering Inverse
Network (MM-SIN) to generate and transform musical
sounds. The MM-SIN generator is similar to a variational
autoencoder or an adversarial network. However, the en-
coder or the discriminator are not learned, but computed
with a scattering transform defined from prior information
on sparse time-frequency audio properties. The genera-
tor is trained by jointly minimizing the reconstruction loss
of an inverse problem, and a generation loss which com-
putes a distance over scattering moments. It has a similar
causal architecture as a WaveNet and provides a simpler
mathematical model related to time-frequency decomposi-
tions. Numerical experiments demonstrate that this MM-
SIN generates new realistic musical signals. It can trans-
form low-level musical attributes such as pitch with a lin-
ear transformation in the embedding space of scattering co-
efficients.

1. INTRODUCTION

This paper investigates musical sound generation and
transformation with a simplified algorithmic architecture,
which relates generative networks to time-frequency rep-
resentations. Image generation has led the way through
the development of Generative Adversarial Networks
(GANs) [7] and Variational Autoencoders [13] where im-
ages are generated from a Gaussian white noise vector,
which defines a latent space. Arithmetic operations in this
latent space lead to controlled transformations over the im-
ages such as aging of faces or transforming women in men.
The problem is however different for audio signals which
must take into account time causality properties. Some au-
thors have applied image generation algorithms over spec-
trograms [3, 10] but it then requires to invert the spectro-
grams with a vocoder or a Griffin-Lim algorithm which is
long and has a reduced quality.

Deep autoregressive neural networks such as
WaveNet [15, 16] or SampleRNN [14] have achieved
exceptional synthesis of music and speech signals. They

c© Mathieu Andreux and Stéphane Mallat. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Mathieu Andreux and Stéphane Mallat. “Music Genera-
tion and Transformation with Moment Matching-Scattering Inverse Net-
works”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

do not take as input a Gaussian white noise but estimate a
probability distribution with a Markov chain factorization,
which computes conditional probabilities given from
past values. The generated signals have an outstanding
quality but these neural architectures are complex and
lack interpretability. Several effective techniques have
been introduced to modify audio generations [4–6, 9]
by modifying the latent code to change the probability
distribution or by using reference signals as targets, which
is more complex than arithmetic operations used for
images.

This paper introduces a simplified neural network ar-
chitecture which synthesizes and modifies music signals
from Gaussian white noise, with two key contributions.
As opposed to image GANs or variational autoencoders,
we do not learn a discriminator or an encoder: both are
provided by prior information on audio signals, which is
captured by their time-frequency regularity. This is done
by adapting a result obtained in [2] for images, and intro-
ducing a moment matching technique. The second con-
tribution is the introduction of a causal computational ar-
chitecture allowing to progressively synthesize audio sig-
nals, and which can be parallelized in GPU’s. The resulting
Scattering Autoencoder architecture has some similarities
with a Parallel WaveNet [16]. Similarly to warping proper-
ties over images, we show that arithmetic transformations
in the latent space produce time-frequency deformations,
which can modify the pitch of musical notes or interpolate
music. Despite a lower synthesis quality than state-of-the-
art generating methods, these preliminary results pave the
way for a new approach to synthesize audio signals, with-
out learning encoders or discriminators.

2. SCATTERING AUTOENCODER

This section introduces the principles of a scattering au-
toencoder and its computational architecture. The encoder
is not learned but computed based on prior information on
audio time-frequency properties. Audio and musical sig-
nals have sparse representations over time-frequency dic-
tionaries such as audio wavelets [20]. Their perceptual
properties are not much affected by small time-frequency
warpings. We define a signal embedding which takes ad-
vantage of these characteristics.

The architecture of a scattering autoencoder is illus-
trated in Figure 1. The random input audio signal X[t]
is first transformed into a nearly Gaussian random vec-
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Figure 1. The audio waveforms is encoded with a time-
frequency scattering SJ followed by a linear whitening op-
erator L. The Scattering Inverse Network (SIN) G restores
a signal from a Gaussian white noise by inverting LSJ on
training data.

tor SJ(X)[2Jn] by applying the time-frequency scattering
transform SJ , where J ≥ 0 is a hyperparameter. Gaus-
sianization is achieved through a time averaging over a
sufficiently long time interval thanks to the central limit
theorem. In order to preserve enough information on the
original signal X after averaging, multiple sparse time-
frequency channels are built by applying iterative wavelet
transforms [1]. The Gaussian scattering SJ(X) is then
mapped into a Gaussian white noise with a whitening op-
erator L, which outputs the linear prediction errors of a fu-
ture scattering vector from its neighboring past. Section 4
details the whitened scattering transformation LSJ .

The generator G inverts the linear whitening operator
and the joint scattering transform by synthesizing an ap-
proximation of X[t] from Z[2Jn]. It first applies a vec-
tor autoregressive (VAR) filter L−1, which can be deduced
from L. This operation is followed by a causal convolu-
tional neural network (CNN), with the convolutions acting
along time. The network has J layers to invert a scattering
at scale 2J . Section 3 describes the architecture which has
similarities with a Parallel WaveNet [16]. The optimiza-
tion of the generator G amounts to inverting the scattering
transform SJ in an adapted metric. The statistics of syn-
thesized signals are constrained by ensuring that they have
the same moments in the scattering space as the input sig-
nal X[t]. This network is thus called a Moment Matching-
Scattering Inverse Network (MM-SIN).

3. MOMENT MATCHING-SCATTERING
INVERSE GENERATOR

A Moment Matching-Scattering Inverse Network G is
computed by inverting a scattering embedding computed
at a scale 2J . It is a causal network which takes as input
a nearly Gaussian white noise vector Z computed with a
scattering transform, to recover an estimation of the signal
X . This network is trained with a loss which incorporates
the inverse problem loss computed with a scattering met-
ric, regularized by a moment matching term that can be
interpreted as a discriminative metric.

The MM-SIN generator is a linear recurrent neural net-
work L−1 followed by a causal convolutional network im-
plemented with a cascade of J convolutions and pointwise
non-linearities, illustrated in Figure 2. Each intermediate

W1

WJ−1

ReLU

WJ

ReLU

L−1

ReLU

Layer X0[t0]

Layer XJ [tJ ]

Input Noise Z[tJ ] Z[2Jn]

X0[2Jn]

Zero insertion

t0

tJ−2

tJ−1

tJ

tJ

2J

Figure 2. An MM-SIN is a linear recurrent network fol-
lowed by a causal deep convolutional network with J lay-
ers. It takes as input a vector of Gaussian white noise
Z[2Jn] (top right, red), and computes the corresponding
scattering vector XJ [2Jn] by applying L−1. Intermedi-
ate layers Xj [tj ] are then computed with causal convolu-
tions denoted by blue arrows and zero insertions (white
points). The single vector Z[2Jn] outputs 2J values for
X0[t0], marked with red points.

network layer is composed of vectors Xj [tj ] having kj
channels and sampled at intervals 2j , for 0 ≤ j ≤ J . All
layers in Figure 2 appear to be aligned but to understand
the causality structure one must realize that each layer is
indexed by a time index tj which is shifted by 2j relatively
to the absolute time variable t of the original input signal
X[t]: tj = t − 2j . Using the absolute time t, we thus use
the noise vector at a time t = 2J(n+1) to generate 2J new
output signal values at times 2Jn−2J + 1 < t ≤ 2Jn+ 1.

The first layer maps Z[tJ ] to XJ [tJ ] with a vector au-
toregressive filter L−1 which inverts the whitening opera-
torL, followed by a ReLU non-linearity ρ(u) = max(u, 0)

XJ = ρ
(
L−1Z

)
. (1)

A new noise vector Z[2Jn] outputs a new vector
XJ [2Jn]. At depth j, this initial vector gives rise to 2J−j

temporal vectors Xj [tj ] for 2Jn− 2J−j < tj ≤ 2Jn.
At layer j > 0, the layer Xj is mapped to Xj−1 with an

à trous convolution followed by a ReLU non-linearity plus
bias. We first double the size of Xj with a zero insertion:

X̃j [n2j ] = Xj [n2j ] and X̃j [n2j + 2j−1] = 0. (2)

Each Xj−1 is then calculated with a causal convolution
along time and a linear operator along channels with a bias,
Wj , followed by a ReLU:

Xj−1 = ρ(WjX̃j). (3)

Except for the autoregressive layer, the ReLU is pre-
ceded by a batch normalization [11]. The last convolu-
tion is not followed by a ReLU so that we can output a
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signal with negative values. The final output is X0[t0]
for 2Jn− 2J < t0 ≤ 2Jn which corresponds to X[t] for
2Jn− 2J + 1 < t ≤ 2Jn+ 1. As in standard generative
networks [18], the number of the channels kj decreases
with j according to a geometric law fitted such that X0 has
only one channel and XJ has kJ channels, which is the
dimensionality of each vector Z[2Jn].

The parameters of the network G are optimized by in-
verting the scattering transform followed by the causal
whitening operator L. The loss L minimized by G is a
sum of two terms, weighted by a hyperparameter λ > 0.
The first term Linv measures the accuracy of the inversion.
The second discriminative term LMM measures the dis-
tance between the scattering moments of the synthesized
signals and the scattering moments of the original signals.

min
G
L = Linv + λLMM. (4)

The inverse problem loss Linv computes the reconstruc-
tion error on each training example xi from its embedding
zi computed with the scattering transform SJ followed by
the linear whitening operator L. The reconstruction er-
ror is calculated over scattering coefficients computed at
a scale 2K < 2J :

Linv =
1

N

N∑
i=1

‖SK(xi)− SKG(zi)‖1 with zi = LSJ(xi).

(5)
The l1 norm promotes the sparsity of the responses, while
the scattering SK allows to generate signals which may be
locally deformed, but are perceptually similar to the orig-
inal ones. In order to avoid useless computations, we do
not apply L−1zi but directly input the vectors SJ(xi) to
the convolutional part of G for the computation of Linv.

The loss Linv does not control the quality of the gen-
erated samples G(z) when z is sampled as a Gaussian
white noise. Similarly to GANs which have a discrimi-
nator, the quality is controlled by introducing another loss
term LMM, which controls the distance between the gener-
ated distribution and the distribution of the original signals.

The moment matching term LMM computes the dis-
tance between scattering coefficients of generated signals
averaged over time t and batch index i, SKG(zi)[t], and
scattering coefficients of the training signals averaged over
time t and training examples i, SKxi[t]:

LMM =
∥∥∥SKxi[t]− SKG(zi)[t]

∥∥∥2 (6)

The codes {zi} correspond to a batch of random vectors
which is renewed at each iteration of the gradient descent
algorithm.

The loss LMM is similar to the Maximum Mean Dis-
crepancy regularization introduced in [19]. The moment
matching term can be interpreted as a distance with a scat-
tering transform kernel [8]. However, in this case it can
directly be implemented as a difference of moments.

4. WHITENED TIME-FREQUENCY SCATTERING

This section details the time-frequency scattering trans-
form SJ(X) originally introduced in [1] and its whiten-

X Log-Spectrogr.

ψ1
`

2D filter
Modulus

hξ ⊗ ψ2
`′

Averaging
Subsampling

φJ

Scattering
2J

Figure 3. Time-Frequency Scattering transform. The log-
spectrogram is obtained with a first wavelet transform ψ1

`

followed by a modulus. A joint time-frequency filtering of
this log-spectrogram with the filters hξ⊗ψ2

`′ regularizes the
time-frequency deformations of the signal. The low-pass
convolution with φJ Gaussianizes the resulting tensor.

ing L, which results in the embedding Z[2Jn]. Figure 3
sketches the different computational steps. This transform
relies on priors on musical signals in order to build a time-
dependent vector representation SJX[2Jn] which is ap-
proximately Gaussian and linearizes small time-frequency
deformations.

Musical signals admit a sparse decomposition in time-
frequency representations with a spectrogram. Here, we
first compute a spectrogram with frequencies sampled
on a logarithmic scale thanks to a wavelet filterbank
{ψ1

`}0≤`<J followed by a modulus non-linearity. The
wavelets ψ1

` are defined by dilations of a single mother
wavelet:

ψ1
` [t] = 2−`/Qψ1[2−`/Qt] (7)

We use causal analytic Gammatone wavelets [20],
which are good perceptual models of auditory filters,
with Q = 12 wavelets per octave in order to separate high-
frequency partials.

On this sparse spectrogram, small time-frequency de-
formations of the input signalX produce small local trans-
lations in the time-frequency plane. These deformations
result in smooth perceptual variations. As a consequence,
the embedding should be regular with respect to these de-
formations This is obtained with a joint 2D filtering of
the spectrogram in the time and log-frequency axis. One
can prove that the resulting representation is Lipschitz-
continuous to these deformations, while preserving invert-
ibility thanks to the use of filters spanning all the energy
of the signal [1]. This will imply a form a linearization of
these deformations, paving the way for meaningful arith-
metic in the latent space.

The time-frequency filters are built as a separable prod-
uct hξ ⊗ ψ2

`′ of frequential filters hξ and temporal fil-
ters ψ2

`′ . The frequential filters hξ are localized Fourier
atoms with a Hann window whose size P matches one oc-
tave, P = Q = 12. The convolution is computed in half-
overlaps over the frequency axis. The temporal filters ψ2

`′
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are also Gammatone wavelets, with only Q2 = 1 wavelet
per octave. After performing the convolution, a modulus
non-linearity is also applied in order to remove the local
phase, thereby regularizing the representation.

The time-frequency filtering of the log-spectrogram re-
sults in a large tensor with one temporal axis. Its co-
efficients are sparse along the channel axis and typically
decorrelate as they get farther apart in time. To obtain a
variable which is more Gaussian, we use the central limit
theorem which says that the averaging of a large number of
independant variables converges towards a Gaussian ran-
dom variable. We perform this averaging with a window
size 2J which should be larger than the typical decorrela-
tion length in order to average over enough independent
events. This averaging is carried out with a low-pass filter
φJ along the temporal axis. It is followed by a subsam-
pling by 2J in order to remove redundant information.

The time-frequency scattering transform SJX is de-
fined as:

SJX[2Jn] =
[
x ? φJ [2Jn],

∣∣|x ? ψ1
` | ? hξ

∣∣ ? φJ [2Jn],∣∣|x ? ψ`| ? (hξ ⊗ ψ2
`′)
∣∣ ? φJ [2Jn]

]
, (8)

for all `, ξ, `′, where convolutions with hξ should be in-
terpreted along the frequential ` axis and other convolu-
tions along time. SJX is subsampled in time by a fac-
tor 2J . Each vector SJX[2Jn] has dimension kJ =
1 + Q(2J − 3) + Q(J − 2)2. For J = 10 and Q = 12,
this amounts to 973 channels. The scale 2J is chosen as
a trade-off between the Gaussianization condition which
improves as J increases, and the stability of the scattering
invertibility which improves when J decreases.

Thanks to the local averaging, the vectors SJX tend to
a Gaussian distribution. However, this distribution might
not be white, i.e. it has temporal and channel-wise cor-
relations. The whitening operator L is a causal vector
autoregressive linear filter which removes this correlation
structure. It is trained by minimizing a prediction error
of SJX[2Jn] given previous vectors SJX[2J(n − m)]
for 1 ≤ m ≤ M . The whitening operator L outputs
the innovations of the fitted vector autoregressive process
{Z[2Jn]}n, which have an approximately Gaussian white
distribution.

5. NUMERICAL EXPERIMENTS

We show that the MM-SIN is able to reconstruct wave-
forms from their embeddings and generate new decent
waveforms from noise. Furthermore, we show that it is
possible to manipulate low-level attributes of sounds such
as pitch with a simple arithmetic in the embedding. In
addition, a simple arithmetic in the embedding allows to
merge the contents of different inputs, while preserving the
musical structure of the resulting signal.

5.1 Methods

We describe the numerical details which lay out experi-
ments. The source code supporting experiments is freely

available at http://github.com/AndreuxMath/
ismir2018, where the reader may also find the audio
recordings corresponding to the figures.

The time-frequency scattering transform SJ is com-
puted with an averaging window of size 2J = 210 = 1024.
It is implemented on GPU with a code inspired from [17].
In the case of the loss (4), we employ a first-order scat-
tering SK , which means that it is an averaged scalogram,
with an averaging window of size 2K = 25 = 32. The fil-
terbanks are normalized so as to have responses of average
equal magnitude in each band over the training dataset.

The architecture of the SING is defined as follows. The
whitening operator L has a past size M = 4. All subse-
quent convolutions have a kernel size equal to 7. These val-
ues were not tuned: results could likely be improved with
a careful hyperparameter search. Each network is trained
by Adam [12] with a learning rate of 5 × 10−4 for 1200
epochs and batches of size 128.

We use two different musical datasets: NSynth [5] and
Beethoven [14]. NSynth is a dataset consisting of anno-
tated musical notes from multiple instruments, thereby al-
lowing to perform carefully controlled transformation ex-
periments. All recordings begin with the onset of the note
and last 4s. We restrict ourselves to two types of acoustic
instruments, keyboards and flutes, totalling 40 different in-
struments with MIDI pitches ranging 20− 110, leading to
a varied and well-balanced dataset. In the original dataset,
instruments of the training and testing sets do not overlap.
In this paper, we use an alternative split based on the veloc-
ity’s attributes of the training samples: for each instrument,
a random velocity is picked to define the test set. We only
use the first 2s of the recordings, as they concentrate most
of the energy of the signals.

The Beethoven dataset is closer to an actual musical
composition than NSynth, insofar as it consists in 8s ex-
tracts of Beethoven’s piano sonata. Therefore, it is a good
testbed for music generation experiments. We use the
train-test split provided by the authors.

For both datasets, the amplitudes of all recordings are
normalized in [−1, 1]. The sampling rate is reduced from
16000Hz to 4096Hz so as to reduce the computational
complexity. It is very likely that the quality of the syn-
thesis could be improved by increasing this sampling rate.

5.2 Waveform generation

We first show that the MM-SIN generator is able to recon-
struct and to generate realistic musical samples.

In Figure 4, we display two reconstructions of wave-
forms from their embeddings, along with the correspond-
ing log-spectrograms, for each of the studied datasets. This
shows that the network is able to generalize to a test set,
and to adapt to the specifics of a given dataset. The recon-
struction is not perfect. The network can introduce small
time-frequency deformations because of the scattering en-
coder and the use of a scattering loss. As witnessed in the
log-spectrograms, the time-frequency content of the sig-
nals is correctly retrieved, and perceptually the two signals
sound similar, up to minor artifacts.
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Figure 4. Reconstruction with the MM-SIN G. Left:
Original test sample X . Right: Reconstruction G(Z) for
Z = LSJX . Top: NSynth dataset. Bottom: Beethoven
dataset. A different network was trained for each dataset.

Table 1 provides quantitative reconstruction results on
the Beethoven dataset. Training a network with the mean-
square error (MSE) metric ‖xi − G(zi)‖22 instead of the
proposed perceptual metric within the inverse problem
loss (5) negatively impacts results, both on the training and
testing sets. Further, the moment-matching term has a pos-
itive effect on the reconstruction: even though it degrades
reconstruction on the training set, it improves the general-
ization on the test set both in absolute and relative terms.

We now investigate the ability of the network to gen-
erate new waveforms from Gaussian white noise. Fig-
ure 5 displays several samples generated from white noise
through a network trained on the Beethoven dataset. De-
spite the input being a pure white noise, the network is able
to generate samples which alternate silences and more ac-
tive phases. Further, the fundamental frequency which is
played varies through the samples.

In order to measure the variability of the generated
samples, we measure the spread σ of the distribution of
the time-averaged scattering coefficients SKX of the sam-
ples. This spread corresponds to the average Euclidean
distance between the time-averaged scattering of the wave-
forms and the average scattering coefficients of this distri-
bution. In the case of the training distribution, we obtained

Loss Linv Linv Linv + λLMM

Metric MSE SK SK

Train error 0.56 0.16 0.23
Test error 0.77 0.37 0.31

Gap test/train
(dB)

1.36 3.53 1.21

Table 1. Reconstruction errors on the Beethoven dataset,
expressed in terms of the perceptual loss (5). MSE denotes
the mean-square error metric ‖xi − G(zi)‖22. Using the
perceptual metric for training instead of the MSE metric
reduces the error. Further, adding the moment-matching
term during training improves the reconstruction results
and the generalization.

Figure 5. Musical signal G(Z) generated from a white
noise Z, where G is learned on the Beethoven dataset.
Each line corresponds to an independent sample obtained
from a different white noise realization. The resulting sig-
nals last about 4s.

σ = 6.69, whereas σ = 3.51 for the distribution generated
from white noise. This shows that the generated samples
exhibit a non-negligible variability, even though it is lower
than the one expressed in the training set.

The effect of the moment matching loss (6) on the gen-
erated samples is difficult to assess qualitatively, so we
resort to quantitative measures. In the case of a network
trained without this loss, the moment matching distance
between generated samples and the training set was equal
to 38.7, whereas the same distance was equal to 0.176
when also optimizing this loss. As a comparison, the test-
ing set has a distance of 0.334 with respect to the training
set. Thus, using this loss term brings generated samples
much closer to the natural signals’ statistics.

5.3 Pitch modification

We now study the ability of the algorithm to transform the
pitch of musical signals with an arithmetic operations in
the latent space. We use the NSynth dataset, whose care-
ful construction allows to perform modifications with fixed
factors of variability. In the test set, we pick two sam-
ples belonging to the same instrument, but with a pitch
separated by 5 MIDI scales. We compute their embed-
dings Z1 and Z2, their mean embedding (Z1 +Z2)/2, and
reconstruct the corresponding signals with the generator:
G(Z1), G(Z2) and G((Z1 + Z2)/2).

The results are displayed in Figure 6. The interpolation
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Figure 6. Pitch interpolation. Left column: G(Z1). Mid-
dle column: G((Z1 + Z2)/2). Right column: G(Z2). Z1

and Z2 are the embeddings of samples from the test set.
The generator interpolates the fundamental frequency with
a simple arithmetic. The frequential displacement from left
to right corresponds to 5 MIDI scales.

in the latent space does not result in a linear interpolation
which would double the number of harmonics. It yields
one fundamental frequency in each case. Furthermore, this
fundamental frequency is indeed interpolated by this sim-
ple arithmetic. Observe that this is also the case of the
partials, as can be seen in particular in the bottom exam-
ple. However, this interpolation suffers from some arti-
facts. For instance, in the middle example, the partials at
highest frequencies are cluttered and the resulting signal
misses harmonicity. Yet, these results showcase the ability
to transform signals via linear interpolations in the latent
space with a simple unsupervised learning procedure and a
predefined embedding.

The algorithm owes the ability to perform such pitch
interpolations to the time-frequency scattering transform
SJ used as an encoder, which regularizes small time-
frequency deformations. As such, the pitch interval on
which the interpolations can be performed is bounded by
the size P of the Hann window used to filter the scalogram
along the frequency axis.

Figure 7. Interpolations in the latent and signal space. Top
two signals: G(Z1) andG(Z2), whereZ1, Z2 are Gaussian
white noise realizations and G is trained on the Beethoven
dataset. Bottom left: Latent interpolationG((Z1+Z2)/2).
Bottom right: (G(Z1) + G(Z2))/2. The latent interpo-
lation is able to merge both signals while preserving the
musical structure.

5.4 Waveform interpolation

Let us show results when interpolating waveforms from the
Beethoven dataset, which have a high density of musical
events. We take two random white noise realizations Z1

and Z2, and compare the effect on the waveforms of an
interpolation in the latent space and in the signal space,
with a network G trained on the Beethoven dataset.

The results are represented in Figure 7. The top two
signals are the original signals G(Z1) and G(Z2), while
the bottom left is the latent interpolation G((Z1 + Z2)/2)
and the bottom right the linear interpolation (G(Z1) +
G(Z2))/2. The latent interpolation incorporates patterns
from both signals but it respects the musical structure. It
has successive musical notes with their harmonics, and it
recovers a sound with silences. On the opposite, the linear
interpolation merges both signals, which eliminates the si-
lence regions while producing a cluttered log-spectrogram.

6. CONCLUSION

This paper introduces a causal musical synthesis network
optimized through an inverse problem and which thus in-
volves no learned encoder or discriminator. The encoder is
defined from time-frequency signal priors in order to Gaus-
sianize the input signal. The generator network maps back
the resulting codes to raw waveforms. This network inverts
the encoder and generates new signals whose scattering
moments match those of the original signals. The resulting
system synthesizes new realistic musical signals and per-
forms the transformation of low-level attributes, such as
pitch, by simple linear combinations in the latent space.

Synthesized signals do not reach the quality of state-of-
the-art generating architectures but these first results show
that this approach is a new promising avenue to synthesize
audio signals directly from Gaussian white noise, without
learning encoders or discriminators.
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ABSTRACT

Models for audio source separation usually operate on
the magnitude spectrum, which ignores phase information
and makes separation performance dependant on hyper-
parameters for the spectral front-end. Therefore, we in-
vestigate end-to-end source separation in the time-domain,
which allows modelling phase information and avoids fixed
spectral transformations. Due to high sampling rates for
audio, employing a long temporal input context on the sam-
ple level is difficult, but required for high quality separation
results because of long-range temporal correlations. In
this context, we propose the Wave-U-Net, an adaptation
of the U-Net to the one-dimensional time domain, which
repeatedly resamples feature maps to compute and com-
bine features at different time scales. We introduce further
architectural improvements, including an output layer that
enforces source additivity, an upsampling technique and a
context-aware prediction framework to reduce output arti-
facts. Experiments for singing voice separation indicate that
our architecture yields a performance comparable to a state-
of-the-art spectrogram-based U-Net architecture, given the
same data. Finally, we reveal a problem with outliers in the
currently used SDR evaluation metrics and suggest report-
ing rank-based statistics to alleviate this problem.

1. INTRODUCTION

Current methods for audio source separation almost exclu-
sively operate on spectrogram representations of the audio
signals [6, 7], as they allow for direct access to compo-
nents in time and frequency. In particular, after applying a
short-time Fourier transform (STFT) to the input mixture
signal, the complex-valued spectrogram is split into its mag-
nitude and phase components. Then only the magnitudes
are input to a parametric model, which returns estimated
spectrogram magnitudes for the individual sound sources.
To generate corresponding audio signals, these magnitudes
are combined with the mixture phase and then converted
with an inverse STFT to the time domain. Optionally, the
phase can be recovered for each source individually using
the Griffin-Lim algorithm [5].

c© Daniel Stoller, Sebastian Ewert, Simon Dixon. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Daniel Stoller, Sebastian Ewert, Simon Dixon. “Wave-
U-Net: A Multi-Scale Neural Network for End-to-End Audio Source
Separation”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.

This approach has several limitations. Firstly, the STFT
output depends on many parameters, such as the size and
overlap of audio frames, which can affect the time and
frequency resolution. Ideally, these parameters should be
optimised in conjunction with the parameters of the sep-
aration model to maximise performance for a particular
separation task. In practice, however, the transform pa-
rameters are fixed to specific values. Secondly, since the
separation model does not estimate the source phase, it is
often assumed to be equal to the mixture phase, which is
incorrect for overlapping partials. Alternatively, the Griffin-
Lim algorithm can be applied to find an approximation to a
signal whose magnitudes are equal to the estimated ones,
but this is slow and often no such signal exists [8]. Lastly,
the mixture phase is ignored in the estimation of sources,
which can potentially limit the performance. Thus, it would
be desirable for the separation model to learn to estimate
the source signals including their phase directly.

As an approach to tackle the above problems, several
audio processing models were recently proposed that oper-
ate directly on time-domain audio signals, including speech
denoising as a task related to general audio source separa-
tion [1,16,18]. Inspired by these first results, we investigate
in this paper the potential of fully end-to-end time-domain
separation systems in the face of unresolved challenges. In
particular, it is not clear if such a system will be able to deal
effectively with the very long-range temporal dependencies
present in audio due to its high sampling rate. Further, it is
not obvious upfront whether the additional phase informa-
tion will indeed be beneficial for the task, or whether the
noisy phase might be detrimental for the learning dynamics
in such a system. Overall, our contributions in this paper
can be summarised as follows.

• We propose the Wave-U-Net, a one-dimensional
adaptation of the U-Net architecture [7, 19], which
separates sources directly in the time domain and can
take large temporal contexts into account.

• We show a way to provide the model with additional
input context to avoid artifacts at the boundaries of
output windows, in contrast to previous work [7, 16].

• We replace strided transposed convolution used in
previous work [7, 16] for upsampling feature maps
with linear interpolation followed by a normal convo-
lution to avoid artifacts.

This work was partially funded by EPSRC grant EP/L01632X/1.
Implementation available at https://github.com/f90/
Wave-U-Net
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Figure 1. Our proposed Wave-U-Net with K sources and L layers.
With our difference output layer, the K-th source prediction is the
difference between the mixture and the sum of the other sources.

• The Wave-U-Net achieves good multi-instrument and
singing voice separation, the latter of which compares
favourably to our re-implementation of the state-of-
the-art network architecture [7], which we train under
comparable settings.

• Since the Wave-U-Net can process multi-channel au-
dio, we compare stereo with mono source separation
performance

• We highlight an issue with the commonly used Signal-
to-Distortion ratio evaluation metric, and propose a
work-around.

It should be noted that we expect the current state of
the art model as presented in [7] to yield higher separation
quality than what we report here, as the training dataset used
in [7] is well-designed, highly unbiased and considerably
larger. However, we believe that our comparison with a
re-implementation trained under similar conditions might
be indicative of relative performance improvements.

2. RELATED WORK

To alleviate the problem of fixed spectral representations
widely used in previous work [6, 11, 13, 14, 20, 23], an
adaptive front-end for spectrogram computation was devel-
oped [24] that is trained jointly with the separation network,
which operates on the resulting magnitude spectrogram. De-
spite comparatively increased performance, the model does
not exploit the mixture phase for better source magnitude
predictions and also does not output the source phase, so
the mixture phase has to be used for source signal recon-
struction, both of which limit performance.

To our knowledge, only the TasNet [12] and MRCAE [4]
systems tackle the general problem of audio source separa-
tion in the time domain. The TasNet performs a decompo-
sition of the signal into a set of basis signals and weights,

and then creates a mask over the weights which are finally
used to reconstruct the source signals. The model is shown
to work for a speech separation task. However, the work
makes conceptual trade-offs to allow for low-latency appli-
cations, while we focus on offline application, allowing us
to exploit a large amount of contextual information.

The multi-resolution convolutional auto-encoder (MR-
CAE) [4] uses two layers of convolution and transposed
convolution each. The authors argue the different convo-
lutional filter sizes detect audio frequencies with different
resolutions, but they work only on one time resolution (that
of the input), since the network does not perform any resam-
pling. Since input and output consist of only 1025 audio
samples (equivalent to 23 ms), it can only exploit very lit-
tle context information. Furthermore, at test time, output
segments are overlapped using a regular spacing and then
combined, which differs from how the network is trained.
This mismatch and the small context could hurt perfor-
mance and also explain why the provided sound examples
exhibit many artifacts.

For the purpose of speech enhancement and denoising,
the SEGAN [16] was developed, employing a neural net-
work with an encoder and decoder pathway that succes-
sively halves and doubles the resolution of feature maps
in each layer, respectively, and features skip connections
between encoder and decoder layers. While we use a simi-
lar architecture, we rectify the issue of aliasing artifacts in
the generated output when using strided transposed convo-
lutions as shown by [15]. Furthermore, the model cannot
predict audio samples close to its border output well since
it is given no additional input context, which is an issue we
address using convolutions with proper padding. It is also
not clear if the model’s performance can transfer to other
and more challenging audio source separation tasks.

The Wavenet [1] was adapted for speech denoising [18]
to have a non-causal conditional input and a parallel output
of samples for each prediction and is based on the repeated
application of dilated convolutions with exponentially in-
creasing dilation factors to factor in context information.
While this architecture is very parameter-efficient, memory
consumption is high since each feature map resulting from
a dilated convolution still has the original audio’s sampling
rate as resolution.

In contrast, our approach calculates the longer-term de-
pendencies based on feature maps with more features and
increasingly lower resolution. This saves memory and en-
ables a large number of high-level features, which arguably
do not need sample-level resolution to be useful, such as
instrument activity, or the position in the current measure.

3. THE WAVE-U-NET MODEL

Our goal is to separate a mixture waveform
M ∈ [−1, 1]Lm× C into K source waveforms S1, . . . ,SK

with Sk ∈ [−1, 1]Ls× C for all k ∈ {1, . . . ,K}, C as the
number of audio channels and Lm and Ls as the respective
numbers of audio samples. For model variants with extra
input context, we have Lm > Ls and make predictions for
the centre part of the input.
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Block Operation Shape
Input (16384, 1)

DS, repeated for
i = 1, . . . , L

Conv1D(Fc · i, fd)
Decimate (4, 288)

Conv1D(Fc · (L+ 1), fd) (4, 312)

US, repeated for
i = L, . . . , 1

Upsample
Concat(DS block i)
Conv1D(Fc · i, fu) (16834, 24)
Concat(Input) (16834, 25)
Conv1D(K, 1) (16834, 2)

Table 1. Block diagram of the base architecture. Shapes describe
the final output after potential repeated application of blocks, for
the example of model M1, and denote the number of time steps
and feature channels, in that order. DS block i refers to the output
before decimation. Note that the US blocks are applied in reverse
order, from level L to 1.

3.1 The base architecture

A diagram of the Wave-U-Net architecture is shown in Fig-
ure 1. It computes an increasing number of higher-level
features on coarser time scales using downsampling (DS)
blocks. These features are combined with the earlier com-
puted local, high-resolution features using upsampling (US)
blocks, yielding multi-scale features which are used for
making predictions. The network has L levels in total, with
each successive level operating at half the time resolution
as the previous one. For K sources to be estimated, the
model returns predictions in the interval (−1, 1), one for
each source audio sample.

The detailed architecture is shown in Table 1.
Conv1D(x,y) denotes a 1D convolution with x filters of
size y. It includes zero-padding for the base architecture,
and is followed by a LeakyReLU activation (except for
the final one, which uses tanh). Decimate discards fea-
tures for every other time step to halve the time resolution.
Upsample performs upsampling in the time direction by a
factor of two, for which we use linear interpolation (see Sec-
tion 3.1.1 for details). Concat(x) concatenates the current,
high-level features with more local features x. In extensions
of the base architecture (see below), where Conv1D does
not involve zero-padding, x is centre-cropped first so it has
the same number of time steps as the current layer.

3.1.1 Avoiding aliasing artifacts due to upsampling

Many related approaches use transposed convolutions with
strides to upsample feature maps [7,16]. This can introduce
aliasing effects in the output, as shown for the case of image
generation networks [15]. In initial tests, we also found ar-
tifacts when using such convolutions as upsampling blocks
in our Wave-U-Net model in the form of high-frequency
buzzing noise.

Transposed convolutions with a filter size of k and a
stride of x > 1 can be viewed as convolutions applied to
feature maps padded with x−1 zeros between each original
value [2]. We suspect that the interleaving with zeros with-
out subsequent low-pass filtering introduces high-frequency
patterns into the feature maps, shown symbolically in Fig-
ure 2, which leads to high-frequency noise in the final out-
put as well. Instead of transposed strided convolutions, we
thus perform linear interpolation for upsampling, which
ensures temporal continuity in the feature space, followed
by a normal convolution. In initial tests, we did not observe

Convolution

Decimation

Upsampling

?

Convolution

a) b)

Figure 2. a) Common model (e.g. [7]) with an even number of
inputs (grey) which are zero-padded (black) before convolving,
creating artifacts at the borders (dark colours). After decimation,
a transposed convolution with stride 2 is shown here as upsam-
pling by zero-padding intermediate and border values followed
by normal convolution, which likely creates high-frequency arti-
facts in the output. b) Our model with proper input context and
linear interpolation for upsampling from Section 3.2.2 does not
use zero-padding. The number of features is kept uneven, so
that upsampling does not require extrapolating values (red arrow).
Although the output is smaller, artifacts are avoided.

any high-frequency sound artifacts in the output with this
technique and achieved very similar performance.

3.2 Architectural improvements

The previous Section described the baseline variant of the
Wave-U-Net. In the following, we will describe a set of
architectural improvements for the Wave-U-Net designed
to increase model performance.

3.2.1 Difference output layer

Our baseline model outputs one source estimate for each
of K sources by independently applying K convolutional
filters followed by a tanh non-linearity to the last feature
map. In the separation tasks we consider, the mixture signal
is the sum of its source signal components: M ≈

∑K
j=1 S

j .
Since our baseline model is not constrained in this fashion, it
has to learn this rule approximately to avoid highly improb-
able outputs, which could slow down learning and reduce
performance. Therefore, we use a difference output layer to
constrain the outputs Ŝj , enforcing

∑K
j=1 Ŝ

j = M: only
K − 1 convolutional filters with a size of 1 are applied to
the last feature map of the network, followed by a tanh non-
linearity, to estimate the first K − 1 source signals. The last
source is then simply computed as ŜK = M−

∑K−1
j=1 Ŝj .

This type of output was also used for speech denois-
ing in [18] as part of an “energy-conserving” loss, and a
similar idea can be found very commonly in spectrogram-
based source separation in the form of masks that distribute
the energy of the input mixture magnitudes to the output
sources. We investigate the impact of introducing this layer
and its additivity assumption, since it depends on the extent
to which this additivity property is satisfied by the data.
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3.2.2 Prediction with proper input context and resampling

In previous work [4,7,16], the input and the feature maps are
padded with zeros before convolving, so that the resulting
feature map does not change in its dimension, as shown in
Figure 2a. This simplifies the network’s implementation,
since the input and output dimensions are the same. Zero-
padding audio or spectrogram input this way effectively
extends the input using silence at the beginning and end.
However, taken from a random position in a full audio
signal, the information at the boundary becomes artificial,
i.e. the temporal context for this excerpt is given in the
full audio signal but is ignored and assumed to be silent.
Without proper context information, the network thus has
difficulty predicting output values near the beginning and
end of the sequence. As a result, simply concatenating the
outputs as non-overlapping segments at test time to obtain
the prediction for a full audio signal can create audible
artifacts at the segment borders, as neighbouring outputs
can be inconsistent when they are generated without correct
context information. In Section 5.2, we investigate this
behaviour in practice.

As a solution, we employ convolutions without implicit
padding and instead provide a mixture input larger than
the size of the output prediction, so that the convolutions
are computed on the correct audio context (see Figure 2b).
Since this reduces the feature map sizes, we constrain the
possible output sizes of the network so that feature maps
are always large enough for the following convolution.

Further, when resampling feature maps, feature dimen-
sions are often exactly halved or doubled [7, 16], as shown
in Figure 2a for transposed strided convolution. However,
this necessarily involves extrapolating at least one value at
a border, which can again introduce artifacts. Instead, we
interpolate only between known neighbouring values and
keep the very first and last entries, producing 2n− 1 entries
from n or vice versa, as shown in Figure 2b. To recover
the intermediate values after decimation, while keeping bor-
der values the same, we ensure that feature maps have odd
dimensionality.

3.2.3 Stereo channels

To accommodate for multi-channel input with C channels,
we simply change the input M from an Lm × 1 to an
Lm × C matrix. Since the second dimension is treated
as a feature channel, the first convolution of the network
takes into account all input channels. For multi-channel
output with C channels, we modify the output component
to have K independent convolutional layers with filter size
1 and C filters each. With a difference output layer, we
only use K − 1 such convolutional layers. We use this
simple approach with C = 2 to perform experiments with
stereo recordings and investigate the degree of improvement
in source separation metrics when using stereo instead of
mono estimation.

3.2.4 Learned upsampling for Wave-U-Net

Linear interpolation for upsampling is simple, parameter-
less and encourages feature continuity. However, it may
be restricting the network capacity too much. Perhaps, the
feature spaces used in these feature maps are not structured

so that a linear interpolation between two points in feature
space is a useful point on its own, so that a learned upsam-
pling could further enhance performance. To this end, we
propose the learned upsampling layer. For a given F × n
feature map with n time steps, we compute an interpolated
feature ft+0.5 ∈ RF for pairs of neighbouring features
ft, ft+1 ∈ RF using parameters w ∈ RF and the sigmoid
function σ to constrain each wi ∈ w to the [0, 1] interval:

ft+0.5 = σ(w)� ft + (1− σ(w))� ft+1 (1)

This can be implemented as a 1D convolution across time
with F filters of size two and no padding with a properly
constrained matrix. The learned interpolation layer can
be viewed as a generalisation of simple linear interpola-
tion, since it allows convex combinations of features with
weights other than 0.5.

4. EXPERIMENTS

We evaluate the performance of our models on two tasks:
Singing voice separation and music separation with bass,
drums, guitar, vocals and “other” instruments as categories,
as defined by the SiSec separation campaign [10].

4.1 Datasets

75 tracks from the training partition of the MUSDB [17]
multi-track database are randomly assigned to our training
set, and the remaining 25 tracks form the validation set,
which is used for early stopping. Final performance is
evaluated on the MUSDB test partition comprised of 50
songs. For singing voice separation, we also add the whole
CCMixter database [9] to the training set.

As data augmentation for both tasks, we multiply source
signals with a factor chosen uniformly from the interval
[0.7, 1.0] and set the input mixture as the sum of source
signals. No further data preprocessing is performed, only a
conversion to mono (except for stereo models) and down-
sampling to 22050 Hz.

4.2 Training procedure

During training, audio excerpts are sampled randomly and
inputs padded accordingly for models with input context.
As loss, we use the mean squared error (MSE) over all
source output samples in a batch. We use the ADAM op-
timizer with learning rate 0.0001, decay rates β1 = 0.9
and β2 = 0.999 and a batch size of 16. We define 2000
iterations as one epoch, and perform early stopping after 20
epochs of no improvement on the validation set, measured
by the MSE loss. Afterwards, the last model is fine-tuned
further, with the batch size doubled and the learning rate
lowered to 0.00001, again until 20 epochs without improve-
ment in validation loss. Finally, the model with the best
validation loss is selected.

4.3 Model settings and variants

For our baseline model, we use Lm = Ls = 16384 input
and output samples, L = 12 layers, Fc = 24 extra filters
per layer and filter sizes fd = 15 and fu = 5.
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To determine the impact of the model improvements
described in Section 3.2, we train a baseline model M1 as
described in Section 3.1 and models M2 to M5 which add
the difference output layer from Section 3.2.1 (M2), the in-
put context and resampling from Section 3.2.2 (M3), stereo
channels from Section 3.2.3 (M4), and learned upsampling
from Section 3.2.4 (M5), and also contain all features of the
respectively previous model. We apply the best model of
the above (M4) to multi-instrument separation (M6). Mod-
els with input context (M3 to M6) have Lm = 147443 input
and Ls = 16389 output samples.

For comparison with previous work, we also train
the spectrogram-based U-Net architecture [7] (U7) that
achieved state-of-the-art vocal separation performance, and
a Wave-U-Net comparison model (M7) under the same con-
ditions, both using the audio-based MSE loss and mono
signals downsampled to 8192 Hz. M7 is based on the best
model M4, but is set to Lm = 233459 and Ls = 102405 to
have very similar output size compared to U7 (Ls = 98650
samples), Fc = 34 to bring our network to the same size
as U7 (20M param.), and the initial batch size is set to four
due to the high amount of memory needed per sample. To
train U7, we backpropagate the error through the inverse
STFT operation that is used to construct the source audio
signal from the estimated spectrogram magnitudes and the
mixture phase. We also train the same model with an L1
loss on the spectral magnitudes (U7a), following [7]. Since
the training procedure and loss are exactly the same for
networks U7 and M7, we can fairly compare both architec-
tures by ensuring that performance differences do not arise
simply because of the amount of training data or the type of
loss function used, and also compare with a spectrogram-
based loss (U7a). Despite our effort to enable an overall
model comparison, note that some training settings such as
learning rates used in [7] might differ from ours (and are
partly unknown) and could provide better performance with
U7 and U7a than shown here, even with the same dataset.

5. RESULTS

5.1 Quantitative results

5.1.1 Evaluation metrics

The signal-to-distortion (SDR) metric is commonly used
to evaluate source separation performance [25]. An audio
track is usually partitioned into non-overlapping audio seg-
ments multiple seconds in length, and segment-wise metrics
are then averaged over each audio track or the whole dataset
to evaluate model performance. Following the procedure
used for the SiSec separation campaign 2018 [17], these
segments are one second long.

5.1.2 Issues with current evaluation metrics

The SDR computation is problematic when the true source
is silent or near-silent. In case of silence, the SDR is unde-
fined (log(0)), which happens often for vocal tracks. Such
segments are excluded from the results, so performance on
these segments is ignored. For near-silent parts, the SDR
is typically very low when the separator output is quiet,
but not silent, although such an output is arguably not a

100 80 60 40 20 0 20 40

Accompaniment

Vocals

Segment-wise SDR distribution

Figure 3. Violin plot of the segment-wise SDR values in the
MUSDB test set for model M5. Black points show medians, dark
blue lines the means.

grave error perceptually. These outliers are visualised using
model M5 in Figure 3. Since the mean over segments is
usually used to obtain overall performance measures, these
outliers greatly affect evaluation results.

Since the collection of segment-wise vocal SDR values
across the dataset is not normally distributed (compare Fig-
ure 3 for vocals), the mean and standard deviation are not
sufficient to adequately summarise it. As a workaround,
we take the median over segments, as it is robust against
outliers and intuitively describes the minimum performance
that is achieved 50% of the time. To describe the spread
of the distribution, we use the median absolute deviation
(MAD) as a rank-based equivalent to the standard deviation
(SD). It is defined as the median of the absolute deviations
from the overall median and is easily interpretable, since
a value of x means that 50% of values have an absolute
difference from the median that is lower than x.

We also note that increasing the duration of segments
beyond one second alleviates this issue by removing many,
but not all outliers. This is more memory-intensive and
presumably still punishes errors during silent sections most.

5.1.3 Model comparison

Table 2 shows the evaluation results for singing voice sepa-
ration. The low vocal SDR means and high medians for all
models again demonstrate the outlier problem discussed in
Section 5.1.2. The difference output layer does not notice-
ably change performance, as model M2 appears to be only
very slightly better than model M1. Initial experiments with-
out fine-tuning showed a larger difference, which may indi-
cate that a finer adjustment of weights makes constrained
outputs less important, but they could still enable the us-
age of faster learning rates. Introducing context noticeably
improves performance, as model M3 shows, likely due to
better predictions at output borders. The stereo modeling in
model M4 yields improvements especially for accompani-
ment, which may be because its sounds are panned more to
the left or right channels than vocals. The learned upsam-
pling (M5) slightly improves the median, but slightly de-
creases the mean vocal SDR. The small differences could be
explained by the low number of weights in learned upsam-
pling layers, considering that we also experimented with
unconstrained convolutions, which brought more improve-
ments but also high-frequency sound artifacts. We therefore
consider M4 as our best model. For multi-instrument sepa-
ration, we achieve slightly lower but moderate performance
(M6), as shown in Table 3, in part due to less training data.
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M1 M2 M3 M4 M5 M7 U7 U7a

Voc.

Med. 3.90 3.92 3.96 4.46 4.58 3.49 2.76 2.74
MAD 3.04 3.01 3.00 3.21 3.28 2.71 2.46 2.54
Mean -0.12 0.05 0.31 0.65 0.55 -0.23 -0.66 0.51

SD 14.00 13.63 13.25 13.67 13.84 13.00 12.38 10.82

Acc.

Med. 7.45 7.46 7.53 10.69 10.66 7.12 6.76 6.68
MAD 2.08 2.10 2.11 3.15 3.10 2.04 2.00 2.04
Mean 7.62 7.68 7.66 11.85 11.74 7.15 6.90 6.85

SD 3.93 3.84 3.90 7.03 7.05 4.10 3.67 3.60

Table 2. Test set performance metrics (SDR statistics, in dB) for
each singing voice separation model. Best performances overall
and among comparison models are shown in bold.

Vocals Other
Med. MAD Mean SD Med. MAD Mean SD

M6 3.0 2.76 -2.10 15.41 2.03 1.64 1.68 6.14

Bass Drums
Med. MAD Mean SD Med. MAD Mean SD

M6 2.91 2.47 -0.30 13.50 4.15 1.99 2.88 7.68

Table 3. Test performance metrics (SDR statistics, in dB) for our
multi-instrument model

U7 performs worse than our comparison model M7, sug-
gesting that our network architecture compares favourably
to the state-of-the-art architecture since all else is kept con-
stant during the experiments. However, U7 stopped improv-
ing on the training set unexpectedly early, perhaps because
it was not designed for minimising an audio-based MSE
loss or because of effects related to backpropagating gra-
dients through the inverse STFT. In contrast, U7a showed
expected training behaviour using the magnitude-based loss.
Our model also outperforms U7a, yielding considerably
higher mean and median SDR scores. The mean vocal SDR
is the only exception, arising since our model has more
outlier segments, but better output the majority of the time.

Models M4 and M6 were submitted as STL1 and STL2
to the SiSec campaign [22]. For vocals, M4 performs bet-
ter or as well as almost all other systems. Although it is
significantly outperformed by submissions UHL3, TAK1-3
and TAU1, all of these except TAK1 used an additional 800
songs for training and thus have a large advantage. M4 also
separates accompaniment well, although slightly less so
than the vocals. We refer to [22] for more details.

5.2 Qualitative results and observations

As an example of problems occurring when not using a
proper temporal context, we generated a vocal source es-
timate for a song with the baseline model M1, and visu-
alised an excerpt using a spectrogram in Figure 4. Since
the model’s input and output are of equal length and the
total output is created by concatenating predictions for non-
overlapping consecutive audio segments, inconsistencies
emerge at the borders shown in red: the loudness abruptly
decreases at 1.2 seconds, and a beginning vocal melisma
is suddenly cut off at 2.8 seconds, leaving only quiet noise,
before the vocals reappear at 4.2 seconds. A vocal melisma
with only the vowel “a” can sound similar to a non-vocal
instrument and presumably was mistaken for one because
no further temporal context was available.

In conclusion, these models suffer not only from incon-
sistencies at such segment borders, but are also less capable
of performing separation there whenever information from
a temporal context is required. Larger input and output
sizes alleviate the issue somewhat, but the problems at the
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Figure 4. Power spectrogram (dB) of a vocal estimate excerpt gen-
erated by a model without additional input context. Red markers
show boundaries between independent segment-wise predictions.

borders remain. Blending the predictions for overlapping
segments [4] is an ad-hoc solution, since the average of
multiple predicted audio signals might not be a realistic
prediction itself. For example, two sinusoids with equal
amplitude and frequency, but opposite phase would cancel
each other out. Blending should thus be avoided in favour
of our context-aware prediction framework.

6. DISCUSSION AND CONCLUSION

In this paper, we proposed the Wave-U-Net for end-to-end
audio source separation without any pre- or postprocessing,
and applied it to singing voice and multi-instrument sepa-
ration. A long temporal context is processed by repeated
downsampling and convolution of feature maps to com-
bine high- and low-level features at different time-scales.
As indicated by our experiments, it outperforms the state-
of-the-art spectrogram-based U-Net architecture [7] when
trained under comparable settings. Since our data is quite
limited in size however, it would be interesting to train our
model on datasets comparable in size to the one used in [7]
to better assess respective advantages and disadvantages.

We highlight the lack of a proper temporal input context
in recent separation and enhancement models, which can
hurt performance and create artifacts, and propose a simple
change to the padding of convolutions as a solution. Simi-
larly, artifacts resulting from upsampling by zero-padding
as part of strided transposed convolutions can be addressed
with a linear upsampling with a fixed or learned weight to
avoid high-frequency artifacts.

Finally, we identify a problem in current SDR-based
evaluation frameworks that produces outliers for quiet parts
of sources and propose additionally reporting rank-based
metrics as a simple workaround. However, the underlying
problem of perceptual evaluation of sound separation results
using SDR metrics still remains and should be tackled at its
root in the future.

For future work, we could investigate to which extent our
model performs a spectral analysis, and how to incorporate
computations similar to those in a multi-scale filterbank, or
to explicitly compute a decomposition of the input signal
into a hierarchical set of basis signals and weightings on
which to perform the separation, similar to the TasNet [12].
Furthermore, better loss functions for raw audio prediction
should be investigated such as the ones provided by genera-
tive adversarial networks [3, 21], since the MSE might not
reflect the perceived loss of quality well.
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ABSTRACT

The matrix-based representations commonly used in MIR
tasks are often difficult to interpret. This work in-
troduces start-end (SE) diagrams and start(normalized)-
length (SNL) diagrams, two novel structure-based repre-
sentations for sequential music data. Inspired by methods
from topological data analysis, both SE and SNL diagrams
come equipped with efficiently computable and stable met-
rics. Utilizing SE or SNL diagrams as input, we address the
cover song task for score-based data with high accuracy.
While both representations are concisely defined and flex-
ible, SNL diagrams in particular address issues introduced
by commonly used resampling methods.

1. INTRODUCTION

Since Foote’s introduction of the self-similarity matrix
(SSM) in [8], matrix-based representations for music-
based data streams have been commonly used in MIR liter-
ature. Both SSMs and self-dissimilarity matrices (SDMs)
have been used as the starting point for a variety of tasks
including the cover song task [2,10,13,21], the chorus de-
tection task [9], and segmentation task [14, 18, 19].

While straightforward to compute, these matrix-based
representations are challenging to interpret, requiring ex-
tensive post-processing, such as smoothing and resampling
techniques used in [10] or path enhancement applied in
[15–17]. These post-processing steps can also introduce
uncertainty or reduce some of the intuitive explanations
for the resulting visualizations. The aligned hierarchies
from [13] is an intuitive structure-based representation that
is also the result of post-processing SDMs. However, this
representation is rigid as it requires two songs to be the
exactly the same length for comparisons. The aligned sub-
hierarchies attempt to address this rigidity, but many songs
do not have enough structure to have this collection of
structure-based representations for sections of a song [12].

c© Melissa R. McGuirl, Katherine M. Kinnaird, Claire
Savard, Erin H. Bugbee. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Melissa R.
McGuirl, Katherine M. Kinnaird, Claire Savard, Erin H. Bugbee. “SE
and SNL diagrams: Flexible data structures for MIR”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

In this paper, we contribute two new structure-based vi-
sualizations for music-based data streams: Start-end di-
agrams (in Section 3) and Start(normalized)-length dia-
grams (in Section 4). With roots in topological data anal-
ysis, the presented methods are flexible, computationally
efficient, and easily adaptable. Moreover, we present ex-
periments applying these methods to a version of the cover
song task. We discuss contributions of our novel methods
(in Section 6) and share future directions (in Section 7).

2. MOTIVATION AND BACKGROUND

This work builds upon aligned hierarchies developed in
[13]. The aligned hierarchies for a song encodes all pos-
sible hierarchical structure decompositions of that song on
one common time axis. The aligned hierarchies represen-
tation is defined as a collection of three components: a bi-
nary onset matrix BH , a length vector, and an annotation
vector that acts as a key for BH [13]. Each row of BH
corresponds to one kind of repetition, with entries equal to
one denoting where instances of a repeat begins.

Aligned hierarchies have been used to compare songs
under the fingerprint task by leveraging that this represen-
tation can be embedded into a classification space with
a natural notion of distance. This distance computes the
number of dissimilarities between start-times for repeats
of each size and then totals those dissimilarities across all
sizes. Using the aligned hierarchies as the basis of compar-
ison yields precise results, yet the metric is both rigid with
respect to the length of the songs and computationally ex-
pensive as it is based on a binary classification [13].

In this work, we produce novel methods of representing
and comparing songs. Inspired by work in topological data
analysis, our methods extend the aligned hierarchies while
addressing their limitations. Moreover, we offer several
variations of our method, which make our representations
flexible and easily adaptable to many applications such as
cover song and remix detection.

3. START-END DIAGRAMS

Aligned hierarchies represents repeated structures of mu-
sic data. Similarly, topological data analysis (TDA), an
emerging field of mathematics, aims to extract structural,
or topological, information from complex data. The start-
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end diagram is a transformation of the aligned hierarchies
that is reminiscent of persistence diagrams from TDA.

In TDA, data are thresholded via a sequence of param-
eter values. Topological summaries, such as the number
of loops in the data, are then computed for each param-
eter value in the sequence [4, 5, 7]. A common way to
represent this topological information is with persistence
diagrams. Briefly, a persistence diagram is a collection of
points {(bi, di)}Ni=1 ⊂ R2

+, such that (bi, di) corresponds
to a topological structure that appears at some parameter
value bi and disappears at parameter value di ≥ bi [4,5,7].

Inspired by TDA, we transform aligned hierarchies into
a start-end (SE) diagram. The SE diagram corresponding
to aligned hierarchies with N repeated structures is defined
as a collection of points {(si, ei)}Ni=1 ⊂ R2

+, where si and
ei are the start and end times, respectively, of the ith re-
peated structure. Under this transformation, we adjust the
time scale such that time zero refers to the start of the first
block of the aligned hierarchies and truncate the song to
end where the last block of the aligned hierarchies ends.

SE diagrams are not inherently topological (in a mathe-
matical sense), rather we are adapting data structures from
TDA. While SE diagrams cannot delineate two different
types of repeats of the same length, there are several ad-
vantages of using SE diagrams over aligned hierarchies.
First, they are a more concisely defined structure, as each
diagram is simply a finite collection of points. Second,
leveraging theoretical results from TDA, there are easily
adaptable metrics on the space of SE diagrams (Subsec-
tion 3.1). Third, these metrics are more flexible than those
for the aligned hierarchies while maintaining accuracy and
precision in the cover song task (Subsection 3.2).

3.1 Metrics for SE diagrams

In TDA there are two common metrics for persistence dia-
grams that can be extended to SE diagrams: the bottleneck
metric and the Wasserstein metric. Both metrics measure
the error of an optimal alignment of points in two persis-
tence (or SE) diagrams. The metrics are stable, meaning
small differences between aligned hierarchies will yield a
small SE diagram distance [6, 7, 11]. Moreover, as shown
in [11], these distances can be computed efficiently using
k-dimensional trees. Thus, under either the Wasserstein or
bottleneck notions, SE diagrams are equipped with stable
and computable metrics which facilitate their ability to ad-
dress the cover song task efficiently and accurately.

3.1.1 Intuitive definitions

Intuitively, the Wasserstein and bottleneck metrics attempt
to find the best alignment of points between two SE dia-
grams and then measure cost of the alignment using an lp

metric. When aligning two diagrams for comparison, each
diagram point must have a corresponding aligned point in
the other diagram and no points can be aligned with more
than one point. The aligned points thus form a pair.

Recall, the lp norm for any point ~x=(x1, . . . , xn) ∈ Rn

is given by ||~x||p = (
∑n
i=1 |xi|p)

1
p for 1 ≤ p < ∞, and

the l∞ norm is ||x||∞ = max
i

(|xi|). Norms naturally give
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Figure 1. Optimal alignment of S1 and S2 without align-
ing with ∆ (left), and optimal alignment of S2 and S3

while allowing for alignments with ∆ (right). Note that
∆ ∼ (1, 2) ∈ S3 and the l2 distances between the pairs are{√

1
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}
, so d2,1W (S2, S3)= 1+

√
2√

2
, d2B(S2, S3) = 1.

rise to metrics. Specifically, the lp metric dp : Rn×Rn →
R+ between any two points ~x, ~y ∈ Rn is defined for 1 ≤
p ≤ ∞ as dp(~x, ~y) = ||~x− ~y||p. Note that in R2, d2 is the
the straight line distance between two points in the plane,
while d∞ is the maximum of the horizontal and vertical
distance between two points in the plane.

For example, consider two SE diagrams S1 =
{(1, 2), (1, 5), (2, 4)} and S2 = {(1, 3), (1, 5), (2, 3)}.
To find the optimal alignment we pair points in di-
agram S1 with points in diagram S2 in a way
that minimizes the total distance between all pairs.
The best alignment of S1 and S2 is given by
{(1, 2)∼(1, 3), (1, 5)∼(1, 5), (2, 4)∼(2, 3)} (see Figure
1). The corresponding l∞ distances of these pairs are
{1, 0, 1}. The (∞,q)-Wasserstein and ∞-bottleneck met-
rics are then defined as the lq and l∞, respectively, norms
of the l∞ distances of the pairs in the optimal alignment.

In this example, the (∞,2)-Wasserstein distance be-
tween S1 and S2 is d∞,2W (S1, S2) =

√
2, whereas the ∞-

bottleneck distance between S1 and S2 is d∞B (S1, S2) = 1.
Note, the first superscript in d∞,2W corresponds to taking the
l∞ distances between the points in each pair (inner norm),
and the second superscript denotes taking l2 norm of those
l∞ distances (outer norm).

Thus far we have defined distances between two SE di-
agrams with the same number of points. By definition,
computing the Wasserstein or bottleneck distance between
two SE diagrams requires both diagrams to have the same
number of points. In practice, however, we want to com-
pare SE diagrams with any number of points, as songs have
varying amounts of repeated structures.

To compare SE diagrams of differing numbers of
points we find the optimal alignment of points in two
SE diagrams, while also allowing diagram points to
match to repeated structures existing for no time, mean-
ing their start and end times are the same. Formally,
we allow points to align with the diagonal, defined as
∆ = {(s, e) : s = e, s ≥ 0} (see Figure 1) [6, 7, 11].

The motivation for allowing points to align with re-
peated structures that exist for no time is two-fold. First,
unlike arbitrary insertions or deletions of points in either
SE diagrams, aligning points with ∆ will give rise to a
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metric that respects the triangle inequality. With the trian-
gle inequality, it is impossible to have the case where songs
B and C are both cover songs of song A so that d(A,B)
and d(A,C) are small, but d(B,C) is large.

Second, pairing unmatched points with ∆ enforces that
two songs will be considered dissimilar when their long-
lasting repeated structures do not have a corresponding pair
under the optimal alignment of points. To see this, observe
that when a point (s1∗, e

1
∗) ∈ S1 does not have a corre-

sponding match in S2 then (s1∗, e
1
∗) ∼ ∆ and this pairing

contributes dp((s1∗, e
1
∗),∆) = 2

1
p−1|e1∗ − s1∗| to the overall

cost of the alignment. Thus, the cost for unmatched points
aligning with ∆ increases as the length (|e1∗ − s1∗|) of the
unmatched repeated structure increases.

In short, the (p,q)-Wasserstein and p-Bottleneck metrics
measure the distances between pairs of points in the opti-
mal alignment of two SE diagrams and ∆. When q = 2,
the Wasserstein distance is the Euclidean norm of the dis-
tances between pairs in the optimal alignment. In contrast,
the Bottleneck distance is to the maximum distance be-
tween pairs in the optimal alignment. In the following sub-
section we provide rigorous definitions of these metrics.

3.1.2 Rigorous Definitions

Let S1 = {(s1i , e1i )}i∈I and S2 = {(s2j , e2j )}j∈J be SE
diagrams, and let φ be a bijection between subsets Ĩ ⊂ I
and φ(Ĩ) ⊂ J . The p-q penalty of φ is defined as:

P pq (φ) =
∑
i∈Ĩ

dp((s
1
i , e

1
i ), (s

2
φ(i), e

2
φ(i)))

q

+
∑
i∈I\Ĩ

dp((s
1
i , e

1
i ),∆)q +

∑
j∈J\φ(Ĩ)

dp((s
2
j , e

2
j ),∆)q,

for 1 ≤ q <∞, and the∞-q penalty of φ is defined as:

P p∞(φ) = max

{
max
i∈Ĩ

dp((s
1
i , e

1
i ), (s

2
φ(i), e

2
φ(i))),

max
i∈I\Ĩ

dp((s
1
i , e

1
i ),∆),

max
j∈J\φ(Ĩ)

dp((s
2
j , e

2
j ),∆)

}
.

These penalties define a cost function for aligning points
in S1 with points in S2 (encoded in the first terms), and for
aligning all unmatched points with ∆ (encoded in the re-
maining terms). The p-bottleneck distance is then defined
as dpB(S1, S2) = min

φ
P p∞(φ) and the (p,q)-Wasserstein

distance is dp,qW (S1, S2) = min
φ
P pq (φ))

1
q [6, 7, 11].

3.2 Applications of SE diagrams

Utilizing the metrics described in the previous section,
there are several ways of comparing songs for the cover
song task. This work explores the efficacy of using the
pairwise p-bottleneck and (p,q)-Wasserstein distances as
input for a mutual nearest neighbor search.

Noting that the presented methods take aligned hierar-
chies as input, we pre-process music-based data in three
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Figure 2. The thresholded SDM (top left), aligned hierar-
chies (bottom left), SE diagram (top right), and SNL dia-
gram with α = 1 (bottom right) corresponding to Mazurka
52 expanded with threshold=0.02, shingle=12. Each dark
block diagonal in the thresholded SDM represents two sec-
tions that are repeats of each other. Repetitions of all sizes
are encoded in the aligned hierarchies as blocks, separated
into rows. Each block in the aligned hierarchies is rep-
resented as a point in both the SE and SNL diagrams. The
smallest repeats are close to the diagonal in the SE diagram
and are near the horizontal axis in the SNL diagram. The
tops of the peaks in the SE and SNL diagrams represent the
longest repetitions, which are the blocks at the bottom of
the aligned hierarchies.

steps: 1) build audio shingles from the concatenated beat-
synchronous chroma features, 2) compute the SDM, and
finally 3) construct the aligned hierarchies for each song’s
SDM (see [13] for more details). After the aligned hierar-
chies are created, the procedure is as follows: 1 :

1. Transform each aligned hierarchies into the corre-
sponding SE diagram as described in Section 3

2. Compute bottleneck or Wasserstein distances be-
tween pairs of SE diagrams using Hera [11] 2

3. Mark a pair of songs as cover songs of each other if
the songs are mutual nearest neighbors

See Figure 2 for a visual example of our method. To
test our method we apply it to 52 Mazurka scores by

1 Code and processed data are publicly available here: https://
github.com/MelissaMcguirl/SE_SNL_analysis.git.

2 Hera is publicly available here: https://bitbucket.org/
grey_narn/hera.
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Threshold 0.01 0.02 0.03 0.04 0.05
Shingle 6 12 6 12 6 12 6 12 6 12

Precision 0.871 0.622 0.848 0.718 0.871 0.800 0.818 0.725 0.824 0.757
d∞B Metric

Recall 0.519 0.538 0.538 0.538 0.519 0.538 0.519 0.558 0.538 0.538
Precision 0.966 0.675 0.879 0.903 0.933 0.824 0.909 0.875 0.875 0.848

d2,2W Metric
Recall 0.538 0.519 0.558 0.538 0.538 0.538 0.576 0.538 0.538 0.538

Precision 1.0 0.683 0.909 0.909 0.933 0.882 0.906 0.906 0.879 0.853
d∞,2W Metric

Recall 0.558 0.538 0.577 0.577 0.538 0.577 0.558 0.558 0.558 0.558

Table 1. Precision and recall values for the mutual nearest neighbor matching of SE diagrams for 104 Mazurka scores.

Chopin downloaded in **kern format from KernScore on-
line database 3 (see [20]). Each score produces two data
elements, an expanded version which includes all repeated
sections as marked in the score, and a non-expanded ver-
sion which has each repeated section played once. In the
cover song task, the goal is to match the expanded and non-
expanded versions of each song.

We construct SE diagrams for all 104 songs in our
dataset and compute their pairwise distances for three met-
rics: d∞B , d2,2W , and d∞,2W . We perform 10 experiment trials
per metric, varying the number of chroma vectors per au-
dio shingle and varying the threshold applied to the SDM.
The precision and recall values are presented in Table 1.

These results show that SE diagrams can accomplish
this challenging version of the cover song task with high
precision and moderate recall values regardless of the met-
ric. It is crucial and exciting to note that the SE diagrams
achieved these results without any resampling to the dia-
grams. Moreover, as we will see in the next section, this
method is easily adaptable to several useful variations.

4. START(NORMALIZED)-LENGTH DIAGRAMS

Since the length of repeats (e-s) is represented diagonally
on SE diagrams, these representations can be difficult to
interpret. In this section we describe a transformation
of SE diagrams called start-length (SL) diagrams, along
with normalizations. SL diagrams are more intuitive to
read than their predecessor and yield stronger experimen-
tal results. While reminiscent of the constellation maps
from [22], SL diagrams encode structural repeats instead
of audio spectrogram peaks.

4.1 Start-Length Diagrams

Consider a SE diagram S = {(si, ei)}Ni=1. The associ-
ated SL diagram is S′={(si, ei − si)}Ni=1, where the x-
coordinate corresponds to the start time of a repeated struc-
ture and the y-coordinate denotes the length of that repeat.
While SE and SL diagrams encode the same information,
SL diagrams emphasize the lengths of repeats. This trans-
formation has also been applied to persistence diagrams for
TDA applications [1].

3 http://kern.humdrum.org/search?s=t\&keyword=
Chopin

4.2 Start(Normalized)-Length Diagrams

In most cases, normalizing SL diagrams before compar-
ison proves to be more effective. We note that simi-
lar normalizations can also be applied to SE diagrams.
The start(normalized)-length (SNL) diagrams are defined
as S′N ={(α(si/M), ei − si)}Ni=1, where α is a positive
scaling factor and M is a normalization factor. Through-
out this paper we will use M = max

i
si, but other normal-

izations may be applied. The vertical coordinate of SNL
diagrams are not normalized in order to maintain the em-
phasis on the lengths of the repeated structures.

Similar to SL diagrams, SNL diagrams encode the
lengths of repeated structures, except the start times in
the normalized diagrams are proportional to the length of
the song. This normalization acts as a kind of resampling
by condensing start times of each song to be on the same
scale, while also preserving the lengths of the found repe-
tition patterns. The α parameter is a hyper-parameter that
imbues a maximum tolerance on our comparisons. The
impact of this parameter is left to Section 4.4.

4.3 Metrics for SNL diagrams

As with SE diagrams, the bottleneck and Wasserstein met-
rics can be used to compare SNL diagrams with one modifi-
cation. Define ∆̃ to be the set {(s, l) : s = 0, (s, l) ∈ R2

+}.
The set ∆̃ is the y-axis of SL and SNL diagrams and it
encodes repeats that start at zero. The SNL p-bottleneck
and SNL (p,q)-Wasserstein metrics, d̃pB and d̃p,qW , are then
the same as the p-bottleneck metric and (p,q)-Wasserstein
metric defined in Section 3.1, except ∆ is replaced by ∆̃ in
the definitions of P p∞ and P pq , respectively. We use a mod-
ified version of Hera to implement these metrics [11].

Pairing unmatched points with repeated structures that
start at zero rather than repeated structures that exist for
no time allows the user to control the penalty for having
unmatched points while maintaining the emphasis on the
length of the repeated structures. To better understand this,
consider a point (s1∗, e

1
∗ − s1∗) ∈ S1 that does not have a

corresponding pair in S2 under the optimal alignment of
points in S1 and S2. In this case we pair (s1∗, e

1
∗− s1∗) with

∆̃ so that dp((s1∗, e
1
∗ − s1∗), ∆̃) = |s1∗|. The penalty for

unmatched points aligning with ∆̃ consequently increases
as the start time of the corresponding repeated structure
increases. It is critical to note, however, that s ∈ [0, α]
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Threshold 0.01 0.02 0.03 0.04 0.05
Shingle 6 12 6 12 6 12 6 12 6 12

Precision 1.0 0.827 1.0 0.818 1.0 0.978 1.0 0.935 0.975 0.936
d̄∞B Metric

Recall 0.788 0.827 0.769 0.865 0.788 0.865 0.750 0.827 0.750 0.846
Precision 1.0 0.833 0.974 0.975 1.0 0.976 0.976 1.0 0.976 1.0

d̄2,2W , d̄∞,2W Metric
Recall 0.731 0.769 0.731 0.750 0.731 0.788 0.788 0.769 0.788 0.788

Table 2. Precision and recall values for mutual nearest neighbor matching using the distance between SNL diagrams with
α = 1 corresponding to 104 Mazurkas. Note, we observe d̄∞,2W and d̄2,2W to be equivalent when the optimal alignment only
requires shifts in the start component so that (|s2 − s1|p + |e2 − e1|p)

1
p = |s2 − s1| = max(|s2 − s1|, |e2 − e1|).

for all start times s under the SNL normalization. Thus, the
penalty for having an unmatched diagram point is bounded
above by α for SNL diagrams with d̃pB or d̃p,qW . We further
explain the choice of α in the following section.

4.4 Choosing α

The hyper-parameter α is a positive scaling factor in the
normalization. For small α, the cost of aligning points
with ∆̃ is low. For example, if α = 0.5, then the cost
of aligning a SNL diagram point with ∆̃ is at most 0.5.
Consequently, when comparing two SNL diagrams, points
within each diagram will be paired only when the differ-
ence between their lengths is negligible. Otherwise, it will
be more effective to pair both points with ∆̃. Thus, a small
value for α induces a strict matching criterion, where re-
peated structures are mostly shifted in the start coordinate
to pair with a repeated structure of similar or equal length,
and structures with unmatched lengths get paired to ∆̃.

The penalty for matching points with ∆̃ increases as α
increases. For a large value of α, two SNL diagram points
of slightly different lengths are more likely to be matched
with each other than with ∆̃. Consequently, a larger α
value yields a more flexible length-based matching system.

The choice of α depends on the importance of the length
of the repeated structures. One might consider 0 < α ≤ 1
if repeated structures of different lengths are considered
significantly dissimilar, or α� 1 to allow for flexibility in
length-based matchings. The inclusion of this parameter
further adds to the flexibility of SNL diagrams.

4.5 Applications of SNL diagrams

We apply the same algorithm to the same dataset defined in
Section 3.2 with SL and SNL diagrams using the adapted
bottleneck and Wasserstein metrics for the cover song task.
Again, 10 experiment runs are performed per metric, vary-
ing the number of beats per audio shingle and the thresh-
old applied to the SDM. For SL diagrams, the mean pre-
cision values across the 10 experiments are 0.791, 0.803,
and 0.791 with d̄∞B , d̄2,2W , and d̄∞,2W , respectively. The cor-
responding mean recall values are 0.596, 0.581, and 0.577.

Experiments on SNL diagrams yield a significant in-
crease in accuracy over both SL and SE diagrams on the
cover song task, suggesting that a strict matching criterion
in the length coordinate and flexibility in the start coordi-
nate is the most accurate way to approach the cover song

task with these diagram representations. Across the 10 ex-
periments, the∞-Bottleneck metric yields mean precision
and recall values of 0.947 and 0.808, respectively. The
(2,2) and (∞,2)-Wasserstein metrics yield a mean preci-
sion value of 0.971 and a mean recall value 0.763.

The experimental results for SNL diagrams with α = 1
are presented in Table 2. Separate analyses show that pre-
cision and recall remain constant for 0 < α ≤ 1, and de-
crease monotonically as α increases above 1 for this data.

SNL diagrams are not restricted to the standard start-
normalization presented here. Applying the same method
under the (2,2)-Wasserstein metric with a Chebyshev-
normalized start component yields comparable results with
slightly lower precision values and higher recall values.
This further demonstrates the robustness of SNL diagrams.

To push the limits of SNL diagrams, we applied this rep-
resentation to audio-based data without making any mod-
ifications in the preprocessing steps. We extracted beat-
synchronous chroma feature vectors using librosa tool-
box 4 for a collection of performances of Mazurka 5 and
constructed the corresponding SNL diagrams. Following
the evaluation method in [2], we ranked the songs based
on their pairwise-distances for the cover song task. While
the mean average precision values were less than 0.1 across
a range of metrics and α values, these results demonstrate
that audio-specific preprocessing must be done in order to
mitigate noise and other artifacts on tracks. Since there ex-
ist theoretical guarantees of stability of the SNL diagrams,
we are confident that with the appropriate preprocessing
methods SNL diagrams are suitable for a range of both
score-based and audio-based music.

5. COMPARISON TO PREVIOUS WORK

Previous experiments on this Mazurka score dataset were
done with the aligned hierarchies [13] and with the aligned
sub-hierarchies (AsH) [12]. The metric for aligned hier-
archies only allowed for pairwise comparisons between
songs that were of the same length, meaning that it could
only be used for the fingerprint task [13].

Initial experiments using AsH to address the cover song
task were completed in [12]. Following the same exper-

4 https://librosa.github.io/librosa/
5 The CHARM Project Discography website maintains a list of com-

mercially available Mazurka recordings at http://www.mazurka.
org.uk/info/discography/?
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Mean Median Min. Max.
Precision 0.847 0.873 0.622 1.0

SE
Recall 0.545 0.538 0.519 0.577

Precision 0.963 0.976 0.818 1.0
SNL

Recall 0.778 0.779 0.731 0.865
Precision 0.9511 0.9808 0.840 1.0

AsH
Recall 0.771 0.754 0.692 0.882

Table 3. Summary statistics of the precision and re-
call values for mutual nearest neighbor matching of the
Mazurka score data using SE diagrams, SNL diagrams, and
aligned sub-hierarchies (AsH). The AsH statistics are com-
puted over the 10 combinations of thresholds and shingles,
whereas the SE and SNL statistics are computed over the
30 combinations of thresholds, shingles, and metrics. The
SNL experiments apply to a more complete dataset than the
AsH and still attain similar high precision-recall values.

imental design varying the thresholds between 0.01 and
0.05 and testing shingle widths of 6 and 12, these exper-
iments produced high precision rates (between 0.840 and
1.0) and modest recall rates (between 0.692 and 0.882).

Table 3 presents the summary statistics of the precision-
recall values for mutual nearest neighbor matching using
SE diagrams, SNL diagrams, and AsH on the Mazurka
score data. The AsH results are comparable to the
precision-recall values of the SNL experiments, while the
SE experiments yield slightly lower precision-recall rates
than both AsH and SNL diagrams. However, the AsH post-
processing technique requires repetitions to have enough
repeated structure within them to build a smaller aligned
hierarchies for these song sections. Consequently, as many
as 68 songs (depending on the shingle size and threshold)
do not have an AsH representation.

An advantage of the presented methods is that if a song
has an aligned hierarchies representation then it has a SE
diagram and SNL diagram. Thus, the SNL experiments
work with a more complete dataset than the AsH experi-
ments and still attain similar high precision-recall values.

6. DISCUSSION

Both the SE diagrams and the SNL diagrams offer exciting
contributions to the representation of music-based sequen-
tial data streams. These diagrams offer a clear represen-
tation of the relationships between repeated structural ele-
ments and have advantages over previous structure-based
methods. By allowing for two recordings of different
lengths to be directly compared without altering the beat-
synchronized lengths of structural repeats, the SNL di-
agram addresses an issue created by current resampling
methods for music-based data streams.

The SNL diagram provides a new method for resam-
pling music-based data streams. The goal of resampling
is to ensure that all matrix representations are the same
size, which eases comparisons between music-based data
streams. Current resampling methods compress all mu-

sical structures to represent a proportion of the length of
the song, which results in comparing sections of a song
that are proportionally the same length but not actually the
same number of beats. In [10], the proportional compar-
isons of structural elements had issues comparing versions
of Mazurka Op. 68, No. 4, which could be mitigated using
the kind of resampling offered by SNL diagrams.

Structure-based comparisons on resampled representa-
tions of a piece of music are then between proportions of
the song instead of the true lengths of the repeats. This is
especially an issue in cases where one artist plays a song
once through, while another plays the piece through twice
in its entirety. In such an example, a section of 100 beats
long in the piece will look twice as long in the first repre-
sentation when compared to the second representation.

The SNL diagrams balance resampling all representa-
tions to be of the same length with maintaining the lengths
of repeated structures. To accomplish this, the SNL dia-
grams resample only the starting position of each repeated
structure, while leaving the lengths alone. What is excit-
ing about this innovative approach is that it not only allows
for uniform comparisons – as desired by traditional resam-
pling – but it also allows for comparisons between sections
of the same length of time (or beats) instead of sections of
the same proportional length of the song.

7. CONCLUSION

In this paper we present SE and SNL diagrams, two novel,
concisely defined, and flexible representations for music-
based data. Leveraging theory from TDA, these diagrams
come equipped with stable metrics which allow us to apply
a mutual nearest neighbor search for the cover song task.

Experimental results demonstrate that SE and SNL dia-
grams address the cover song task with high accuracy for
score-based data, and these results are robust with respect
to the choice of metric. Moreover, SE diagrams avoid re-
sampling all together, while SNL diagrams resample only
the starting positions of repeated structures.

Overall, SNL diagrams yield the highest accuracy in ad-
dressing the cover song task and they are more flexible.
In addition to the choice of normalization, SNL diagrams
include the hyper-parameter α which allows the user to di-
rectly control the rigidity of the length-matching criterion.

In future work we plan to apply SE and SNL diagrams
to preprocessed audio data, and to extend these diagram
representations so that they are suitable for machine learn-
ing tasks. Theoretical guarantees provide strong evidence
that SE and SNL diagrams will be applicable to both score
and audio data after appropriate preprocessing. Beyond
the method presented here, SE and SNL diagrams can be
mapped into spaces that are more suitable for machine
learning tasks, just as, for example, persistence diagrams
have been transformed to sequences of piecewise-linear
functions and vectors in Euclidean space [1, 3]. Thus, SE
and SNL diagrams open up a range of new opportunities
for applying machine learning methods through the lens of
TDA to music-based tasks.
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ABSTRACT 

jSymbolic is an open-source platform for extracting fea-

tures from symbolic music. These features can serve as 

inputs to machine learning algorithms, or they can be 

analyzed statistically to derive musicological insights.  

jSymbolic implements 246 unique features, compris-

ing 1497 different values, making it by far the most ex-

tensive symbolic feature extractor to date. These features 

are designed to be applicable to a diverse range of mu-

sics, and may be extracted from both symbolic music 

files as a whole and from windowed subsets of them. Re-

searchers can also use jSymbolic as a platform for devel-

oping and distributing their own bespoke features, as it 

has an easily extensible plug-in architecture. 

In addition to implementing 135 new unique features, 

version 2.2 of jSymbolic places a special focus on func-

tionality for avoiding biases associated with how symbol-

ic music is encoded. In addition, new interface elements 

and documentation improve convenience, ease-of-use and 

accessibility to researchers with diverse ranges of tech-

nical expertise. jSymbolic now includes a GUI, com-

mand-line interface, API , flexible configuration file for-

mat, extensive manual and detailed tutorial. 

The enhanced effectiveness of jSymbolic 2.2’s fea-

tures is demonstrated in two sets of experiments: 1) genre 

classification and 2) Renaissance composer attribution. 

1. INTRODUCTION 

The majority of research performed by musicologists, 

music theorists, music librarians and others focuses on 

symbolic music representations. Unfortunately, relatively 

few MIR-oriented software tools are available to assist 

such research, particularly with respect to research in-

volving the increasingly large corpora being studied. 

jSymbolic is an open-source Java framework designed 

to at least partially address this shortcoming. Its primary 

function is to extract a large number of features (statisti-

cal descriptors) from potentially huge collections of digi-

tally-represented symbolic music. These features can then 

be used to directly assist music researchers in analysis 

and search-based tasks, as well as in research incorporat-

ing machine learning. 

Possible research applications include: empirical test-

ing of existing musicological theories [11]; exploratory 

research that can reveal unexpected insights [11]; recon-

ciling historical evidence with content-based data [12]; 

annotation of large corpora to allow content-based 

searches [10]; performing multimodal research by com-

bining symbolic features with audio, textual and other 

features [9]; and generating novel music in specific styles 

by using feature values as stylistic guideposts [23].  

jSymbolic 2.2 has been dramatically improved and ex-

panded since its last properly published version (1.2) was 

released in 2010 [9]. It is also a component of the larger 

jMIR research software framework [9]. jSymbolic and 

the other jMIR components (including source code) can 

all be downloaded from [13].  

2. RELATED RESEARCH 

Surprisingly few frameworks designed specifically for 

extracting features from symbolic music have been pub-

lished, although there are several MIR toolkits for analyz-

ing symbolic music more generally. The MIDI Toolbox 

[6] is one particularly well-known system implemented in 

Matlab. The powerful music21 analysis toolkit [4] in-

cludes ports of 57 of the original jSymbolic 1.2 features, 

and also offers substantial additional useful functionality.  

The Humdrum toolkit [8] is a well-known tool for ana-

lyzing music, although it does not extract features as 

such. The Melisma Music Analyzer [22] is another excel-

lent analysis-oriented system, and pretty_midi [17] pro-

vides helpful creation, manipulation and extraction tools. 

Additional work has been published where symbolic 

feature extraction is performed as a part of larger research 

projects, but where the feature extraction code has not 

itself been published. Standouts include [1] and [15]. 

Corrêa and Rodrigues have written a nice survey of relat-

ed symbolic genre classification research [2]. 

To the best of our knowledge, there is no existing 

software that extracts anywhere near the number or diver-

sity of features as jSymbolic, nor is there any with the 

same focus on broad accessibility and extensibility. 
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3. CHARACTERISTICS OF JSYMBOLIC 

3.1 Features Extracted 

jSymbolic 2.2 extracts 246 unique features, some of 

which are multidimensional, for a total of 1497 values 

(version 1.2 extracted 111 features and 1022 values). De-

tails on the original musicological and music theoretical 

sources and motivations for the features are available in 

[9]. The features can be divided into eight general groups: 

 Pitch Statistics: How common are various pitches 

and pitch classes relative to one another? How are 

they distributed and how much do they vary?  

 Melodic Intervals: What melodic intervals are pre-

sent? How much melodic variation is there? What can 

be observed from melodic contour measurements?  

 Chords and Vertical Intervals: What vertical inter-

vals are present? What types of chords do they repre-

sent? What kinds of harmonic movement are present? 

 Rhythm: Information associated with note attacks, 

durations and rests, measured in ways that are both 

dependent and independent of tempo. Information on 

rhythmic variability, including rubato, and meter.  

 Instrumentation: Which instruments are present, 

and which are emphasized relative to others? Both 

pitched and non-pitched instruments are considered.  

 Texture: How many independent voices are there 

and how do they interact (e.g. parallel vs. contrary 

motion)? What is the relative importance of voices?  

 Dynamics: How loud are notes and what kinds of 

variations in dynamics occur?  

 MEI-Specific: Information that cannot be represent-

ed explicitly in MIDI (e.g. slurs) but can be in the 

Music Encoding Initiative (MEI) file format [16]. 

See Figure 1 for a complete list of the jSymbolic 2.2 fea-

tures, including indications of which ones are new, as 

well as which ones are multidimensional.  

These features are designed to be wide-ranging, in or-

der to be applicable to a diverse range of musics from a 

variety of cultures, styles and time periods. A few fea-

tures are intentionally partially redundant; for example, 

the Vertical Interval Histogram indicates the number of 

minor thirds and major thirds (among other things) sepa-

rately, but the Vertical Thirds feature combines them. 

Such partial redundancies help highlight patterns in alter-

native ways to musicologists examining features. Also, 

some features are based on information explicitly (but not 

necessarily correctly) specified as metadata in the input 

files, such as meter or key, and others attempt to infer 

such information directly from the music itself. 

3.2 Designing New Features 

Extensibility and modularity are key priorities, as jSym-

bolic is intended to be a platform for developing and test-

ing new features just as much as it is an out-of-the-box 

tool. New features can be added as plug-ins simply by 

extending an existing Java class, and it is easy to incorpo-

rate the values of existing features into new features in 

order to iteratively build new features of increasing so-

phistication. jSymbolic also automatically handles all in-

frastructure relating to feature dependencies and extrac-

tion scheduling. The overall design of the software is ex-

tensible, as is its configuration file format. 

A tool has been added for exploring MIDI messages 

directly at a low-level, in order to help debug new fea-

tures. jSymbolic also now automatically validates and 

error-checks new features as they are added, and there is 

substantial new general unit testing infrastructure. 

3.3 Configuration Files 

jSymbolic now includes a flexible configuration file for-

mat that can be used for batch processing, as a way of ap-

plying consistent settings across sessions and for keeping 

a record of settings used in individual experiments. These 

configuration files can be saved with the GUI, or they can 

be edited directly. 

3.4 Avoiding Systematic Encoding Bias 

One must always be careful that extracted features are not 

correlated with the source of data rather than its underly-

ing musical content. This could happen, for example, in a 

corpus constructed by joining data from different sources, 

where each source uses different encoding conventions 

(e.g. different instrumentation designations for voices, or 

different interpretations of tempo markings). Such issues 

have been discussed regarding audio [21], but less so for 

symbolic data. Ideally, all data in a corpus would be sys-

tematically encoded in the same way, but this is rarely the 

case  in practice. 

jSymbolic therefore now includes functionality for 

generating “consistency reports.” These automatically 

check sets of symbolic music files for such biases.  

An optional “safe” configuration file is also provided, 

which disables features associated with instrumentation, 

dynamics, microtonal pitches and tempo, as these tend to 

be particularly vulnerable to encoding bias. This is espe-

cially useful for musics where these qualities are typically 

unspecified, such as Renaissance music. 

Many of jSymbolic 2.2’s new features are also specifi-

cally designed to avoid such biases. For example, many 

of the new rhythmic features are tempo-independent, so 

that they can be used even if tempo is source-correlated, 

while the old tempo-linked features can still be used if 

tempos are meaningfully and consistently encoded. 

[3] presents a more detailed analysis of related issues, 

including empirical results produced with jSymbolic 2.2. 

3.5 Windowed Extraction 

Users can now perform windowed feature extraction with 

jSymbolic, with overlapping or non-overlapping win-

dows, as well as extraction over entire pieces. Although 

common with audio, this ability to extract features sepa-

rately from subsets of a piece is rare in the symbolic do-

main, and enables powerful new kinds of analysis. 
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String Keyboard Prevalence 

Acoustic Guitar Prevalence 

Electric Guitar Prevalence 

Violin Prevalence 

Saxophone Prevalence 

Brass Prevalence 

Woodwinds Prevalence 

Orchestral Strings Prevalence 

String Ensemble Prevalence 

Electric Instrument Prevalence 
 

Texture 

Maximum Number of Independent Voices 

Average Number of Independent Voices 

Variability of Number of Independent Voices 

Voice Equality - Number of Notes 

Voice Equality - Note Duration 

Voice Equality - Dynamics 

Voice Equality - Melodic Leaps 

Voice Equality - Range 

Importance of Loudest Voice 

Relative Range of Loudest Voice 

Relative Range Isolation of Loudest Voice 

Relative Range of Highest Line 

Relative Note Density of Highest Line 

Relative Note Durations of Lowest Line 

Relative Size of Melodic Intervals in Lowest Line 

Voice Overlap 

Voice Separation 

Variability of Voice Separation 

Parallel Motion 

Similar Motion 

Contrary Motion 

Oblique Motion 

Parallel Fifths 

Parallel Octaves 
 

Dynamics 

Dynamic Range 

Variation of Dynamics 

Variation of Dynamics in Each Voice 

Average Note to Note Change in Dynamics 
 

MEI-Specific 

Number of Grace Notes 

Number of Slurs 

Figure 1. All features implemented by jSymbolic 2.2. Headings in bold refer to feature groups, not features. Features in 

italics are new (added since jSymbolic 1.2). Numbers in parentheses indicate the size of multi-dimensional features. De-

tailed descriptions of individual features are available in jSymbolic’s manual [14] and in its GUI. 
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Figure 2. The new jSymbolic 2.2 manual. 

 

Figure 3. The redesigned jSymbolic 2.2 GUI. 

3.6 I/O Formats and jMei2Midi 

jSymbolic can extract features from music stored in either 

MIDI or MEI [16]. MIDI, despite its well-documented 

limitations, has the essential advantage that it can be read 

or generated by almost any symbolic music software, and 

also permits live performance encoding. This latter bene-

fit makes MIDI compatible with non-Western (and West-

ern) musics that do not conform to the quantized tunings 

and rhythms typical of common practice music notation 

and the symbolic music formats based on it. MIDI is also 

more suitable for transcribing audio, which also rarely 

conforms to strict quantization. 

MEI, in turn, is a rich and extensible format that al-

lows many kinds of important information to be repre-

sented that cannot be encapsulated with MIDI. jSymbol-

ic’s new support for MEI is achieved via our custom-built 

Java MEI parser and MEI-to-MIDI converter called 

jMei2Midi, which can also be used as a standalone soft-

ware library. jMei2Midi performs a more extensive level 

of MEI conversion than any other converter, and also 

maintains a channel for preserving and transmitting in-

formation that cannot be represented in MIDI. 

Although jSymbolic cannot yet directly parse formats 

such as Music XML, OSC, Humdrum **kern or 

LilyPond, there are fortunately many converters that can 

translate such formats to MIDI or MEI for jSymbolic fea-

ture extraction. jSymbolic’s Rodan [7] wrapper can al-

ready do this with Music XML. 

Extracted features can now be saved as both Weka 

ARFF [24] files (a machine learning format) and as gen-

eral-purpose CSV files. Previously, ACE XML [9] was 

the only output file format option. 

3.7 Usability and Interfaces 

It is crucial that jSymbolic be easy to learn and use for 

users with diverse technical backgrounds, and that it be 

easily adaptable to a broad range of use cases. This has 

been a primary focus of the upgrades since version 1.2. 

jSymbolic now includes a detailed HTML manual 

(Figure 2) [14] and an extensive step-by-step tutorial that 

includes worked exercises with both jSymbolic and the 

Weka data mining framework [24]. jSymbolic’s Java im-

plementation and lack of external dependencies make the 

software platform-independent and easy-to-install. 

The original jSymbolic was only usable via a GUI, 

which has been substantially improved in version 2.2 

(Figure 3). jSymbolic also now also includes command-

line interface for batch processing, a well-documented 

Java API for programmatic access and a Rodan [7] work-

flow for those wishing to take advantage of distributed 

processing. New feedback on progress is provided as pro-

cessing proceeds, and cleaner error handling and more 

detailed reporting in general have been instituted. 

4. GENRE CLASSIFICATION EXPERIMENTS 

4.1 Experimental Goals and Methodology 

Our first set of experiments involved using the jSymbolic 

features to classify music by genre. This was done using 

the MIDI portion of our (balanced) “SAC” dataset [9], 

which consists of 250 pieces of music. SAC is divided 

into ten genres: Hardcore Rap, Pop Rap, Bop, Swing, Ba-

roque, Romantic, Alternative Rock, Metal, Modern Blues 

and Traditional Blues. These genres can be combined 

pairwise into five parent genres: Rap, Jazz, Classical, 

Rock and Blues. This ontological structure permits one to 

evaluate how well a given approach can distinguish be-

tween both dissimilar genres (the five parent genres) and 

similar genres (the two classes comprising each pair). 

Features were extracted from SAC using both the old 

jSymbolic 1.2 [9] and the new jSymbolic 2.2, in order to 

explore the effects of the new features. All implemented 

features were used, as no systematic encoding biases 

were found in the data (see Section 3.4). 

 The Weka machine learning framework [24] was used 

to perform 10-fold cross-validation experiments using its 

SMO support vector machine implementation (with de-

fault hyper-parameter settings). No dimensionality reduc-

tion pre-processing was applied, beyond what SMO does 

itself. This simple and generic classification methodology 

was chosen intentionally, as an important goal of this pa-
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per is to emphasize the accessibility of jSymbolic’s fea-

tures to music researchers who may have little or no 

background in machine learning. A more sophisticated 

approach would have been used if this were a paper spe-

cifically on classification. 

4.2 Classification Results and Discussion 
 

Corpus jSymbolic 1.2 jSymbolic 2.2 

 Accuracy F-score Accuracy F-score 

SAC 5 90.4% 0.809 93.2% 0.872 

SAC 10 75.6% 0.703 77.6% 0.631 

Table 1. SAC (5-class and 10-class) genre classification 

accuracies and F-scores (averaged across 10 folds).  

jSymbolic’s performance (Table 1) is quite impressive 

overall, especially since such basic machine learning 

techniques were used. Although there has not been a 

symbolic genre classification MIREX event in over a 

decade, the 2017 audio genre classification results [5] 

provide a rough general context: the highest classification 

accuracies were 75.9% in the 10-class Latin genre task, 

76.8% in the 10-class popular genre task and 67.9% in 

the 7-class K-Pop genre task. 

The new 2.2 features provided better classification ac-

curacies than the old 1.2 features on both versions of 

SAC, by 2.8% and 2.0%. The F-score, however, declined 

for SAC 10, but improved for SAC 5. 

The value of jSymbolic 2.2’s greatly expanded feature 

catalogue has a scope well beyond its classification per-

formance gains. Many music researchers are interested in 

specifically what it is that differentiates various kinds of 

music, and a greater number of features make it possible 

to explore and understand music more thoroughly and 

precisely. This is revisited below. 

5. COMPOSER ATTRIBUTION EXPERIMENTS 

5.1 Experimental Goals and Methodology 

The second set of experiments involved the same Weka-

based classification methodologies described in Section 

4.1. This time, however, the experiments involved Re-

naissance composer attribution; this is much more than a 

toy problem in early music studies, as there are many 

pieces whose composer is unknown or disputed, and fea-

ture-based machine learning holds significant potential 

for resolving such debates. 

We constructed our (unbalanced) “RenComp7” dataset 

by combining the Josquin (top two Rodin security levels 

[19] only, based on historical sources), La Rue, Ocke-

ghem, Busnoys and Martini data from [19] with John 

Miller’s Palestrina data and the Victoria data used in [20]. 

All files not already encoded as MIDI were converted. 

The resultant RenComp7 corpus consists of 1584 pieces. 

An analysis of the data found that certain features were 

influenced by systematic encoding bias (see Section 3.4), 

namely those based on instrumentation, dynamics and 

tempo. Since including these features would have artifi-

cially inflated performance, it was necessary to exclude 

certain features from consideration. As a result, only 335 

of 1022 jSymbolic 1.2 feature values and 801 of 1497 

jSymbolic 2.2 feature values were used.  

We conducted one experiment where classification 

was performed among all seven RenComp7 composers. 

This was followed by two pairwise classifications that are 

of particular musicological interest: Josquin vs. La Rue 

(exact contemporaries who are musically similar) and 

Josquin vs. Ockeghem (from different generations). 

5.2 Classification Results and Discussion 
 

Corpus jSymbolic 1.2 jSymbolic 2.2 

 Accuracy F-score Accuracy F-score 

All 7 Composers  87.9% 0.634 92.4% 0.715 

Josq / Ockeghem 84.7% 0.818 92.6% 0.911 

Josquin / La Rue 82.0% 0.771 86.3% 0.824 

Table 2. RenComp7 composer attribution classification 

accuracies and F-scores (averaged across 10 folds).  

The overall ability of the jSymbolic 2.2 features to distin-

guish between the composers (Table 2) is unprecedented 

in the automatic classification literature, and is all the 

more impressive given the simple machine learning 

methodology used. The excellent work of Brinkman et al. 

[1] provides the best basis for comparison: the authors 

used 53 features to classify 6 composers (J. S. Bach and 

five Renaissance composers), and obtained success rates 

of roughly 63% on average. Their approach did very well 

at discriminating Bach from the Renaissance composers 

(97%). This highlights both the quality of their approach 

and the particular difficulty of identifying Renaissance 

composers, and makes the success of the jSymbolic fea-

tures on exclusively Renaissance music all the more en-

couraging. The new 2.2 features outperformed the old 1.2 

features in all cases.  

5.3 Diving into Features 

As noted above, the relative performance of individual 

features can be at least as important in revealing musico-

logical insights as overall classification performance. As 

an example of research along these lines, we asked two 

experts on Renaissance music, Julie E. Cumming and Pe-

ter Schubert, to predict what characteristics they thought 

would best differentiate the music of Josquin and Ocke-

ghem, based on their extensive general experience study-

ing the music of the two composers, and without any a 

priori exposure to the feature data. The jSymbolic feature 

data was then used to test these expectations. The results, 

as outlined in Figure 4, demonstrate how some of their 

predictions were indeed confirmed, but others were 

shown to be incorrect. This emphasizes the general need 

in musicology and music theory for empirical validation 

of a wide range of widespread beliefs and assumptions 

that have never been confirmed via systematic studies of 

large datasets. It is hoped that jSymbolic and similar 

software can help address this issue. 
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Empirical Testing of Expert Predictions of Characteris-
tics More Evident in Ockeghem than Josquin 

CONFIRMED: Less music for more than 4 voices 
CONFIRMED: More 3-voice music 
CONFIRMED: More triple meter 
SAME: Less stepwise motion 
SAME: More notes at the bottom of the range 
SAME: More chords (or simultaneities) without a third 
SAME: More varied rhythmic note values 
OPPOSITE: More large leaps (larger than a 5th) 
OPPOSITE: More dissonance 

Figure 4. Results of empirical testing of expert predic-

tions. “CONFIRMED” means the expectations were 

empirically correct, “SAME” indicates no statistically 

significant difference between the two composers and 

“OPPOSITE” means the expected characteristic was in-

fact more associated with Josquin than Ockeghem. 

Next, in order to demonstrate the types of novel musi-

cological insights jSymbolic’s features can reveal, Weka 

was used to apply seven statistical feature analysis tech-

niques (based on feature-class correlations, information 

gain, etc.) to highlight the features that most effectively 

distinguish the composers in each of the two composer 

pairs. The results were compiled into ranked feature lists. 

 It turns out that a combination of rhythmic character-

istics are particularly important in distinguishing Josquin 

from Ockeghem and, furthermore, Ockeghem tends to 

have more vertical sixths and diminished triads, as well 

as longer melodic arcs. With respect to Josquin and La 

Rue, Josquin tends to have: more vertical unisons and 

thirds; fewer vertical fourths and octaves; and more me-

lodic octaves.  

6. CONCLUSIONS 

jSymbolic is a powerful and accessible tool that music 

researchers can apply to diverse research areas and types 

of music. It can also serve as a platform that researchers 

can use to develop their own bespoke features. It is hoped 

that this will help address the paucity of symbolic music 

software produced by the MIR community to date, rela-

tive to the extensive range of software it has produced 

associated with audio and other data, and will encourage 

greater MIR engagement with musicologists and music 

theorists. jSymbolic’s easy-to-use interfaces and exten-

sive documentation are intended to facilitate this. 

Although jSymbolic features can certainly be used in 

classification tasks, as in the experiments described 

above, the direct study of feature values also has im-

portant potential. Such work can combine expert manual 

study with the use of statistical analysis techniques. Re-

search can consist of empirical validation of existing hy-

potheses or of purely exploratory research, all involving 

the study of potentially huge quantities of music. Both 

approaches can help scholars arrive at initially unintuitive 

but potentially crucial musicological insights.  

In terms of experimental conclusions, the results from 

Sections 4 and 5 permit the following observations: 

 The new jSymbolic 2.2 features were quite effective 

in both genre and composer classification, even using 

generic machine learning approaches. They were able 

to distinguish between seven Renaissance composers 

92.4% of the time, and achieved 93.2% genre classi-

fication accuracy when applied to a 5-genre ontology, 

and 77.6% when classifying amongst 10 genres.  

 The new jSymbolic 2.2 features produced better clas-

sification accuracies than the old jSymbolic 1.2 fea-

tures in all tests, and better F-scores in all but one. 

 The new jSymbolic 2.2 features were effective in 

testing expert expectations about differences in the 

musical styles of pairs of Renaissance composers, 

and in revealing additional unanticipated differences. 

7. FUTURE WORK 

We will continue to work with musicologists and music 

theorists by helping them carry out research on large mu-

sical datasets with jSymbolic. We will also assist them in 

implementing specialized features of their own. A partic-

ular focus of this collaborative work will be placed on the 

determination of which features are most effective in dis-

tinguishing different musical classes (composers, genres, 

regions, etc.), and on investigating why. We will also ex-

pand our work on using machine learning to help resolve 

controversial composer attribution. We also intend to 

work on expanding the extent to which jSymbolic can 

extract features from non-Western musics by adding still 

more relevant features.  

We are currently working on integrating jSymbolic2 

into the SIMSSA/MIRAI architecture [10], so that re-

searchers can search the project’s rich music databases 

using content-based queries formulated using feature val-

ues and ranges. A researcher could thus filter results 

based on the amount of chromaticism in a piece, for ex-

ample, or the amount of parallel motion between voices. 

Of even greater interest, queries could potentially be for-

mulated based on hard-to-quantify high-level characteris-

tics, such as degree of tonality, made possible by machine 

learning models trained on jSymbolic features.  

Related to this project, we also plan to apply jSymbol-

ic to symbolic files that have been generated using optical 

music recognition or automatic audio transcription soft-

ware, and to investigate the robustness of the features to 

such error-prone data. In addition to making an enormous 

amount of new music available for symbolic feature ex-

traction, doing this successfully would also greatly facili-

tate multimodal research. The huge Lakh dataset [18] can 

also be studied with similar goals. 

An additional priority will be to add new parsers so 

that features can be extracted from additional file formats. 

We are especially looking at adding features specially de-

signed for music encoded using mensural or other early 

music notations. Finally, we intend to work towards port-

ing jSymbolic2’s new features to other platforms, espe-

cially music21 [4]. 
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ABSTRACT

Cadences, as breaths in music, are felt by the listener or
studied by the theorist by combining harmony, melody,
texture and possibly other musical aspects. We formalize
and discuss the significance of 44 cadential features, cor-
related with the occurrence of cadences in scores. These
features describe properties at the arrival beat of a cadence
and its surroundings, but also at other onsets heuristically
identified to pinpoint chords preparing the cadence. The
representation of each beat of the score as a vector of ca-
dential features makes it possible to reformulate cadence
detection as a classification task. An SVM classifier was
run on two corpora from Bach and Haydn totaling 162 per-
fect authentic cadences and 70 half cadences. In these cor-
pora, the classifier correctly identified more than 75% of
perfect authentic cadences and 50% of half cadences, with
low false positive rates. The experiment results are con-
sistent with common knowledge that classification is more
complex for half cadences than for authentic cadences.

1. INTRODUCTION

1.1 Cadences

Music, like all languages, is organized into structural units.
In Western tonal music, these units often end with strong
harmonic formulas called cadences, from the Latin cadere,
“to fall.” Despite their structural function, cadences are
hard to define. Based on a review of dozens of music the-
ory papers, Blombach defined the cadence as “any musi-
cal element or combination of musical elements, including
silence, that indicates relative relaxation or relative con-
clusion in music” [3]. This definition highlights the way
a listener (whether musically trained or not) can hear the
presence of a cadence by feeling that the music “breaths”.
A cadence is generally characterized by local musical el-
ements, such as a specific harmonic progression and a
falling melody. However, these elements do not necessar-
ily imply a cadence. A global or high-level structure such
as the sonata form may also induce the impression of a ca-
dence [10].

c© Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Flo-
rence Levé. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Louis Bigo, Laurent
Feisthauer, Mathieu Giraud, Florence Levé. “Relevance of musical fea-
tures for cadence detection”, 19th International Society for Music Infor-
mation Retrieval Conference, Paris, France, 2018.

Cadences are usually classified by harmonic progres-
sion. The authentic cadence is characterized by a dominant
harmony (notated V) followed by a tonic harmony (no-
tated I). In the American terminology, when both chords
are in root position and the melody ends on the tonic, the
authentic cadence is said to be perfect (PAC), otherwise it
is imperfect (IAC). If the IAC is in root position (but the
melody does not end on the tonic), it is said to be a rooted
IAC (rIAC). The half cadence (HC) ends with a dominant
harmony, generally in root position. The deceptive cadence
(DC) is an authentic cadence where the expected final tonic
is replaced by another harmony (often VI). Some authors
theorize the evaded cadence as a particular IAC, while oth-
ers see it as a DC-like progression but including a melodic
break, for instance while repeating a phrase [19]. Some
scholars do not consider the plagal progression IV/I as a
cadence but rather as a post-cadential prolongation [4].

Each cadence type provide a different feeling of clo-
sure. The strongest cadence is the PAC, followed in turn by
the rIAC, IAC, HC, and the DC and related cadences [20].
Some traditions consider the rIAC to be very conclusive.
For instance, French music teachers refer to both PAC and
rIAC as cadence parfaite. Using a preparation chord be-
fore the dominant chord, generally a subdominant har-
mony (SD, that is II, IV, or V/V), strengthens the salience
of a PAC/rIAC. In contrast, DC and related cadences renew
tension, extending the musical phrase and delaying closure
until a more conclusive cadence is used.

1.2 Cadences, Musicology and MIR

Modeling cadences is a current challenge in musicol-
ogy [15]. Although cadence definitions found in music
education textbooks are often quite short, music theorists
agree on the difficulty to define cadences because of the
variety of their realizations observed in the repertoire [4].

Cadences are therefore usually studied within the frame
of one specific corpus – see for example Martin and
Pedneault-Deslauriers’s study of HC in Mozart’s piano
sonatas [14]. However, more systematic analyses of large
corpora would help to understand the evolution of compo-
sitional choices over time. Rohrmeier and Neuwirth sug-
gested a first characterization using grammars, based on
the degrees and the bass line [18].

Detecting cadences throughout the score requires a spe-
cific training to find clues pointing out to the breaths in mu-
sic. Can we algorithmically detect cadences from a score
encoded in symbolic notation? Some works in MIR have
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Figure 1. Haydn, op. 17/4, iv, PAC at measure 8 (off-
set Z). Compare to Figure 1 of [21]. Features describe
here the constitution of the Z chord (Z-in-perfect-triad, Z-
in-perfect-triad-or-sus4, Z-highest-is-1), voice leading to
Z (Z-1-comes-from-7 1©, Z-3-comes-from-4 2©), rests af-
ter Z (R-after-Z-rest-lowest, -middle 3©) and the metric
structure (R-Z-strong-beat). Features also describe rela-
tions with chord Y (Y-Z-bass-moves-compatible-V-I 4©, Y-
Z-bass-same-voice), and cadence preparation (X-Y-bass-
moves-2nd-Maj 5©).
Note that the heuristic choice of a single offset Y implies
here that the features Y-in-V7-3 and Y-has-7 are not true,
even if the dominant chord actually contain several pitches
3 and 7 (circled notes). Nevertheless, these pitches are
caught by the tonality features (Z-bass-compatible-with-I,
Z-bass-compatible-with-I-scale) and some of them are con-
sidered by the voice leading features ( 1©, 2©).
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Figure 2. Haydn, op. 17/5, i, HC at measure 8. Fea-
tures notably describe here a voice leading (Z-6-comes-
from-7, Z-4-comes-from-5, Z-1-comes-from-2 1©) contin-
ued by a 6/4 suspension (Z-6-moves-to-5, Z-4-moves-to-
3 2©). Other features also describe the tonality compatibil-
ity of an HC (bass-Z-compatible-with-V, circled notes, but
both Z-bass-compatible-with-I and Z-bass-compatible-with-
I-scale are also true due to the squared c#) as well as bass
movements (Y’-Y-bass-moves-chromatic, Y-Z-bass-moves-
2nd-Maj 3©) and the metric structure (R-Z-strong-beat).

focused on melodic cadences [25] and a few studies have
tackled the problem of the identification of harmonic pro-
gressions [16] or their representation as musical trajecto-
ries [1]. The authors of [7] took Rohrmeier’s works further,
extending it into a system deriving harmonic relations be-
tween chords, where grammars rules were inferred for jazz
harmony. Currently, only a few algorithms recognize sim-
ple cadences [12]. We previously suggested a rule-based
detection of PAC/rIAC in fugues [9] and used it in a study
on the sonata form [2]. Recently, Sears and colleagues [22]
used the software IDyOM [17] on a corpus of Haydn string
quartets to show that music predictability increases at ca-
dential points and decreases on the following note.

1.3 Contents

Our goal is to identify binary, musical, and local features
that coincide with cadences and that can be used to train a
model that detects new cadences, either PAC/rIAC or HC.
Rather than agnostically discovering cadential features on
the musical surface, we intend here to confirm and study
traditional music theory knowledge regarding cadences.
The proposed strategy avoids chord segmentation, which
is itself a difficult MIR problem. Section 2 details the se-
lected features and Section 3 describes the learning pro-
cess. Finally, Sections 4 and 5 discuss the application of
the method on Bach and Haydn corpora.

2. MUSICAL FEATURES AT THREE ONSETS

Each beat Z of the score is considered as the potential ar-
rival point of a cadence. A set of 44 binary features is com-
puted at each beat. These features are then used to train a
classifier whose aims to predict whether a beat corresponds
to the arrival point of a cadence or not. The features aim at
detecting cadences at a local level, i.e. the surroundings of
the cadential beat including its immediate past, presumably
corresponding to the preparation of the cadence. The idea
is to try and detect SD-V-I progressions for a PAC/rIAC,
and progressions ending with V for an HC.

What we propose here is a simple heuristic focusing on
three specific onsets: Z, Y (Z) and X(Z), or for short Z,
Y , and X . Most of the features describe sets of notes
sounding at these onsets (even when they begin before),
namely chord(Z), chord(Y), and chord(X). We therefore do
not start from a complete harmony analysis nor a chord
segmentation, that can be error-prone. Even when the
methods finding Y (Z) and X(Z) return approximate on-
sets, the computed features may be relevant.

2.1 Features on the Arrival Point Z or around it

The arrival chord of a cadence is usually a perfect triad,
possibly with some suspensions. A first set of features de-
scribes this chord and its immediate neighborhood:

• Z-in-perfect-major-triad (respectively Z-in-perfect-
triad): chord(Z) is included in {1, 3M , 5} 1 (resp.
{1, 3m, 3M , 5})

1 Pitches in underlined figures (i.e. 1, 3, etc.) are here computed by the
interval modulo octave relative to the bass. As some chords are not in root
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Figure 3. Bach, fugue #15 in G major BWV860, PAC at
measure 83. Voice leading and highlighted notes as in the
Figures 1 and 2. To cope with the faster harmonic rhythm,
every eighth before Z is considered as a potential Y .

• Z-in-perfect-triad-or-sus4: chord(Z) is included in
{1, 3, 4, 5}

• Z-is-sus4: chord(Z) is exactly {1, 4, 5}

• Z-highest-is-1 (resp. Z-highest-is-3): The highest
note of chord(Z) is the tonic 1 (resp. the major or
minor third 3), as expected for a PAC (rIAC)

Another set of features describes voice leadings from
preceding notes (see list on Table 2). Z-β-comes-from-α
means that the note β in chord(Z) is an “immediate reso-
lution” of a note α (the interval being still relative to the
bass of Z) that is exactly before β (even if this note is not
at the onset Y that will be defined later). For example, Z-3-
comes-from-4 means that there is a 3 in chord(Z) that is an
immediate resolution of a 4 (dominant seventh in the case
of a PAC, see 2© on Figure 1).

There can also be a suspension at the arrival point, as on
the HC on Figure 2. We thus add symmetrical features Z-α-
moves-to-β (see list on Table 2). For example, Z-4-moves-
to-3 means that there is a suspended fourth 4 in chord(Z)
that is immediately resolved to the third 3.

Finally, features try to grasp the tonality in the neighbor-
hood of Z. We do not perform tonality estimation [13, 23]
because of the usual difficulty of algorithms to disam-
biguate adjacent tonalities in the circle of fifths.

• Z-bass-compatible-with-I (resp. Z-bass-compatible-
with-V ): Both notes 4 and 7 of the tonality that would
be implied if the bass of Z is I (resp. V) are present
in the four beats before Z

• Z-bass-compatible-with-I-scale: The 8 previous
beats exhibits the whole scale of the same implied
tonality – Temperley suggesting that such PACs with
SD before V-I feel more conclusive [24].

For example, on the PAC of Figure 1, Z-bass-
compatible-with-I and -with-I-scale are true (and not -with-
V ), and on the HC of Figure 2, Z-bass-compatible-with-
V is true. However, these features may be triggered by

position, these pitches may differ from the actual function. For example,
the top voice d on offset X on Figure 1 is the sixth 6 of the chord II6 but
is actually the tonic of the II chord.

other events close on the circle of fifths: Both Z-bass-
compatible-with-I and -with-I-scale may be triggered by a
previous V/V (as on Figure 2) or, in minor, when Z is ac-
tually a III in root position.

2.2 Rhythmic Features around the Arrival Point Z

These textural features intend to detect either breaks or
continuation in music.

• R-Z-strong-beat: Z is a strong beat (beat 1 and 3 for
4/4, and beat 1 for other time signatures)

• R-Z-same-rhythm-1 (resp. R-Z-same-rhythm-2):
There is exactly the same sequence of durations in
the one (resp. the two) beat(s) preceding Z than on
the one (resp. the two) beat(s) at onset Z

• R-Z-sustained-note: At least one note sounding at Z
started before Z

• R-after-Z-rest-highest, R-after-Z-rest-lowest, R-after-
Z-rest-middle: There is a rest in some voice right af-
ter the note at onset Z (see Figure 1)

• R-after-Z-one-voice-ends: Z is the last onset in at
least one voice (end of the piece)

2.3 Features on the Point Y or around it

For each arrival beat Z, we identify a point Y prior to Z
supposed to pinpoint the chord “preceding” Z. For ex-
ample, identifying chord(Y) as a dominant chord is a sign
indicating a potential PAC at Z. Although V chords gen-
erally span over more than one beat, associating Y with a
single beat eases the computation of features.

We thus propose to identify the point Y as the latest beat
preceding Z for which the bass voice includes a sounding
note, limited to one measure in the past. If the bass in-
cludes a rest just before Z, we look just before. The usual
time span corresponding to the preparation of a cadence
depends on the harmonic rhythm and varies among musi-
cal styles. The beat resolution to search the Y point should
therefore depend on the corpus.

• Y-Z-offsets-at-most-1: Y is at most one quarter note
before Z

Some features are concerned with chord(Y) :

• Y-has-7 (resp. Y-has-9): chord(Y) contains 7 (resp.
9), that is the leading tone (resp. the dominant sev-
enth or the dominant ninth) in the case of a candidate
PAC

• Y-in-V7 : chord(Y) is included within a dominant
seventh chord

• Y-in-V7-3 : chord(Y) is included within a dominant
seventh chord and contains a third

Other features focus on bass moves:

• Y’-Y-bass-moves-8ve: The bass note preceding Y is
at the same pitch but with an octave jump (expected
on some V or V64 chords)
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pieces voices beats PAC (final) rIAC HC
haydn-quartets Haydn string quartets [22] 42 expositions 4 7173 99 (21) (8) 70
bach-wtc-i Bach fugues [9] 24 fugues 2 to 5 4739 63 (23) 24 (5)

Table 1. Corpora with manual annotations of cadences. Cadences are labeled at about 2% of the beats. We narrow to sets
with significant number of cadences (PAC and HC for the Haydn corpus, PAC and PAC+rIAC for the Bach corpus).

• Y’-Y-bass-moves-chromatic: The bass note preced-
ing Y is at a distance of one semitone (HC)

• Y-Z-bass-moves-2nd-min (resp. Y-Z-bass-moves-
2nd-Maj)

• Y-Z-bass-same-voice: Bass notes of both chords are
on the same voice

• Y-Z-bass-moves-compatible-V-I (resp. Y-Z-bass-
moves-compatible-I-V ): The bass moves by an as-
cending fourth or descending fifth (PAC) (resp. as-
cending fifth or descending fourth, HC I-V)

2.4 Features on the Cadence Preparation (Point X)

We identify the onset X as the latest beat before Y whose
lowest sounding note has a different pitch (modulo octave)
than the lowest note of Y. Features focus on this bass move:

• X-Y-bass-moves-2nd-min (V/V-V-I)

• X-Y-bass-moves-2nd-Maj (IV-V-I or II6-V-I)

• X-Y-bass-moves-4th (expected in II-V-I)

3. CLASSIFICATION PROCESS

A model is built in order to reflect the correlation between
the features listed in Section 2 and the occurrences of ca-
dences in corpora. These corpora bear manual annotations
indicating the position of PAC, rIAC and HC. Assuming
that the arrival points of cadences do not fall between beats,
each beat (quarter note, or three eights depending on the
time signature) of each piece is described by:

• a vector of boolean values corresponding to the set
of features and computed from the musical score,

• a boolean class specifying whether the beat is anno-
tated in the reference as a PAC/rIAC/HC or not.

This way of representing data enables us to reformu-
late cadence detection as a classification task. To avoid
overfitting, each dataset is randomly divided into two sub-
sets: a training set used to train a classifier and a test
set left to evaluate the classifier performance at the end.
The classifier and the value of its hyper-parameters have
been selected by performing Leave-One-Piece-Out cross-
validation over the training set. This is done by evaluat-
ing the classification on each piece of the training set by
a classifier trained on the remaining pieces of the training
set. Indeed, the traditional Leave-One-Out (LOO) cross-
validation approach that would consist in leaving only one
beat of one piece out of the training set would result here
in overfitting due to intra-piece musical repetitions.

4. EXPERIMENTS AND DISCUSSION

4.1 Corpora and Implementations

Table 1 shows the corpora which was used in this study.
The corpus bach-wtc-i includes the 24 fugues of the
first book of the Well-Tempered-Clavier by J.-S. Bach. Ca-
dence annotations were taken from our previous work [9].
The corpus haydn-quartets includes 42 expositions
from movements of Haydn string quartets in sonata form,
annotated with cadences by Sears and colleagues [22].
Even if these annotated corpora model cadences in the light
of a global analysis of the form, we have used them as a
benchmark on our local feature-based detection. Only a
minority of annotated PAC are final in the sense that they
are included in the last four measures of the piece (or of
the exposition).

Pieces were downloaded as voice-separated .krn files
from kern.ccarh.org [11]. Note that the features pro-
posed here could also apply to non-separated files, except
for after-Z-rest-* and Y-Z-bass-same-voice. In this case,
features on voice leading would only check that the com-
ing note or the suspended note is found at the right place
in the polyphonic texture.

For each beat Z (and their related onsetsX , Y ), the fea-
tures described in Section 2 are extracted using code based
on the Python framework music21 [6]. Points Y and X
are searched at a beat resolution of a quarter note (Haydn)
or eight note (Bach, see Figure 3). Classifiers were com-
puted thanks to the scikit-learn framework [8].

4.2 Discussion on Feature Statistics

Table 2 shows tallies of features, their correlation with
cadences as well as an estimation of their significance.
Many features are significant in both corpora, despite dif-
ferences in musical style. Unsurprisingly, features R-
Z-strong-beat, Y-Z-bass-moves-compatible-V-I, Z-perfect-
triad-or-sus4 and Z-highest-note-is-1 are activated nearly
for every PAC. Note that PAC lacking the fifth leap are the
ones where the bass passes by another note before tonic
resolution. Rhythmic and break features are also quite sig-
nificant. Some features differ between corpora. For exam-
ple, R-Z-sustained-note is absent in nearly all PACs in the
Haydn corpus, whereas it can be found in some PACs in
Bach fugues due to the contrapuntal writing.

We were expecting to find more suspensions for both
PAC and HC as a way to retain tension before the ultimate
resolution but they do not appear significantly in these cor-
pora. We also notably lack strong significant features for
HC. Indeed, the Y-Z bass move in a HC is variable (it is
typically similar to X-Y moves in PAC).
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bach-wtc-i haydn-quartets

Features beats PAC rIAC beats PAC HC

R
yt

hm
ic

fe
at

ur
es

R R-Z-strong-beat 1920 60∗ / 25 24∗ / 9 3126 98∗ / 43 70∗ / 30

R-Z-same-rhythm-1 394 1 / 5 · / 1 1254 2∗ / 17 2∗ / 12

R-Z-same-rhythm-2 176 · / 2 · / 0 448 0 / 6 1 / 4

R-Z-sustained-note 2341 14∗ / 31 5 / 11 2521 1∗ / 34 8∗ / 24

R-after-Z-rest-highest 166 14∗ / 2 1 / 0 501 56∗ / 6 10 / 4

R-after-Z-rest-middle 477 22∗ / 6 9∗ / 2 1227 72∗ / 16 35∗ / 11

R-after-Z-rest-lowest 194 15∗ / 2 13∗ / 0 1130 59∗ / 15 34∗ / 11

R-after-Z-one-voice-ends 180 19∗ / 2 2 / 0 · · / 0 · / 0

A
rr

iv
al

po
in

tZ

Z-in-perfect-major-triad 1167 43∗ / 15 12 / 5 2760 94∗ / 38 53∗ / 26

Z-in-perfect-triad 1819 56∗ / 24 19∗ / 9 3256 97∗ / 44 53∗ / 31

Z-in-perfect-triad-or-sus4 2078 62∗ / 27 20∗ / 10 3434 97∗ / 47 55∗ / 33

Z-is-sus4 680 20∗ / 9 1 / 3 1308 14 / 18 4 / 12

Z-highest-is-1 592 55∗ / 7 1 / 2 1765 96∗ / 24 19 / 17

Z-highest-is-3 1488 1∗ / 19 21∗ / 7 1596 1∗ / 22 28∗ / 15

Z-bass-compatible-with-I 1724 63∗ / 22 23∗ / 8 2279 98∗ / 31 56∗ / 22

Z-bass-compatible-with-V 1265 8 / 16 4 / 6 1616 3∗ / 22 44∗ / 15

Z-bass-compatible-with-I-scale 1902 63∗ / 25 22∗ / 9 2104 91∗ / 29 46∗ / 20

Z-1-comes-from-7 663 52∗ / 8 15∗ / 3 1016 89∗ / 14 30∗ / 9

Z-1-comes-from-1 180 13∗ / 2 1 / 0 828 9 / 11 0∗ / 8

Z-1-comes-from-2 523 23∗ / 6 7 / 2 893 65∗ / 12 27∗ / 8

Z-3-comes-from-4 1078 25 / 14 16∗ / 5 1488 72∗ / 20 45∗ / 14

Z-4-comes-from-5 197 4 / 2 · / 0 291 · / 4 9 / 2

Z-5-comes-from-5 153 9∗ / 2 · / 0 769 2 / 10 13 / 7

Z-5-comes-from-6 510 1 / 6 2 / 2 495 0 / 6 9 / 4

Z-6-comes-from-7 200 · / 2 · / 1 130 · / 1 · / 1

Z-2-moves-to-1 57 · / 0 · / 0 90 2 / 1 1 / 0

Z-4-moves-to-3 160 2 / 2 1 / 0 340 2 / 4 11∗ / 3

Z-6-moves-to-5 138 1 / 1 · / 0 180 · / 2 8∗ / 1

Z-7-moves-to-1 7 · / 0 · / 0 105 2 / 1 1 / 1

Po
in

tY

Y-in-V7 1267 52∗ / 16 17∗ / 6 3290 81∗ / 45 15∗ / 32

Y-in-V7-3 721 44∗ / 9 14∗ / 3 2413 69∗ / 33 14 / 23

Y-has-7 554 22∗ / 7 7 / 2 767 66∗ / 10 8 / 7

Y-has-9 607 1 / 8 4 / 3 486 2 / 6 5 / 4

Y-Z-offsets-at-most-1 4525 63 / 60 24 / 22 5668 90 / 78 66∗ / 55

Y-Z-bass-same-voice 4270 63 / 56 24 / 21 5297 98∗ / 73 70∗ / 51

Y-Z-bass-moves-2nd-min 1313 0∗ / 17 0∗ / 6 1328 1∗ / 18 35∗ / 12

Y-Z-bass-moves-2nd-Maj 880 0∗ / 11 · / 4 559 0∗ / 7 28∗ / 5

Y-Z-bass-moves-compatible-I-V 125 1 / 1 · / 0 448 2 / 6 6 / 4

Y-Z-bass-moves-compatible-V-I 512 62∗ / 6 23∗ / 2 578 95∗ / 7 6 / 5

Y’-Y-bass-moves-chromatic 1139 6 / 15 2 / 5 2050 10∗ / 28 33 / 20

Y’-Y-bass-moves-8ve 193 29∗ / 2 7∗ / 0 522 22∗ / 7 6 / 5

Po
in

tX X-Y-bass-moves-2nd-min 433 2 / 5 1 / 2 1060 10 / 14 10 / 10

X-Y-bass-moves-2nd-Maj 568 25∗ / 7 12∗ / 2 803 65∗ / 11 5 / 7

X-Y-bass-moves-4th 670 11 / 8 4 / 3 1626 4∗ / 22 9 / 15

Total 4739 63 24 7173 99 70

Table 2. Feature tallies for PAC (both corpora), rIAC (Bach corpus) and HC (Haydn corpus). The table shows, for
each feature, the number of beats where this feature occurs (all beats, cadential points or not), followed by its number
of occurrences on beats labeled as cadences in the reference annotation, as well as, in small, its expected number should
the feature be random and uniformly distributed across the beats. (· means 0, and not significant). For example, there
are 70 HC out of 7173 beats in the Haydn quartets corpus. There are 35 beats corresponding to a HC with the feature
Y-Z-bass-2nd-min, out of 1328 beats with this feature, and compared to only 12 beats should this feature be random.

For each feature and each cadence type, p-values are estimated by an exact Fisher test computed by the Python scipy
package. Fisher tests are computed independently. To account for the large number of tests, only features with p-values
under .001 (bold, ∗) can be considered as significant, either by their absence (italic) or their presence. For example, the
feature Y-Z-bass-2nd-min is significantly absent in PACs of both corpora (p < 10−7) and significantly present in HCs of
the Haydn corpus (p < 10−8).
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Figure 4. Haydn, op. 55/3, i, potential PACs at m67 and
m71. The PAC at m67 is hard to detect with the silence
at the bass. In their global analysis of the form, Sears et.
al see the end of the secondary theme (called the EEC, for
Essential Expositional Closure by [10]) at m67 and discard
any further PAC in the following concluding section [22]:
The PAC candidate at m71, found by the proposed strategy,
is thus counted here as a FP. It could be debated whether
the EEC is indeed at m67 (first cadential I, but weakened by
the bass rest) or rather at m71 (cadential feeling augmented
by the following rests and bass note on upbeat, m67 con-
sidered as an evaded cadence).

4.3 Learning Process

A linear Support Vector Machine (SVM) classifier was
trained on each training set as explained in Section 3,
splitting the feature space with a hyperplane [5]. As
datasets are unbalanced (about 98% of the beats are “non-
cadential”), we assigned stronger weights to data belong-
ing to the under-represented class, here the cadential beats.
Other classifying algorithms such as k-nearest-neighbor or
decision trees were tested and turned out to provide com-
parable or inferior results.

4.4 Discussion on Detection Results

Table 3 shows the comparison between the predictions of
each classifier on the test set of each corpus and the ref-
erence annotations. The detection of PAC is good, with
more than 75% PAC detected and a low false positive rate
(< 1%). Note that we previously reported 82% of PAC de-
tection in fugues [9] but with manual hard-coded rules that
may have resulted in overfitting.

False positives (FP) beats may still have many cadential
features. An inspection of the 28 PAC reported as FP in the
Haydn corpus shows that at least 5 FP can be seen as actual
cadences, for example measure 71 in Haydn op. 55/3, i,
shown on Figure 4. Other notable sources of FP are tonic
chords following actual HC cadences activating significant
features for PAC. The same Figure 4 shows an example of
FN, where a silence in the bass makes the computation of
many features fail.

Adding rIAC (Bach corpus) lowers the results, but there
may be too few such cadences to efficiently build the
model. The detection of HC is difficult (Haydn corpus),
as there is not a single feature applicable to every case.
Half of them are detected, with about 2% FP.

beats ref TP FP FN F1

haydn-quartets PAC 3583 51 42 28 9 0.69
(21 quatuors) HC 3583 32 18 73 14 0.29
bach-wtc-i PAC 2357 36 26 3 10 0.80

(12 fugues) PAC+rIAC 2357 46 30 12 16 0.68

Table 3. Detection of cadences on the test sets of both cor-
pora using all features: Number of beats annotated in the
reference annotation (ref), true positives (TP), false posi-
tives (FP), false negatives (FN), and F1 measure (harmonic
mean of the recall and the precision).

haydn-quartets bach-wtc-i

PAC HC PAC PAC+rIAC
All features XYZR 0.69 0.29 0.80 0.68

Features YZR 0.69 0.27 0.71 0.68
Features ZR 0.59 0.24 0.52 0.34

Features XYZ 0.72 0.25 0.74 0.54

Table 4. F1 measure while detecting cadences on the test
sets of both corpora with different sets of features.

Table 4 further studies these results while varying the
set of considered features. Some features in Z already
consider the past. Nevertheless, the features around Y are
essential to improve the overall detection. Features on X
bring a small but significant gain for PAC. Rhythmic fea-
tures (R) bring an improvement especially for HC, in par-
ticular with R-Z-strong-beat that correctly filters out more
than half of the beats.

5. CONCLUSION

Different musical clues give the cadential impression of a
“breath in music”. We evaluated cadential features on and
around three onsets at the arrival and in the preparation
of cadences. Without performing any chord segmentation,
these features describe the underlying harmony, the voice
leading as well as structural aspects of the music.

These features reflect common knowledge of music: we
have shown that some of them are specific to cadential
points. They make it possible to learn how to predict ca-
dences – PAC/rIAC, and, to a lesser extent, HC – in corpora
with reference annotations. Such features may also be used
in other systematic musicology approaches.

Perspectives include the extension of our set of features
to cadential and non-cadential positions. Some features
could be not necessarily theory driven and could possi-
bly have metric values. Coupled with automatic selection,
this could lead to the discovery of significant but unex-
pected features. More generally, the method used to iden-
tify points X and Y could be compared to other heuris-
tics. Cadence preparations could for example be described
by features regarding contiguous “spans” of onsets rather
than single onsets X and Y, in order to improve the har-
mony relevance of the model. Research along these lines
could significantly improve HC detection.
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ABSTRACT 

Emotion-aware music information retrieval (MIR) has 

been difficult due to the subjectivity and temporality of 

emotion responses to music. Physiological signals are re-

garded as related to emotion and thus could potentially be 

exploited in emotion-aware music discovery. This study 

explored the possibility of using physiological signals to 

detect users’ emotion responses to music, with considera-

tion of individual characteristics (personality, music pref-

erences, etc.). A user experiment was conducted with 23 

participants who searched for music in a novel MIR sys-

tem. Users’ listening behaviors and self-reported emotion 

responses to a total of 628 music pieces were collected. 

During music listening, a series of peripheral physiologi-

cal signals (e.g., heart rate, skin conductance) were rec-

orded from participants unobtrusively using a research-

grade wearable wristband. A set of features in the time- 

and frequency- domains were extracted from the physio-

logical signals and analyzed using statistical and machine 

learning methods. Results reveal 1) significant differ-

ences in some physiological features between positive 

and negative arousal and mood categories, and 2) effec-

tive classification of emotion responses based on physio-

logical signals for some individuals. The findings can 

contribute to further improvement of emotion-aware in-

telligent MIR systems exploiting physiological signals as 

an objective and personalized input. 

1. INTRODUCTION 

Mood-based music discovery is a typical scenario of mu-

sic information retrieval (MIR). Previous research has 

adopted content-based [11][27], collaborative filtering 

[7], or semantic-based [4] approach to recognize the emo-

tion the music expressed and therefore enable emotion-

aware MIR. Beyond research, Web-based music services 

are also available to support searching for music based on 

emotions, such as MoodFuse, Musicovery, etc. 

However, emotion responses to music are subjective, 

varying from one user to another. They are also temporal 

in that the same user may respond to the same music dif-

ferently at different times [33]. These make it challenging 

to optimize emotion-aware music retrieval. 

Physiological signals such as heart rate, blood pressure 

and skin conductance were found to be related to people’s 

emotion status [1][12][20] and they are deemed objective 

compared to self-reported emotion status which has been 

criticized as being subjective and sometimes inaccurate 

[2][3]. Therefore, physiological signals could potentially 

be exploited in emotion-aware music discovery. In addi-

tion, with the rapid development of wearable technology 

in recent years, peripheral physiological signals can be 

collected from users through small and less noticeable 

devices (e.g., wristband) in naturalistic settings in unob-

trusive manners [13]. This advantage is not yet compara-

ble by methods of gathering other physiological signals 

such as eye tracking and electroencephalography, and 

thus peripheral physiological signals are currently prefer-

able for studying users’ emotion responses to music in 

everyday life. 

This study, therefore, aims to explore to what extent 

physiological signals measured by a wearable device are 

related to users’ emotion responses to music played on an 

MIR system. Specifically, we are interested in the follow-

ing research questions: 

RQ1: Among features extracted from physiological 

signals collected during music listening, which ones dif-

fer significantly across different emotion responses?  

RQ2: To what extent can physiological signals col-

lected during music listening be used to predict users’ 

emotion response to music? 

As emotion responses to music may vary across listen-

ers [37], we take into consideration listeners’ characteris-

tics by asking the following question: 

RQ3: To what extent do prediction performances vary 

across different users and user characteristics (i.e. person-

ality, music preferences)?  

To answer these questions, a user experiment was 

conducted to collect data of users’ interactions with a 

novel MIR system [17]. During the experiment, partici-

pants were asked to explore the music collection in the 

system while users’ music listening behaviors and self-

reported emotion responses to the music were recorded 

by the system. Simultaneously, physiological signals of 

the users were collected using a research-grade wearable 

wristband. Statistical tests and machine learning classifi-

ers were applied to analyze the data, with classification 

performances compared across different classification 
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algorithms and users. Furthermore, collected in the pre-

experiment questionnaire, participants’ personality and 

music preferences were analyzed to see if they played a 

role in the relationships between physiological signals 

and emotion responses to music. As one of the first stud-

ies exploiting peripheral physiological signals in MIR, 

findings of this study can shed light on the feasibility of 

predicting users’ emotion responses to music based on 

physiological signals and contribute to future implemen-

tation of emotion-aware MIR systems. 

2. RELATED WORK 

Work related to this study can be broadly categorized into 

physiological signal analysis in information retrieval and 

emotion-based music discovery. 

2.1 Physiological Signals in Information Retrieval 

Although using physiological signals as an implicit 

measurement of users’ affective states during information 

retrieval process is still an emerging research topic, sev-

eral recent studies have demonstrated its usefulness in 

predicting users’ relevance judgments [2][3][28] and en-

gagement levels [12]. Moshfeghi and Jose [28] used 

physiological features derived from heart rate, galvanic 

skin response, and skin temperature, along with facial ex-

pression features and behavioral features (i.e. dwell time), 

to predict users’ relevance judgments in video retrieval 

tasks. They found that the combination of dwell time and 

heart rate features performed better for the task with en-

tertainment-based search intention (i.e., when the main 

purpose of video search was to adjust arousal level or 

mood). Edwards and Kelly [12] combined skin conduct-

ance, heart rate with search behavior measures to evaluate 

users’ levels of engagement, frustration, and stress when 

conducting searching tasks on a Web search interface. 

The results suggested that heart rate might be more asso-

ciated with negative arousal, and skin conductance with 

positive arousal. 

These studies in text and video information retrieval 

were encouraging and inspiring, yet there is little research 

on MIR exploiting physiological measures. Like many 

videos, music is a strong stimulus in eliciting emotion 

from listeners [23], and many users indeed listen to music 

for the very purpose of emotion modulation [16][34]. 

Considering the close relationship between music and 

emotion, as well as that between emotion and physiologi-

cal signals, this study aims to help bridge the gap of in-

corporating physiological signals in MIR. 

2.2 Emotion-aware MIR 

The majority of previous research on music emotion 

recognition adopted content-based [11][27], collaborative 

filtering [7], and/or semantic-based [4] approaches which 

may suffer various shortcomings such as ignoring indi-

vidual differences and the “cold start” problem (i.e., the 

recommendation performance is poor when few user rat-

ings are available) [25]. Physiological signals, on the oth-

er hand, provide a new approach to understand users’ 

emotion response to music. Several prior studies have 

probed physiology-based approach in MIR and yielded 

promising initial results. The Affective DJ project [9] 

used changes in users’ skin conductance to detect users’ 

mood based on which it helped users select music and 

generate playlists. Their evaluation results confirmed that 

skin conductance has a significant correlation with per-

ceived excitement level of a song. Oliver et. al [30] also 

proposed a framework of automatic playlist generation by 

monitoring users’ purpose of music listening and physio-

logical responses (i.e. heart rate, galvanic skin response, 

respiration rate, and movement) to music. As an exemplar 

case of the framework, the MPTrain system was designed 

and implemented for selecting songs for runners to ac-

company their exercises. More recently, an affective mu-

sic player (AMP) was developed to select music for mood 

enhancement by modeling the effects of music based on 

changes in skin conductance level and skin temperature 

[22]. Validation of the AMP found that lower skin tem-

peratures were related to more positive emotions induced 

by music listening. 

Notwithstanding the impact of these existing studies, 

the investigation on the relationship between physiologi-

cal signals and emotion responses to music is still limited. 

Moreover, to the best of our knowledge, few studies have 

probed whether and how individual differences (in per-

sonality, music preferences, etc.) may play a role in such 

relationships. This study aims to bridge these gaps. 

3. USER EXPERIMENT OF INTERACTIVE 

MUSIC SEARCH 

The purpose of this experiment was to collect physiolog-

ical signals and self-reported emotion response to music 

during music searching and listening. To encourage par-

ticipants to interact with music, during the experiment, 

participants were asked to create a playlist using a novel 

Web-based music retrieval system. Participants’ physio-

logical signals during music listening were collected, as 

well as their self-reported emotion responses to each 

piece of music they listened to. 

3.1 The MIR System 

The Moody system [18] (now in its 3rd version) is a novel 

music retrieval system which supports searching for 

songs using several criteria: Genre (e.g., folk, jazz), Oc-

casion (e.g., party, workout), Artist, Song, Album, and 

presents basic metadata and album image of each re-

trieved song (shown in Figure 1). Users can listen to any 

songs they are interested in using an HTML5 music play-

er embedded in the Web interface of the system. They 

can also select any songs to add into a playlist at any 

time. Users’ interactions with the systems (e.g., search, 

play) are recorded in the system logs.  

The music collection hosted in the system is a subset 

of the Jamendo dataset, one of the world’s largest digital 

services for free music. The subset of 10K tracks was ob-
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tained through the Grand Challenge in User Experience 

of the Music Information Retrieval Evaluation Exchange 

(MIREX)[17]. All the tracks are under the CC-BY license 

and thus the full tracks (of 60+ Gigabytes in total) can be 

freely listened to by the public. Metadata of the tracks 

(e.g., title, album, artist) as well as free tags were also ob-

tained from Jamendo and displayed in the system to facil-

itate searching and browsing. 

 

Figure 1. Interface of the Moody System (version 3) 

3.2 Experiment Procedure 

The experiment consisted of four main phases: 1) pre-

experiment questionnaire; 2) instructions of the Moody 

system and the search task; 3) participants searching and 

listening to music; and 4) post-experiment questionnaire. 

The pre-experiment questionnaire gathered infor-

mation on demographics, music listening behaviors, mu-

sic preference, and personality as measured by the Ten 

Item Personality scale (TIPI) [14] which contains 10 

questions in five dimensions: extrovert - introvert; agree-

able - disagreeable; open-close; stable - unstable; consci-

entious - unconscientious. 

During phase 3, participants were asked to use the 

Moody system for no less than 40 minutes, looking for at 

least 10 songs they liked to make a playlist. They were 

encouraged to search for different types of music for a 

more diverse experience. For each music piece listened to 

for more than 30 seconds, participants would be prompt-

ed to answer two questions on their current emotion. The 

first question asked participants to give a score of arousal 

[32] on a scale of -10 (low arousal) to 10 (highly 

aroused), while the second question was to choose a 

mood category from a set of options adapted from [37] 

(Figure 2).  

Also during phase 3, participants were asked to wear 

an Empatica E4 wristband [13] which is one of the few 

wearable devices designed specifically for measuring 

physiological signals for research purposes. This device 

supports real-time data acquisition and provides a secure 

API for raw data downloading. It has been used in emo-

tion-related studies in psychology, health sciences, etc. 

with high reliability (e.g., [29]). For signal stabilization, 

the wristband was mounted on a participant’s wrist 2 

minutes before the search task started. 

After conducting the task, the last phase of the experi-

ment was for the participants to fill out a post-experiment 

questionnaire concerning their emotional states and gen-

eral experience of the experiment including the search 

process.  

The experiment took place in a computer classroom 

where participants worked on iMac computers. Ear-

phones were used during the music searching and listen-

ing. Ethical consent forms were signed at the beginning 

and a nominal remuneration was paid at the end to com-

pensate participants’ time. 

 

Figure 2. Question on mood popped up in the Moody 

system. (Translation of the instruction: “Please choose 

one of the following moods that can best represent your 

current mood. (Note: This refers to your mood, not the 

mood expressed by the music piece).”) 

3.3 Data Collection 

23 participants (15 males, 8 females) were recruited to 

join this experiment. All participants were undergraduate 

or graduate students in a comprehensive university in 

Hong Kong, whose majors ranged from Social Sciences, 

Science, Engineering, Business, Humanities & Arts to 

Medicine, with a diverse background in music knowledge 

and a relatively high frequency of music listening ranging 

from several times a week to a daily basis.  

Physiological signals collected included electrodermal 

activity (EDA), blood volume pulse (BVP), inter beat in-

terval (IBI), heart rate (HR) and skin temperature 

(TEMP). The sampling rates of EDA, BVP, HR, and 

TEMP are 4 Hz, 64Hz, 1Hz, and 4Hz respectively. 

Among all participants, we collected arousal and mood 

ratings for 628 pieces of music. Each piece of music was 

listened to for approximately 80 seconds on average. 

4. DATA ANALYSIS 

4.1 Data Preprocessing 

Before extracting features, we constructed two datasets: 

one with raw physiological signals, and the other with 

normalized physiological signals by z-score normaliza-
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tion [31]. As physiological signals vary across individuals 

[26], the normalization was conducted within each indi-

vidual participant.  

Time-series of physiological data in both datasets were 

then aligned with the starting and ending time of each 

music piece played in the experiment as recorded by the 

Moody system logs. Physiological data were then split 

into chunks corresponding to each song played by each 

participant in the experiment.  

The emotion status reported by participants after lis-

tening to each piece was aligned with the physiological 

signals and taken as the ground truth labels in the classi-

fication analysis. The arousal and mood values rated by 

participants were then grouped into three main categories 

(i.e. positive, negative, neutral) for comparison using 

ANOVA and t-tests as well as classification. This result-

ed in 436 positive, 175 negative, and 17 neutral (i.e., 0) 

arousal ratings. For mood ratings, we combined the mood 

categories into positive (happy, blessed, etc.), negative 

(sad, fearful, etc.), and neutral moods (i.e. none), result-

ing in 387, 141, and 100 ratings respectively.  

4.2 Feature Extraction  

After data preprocessing, features of physiological signals 

during each music listening period were extracted based 

on time series and spectrum analysis. Table 1 summarizes 

the features extracted in this study. 

 

Category Features 

Descriptive statistics 

of raw signals 

Mean, Standard deviation, Medi-

an, Range [8], [20] 

Time series features 

Means of the absolute values of 

the 1st / 2nd differences of the raw 

/ normalized signals [31] 

Frequency domain 

features 
HF, LF, LF/HF [36] 

Physiological signal 

specific features 

skin conductance response 

(SCR)[6],  

heart rate variability (HRV) [1] 

Table 1. Features extracted from physiological signals. 

Features considered in this study were those found 

closely linked to emotions by previous studies 

[1][6][8][20][31][36], including descriptive statistics such 

as median, range, standard deviation (stdev), means of the 

first difference in raw values (MFDR) and in normalized 

values (MFDN), means of the second difference in raw 

values (MSDR) and in normalized values (MSDN), low 

and high frequency (LF, HF) in frequency spectrum 

which was obtained through a Fast Fourier Transfor-

mation (FFT) on the time domain signals, as well as the 

ratio of the two (LF/HF). In addition, two features specif-

ic to physiological signals were considered. The first is 

skin conductance response (SCR) which depicts the phe-

nomenon of the skin momentarily being a better conduc-

tor of electricity. The SCR is characterized by an increase 

in electrodermal response followed by a decrease in re-

sponse [6]. It is generally related to stimulus arousal [24]. 

The second is heart rate variability (HRV) which 

measures the continuous interplay between sympathetic 

and parasympathetic influences on the heart rate. HRV 

has been found relevant to arousal as well [1]. 

4.3 Feature Analysis 

Using a one-way ANOVA, we compared physiological 

features across the three arousal categories as well as the 

three mood categories (i.e., positive, negative, neutral). 

We also applied t-tests on the features between positive 

and negative categories of arousal and mood (i.e., without 

consideration of the neutral categories). As multiple 

comparisons were involved, Bonferroni correction [15] 

and Benjamini–Hochberg procedure [5]were applied to 

ANOVA and t-tests respectively to control Type I error. 

Features with significant differences across arousal and 

mood categories are identified.  

4.4 Classification and Evaluation 

A machine learning approach was applied to measure the 

extent to which physiological signals could be used to 

recognize users’ emotion responses to music listening, in 

positive and negative categories of arousal and mood. 

Specifically, we trained and compared the performance of 

several well-adopted classification models representative 

of different approaches, namely decision tree, k-Nearest 

Neighbor (k-NN), naïve Bayes and SVM.  

As the sample distribution across the positive and neg-

ative categories is unbalanced, for each classifier and 

each category pair (i.e., arousal, mood), we constructed a 

balanced dataset by randomly selecting samples from the 

larger categories and performed a classification experi-

ment on the balanced dataset. This process was repeated 

10 times and within each time a 10-fold cross-validation 

was applied to evaluate the performances. 

Besides classification based on the whole feature sets, 

the forward feature selection method was applied in com-

bination with the classifiers to remove redundant and 

noisy features and improve classification performances. 

In addition, to examine whether prediction perfor-

mances vary across different user characteristics, we also 

conducted a classification experiment on data partitioned 

by participants, their personality, as well as their music 

preferences. 

5. RESULTS AND DISCUSSION 

5.1 Features with Significant Differences across Emo-

tion Categories 

Features found with significant differences in the 

ANOVA and t-test results after Bonferroni correction are 

shown in Table 2. 

For arousal, both tests indicated that BVP, HR and 

EDA features differed significantly across categories. For 

mood, HR_range showed consistent significance across 

the two tests. In addition, HR and EDA seem more prom-
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ising than other physiological signals in predicting and/or 

monitoring listeners’ emotion responses to music. How-

ever, TEMP features, SCR, and time domain measures of 

HRV were not significant in either test. 

Feature 
Arousal Mood 

ANOVA t-test  ANOVA t-test  

BVP_median 0.034 0.012 0.004 - 

BVP_HF 0.049 0.007 - - 

HR_stdev 0.022 0.002 - 0.005 

HR_range 0.010 < 0.001 0.039 0.003 

HR_LF 0.022 < 0.001 - 0.004 

HR_HF 0.028 0.001 - 0.006 

EDA_MFDN 0.020 0.003 - - 

EDA_MSDN 0.017 0.003 - 0.008 

EDA_LF/HF 0.036 - - - 

IBI_median - - 0.006 - 

IBI_mean - - 0.006 - 

Table 2. Significant results (p values) of ANOVA and t-

tests across extracted features. 

5.2 Classification on the Dataset of All Listeners 

Table 3 shows the performances of different classifiers 

with feature selection, on datasets balanced by repeated 

random sampling. Both accuracy and Cohen’s kappa are 

used as performance measures. In general, the classifica-

tion performances on the dataset aggregated across all 

users were low, with the best performances (k-NN) being 

around 60% in accuracy (baseline 50%) and lower than 

0.2 in Cohen’s kappa (indicating low agreement [35]).  
 

Classifier 
Arousal Mood 

Accuracy Kappa Accuracy Kappa 

Decision Tree 55.43% 0.109 60.04% 0.201 

k-NN 59.97% 0.199 60.78% 0.216 

Naïve Bayes 57.74% 0.155 58.83% 0.177 

SVM 58.40% 0.168 59.50% 0.190 

Table 3. Classification results on balanced datasets con-

sisting of all listeners. 

5.3 Classification on Individual Listeners 

To examine whether and how prediction results differ 

across participants, the k-NN classifier was applied to da-

tasets of individual participants. As the sample sizes of 

some participants were not sufficient for constructing 

balanced datasets of non-trivial sizes, these sets of exper-

iments on individual participants were performed on un-

balanced datasets. Therefore, F1 measure and Cohen’s 

kappa were used and reported in Table 4. From the Co-

hen’s  kappa values in the results, we can see that the per-

formances on individual listeners were much better than 

those on the dataset of all participants (Table 3). This dif-

ference implies that individual variability on physiologi-

cal signal analysis might be too large to build generic 

classifiers that work for most (if not all) listeners.   

The results also indicate that, for some participants, 

e.g. Users 5, 8, and 18, the prediction worked well for 

both arousal and mood, whereas for other participants, 

such as users 11, neither prediction exhibited good results 

(Cohen’s  kappa values were lower than 0.2). The varia-

bility of prediction performances across participants cor-

roborates with findings in existing research that physio-

logical signals are highly individual dependent [19][26].  
 

User 
No. of 

songs 

Arousal Mood 

F 

measure 
Kappa 

F  

measure 
Kappa 

User 1 24 90.00% 0.400 78.57% 0.294 

User 2 24 81.48% 0.577 62.50% 0.262 

User 3 28  78.57% 0.571 90.00% 0.800 

User 4 45  80.00% 0.537 93.33% 0.700 

User 5 43  98.70% 0.788 93.55% 0.604 

User 6 30  81.25% 0.490 84.85% 0.516 

User 7 29  86.36% 0.435 93.03% 0.516 

User 8 17  96.54% 0.767 96.55% 0.767 

User 9 24  94.44% 0.694 96.30% 0.765 

User 10 33  87.80% 0.670 92.31% 0.747 

User 11 21  93.75% -0.063 97.14% 0.000 

User 12 18  88.89% 0.722 93.33% 0.843 

User 13 25  94.74% 0.614 90.48% 0.405 

User 14 29  91.30% 0.580 95.00% 0.750 

User 15 31  80.00% 0.427 83.72% 0.440 

User 16 30  92.59% 0.259 92.31% 0.423 

User 17 32  88.89% 0.595 85.00% 0.475 

User 18 33  98.36% 0.784 98.31% 0.784 

User 19 33  84.45% 0.507 90.32% 0.750 

User 20 35  84.00% 0.380 91.67% 0.586 

User 21 16  91.67% 0.673 96.00% 0.818 

Table 4. Classification performance on individual partic-

ipants. 

5.4 Classification on Participant Groups  

Table 5 shows classification performance of users with 

different personalities. Personality was determined based 

on responses to the TIPI questionnaire [14] which con-

sisted of five personality dimensions. For each dimen-

sion, each user was categorized to either end based on 

their answers to the two question items in that dimension. 

This set of experiments were also conducted on balanced 

datasets, with accuracy and Cohen’s kappa values report-

ed (Table 5). Compared to performances on the dataset of 

all listeners (Table 3), classification performances on 

some of the personality dimensions were better. In partic-

ular, predictions on users with Agreeable personality 

reached Cohen’s kappa values of 0.581 (for arousal) and 

0.682 (for mood) which are deemed as medium and high 

agreement levels respectively [35].  

Another observation is that the personality dimensions 

with relatively high classification performances had low-

er numbers of users compared to other personality dimen-

sions. A correlation analysis revealed significant negative 

correlations between the number of users and classifica-

tion performances (r = - 0.78 for both measures of arous-
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al, p = 0.008; and r = - 0.62 for both measures of mood 

prediction, p = 0.054). This again implies the significance 

of individual differences in physiological signal analysis. 

A suggestion for future research is thus to analyze phys-

iological signals within individual users.    
 

Personality 
No. of 

users 

Arousal Mood 

Accuracy Kappa Accuracy Kappa 

Extrovert 12 62.42% 0.248 65.00% 0.300 

Introvert 11 67.56% 0.351 63.65% 0.273 

Agreeable 3 79.03% 0.581 84.09% 0.682 

Disagreeable 20 62.50% 0.250 61.64% 0.233 

Open 7 64.51% 0.290 66.58% 0.332 

Close 16 62.96% 0.259 74.69% 0.494 

Stable 9 64.07% 0.281 69.38% 0.388 

Unstable 14 62.39% 0.248 62.41% 0.248 

Conscientious 6 69.75% 0.395 68.91% 0.378 

Unconscien-

tious 
17 60.65% 0.213 61.05% 0.221 

Table 5. Classification performances of each personality 

dimension.  

Besides personality, users’ music preference might 

play a role in their emotion responses to music [21]. 

Therefore, we grouped the participants based on their 

self-reported genre preferences using the k-means cluster-

ing algorithm, with the optimal k value selected by the 

Davies Bouldin index [10]. The results yielded three clus-

ters corresponding to preferences as shown in Table 6. 

We then conducted classification experiments on partici-

pants in each of the clusters, using the k-NN algorithm 

and balanced datasets. Prediction performances (Table 6) 

were higher than those on the whole dataset (Table 3), 

and the performances on the mood classification of clus-

ter 2 were comparable to those of some individual users 

(Table 4). These results indicate that certain music pref-

erences might play a role in predicting emotion responses 

to music based on physiological signals. Future work is 

needed to further investigate this phenomenon, preferably 

with larger samples.   

Cluster Preferences 
No. of 

users 

Arousal Mood 

Accuracy κ Accuracy κ 

0 Pop only 7 64.26% 0.285 71.32% 0.426 

1 
Classical, 

Folk, Pop 
10 65.17% 0.303 64.06% 0.281 

2 
Electronica, 

Rock, Pop 
6 69.02% 0.380 76.76% 0.535 

Table 6. Classification performances of participant clus-

ters based on music preferences. 

6. CONCLUSION AND FUTURE WORK 

This paper presented a study towards recognizing users’ 

emotion response to music using physiological data ob-

tained from wearable sensors. ANOVA and t-tests re-

vealed that heart rate (HR) and electrodermal activity 

(EDA) features were consistently significant in both 

arousal and mood dimensions. This finding provides em-

pirical evidence for feature extraction and selection in fu-

ture studies. In predicting emotion responses to music 

based on physiological signals during music listening, 

predictions on individual participants showed promising 

performances as well as large performance differences 

across individuals. These results verified that the predict-

ability of emotion responses to music based on physio-

logical signals may vary from person to person. Addi-

tionally, the classification experiments conducted on data 

partitioned by personality dimensions and music prefer-

ences illustrated that classification based on physiological 

signals might be more effective for users with certain per-

sonality traits or genre preferences, such as being agreea-

ble or preferring Electronica and Rock music. However, 

these results were confounded with the sample size, as 

the number of users in each personality category was 

negatively correlated with performance measures, further 

indicating variability across users and suggesting that in-

dividual-based analysis might be more fruitful for ex-

ploiting physiological signals. The results reported in this 

paper demonstrate the potential of physiological sensing 

techniques in emotion-aware MIR. This opens up a num-

ber of possibilities in future MIR systems and services, 

such as recommending music based on users’ current 

physiological measures and maintaining mood-based 

playlists which can be adjusted in real time based on 

changes in physiological signals, etc. 

Future studies will be conducted to further investigate 

in which circumstances physiological signals are more 

effective in predicting emotion responses to music. Com-

binations of factors will be considered such as the match-

ing between music preferences and the music pieces be-

ing listened to. In the next stage of our research, we will 

also explore the effect of incorporating music features 

(e.g., acoustic, emotion, occasion, etc.) in the prediction 

as well as users’ behavioral logs recorded in the user ex-

periment. Besides, the experiment in this study was run in 

laboratory settings. To achieve a higher level of ecologi-

cal validity, future experiments can be extended to the 

everyday environment of the participants and for longer 

time spans. 
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ABSTRACT

We consider the task of multimodal music mood predic-
tion based on the audio signal and the lyrics of a track. We
reproduce the implementation of traditional feature engi-
neering based approaches and propose a new model based
on deep learning. We compare the performance of both
approaches on a database containing 18,000 tracks with
associated valence and arousal values and show that our
approach outperforms classical models on the arousal de-
tection task, and that both approaches perform equally on
the valence prediction task. We also compare the a poste-
riori fusion with fusion of modalities optimized simultane-
ously with each unimodal model, and observe a significant
improvement of valence prediction. We release part of our
database for comparison purposes.

1. INTRODUCTION

Music Information Retrieval (MIR) has been an ever grow-
ing field of research in recent years, driven by the need to
automatically process massive collections of music tracks,
an important task to, for example, streaming companies.
In particular, automatic music mood detection has been an
active field of research in MIR for the past twenty years.
It consists of automatically determining the emotion felt
when listening to a track. 1 In this work, we focus on
the task of multimodal mood detection based on the audio
signal and the lyrics of the track. We apply deep learn-
ing techniques to the problem and compare our approach
to classical feature engineering-based ones on a database
of 18,000 songs labeled with a continuous arousal/valence
representation. This database is built on the Million Song
Dataset (MSD) [2] and the Deezer catalog. To our knowl-
edge this constitutes one of the biggest datasets for multi-
modal mood detection ever proposed.

1 We use the words emotion and mood interchangeably, as done in the literature
(see [15]).

c© Rémi Delbouys, Romain Hennequin, Francesco Piccoli, Jimena
Royo-Letelier, Manuel Moussallam. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Rémi Delbouys, Romain
Hennequin, Francesco Piccoli, Jimena Royo-Letelier, Manuel Moussallam. “Music
mood detection based on audio and lyrics with Deep Neural Net”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

1.1 Related work

Music mood studies appeared in the first half of the 20th
century, with the work of Hevner [7]. In this work, the au-
thor defines groups of emotions and studies classical music
works to unveil correlations between emotions and char-
acteristics of the music. A first indication that music and
lyrics should be jointly considered when analyzing musical
mood came from a psychological study exposing indepen-
dent processing of these modalities by the human brain [3].
For the past 15 years, different approaches have been de-
veloped with a wide range of datasets and features. An
important fraction of them was put together by Kim et al.
in [15]. Li and Ogihara [18] used signal processing fea-
tures related to timbre, pitch and rhythm. Tzanetakis et
al. [28] and Peeters [22] also used classical audio features,
such as Mel-Frequency Cepstral Coefficients (MFCCs), as
input to a Support Vector Machine (SVM). Lyrics-based
mood detection was most often based on feature engineer-
ing. For example, Yang and Lee [31] resorted to a psycho-
linguistic lexicon related to emotion. Argamon et al. [1]
extracted stylistic features from text in an author detec-
tion task. Multimodal approaches were also studied sev-
eral times. Laurier et al. [16] compared prediction level
and feature level fusion, referred to as late and early fu-
sion respectively. In [26], Su et al. developed a sentence
level fusion. An important part of the work based on fea-
ture engineering was compiled into more complete studies,
among which the one from Hu and Downie [9] is one of
the most exhaustive, and compares many of the previously
introduced features.

Influenced by advances in deep learning, notably in
speech recognition or machine translation, new models be-
gan to emerge, based on fewer feature engineering. Re-
garding audio-based methods, the Music Information Re-
trieval Evaluation eXchange (MIREX) competition [5] has
monitored the evolution of the state of the art. In this
framework, Lidy et al. [19] have shown the promise of
audio-based deep learning. Recently, Jeon et al. [14] pre-
sented the first multimodal deep learning approach using
a bimodal convolutional recurrent network with a binary
mood representation. However, they neither compared
their work to classical approaches, nor evaluated the ad-
vantage of their mid-level fusion against simple late fusion
of unimodal models. In [12], Huang et al. resorted to deep
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Boltzmann machines to unveil early correlations between
audio and lyrics, but their method was limited by the in-
completeness of their dataset, which made impossible the
use of temporally local layers, e.g. recurrent or convolu-
tional ones. To our knowledge, there is no clear answer
as to whether feature engineering yields better results than
more end-to-end systems for the multimodal task, probably
because of the lack of easily accessible large size datasets.

1.2 Mood representation

A variety of mood representations have been used in the
literature. They either consist of monolabel tagging with
either simple tags (e.g. in [9]), clusters of tags (e.g. in
the MIREX competition) or continuous representation. In
this work, we resort to the latter option. Russell [24] de-
fined a 2-dimensional continuous space of embedding for
emotions. A point in this space represents the valence
(from negative to positive mood) and arousal (from calm
to energetic mood) of an emotion. This representation
was used multiple times in the literature [12, 27, 29], and
presents the advantage of being satisfyingly exhaustive. It
is worth noting that this representation has been validated
by embedding emotions in a 2-dimensional space based on
their co-occurrences in a database [10]. Since we choose
this representation we formulate mood estimation as a 2-
dimensional regression problem based on a track’s lyrics
and/or audio.

1.3 Contributions of this work

We study end-to-end lyrics-based approaches to music
mood detection and compare their performance with clas-
sical lyrics-based methods performance, and give insights
on the performing architectures and networks types. We
show that lyrics-based networks show promising results
both in valence and arousal prediction.

We describe our bimodal deep learning model and eval-
uate the performance of a mid-level fusion, compared to
unimodal approaches and to late fusion of unimodal pre-
dictions. We show that arousal is highly correlated to the
audio source, whereas valence requires both modalities to
be predicted significantly better. We also see that the lat-
ter task can be notably improved by resorting to mid-level
fusion.

Finally, we compare our model to traditional feature en-
gineering methods and show that deep-learning-based ap-
proaches outperform classical models, when it comes to
multimodal arousal detection, and we show that both sys-
tems are equally performing on valence prediction. For
future comparison purposes, we also release part of our
database consisting of valence/arousal labels and corre-
sponding song identifiers.

2. CLASSICAL FEATURE ENGINEERING-BASED
APPROACHES

We compare our model to classical approaches based on
feature engineering. These methods were iteratively deep-
ened over the years: for audio-based models, a succes-

sion of works [18, 22, 28] indicated the top performing
audio features for mood detection tasks ; for lyrics-based
approaches, a series of studies [1, 10, 31] investigated a
wide variety of text-based features. Finally, fusion meth-
ods were also studied multiple times [9, 16, 29]. Hu and
Downie compiled and deepened these works in a series
of papers [8–10], which is the most accomplished feature-
engineering-based approach of the subject. We reimple-
ment this work and compare its performance to ours. This
model consists in the choice of the optimal weighted aver-
age of the predictions of two unimodal models: an SVM
on top of MFCCs, spectral flux, rolloff and centroid, for
audio; and an SVM on top of basic, linguistic and stylistic
features (n-grams, lexicon-based features, etc.) for lyrics.

3. DEEP LEARNING-BASED APPROACH

We first explore unimodal deep learning models and then
combine them into a multimodal network. In each case,
the model simultaneously predicts valence and arousal. In-
puts are subdivided in several segments for training, so that
each input has the same length. Output is the average of the
predictions computed by the model on several segments of
the input. For the bimodal models, subdivision of audio
and lyrics requires synchronization of the modalities.

3.1 Audio only

We use a mel-spectrogram as input, which are 2-
dimensional. We choose a convolutional neural network
(ConvNet) [17], the architecture is shown in Fig. 1 (a). It
is composed of two consecutive 1-dimensional convolution
layers (convolutions along the temporal dimension) with
32 and 16 feature maps of size 8, stride 1, and max pooling
of size 4 and stride 4. We resort to batch normalization [13]
after each convolutional layer. We use two fully connected
layers as output to the network, the intermediate layer be-
ing of size 64.

(a) Audio (b) Lyrics (c) Bimodal

Figure 1. Architecture of unimodal and bimodal models

3.2 Lyrics only

We use a word embedding as input to the network, i.e.
each word is embedded in a continuous space and the vec-
tors corresponding to each word are stacked, the input be-
ing consequently 2-dimensional. We choose to resort to
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Model name Description
CBOW Continuous bag-of-words: random forest on

top of means of input words embedding
GRU Single Gated Recurrent Unit (GRU) [4], size

40, dense layers of size 64 and 2, preceded by
dropout layers of parameter 0.5

LSTM Single Long Short-Term Memory (LSTM) [6],
size 80, dense layers of size 64 and 2, preceded
by dropout layers of parameter 0.5

biLSTM Single LSTM, size 40, dense layers of size 64
and 2, preceded by dropout layers of parameter
0.5

2LSTMs Two LSTM layers, of size 40, dense layers of
size 64 and 2, preceded by dropout layers of
parameter 0.5

ConvNet+LSTM Convolutional layer with 16 features maps of
size (2,2), stride 1, max-pooling of size 2,
stride 2, an LSTM layer of size 40 and dense
layers of size 32 and 2, preceded by dropout
layers of parameter 0.5

2ConvNets+2LSTMs Two convolutional layers with 16 features
maps of size (2,2), stride 1, max-pooling of
size 2, stride 2, two LSTM layers of size 40
and dense layers of size 32 and 2, preceded by
dropout layers of parameter 0.5

Table 1. Description of lyrics-based models.

a word2vec [21] embedding trained on 1.6 million lyrics,
as first results seemed to indicate that this specialized em-
bedding performs better than embedding pretrained on an
unspecialized, albeit bigger, dataset. We compare several
architectures, with recurrent and convolutional layers. One
of them is shown in Fig. 1 (b). We also compare this ap-
proach with a simple continuous bag-of-words method that
acts as a feature-free baseline. The models that were tested
are described in Table 1.

3.3 Fusion

For the fusion model, we reuse the unimodal architecture
from which we remove the fully connected layers and con-
catenate the outputs of each network. On top of this con-
catenation, we use two fully connected layers with an inter-
mediate vector length of size 100. This architecture is pre-
sented in Fig. 1(c). This allows for detection of more com-
plex correlations between modalities. We choose to com-
pare this with a simple late fusion, which is a weighted av-
erage of the outputs of the unimodal models, the weight be-
ing grid-searched. The mid-level fusion model is referred
to as middleDL and the late fusion model as lateDL.

4. EXPERIMENT

4.1 Dataset

The MSD [2] is a large dataset commonly used for MIR
tasks. The tracks are associated with tags from LastFM 2 ,
some of which are related to mood. We apply the proce-
dure described by Hu and Downie in [11] to select the tags
that are akin to a mood description. We then make use of
the dataset published by Warriner et al. [30] which asso-
ciates 14,000 English words with their embedding in Rus-
sell’s valence/arousal space. We use it for embedding pre-

2 http://www.last.fm/

viously selected tags into the valence/arousal space. When
several tags are associated with the same track, we retain
the mean of the embedding values. Finally, we normal-
ize the database by centering and reducing valence and
arousal. It would undoubtedly be more accurate to have
tracks directly labeled with valence/arousal values by hu-
mans, but no database with sufficient volume exists. An
advantage of this procedure is its applicability to differ-
ent mood representations, and thus to different existing
databases.

The raw audio signal and lyrics are not provided in the
MSD. Only features are available, namely MFCCs for
audio, word-counts for lyrics. For this reason, we use a
mapping between the MSD and the Deezer catalog using
the song metadata (song title, artist name, album title) and
have then access to raw audio signals and original lyrics
for a part of the songs. As a result, we collected a dataset
of 18,644 annotated tracks. We note that lyrics and au-
dio are not synchronized. Automatic synchronization be-
ing outside of the scope of this work, we resort to a simple
heuristic for audio-lyrics alignment. It consists of aligning
both modalities proportionally based on their respective
length, i.e. for a certain audio segment, we extract words
from the lyrics that are at the corresponding location rel-
atively to the length of the lyrics. We release the labels,
along with Deezer song identifiers, MSD identifiers, artist
and track name 3 . More data can be retrieved using the
Deezer API 4 . Unfortunately, we cannot release the lyrics
and music, due to rights restrictions.

We train the models on approximately 60% of the
dataset, and validate their parameters with another 20%.
Each model is then tested on the remaining 20%. We re-
fer to these three sets as training, validation and test set,
respectively. We split the dataset randomly, with the con-
straint that songs by the same artist must not appear in two
different sets (since artist and moods may be correlated).

4.2 Implementation details

For audio, we use a mel-spectrogram as input to the net-
work, with 40 mel-filters and 1024 sample-long Hann win-
dow with no overlapping, with a sampling frequency of
44.1kHz, computed with YAAFE [20]. We use data aug-
mentation, that was investigated for audio and proven use-
ful in [25], in order to grow our dataset. First, we decide
to extract 30 second long segments from the original track.
The input of the network is consequently of size 40*1292.
We choose to sample seven extracts per track: we draw
them uniformly from the song. We also use pitch shifting
and lossy encoding, which are transformations with which
emotion is invariant, and get three extra segments per orig-
inal sample. In the end, we get a 28-fold increase in the
size of the training set.

For lyrics, the input word embedding was computed
with gensim’s implementation of word2vec [23] and we
used 100-dimensional vectors. We use data augmentation

3 https://github.com/deezer/deezer_mood_detection_
dataset

4 https://developers.deezer.com/api
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mode model valence arousal

audio
CA 0.118 0.197

ConvNet 0.179 0.235

lyrics

CA 0.140 0.032
CBOW 0.080 0.031
LSTM 0.117 0.027
GRU 0.106 0.017

biLSTM 0.076 0.017
2LSTMs 0.128 0.024

ConvNet+LSTM 0.134 0.026
2ConvNets+2LSTMs 0.127 0.022

bimodal
CA 0.219 0.216

LateDL 0.194 0.235
middleDL 0.219 0.232

Table 2. R2 scores of the different tested approaches.

for lyrics as well by extracting seven 50-word segments
from each track. Consequently, the input of each neural
network is of size 100*50.

4.3 Results

We present the results and compare in particular deep
learning approaches with classical ones. The results are
presented in Tab. 2 and 3. In the latter, CA refers to classi-
cal models (described in Sect. 2).

Unimodal approaches. The results of each unimodal
model are given in Table 2. For lyrics-based ones, we have
tested several models without feature engineering. The
highest performing method, on both validation and test set,
is based on both recurrent and convolutional layers. In the
following, we choose this model as the one to be compared
with classical models.

For both unimodal models, one can see a similar trend
for classical and deep learning approaches: lyrics and au-
dio achieve relatively similar performance on valence de-
tection, whereas audio clearly outperforms lyrics when
it comes to arousal prediction. This is unsurprising, as
arousal is closely related to rhythm and energy, which are
essentially induced by the audio signal. On the contrary,
valence is explained by both lyrics and audio, indicating
that the positivity of an emotion can be conveyed through
the text as well as through the melody, the harmony, the
rhythm, etc. Similar observations were made by Laurier et
al. [16], where angry and calm songs were classified sig-
nificantly better by audio than by lyrics, and happy and
sad songs were equally well-classified by both modalities.
This is consistent with our observations, as happy and sad
emotions can be characterized by high and low valence,
and angry and calm emotions by high and low arousal.

When looking more closely at the results, one can
observe that deep learning approaches are much higher
performing than classical ones when it comes to predic-
tion based on audio. On the contrary, classical lyrics-
based models are higher performing than our deep learning
model, in particular when it comes to valence detection,
which is the most informative task for the study on lyrics
only (as stated above). The reason can be that classical sys-

tems resort to several emotion related lexicons designed by
psychological studies. On the contrary, classical audio fea-
ture engineering for mood detection does not make use of
such external resources curated by experts.

Late fusion analysis. As stated earlier, the late fusion
consists of a simple optimal weighted average between the
prediction of both unimodal models. We resort to a grid-
search on the value of the weighting between 0 and 1. The
result for the reimplementation of traditional approaches
and for our model is presented in Table 3. One can ob-
serve a similar phenomenon for both classical models and
ours. In both cases, the fusion of the modalities does not
significantly improve arousal detection performance com-
pared to audio-based models. It is as predicted, as we saw
that audio-based models perform significantly better than
lyrics-based ones. For deep learning models, using lyrics
in addition to audio in a late fusion scheme leads to no im-
provement, so there is no gain added by using lyrics. When
it comes to valence detection, both modalities are valu-
able: in both approaches, the top performing model is a
relatively balanced average of unimodal predictions. Here
also, these observations generalize to valence/arousal what
was observed on the emotions happy, sad, angry and calm
in [16]. Indeed, based on this study, not only are lyrics
and audio equally performant for predicting happy and sad
songs, but they are also complementary, so that fused mod-
els can achieve notably better accuracies. However, pre-
dicting angry and calm songs is not improved when using
lyrics in addition to audio.

Bimodal approaches comparison. Bimodal method
performances are reported in Table 2. Several interest-
ing remarks can be made based on these results. First
of all, one can notice that if one compares late fusion
for both approaches, arousal detection is outperformed by
deep learning systems, as the corresponding unimodal ap-
proach based on audio is more performant, and we have
seen that lyrics-based arousal detection is in both cases
performing poorly. On the contrary, late fusion for valence
detection yields better results for classical systems. In this
case, the lack of performance of lyrics-based methods re-
lying on deep learning is not compensated for by a slightly
improved audio-based performance.

However, when it comes to mid-level fusion presented
in paragraph 3.3, there is a clear improvement for valence
detection. It seems to indicate that there might be ear-
lier correlations between both modalities, that our model
is able to detect. Concerning arousal detection, the capac-
ity of the network to unveil such correlations seems use-
less: we have seen that our lyrics-based model is not able
to bring additional information to the audio-based model.

This performing fusion, along with more accurately
predicted valence thanks to audio, is sufficient for achiev-
ing similar performance to classical approaches, without
the use of any external data designed by experts. Inter-
estingly, both models remain useful, as long as they learn
complementary information. For valence detection, an op-
timized weighted average of the predictions of both models
yields the performance presented in Table 4. We can see
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coefficient* 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Feature engineering approaches
valence 0.133 0.163 0.186 0.201 0.211 0.211 0.207 0.192 0.174 0.147 0.112
arousal 0.034 0.081 0.121 0.152 0.178 0.199 0.211 0.217 0.218 0.212 0.201

Deep learning approaches
valence 0.118 0.136 0.152 0.165 0.175 0.182 0.186 0.188 0.187 0.183 0.177
arousal 0.025 0.065 0.102 0.135 0.164 0.19 0.212 0.231 0.246 0.257 0.265

Table 3. R2 scores of the late fusion of unimodal models for classical approaches and deep learning approaches, for
different values of weighting. *This coefficient is the weight of the audio prediction. The weight of the lyrics prediction is
its complementary to one.

modalities BWC*
CA and DL

CA DL
mean

audio 0.7 0.193 0.118 0.179
lyrics 0.5 0.177 0.140 0.134
fused 0.5 0.243 0.219 0.219

Table 4. R2 scores of the optimal weighted mean of classi-
cal and deep learning approaches for valence prediction for
different modalities. *BWC: best weighting coefficient.
This coefficient is the optimal weight of the deep learning-
based prediction. CA and DL respectively refers to classi-
cal approaches and deep learning methods.

a significant gain obtained for a balanced average of both
predictions, indicating that both models have different ap-
plications, in particular when it comes to lyrics-based va-
lence detection.

5. CONCLUSION AND FUTURE WORK

We have shown that multimodal mood prediction can go
without feature engineering, as deep learning-based mod-
els achieve better results than classical approaches on
arousal detection, and both methods perform equally on
valence detection. It seems that this gain of performance is
the results of the capacity of our model to unveil and use
mid-level correlations between audio and lyrics, particu-
larly when it comes to predicting valence, as we have seen
that for this task, both modalities are equally important.

The gain of performance obtained when using this fu-
sion instead of late fusion indicates that further work can be
done for understanding correlations between both modal-
ities, and there is no doubt that a database with synchro-
nized lyrics and audio would be of great help to go further.
Future work could also rely on a database with labels indi-
cating the degree of ambiguity of the mood of a track, as
we know that in some cases, there can be significant vari-
ability between listeners. Such databases would be partic-
ularly helpful to go further in understanding musical emo-
tion. Temporally localized label in sufficient volume can
also be of particular interest. Future work could also lever-
age unsupervised pretraining to deep learning models, as
unlabeled data can be easier to find in high volume. We
also leave it as a future work to pursue improvements of
lyrics-based models, with deeper architectures or by op-
timizing word embeddings used as input. Studying and
optimizing in detail ConvNets for music mood detection
offers the opportunity to temporally localize zones respon-
sible for the valence and arousal of a track, which could be

of paramount importance to understand how music, lyrics
and mood are correlated. Finally, by learning from feature
engineering approaches, one could use external resources
designed by psychological studies to improve significantly
the prediction accuracy, as indicated by the complementar-
ity of both approaches.
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[23] Radim Řehůřek and Petr Sojka. Software Framework
for Topic Modelling with Large Corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45–50, Valletta,
Malta, May 2010. ELRA. http://is.muni.cz/
publication/884893/en.

[24] James A Russell. A circumplex model of affect. Jour-
nal of personality and social psychology, 39(6):1161,
1980.

[25] Jan Schluter and Sebastian Bock. Improved musical
onset detection with convolutional neural networks.
In Acoustics, speech and signal processing (icassp),
2014 ieee international conference on, pages 6979–
6983. IEEE, 2014.

[26] Feng Su and Hao Xue. Graph-based multimodal mu-
sic mood classification in discriminative latent space.
In International Conference on Multimedia Model-
ing, pages 152–163. Springer, 2017.

[27] George Trigeorgis, Fabien Ringeval, Raymond
Brueckner, Erik Marchi, Mihalis A Nicolaou, Björn
Schuller, and Stefanos Zafeiriou. Adieu fea-
tures? end-to-end speech emotion recognition using
a deep convolutional recurrent network. In Acous-
tics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on, pages 5200–
5204. IEEE, 2016.

[28] George Tzanetakis. Marsyas submissions to MIREX
2007. In ISMIR, 2007.

[29] Xing Wang, Xiaoou Chen, Deshun Yang, and Yuqian
Wu. Music emotion classification of chinese songs
based on lyrics using tf* idf and rhyme. In ISMIR,
pages 765–770, 2011.

[30] Amy Beth Warriner, Victor Kuperman, and Marc
Brysbaert. Norms of valence, arousal, and dominance
for 13,915 english lemmas. Behavior research meth-
ods, 45(4):1191–1207, 2013.

[31] Dan Yang and Won-Sook Lee. Disambiguating music
emotion using software agents. In ISMIR, volume 4,
pages 218–223, 2004.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 375



IDENTIFYING EMOTIONS IN OPERA SINGING: IMPLICATIONS OF
ADVERSE ACOUSTIC CONDITIONS

Emilia Parada-Cabaleiro1 Maximilian Schmitt1 Anton Batliner1
Simone Hantke1,2 Giovanni Costantini3 Klaus Scherer4 Björn W. Schuller1,5

1ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
2 Machine Intelligence & Signal Processing Group, Technische Universität München, Germany

3 Department of Electronic Engineering, University of Rome Tor Vergata, Italy
4 Department of Psychology, University of Geneva, Switzerland

5 GLAM – Group on Language, Audio & Music, Imperial College London, UK
emilia.parada-cabaleiro@informatik.uni-augsburg.de

ABSTRACT

The expression of emotion is an inherent aspect in singing,
especially in operatic voice. Yet, adverse acoustic condi-
tions, as, e. g., a performance in open-air, or a noisy analog
recording, may affect its perception. State-of-the art meth-
ods for emotional speech evaluation have been applied to
operatic voice, such as perception experiments, acoustic
analyses, and machine learning techniques. Still, the extent
to which adverse acoustic conditions may impair listen-
ers’ and machines’ identification of emotion in vocal cues
has only been investigated in the realm of speech. For our
study, 132 listeners evaluated 390 nonsense operatic sung
instances of five basic emotions, affected by three noises
(brown, pink, and white), each at four Signal-to-Noise Ra-
tios (-1 dB, -0.5 dB, +1 dB, and +3 dB); the performance of
state-of-the-art automatic recognition methods was evalu-
ated as well. Our findings show that the three noises af-
fect similarly female and male singers and that listeners’
gender did not play a role. Human perception and auto-
matic classification display similar confusion and recog-
nition patterns: sadness is identified best, fear worst; low
aroused emotions display higher confusion.

1. INTRODUCTION

Singing is a channel to communicate emotion that goes be-
yond culture or time, as shown by a variety of common mu-
sical representations across the world over centuries: as,
e. g., lullabies [39] (typical expression of parental love) or
spiritual chant [20] (typical expression of mystic feelings).
In western music, the emotional expression in singing
voice is inexorably linked to the Italian Opera which has

c© Emilia Parada-Cabaleiro, Maximilian Schmitt, Anton
Batliner, Simone Hantke, Giovanni Costantini, Klaus Scherer, Björn W.
Schuller. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Emilia Parada-Cabaleiro,
Maximilian Schmitt, Anton Batliner, Simone Hantke, Giovanni Costan-
tini, Klaus Scherer, Björn W. Schuller. “Identifying Emotions in Opera
Singing: Implications of Adverse Acoustic Conditions”, 19th Interna-
tional Society for Music Information Retrieval Conference, Paris, France,
2018.

had, from the XVIII century (through the development of
the belcanto [38]) till the XIX century (with the advent of
the Melodramma Verdiano [38]) a focus on the dramatic–
emotional interpretation of the opera’s characters [10].

The Opera was born in Italy at the beginning of the
XVII century as an ‘entertainment’ [12]. Even though
Opera is no longer the most common leisure activity,
its cultural importance is still shown by thousands of
‘opera performances’ made every year—6,795 only in
Germany for the 2015 / 2016 season 1 ; and by thousands
of ‘opera recordings’ available in multi-media libraries—
21,054 items only in the Istituto Centrale per i Beni
Sonori ed Audovisivi (The National Italian Audiovisual In-
stitute 2 ). Yet, opera may face ‘real-world’ acoustic degra-
dation, e. g., from open-air performances [3] or from ana-
log recordings [22]. Indeed, improving the acoustics of an
opera house is a central topic of sound engineering [2], as
well as the application of digital signal processing solu-
tions to the restoration of old recordings [11].

Even though emotion in opera singing has been stud-
ied from the perceptual [34], acoustic [32], and automatic
recognition [7] point of view, it has not been evaluated so
far up to which extent restricted acoustic quality affects
the perception and classification of emotion in singing.
In this regard, we present a perceptual study (based on a
forced-choice categorical [6] and dimensional [28] test),
performed by 132 Italian listeners, who evaluated 390 non-
sense instances, sung by 6 professional opera singers (3
female), in 5 emotional states (hot anger, elated happi-
ness, depressive sadness, panicked fear, and worried fear),
subsequently masked by three noises (white, pink, and
brown) at 4 signal-to-noise ratios (-1 dB, -0.5 dB, +1 dB,
and +3 dB). The performance of state-of-the-art emotion
recognition methods based on a Support Vector Machine
classifier and ComParE features [36] is evaluated as well.
In Section 2, related work is described; Sections 3 and 4
evaluate the database and the listening test; Section 5 dis-
cusses the results for the machine learning approach; fi-
nally, Section 6 outlines conclusions and future work.

1 http://operabase.com/top.cgi?lang
2 http://opac2.icbsa.it/vufind/
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% 33 œ œ œ œ œ œ œ œ
Ne kal i bam so ud mo len- - -

Figure 1: The nonsense utterance ‘Ne kal ibam soud molen’ sung in an ascending scale for each emotional state.

Figure 2: Correspondence between emotion categories and
the bi-dimensional model of the five ‘real’ labels, i. e., hot
anger (HOTan), elated happiness (ELAha), depressive sadness
(DEPsa), panicked fear (PANfe), and worried fear (WORfe),
in bold; and the three dimensional ‘distractors’, i. e., cold anger
(COLan), pleasured happiness (PLEha), and desperate sadness
(DESsa), considered in the perception test.

2. RELATED WORK

Even though emotions are typically expressed through the
voice, emotional singing has received little attention com-
pared to emotional speech [29]. Yet, the similarity between
both channels (i. e., speech and singing [19, 33]) has re-
cently encouraged researchers to analyse the expression
and perception of sung emotional content [4]. Methods
typically used in emotional speech research [1] have also
been applied to singing—with special attention to the op-
eratic voice—such as acoustic evaluation [23, 27, 32, 37]
or perception assessment [15, 16, 34]. Furthermore, in
the realm of affective computing, state-of-the-art machine
learning techniques, typically used in audio signal process-
ing for speech emotion recognition, have also been applied
to the study of the a cappella singing voice [7, 40].

In the assessment of emotional speech, it has been
shown that listeners’ perception, acoustic feature analy-
sis, and machine learning techniques, are affected by noisy
backgrounds [25,35], which are typical of ‘real-world’ en-
vironments and recordings. Yet, although singing mostly
takes place in adverse acoustic conditions, the extent to
which these may impair a listener’s ability to perceive its
inherent emotion, and how the robustness of automatic sys-
tems for emotion recognition in singing might be impaired,
has not been, to the best of our knowledge, assessed so far.

3. METHODOLOGY

3.1 An Emotional Corpus of a Cappella Opera Singing

We took into account a selection of sentences from a
dataset of the emotional singing voice [7,33] in which pro-
fessional opera singers performed a variety of sentences
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Figure 3: A comparison of the spectral distribution between 0–
2 kHz and -80–0 dB, for the brown, pink, white, and real noise.

in different emotional states correlated to several levels of
arousal (intensity) and valence (hedonistic value). Since
linguistic meaning may influence listener perception of the
emotional content, in order to avoid such a bias [31], the
nonsense sentence ne kal ibam soud molen! has been con-
sidered. For a gender-balanced distribution of voice types,
six singers have been selected: three females (two sopra-
nos and one mezzosoprano) and three male (two tenors and
one countertenor), who produced five times the nonsense
sentence with an ascending scale (cf. Figure 1), each time
expressing a different emotional state.

Following previous research on the perception of emo-
tion in operatic voice [16], four basic emotions have been
considered: anger, with high arousal (intensity), i. e., hot
anger; happiness, high aroused, i. e., elated happiness; sad-
ness, low aroused, i. e., depressive sadness; and fear, with
both high arousal, i. e., panicked fear, and low arousal, i. e.,
worried fear (cf. Figure 2). Thus, considering one non-
sense sentence, expressed in five emotional states by six
singers, 30 ‘clean’ stimuli in total have been employed.

3.2 Manipulation Techniques

The perception of emotion in speech is especially compro-
mised by pink, and to a lesser extent by white and brown
noise [25]. In Figure 3, the spectrum of a ‘real’ back-
ground noise, digitised from a ‘no-musical fragment’ of an
LP recording 3 , is compared with brown, pink, and white
noise. The ‘real’ noise displays higher energy in the lowest
frequencies, presenting a negative slope of approximately
6 dB per octave up to 1 kHz, a constant area from 1 kHz
to 3 kHz, and a fall of energy of approximately 10 dB per
octave above 3 kHz. Its acoustic characteristics makes it
most similar to brown noise, which presents a negative

3 Recording of the aria Vissi d’amore (Puccini’s Tosca), interpreted by
Giannina Arangi and produced in 1932 by Columbia records.
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Figure 4: Mean accuracy in % of the ‘real’ emotions (cf. caption Figure 2) perceived by female (F) and male (M) listeners; in clean (cl)
conditions, background noises (brown, pink, and white), and 4 SNR (-1 dB, -0.5 dB, +1 dB, and +3 dB); sung by females and males.

slope of around 6 dB per octave (1/f2 noise); slightly sim-
ilar to pink, with a negative slope of approximately 3 dB
per octave (1/f noise); and dissimilar to white, whose flat
spectrum presents all the frequencies at the same level.
Note that the given comparison aims at exemplifying po-
tential similarities between ‘real’ and ‘artificially gener-
ated’ noise; noise from different recordings may display
higher similarity with pink, white, or other noise types.

We evaluated listeners’ perception of emotion in ad-
verse acoustic conditions by applying four Signal-to-Noise
Ratio (SNR) levels (-1 dB, -0.5 dB, +1 dB, +3 dB) and three
noises (brown, pink, white) to the ‘clean’ samples. The
noises, normalized to -1 dB, have been artificially gener-
ated and mixed (at the specified SNR value) in Matlab
R2014a [21]. Given 6 singers, 1 sentence sung in 5 emo-
tional states, 3 noises, and 4 applied SNR levels yields
6 x 1 x 5 x 3 x 4 = 360 ‘noisy’ samples plus 30 ‘clean’ sam-
ples = 390 stimuli in total.

4. PERCEPTION STUDY

4.1 Emotion Measurement

The two prominent models considered to evaluate listen-
ers’ perception of emotional speech, i. e., the categorical
[6], which identifies each emotional state with a specific
category, and the dimensional [28], which identifies each
emotional state within a continuous hyper-space charac-
terised by dimensions—commonly arousal (from low to
high) and valence (from negative to positive)—have al-
ready been applied to the perceptual evaluation of emotion
in singing [16,26]. Yet, which of them would be more suit-
able to evaluate listeners’ perception of emotion, is still an
open question in both the musical domain [5] and speech
research [18]. Both models have been taken into account
for the perception test, i. e., each of the 4 considered basic
emotions—anger, happiness, sadness, and fear (cf. Sec-
tion 3.1)—has been defined in the bi-dimensional space,
by having a level of arousal and valence (cf. Figure 2).

Five of these eight emotional categories (hot anger,
elated happiness, depressive sadness, panicked fear, and
worried fear), are ‘real’ emotions effectively expressed by
the singers in the dataset. The other three (cold anger, plea-
sured happiness, and desperate sadness), so-called ‘dis-
tractor labels’ [24]—emotion categories not displayed in
the evaluated data, have the purpose to ‘distract’ the listen-
ers by minimising the chances of performing ‘discrimina-
tion’ rather than ‘recognition’ [30]. Furthermore, disgust
and surprise (the remaining two basic emotions—in addi-
tion to anger, fear, sadness, and happiness—amongst those

known as ‘big six’ [6]), have also been considered as ‘dis-
tractors’, without indicating a specific dimensional level;
we thus present a balanced set of perceptual choices: five
‘real’ emotions and five ‘distractors’.

4.2 Listening test setup

In total, 132 Italian listeners (55 f, 77 m, mean age 20.7
years, standard deviation 2.5 years) took part in the per-
ception study. The participants were all students of the
engineering faculty of the ‘Tor Vergata’ university (Rome)
and received credits for their participation. To avoid fa-
tigue, the 390 stimulus were similarly distributed into four
sessions, each designed to last not longer than 30 minutes.
Out of the 132 listeners, 101 had no musical instruction,
27 were self-taught in piano or guitar, 4 had studied in the
conservatory—piano (2), flute, and accordion. Their musi-
cal interest was mostly in pop (65 listener), rock (45 listen-
ers), and hip-hop (22 listeners); other genres as, e. g., Ital-
ian music, heavy-metal, or classic were underrepresented
(less than 10 listeners). Since none of them had stud-
ied singing or demonstrated interest in opera, we consider
them as a unique group of non-experts.

The test was designed as a forced-choice task; the ten
emotion categories were presented and the participants
could choose one out of them after listening to each stimu-
lus (an initial training was provided). The test was hosted
on a browser based interface (accessible from any com-
puter) provided through the gamified crowd-sourcing plat-
form iHEARu-PLAY [14]. To ensure a consistent listening
environment, the participants were instructed to use ear-
phones. Although the listeners had the possibility of lis-
tening to each stimulus indefinitely, they were encouraged
to answer spontaneously to the randomized samples.

4.3 Results and discussion

Emotions were identified best in clean conditions; female
listeners were slightly more accurate than male; emotions
in male voices were somewhat better identified than in fe-
male voices (cf. Figure 4). Listeners’ and singers’ gender-
related differences turned out to be not significant. In the
former case, the biggest distance, i. e., female and male
listeners evaluating male voices in pink noise at -1 SNR
(21.6% vs 17.6%), corresponds to a p value in Pearson Chi-
square of = .47 (way above the conventional threshold for
significance of p < .05). In the latter case, the biggest dis-
tance, i. e., female and male voices perceived by male lis-
teners in clean conditions (17.2 % vs 22.2 %) did not yield
a significant difference either (p = .37). Thus, the further
evaluations will not consider gender.
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%
Real emotions Distractor labels

#
HOTan ELAha DEPsa PANfe WORfe COLan PLEha DESsa DIS SUR

HOTan 26.6 14.7 05.5 03.2 05.2 26.4 9.2 02.8 01.7 04.5 6
ELAha 13.1 18.4 07.6 04.4 05.9 19.7 18.3 04.1 03.3 05.2 6
DEPsa 01.0 03.6 42.0 03.6 05.7 07.0 12.3 21.4 01.2 02.2 6
PANfe 09.8 06.1 22.8 06.8 06.6 19.7 12.0 09.6 02.3 04.3 6

WORfe 12.6 08.8 14.4 08.2 08.5 21.2 14.2 05.1 02.2 04.9 6

total 63.1 51.7 92.3 26.1 31.9 93.9 66.4 43.0 10.7 21.1 30

Table 1: Listeners’ perception (in %) of the clean instances (#), considering ‘real’ emotions and ‘distractors’ (cf. Figure 2, disgust—DIS,
and surprise—SUR). Each row gives the ‘reference’, darker cells indicate higher % ; listeners’ and singers’ gender is not considered.

% HOTan ELAha DEPsa PANfe WORfe mean

cl 26.6 18.4 42.0 06.8 08.5 20.5
br 13.7 10.9 42.9 04.8 06.5 15.8
pi 12.9 09.5 45.1 05.2 11.5 17.0
wh 10.0 09.1 49.7 04.8 08.5 16.4

Table 2: Perception accuracy (in %) of HOTan, ELAha, DEPsa,
PANfe, and WORfe (cf. Figure 2), in clean (cl) and noisy back-
ground: brown (br), pink (pi), white (wh) at -1 dB SNR. Mean
accuracy is given; each row gives results for 30 instances.

The results for clean conditions show that the emo-
tional state most accurately perceived is DEPsa (42.0%),
followed by HOTan (26.6%), and ELAha (18.4%); worse
recognised were WORfe (08.5%) and PANfe (06.8%).
HOTan was mainly confused with COLan, ELAha with
PLEha, and DESsa with DEPsa (cf. Table 1), suggest-
ing that listeners discriminate better between two different
emotions than between two arousal levels of the same emo-
tion. The ‘distractors’ DIS and SUR have been rarely cho-
sen (less than 5.5 %). Confusion between different emo-
tions within the same arousal level took mostly place be-
tween HOTan vs ELAha (high arousal) and WORfe vs
COLan (low arousal); this can be explained by the acous-
tic similarities between them. In Figure 5, the Chroma 4

representation of emotional singing performed by a female
singer (soprano) displays that HOTan and DEPsa are ex-
pressed differently. HOTan, as shown in acted speech [13],
is expressed through articulated prosody, acoustically char-
acterised by a strong decay in amplitude and lower slope
declinations, which is displayed by a richer spectrum on
partials with less differences between the energy of low
and high frequencies. DEPsa, on the contrary, is expressed
through sustained amplitude for each note, which concen-
trates more energy in F0 and less in higher harmonics.
ELAha presents a spectrum and articulation at mid point
between the previous ones.

As expected (apart from a rare exceptions in the percep-
tion of female voices at −0.5 dB SNR in brown noise), lis-
teners’ accuracy decreases with the increment of noise (cf.
Figure 4), i. e., higher SNR (−1 dB and −0.5 dB) yielded
lower accuracy. By evaluating the perception of emo-
tion in clean and −1 dB SNR conditions, (cf. Table 2),
HOTan and ELAha were affected most by noise, DEPsa

less, WORfe and PANfe were perceived similarly to clean
background. The three noises affected perception in a
similar way: brown slightly more (15.8 % mean accu-

4 Chroma features have been extracted by OPENSMILE [8].

% HOTan ELAha DEPsa PANfe WORfe COLan

cl 63.1 51.7 92.3 26.1 31.9 93.9
br 36.3 41.4 112.9 26.3 32.4 109.1
pi 44.1 37.9 138.1 26.7 27.7 107.2
wh 36.3 34.8 125.1 25.6 28.8 117.7

Table 3: Sum of columns (in %) ‘perceived as’ for the ‘real’ emo-
tions: HOTan, ELAha, DEPsa, PANfe, WORfe; the ‘distractor’
COLan (cf. Figure 2), in clean (cl) and -1 dB SNR background:
brown (br), pink (pi), white (wh); each row encodes 30 instances.

racy), pink less (17.0 % mean accuracy). Yet, the higher
level of accuracy in pink and white noises is due to an
improvement—caused by an increment in the confusion
towards low aroused emotions—in the accuracy of DEPsa,
rather than to a lower detriment in the overall accuracy.
This phenomenon relates to an acoustic ‘flattening’ by the
noise of the characteristics typical of each emotion, caus-
ing perception as sustained, with lower energy, and atten-
uated articulation, i. e., similarly to low aroused emotions.
Indeed, the chromogram for HOTan, ELAha, and DEPsa,
masked by pink noise at −1 dB (cf. Figure 6), displays
comparable acoustic representation for the three emotions.

To evaluate such phenomena, for each confusion
matrix—obtained by the perception in clean and −1 dB
SNR conditions—the sum of the columns has been com-
puted, by that counting for each emotion all the responses
‘identified as’ (cf. ‘total’ in Table 1). Confirming previous
findings [25], the confusion in background noise mostly in-
creases for the low aroused emotions DEPsa and COLan,
and decreases for the high aroused HOTan and ELAha (cf.
Table 3). No meaningful differences are displayed for the
other emotions across conditions.

5. AUTOMATIC RECOGNITION

5.1 Methods

We employed state-of-the-art methods for emotion recog-
nition of vocal cues by applying a Support Vector Machine
(SVM) classifier with linear kernel, from the open–source
toolkit LIBLINEAR [9], and the ComParE 2013 challenge
features set [36], extracted with OPENSMILE [8]. Since
our goal is to evaluate how background noises may affect
the classification performance in general, only state-of-the-
art methods for automatic recognition of emotion in the
operatic voice [7] have been taken into account.

For speaker independence, we split the 390 instances
into three sets (A, B, and C), considering for each 130 in-
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Figure 5: Chroma representation of the instances expressing: Hotan, ELAha, and DEPsa (from left to right); sung by one of the soprano.
The y axis gives the C natural scale; the x axis the time in miliseconds. Dark blue indicates the lower level of energy, red the higher.
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Figure 6: Chroma representation of the instances given in Figure 5 masked by pink noise at −1 dB SNR.

stances sung by two different singers (one female and one
male), and performing the experiments in two phases—
development and test. For the development phase we con-
sidered one set as training (e. g., A), and another as test
(e. g., B); 30 levels of complexity (from 230 to 20) have
been tested to optimise the SVM performance. In the test
phase, we merged the sets A and B for training and consid-
ered the set C as test; the complexity which achieved best
results in the development phase was taken into account as
optimisation parameter for the SVM. This procedure was
carried out with the six possible permutations between the
three sets, and the results were averaged.

We performed binary classification on five classes, i. e.,
each class was recognised against the other four. In the
training phase, the minority class was upsampled to match
the sample size of the remaining classes together; for each
noise, all the SNR were considered together. We em-
ployed the whole ComParE 2013 features set [36], en-
compassing 6374 acoustic features in total: 64 low-level
descriptors—LLD, and several functionals [7], in four sub-
sets: mel-frequency cepstral coefficients—mfcc (1,400
features), spectrum (4,300), prosody (183), and voice qual-
ity (390).

5.2 Results and discussion

The classification of five classes (cf. Table 4) mirrors
the perception findings (cf. Table 2) for all the feature
sets: DEP being classified best, HOT and ELA in be-
tween, and PAN and WOR worse. The mfcc sub-set per-
forms best, showing the highest Unweighed Average Re-
call (UAR), i. e., the mean average of the recall per class
over the six permutations. In order to visualise these re-

% HOT ELA DEP PAN WOR UAR

ComParE 26.3 28.2 77.6 07.0 18.6 31.5
mfcc 34.6 30.1 71.8 07.7 26.3 34.1
spec 26.9 25.0 82.0 03.8 12.2 30.0

prosody 17.3 22.4 48.1 08.3 21.1 23.5
vq 34.6 27.6 53.2 11.5 14.7 28.3

Table 4: Test classification accuracy and Unweighed Average
Recall (UAR) in % for the ‘real’ emotions (HOT, ELA, DEP,
PAN, WOR, cf. Figure 2), considering the four conditions—clean
and the three noises—together, for each feature set: ComParE,
mfcc, spectrum (spec), prosody, and voice quality (vq).

% ComParE mfcc spec prosody vq mean

cl 35.0 40.0 36.6 23.3 25.0 32.0
br 31.6 35.4 30.8 23.7 28.7 30.0
pi 32.0 36.2 28.3 22.9 25.4 29.0
wh 30.0 29.1 29.1 23.7 31.6 28.7

Table 5: UAR for test in % for each feature set (cf. caption of
Table 4), in each condition: clean (cl), brown (br), pink (pi), white
(wh). In noisy background the 4 SNR are considered together.

sults, in Figure 7, a 2-dimensional Non-Metrical Multi-
Dimensional Scaling (NMDS, [17]) solution is given. It
shows a non-metrical visual representation of the optimal
distances between the evaluated categories. DEP, since
best recognised—thus classified as different—is more dis-
tant to the other classes in all the emotional constellations.

The feature set with the best performance (mfcc, cf. Ta-
ble 4) displays an arousal related pattern, the high aroused
emotions (HOT, ELA, PAN), clustered together, the low
aroused (WOR, DEP) more distant. This may relate to the
level of energy: higher in the former, lower in the latter
(cf. Figure 5). The decline in UAR goes together with
the condensation of the emotions in the 2-dim space, as
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Figure 7: 2-dim NMDS solution for the five feature sets in the classification of the five ‘real’ emotions, considering the 390 instances
(cf. caption of Table 4). Kruskal’s stress is given as a measure of fit for 2-dim and 1-dim solution respectively: ComParE (6.3e-07,
4.0e-05); mfcc (3.4e-07, 0.1); spectrum (1.3e-17, 7.5e-16), prosody (6.9e-07, 9.2e-07); voice quality (1.3e-16, 4.8e-05).

Figure 8: 2-dim NMDS solution for listeners’ perception (in clean condition) and classification (in clean and noisy conditions) with mfcc
features, of the five ‘real’ emotions. Kruskal’s stress is given for 2-dim and 1-dim solution respectively: Perception (4.3e-17, 6.6e-07);
Clean (1.2e-16, 7.3e-07); Brown (1.3e-16, 0.02), Pink (3.9e-07, 1.3e-05); White (6.9e-07, 3.0e-04).

HOT ELA DEP PAN WOR
40

50

60

70

80

90
%

Clean
Brown
Pink
White

Figure 9: UAR and std in % for binary classification, i. e., each
emotion against the other four, in the four conditions (cf. caption
of Figure 8), for the mfcc sub-set.

prominently shown for the voice quality sub-set (cf. Fig-
ure 7). As for listeners’ perception (cf. Table 2), for mfcc,
ComParE, and to some extent for spectral features, high-
est accuracy was achieved in clean condition, medium in
pink and brown, lower in white (cf. Table 5). Prosodic and
voice quality features performed worst, which relates to
both the considered musical instances and to the operatic
technique. On the one hand, the sung melodic contour is
the same for all utterances and emotions; thus, there are
no degrees of freedom for pitch leftover for the marking
of emotions. On the other hand, opera singing is charac-
terised by the ‘projection’ of the voice—a high control of
articulation (and by that, mfcc configurations), and a weak
use of different voice qualities when expressing emotions,
in contrast, for instance, to modern actors or pop singers.

In Figure 8, an NMDS visualisation for perception (in
clean condition) and mfcc classification (in the different
backgrounds) is given. The confusion in the perceptual
constellation relates mainly to the low accuracies achieved
in the listening test, which is given mostly by the use of
‘distractors’. As shown in Table 5, classification in clean
background yields the highest UAR, which is visually mir-
rored by the arousal-related pattern previously described,
i. e., high aroused emotions clustered together, low aroused

distant (DEP more, WOR less); this is more or less pre-
served for brown and pink noise but not for white noise
with lowest UAR, cf. Table 5.

The binary classification (cf. Figure 9) confirms again
the perceptual findings (cf. Table 2): DEP best recognised,
HOT and ELA at a medium level, PAN worse. WOR is
better classified than perceived, which relates to the spread
of the listeners’ responses motivated by the ‘distractor’
COLan. Indeed, WOR—having the same arousal—was
mainly misclassified by the listeners as COLan, thus de-
creasing the perception accuracy of the former. White
noise seems to affect binary classification more which
might suggest that higher frequencies (more masked in
white noise) could be more relevant for the identification
of emotion in singing; lower frequencies (more masked in
pink and brown noises), since related to pitch—thus to the
melodic contour, which is the same for all the samples—
might be less relevant for the emotional understanding in
this specific study but not in general.

6. CONCLUSIONS

The present study shows that brown, pink, and white
noises affect similarly the perception of emotion in op-
eratic singing: the lower the SNR, the lower the percep-
tion. Gender seems not be an influential factor, neither
for singers nor for listeners. In general, perception and
classification shows analogous emotional constellations re-
gardless the background, sadness being identified best, fear
worst. The use of ‘distractors’ influences listeners’ percep-
tion, affecting even more the accuracy of fear, an emotion
which seems not to have a typical expression in singing;
thus it is worse identified and easily confused. Voice qual-
ity features perform worst, mfcc best. In the former, this
relates to the voice ‘projection’ inherent to opera (which
minimise the differences between emotions), in the latter,
to the relevance of energy per band to discriminate between
sung emotions. Listeners’ low accuracy suggests that iden-
tifying emotion in opera singing may be challenging for
non trained subjects; thus, musically trained listeners will
be considered in future investigations.
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ABSTRACT 

We present a set of novel emotionally-relevant audio fea-

tures to help improving the classification of emotions in 

audio music. First, a review of the state-of-the-art regard-

ing emotion and music was conducted, to understand how 

the various music concepts may influence human emo-

tions. Next, well known audio frameworks were analyzed, 

assessing how their extractors relate with the studied mu-

sical concepts. The intersection of this data showed an un-

balanced representation of the eight musical concepts. 

Namely, most extractors are low-level and related with 

tone color, while musical form, musical texture and ex-

pressive techniques are lacking. Based on this, we devel-

oped a set of new algorithms to capture information related 

with musical texture and expressive techniques, the two 

most lacking concepts. To validate our work, a public da-

taset containing 900 30-second clips, annotated in terms of 

Russell’s emotion quadrants was created. The inclusion of 

our features improved the F1-score obtained using the best 

100 features by 8.6% (to 76.0%), using support vector ma-

chines and 20 repetitions of 10-fold cross-validation. 

1. INTRODUCTION 

Music Emotion Recognition (MER) research has increased 

in the last decades, following the growth of music data-

bases and services. This interest is associated to music’s 

ability to “arouse deep and significant emotions”, being 

“its primary purpose and the ultimate reason why humans 

engage with it” [1]. Different problems have been tackled, 

e.g., music classification [2]–[4], emotion tracking [5], [6], 

playlists generation [7], [8], exploitation of lyrical infor-

mation and bimodal approaches [9]–[12]. Still, some limi-

tations affect the entire MER field, among which: 1) the 

lack of public high-quality datasets, as used in other ma-

chine learning fields to compare different works; and 2) 

the insufficient number of emotionally-relevant acoustic 

features, which we believe are needed to narrow the exist-

ing semantic gap [13] and push the MER research forward. 

Furthermore, both the state-of-the-art research papers 

                                                             
1 http://www.music-ir.org/mirex/ 

(e.g., [14], [15]) and MIREX Audio Mood Classification 

(AMC) comparison1 results from 2007 to 2017 are still not 

accurate enough in easier classification problems with four 

to five emotion classes, let alone higher granularity solu-

tions and regression approaches, showing a glass ceiling in 

MER system performances [13].  

Many of the audio features applied currently in MER 

were initially proposed to solve other information retrieval 

problems (e.g. MFCCs and LPCs in speech recognition 

[16]) and may lack emotional relevance. Therefore, we hy-

pothesize that, in order to advance the MER field, part of 

the effort needs to focus on one key problem: the design of 

novel audio features that better capture emotional content 

in music, currently left out by existing features. 

This raises the core question we aim to tackle in this 

paper: can higher-level features, namely expressivity and 

musical texture features, improve emotional content detec-

tion in a song?  

In addition, we have constructed a dataset to validate 

our work, which we consider better suited to the current 

MER state-of-the-art: avoids overly complex or unvali-

dated taxonomies, by using the four classes or quadrants, 

derived from the Russell’s emotion model [17]; does not 

require a full manual annotation process, by using AllMu-

sic annotations and data2, with a simpler human validation, 

thus reducing resources needed. 

We achieved an improvement of up to 7.9% in F1-Score 

by adding our novel features to the baseline set of state-of-

the-art features. Moreover, even when the top 800 baseline 

features is employed, the result is 4.3% below the one ob-

tained with the top100 baseline and novel features set.  

This paper is organized as follows. Section 2 reviews 

the related work. Section 3 describes the musical concepts 

and related state-of-the-art audio features. Dataset acquisi-

tion, the novel audio features design and classification 

strategies are also presented. In Section 4, experimental re-

sults are discussed. Conclusions and future work are drawn 

in Section 5. 

2. RELATED WORK 

Emotions have been a research topic for centuries, leading 

to the proposal of different emotion paradigms (e.g., cate-

gorical or dimensional) and associated taxonomies (e.g., 

2 https://www.allmusic.com/moods 
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Hevner, Russell) [17], [18]. More recently, these have 

been employed in many MER computational systems, e.g., 

[2]–[7], [9], [12], [19], [20], and MER datasets, e.g., [4], 

[6], [20]. 
Regarding emotion in music, it can be view as: i) the 

perceived emotion, identified when listening; ii) emotion 

felt, representing the emotion felt when listening, which 

may be different from the perceived; iii) or the emotion 

transmitted, which is the emotion a performer intended to 

deliver. This work is focused on perceived emotions, since 

it is more intersubjective, as opposed to emotion felt, more 

personal and dependent of context, memories and culture. 

As for associations between emotions and musical at-

tributes, many features such as: articulation, dynamics, 

harmony, loudness, melody, mode, musical form, pitch, 

rhythm, timbre, timing, tonality or vibrato have been pre-

viously linked to emotion [8], [21], [22]. However, many 

are yet to be fully understood, still requiring further re-

search, while others are hard to extract from audio signals. 

These musical attributes can be organized into eight differ-

ent categories, each representing a core concept, namely: 

dynamics, expressive techniques, harmony, melody, musi-

cal form, musical texture, rhythm and tone color (or tim-

bre). Several audio features have been created (hereinafter 

referred to as standard audio or baseline features) and are 

nowadays implemented in audio frameworks (e.g. 

Marsyas [23], MIR toolbox [24] or PsySound [25]). Even 

though hundreds of features exist, most belong to the same 

category – tone color, while others were developed to 

solve previous research problems and thus might not be 

suited for MER (e.g., Mel-frequency cepstral coefficients 

(MFCCs) for speech recognition). On the other hand, the 

remaining categories are underrepresented, with expres-

sivity, musical texture or form nearly absent. 

Finally, as opposed to other information retrieval fields, 

MER researchers lack standard public datasets and bench-

marks to compare existent works’ adequately. As a conse-

quence, researchers use private datasets (e.g., [26]), or 

have access only to features and not the actual audio (e.g., 

[27]). While efforts such as the MIREX AMC task im-

prove the situation, issues have been identified. To begin 

with, the dataset is private, use in the annual contest only. 

Also, it uses an unvalidated taxonomy derived from data 

containing semantic and acoustic overlap [3]. 

3. METHODS 

In this section, due to the abovementioned reasons, we start 

by introducing the dataset built to validate our work. Fol-

lowing, we detail the proposed novel audio features and 

emotion classification strategies tested. 

3.1 Dataset Creation 

To bypass the limitations described in Section 2 we have 

created a novel dataset based using an accepted and vali-

dated psychological model. We decided on Russell’s cir-

cumplex model [17], which allows us to employ a simple 

                                                             
1 http://developer.rovicorp.com/docs 

taxonomy of four emotion categories, based on the quad-

rants resulting from the division by the arousal and valence 

(AV) axes).  
First, we obtained music data (30-second audio clips) 

and metadata (e.g., artist, title, mood and genre) from the 

AllMusic API1. The mood metadata consisted of several 

tags per song, from a list of 289 moods. These 289 tags are 

intersected with the Warriner’s list [28] – an improvement 

on ANEW adjectives list [29], containing 13915 English 

words with AV ratings according to Russell’s model. This 

intersection results in 200 AllMusic tags mapped to AV, 

which can be translated to quadrants. Since we considered 

only songs with three or more mood tags, each song is as-

signed to the quadrant that has the highest associated num-

ber of tags (and at least 50% of the moods are from it). 

The AllMusic emotion tagging process is not fully doc-

umented, apart from apparently being made by experts 

[30]. Questions remain on whether these experts are con-

sidering only audio, only lyrics or a combination of both. 

Besides, the 30-second clips selection that represent each 

song in AllMusic is also undocumented. We observed sev-

eral inadequate clips (e.g., containing noise such as ap-

plauses, only speech, long silences from introductions). 

Therefore, a manual blind validation of the candidate set 

was conducted. Subjects were given sets of randomly dis-

tributed clips and asked to annotate them according to the 

perceived emotion in terms of Russell’s quadrants. 

 The final dataset was built by removing the clips where 

the subjects’ and AllMusic derived quadrants’ annotations 

did not match. The dataset was rebalanced to contain ex-

actly 225 clips and metadata per cluster, in a total of 900 

song entries, which is publicly available in our site2. 

3.2 Standard or Baseline Audio Features 

Marsyas, MIR Toolbox and PsySound3, three state-of-the-

art audio frameworks typically used in MER studies, were 

used to extract a total of 1702 features. This high number 

is in part due to the computation of several statistical for 

the resulting time series data. To reduce this and avoid pos-

sible feature duplication across different frameworks, first 

we obtained the weight of each feature to the problem us-

ing ReliefF [31] feature selection algorithm. Next, we cal-

culated the correlation between each pair of features, re-

moving the lowest weight one for each pair with a correla-

tion higher than 0.9. This process reduced the standard 
audio features set to 898 features, which was used to 
train baseline models. These models were then used to 
benchmark models trained with the baseline and novel 
feature sets. An analogous feature reduction procedure 
was also performed in the novel features set presented 
in Section 3.3. 

3.3 Novel Audio Features 

Although being used constantly in MER problems, many 

of the standard audio features are very low-level, extract-

ing abstract metrics from the spectrum or directly from the 

audio waveform. Still, humans naturally perceive higher-

level musical concepts such as rhythm, harmony, melody 

2 http://mir.dei.uc.pt/downloads.html 
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lines or expressive techniques based on clues related with 

notes, intervals or scores. To propose novel features that 

related to these higher-level concepts we built on previous 

works to estimate musical notes and extract frequency and 

intensity contours. We briefly describe this initial step in 

the next section. 

3.3.1 Estimating MIDI notes 

Automatic transcription of music audio signals to scores is 

still and open research problem [32]. Still, we consider that 

using such existing algorithms, although imperfect, pro-

vide important information currently unused in MER. 

To this end, we built on works by Salomon et al. [33] 

and Dressler [34] to estimate predominant fundamental 

frequencies (f0) and saliences. This process starts by iden-

tifying the frequencies present in the signal at each point 

in time (sinusoid extraction), using 46.44 msec (1024 sam-

ples) frames with 5.8 msec (128 samples) hopsize (hereaf-

ter denoted ℎ𝑜𝑝). Next, the pitches in each of these mo-

ments are estimated using harmonic summation (obtaining 

a pitch salience function). Then, pitch contours are created 

from the series of consecutive pitches, representing notes 

or phrases. Finally, a set of rules is used to select the f0s 

that are part of the predominant melody [33]. The resulting 

pitch trajectories are then segmented into individual MIDI 

notes following the work by Paiva et al. [35].  

Each of the N obtained notes, hereafter denoted 

as 𝑛𝑜𝑡𝑒𝑖, is characterized by: 1) the respective sequence of 

f0s (a total of 𝐿𝑖  frames),  𝑓0𝑗,𝑖 , 𝑗 = 1, 2, … 𝐿𝑖 ; the corre-

sponding MIDI note numbers (for each f0), 𝑚𝑖𝑑𝑖𝑗,𝑖; 2) the 

overall MIDI note value (for the entire note), 𝑀𝐼𝐷𝐼𝑖; 3) the 

sequence of pitch saliences, 𝑠𝑎𝑙𝑗,𝑖 ; 4) the note duration, 

𝑛𝑑𝑖 (sec); starting time, 𝑠𝑡𝑖 (sec); and 5) ending time, 𝑒𝑡𝑖 

(sec). This data is used to model higher level concepts re-

lated with expressive techniques, such as vibrato. 

In addition to the predominant melody, music typically 

contains other melodic lines produced by distinct sources. 

Some researchers have also proposed algorithms to multi-

ple (also known as polyphonic) F0 contours estimation 

from these constituent sources. We use Dressler’s multi-

F0 approach [34] to obtain a framewise sequence of fun-

damental frequencies estimates to assess musical texture. 

3.3.2 Musical texture features 

Previous studies have verified that musical texture can in-

fluence emotion in music, either directly or in combination 

with tempo and mode [36]. However, as stated in Section 

2, very few of the available audio features are directly re-

lated with this musical concept. Thus, we propose features 

to capture information related with the musical layers of a 

song, based on the simultaneous layers in each frame using 

the multiple frequency estimates described above. 

Musical Layers (ML) statistics. As mentioned, vari-

ous multiple F0s are estimated from each audio frame. 

Then, we define the number of layers in a frame as the 

number of obtained multiple F0s in that frame. The ob-

tained data series, representing the number of musical lay-

ers in each instant during the clip, is then summarized us-

ing six statistics: mean (MLmean), standard deviation 

(MLstd), skewness (MLskw), kurtosis (MLkurt), maxi-

mum (MLmax) and minimum (MLmin) values. The same 

six statistics are applied similarly to the other proposed 

features. 

Musical Layers Distribution (MLD). Here, the num-

ber of 𝑓0 estimates in each frame is categorized in one of 

four classes: i) no layers; ii) a single layer; iii) two simul-

taneous layers; iv) and three or more layers. The percent-

age of frames in each of these four classes is computed, 

measuring, as an example, the percentage of the song iden-

tified as having a single layer (MLD1). Similarly, we com-

pute MLD0, MLD2 and MLD3.  

Ratio of Musical Layers Transitions (RMLT). These 

features capture the amount of transitions (changes) from 

a specific musical layer sequence to another (e.g., ML1 to 

ML2). To this end, we count consecutive frames having 

distinct numbers of fundamental frequencies (f0s) esti-

mated in each as a transition. The total number of these 

transitions is normalized by the length of the audio seg-

ment (in secs). Additionally, we also compute the length 

in seconds of the longest audio segment for each of the four 

musical layers classes. 

3.3.3 Expressivity features 

Expressive techniques such as vibrato, tremolo and articu-

lation are used frequently by composers and performers, 

across different genres. Some studies have linked them to 

emotions [37]–[39], still the number of standard audio fea-

tures studied that are primarily related with expressive 

techniques is low. 

 

Articulation Features 

Articulation relates to how specific notes are played and 

expressed together. To capture this, we first detect legato 

(i.e., connected notes played “smoothly”) and staccato 

(i.e., short and detached notes), as defined in Algorithm 1. 

Using this, we classify all the transitions between notes in 

the song clip and, from them, extract several metrics such 

as: ratio of staccato, legato and other transitions, longest 

sequence of each articulation type, etc. 

 
ALGORITHM 1 

ARTICULATION DETECTION. 

1. For each pair of consecutive notes, 𝑛𝑜𝑡𝑒𝑖 and 𝑛𝑜𝑡𝑒𝑖+1: 

1.1. Compute the inter-onset interval (IOI, in sec), i.e., the interval 

between the onsets of the two notes, as: 𝐼𝑂𝐼 = 𝑠𝑡𝑖+1 − 𝑠𝑡𝑖. 

1.2.  Compute the inter-note silence (INS, in sec), i.e., the duration of 

the silence segment between the two notes, as follows: 𝐼𝑁𝑆 =

 𝑠𝑡𝑖+1 − 𝑒𝑡𝑖. 

1.3. Calculate the ratio of INS to IOI (INStoIOI), which indicates how 

long the interval between notes is, compared to the duration of 

𝑛𝑜𝑡𝑒𝑖. 

1.4. Define the articulation between 𝑛𝑜𝑡𝑒𝑖 and 𝑛𝑜𝑡𝑒𝑖+1, 𝑎𝑟𝑡𝑖, as: 

1.4.1. Legato, if the distance between notes is less than 10 msec, 

i.e., 𝐼𝑁𝑆 ≤ 0.01 ⇒ 𝑎𝑟𝑡𝑖 = 1. 

1.4.2. Staccato, if the duration of 𝑛𝑜𝑡𝑒𝑖 is short (i.e., less than 

500 msec) and the silence between the two notes is rela-

tively similar to this duration, i.e., 𝑛𝑑𝑖 < 0.5 ∧ 0.25 ≤

𝐼𝑁𝑆𝑡𝑜𝐼𝑂𝐼 ≤ 0.75 ⇒ 𝑎𝑟𝑡𝑖 = 2. 

1.4.3. Other Transitions, if none of the abovementioned two 

conditions was met (𝑎𝑟𝑡𝑖 = 0). 

 
In Algorithm 1, the employed threshold values were set 
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experimentally. Then, we define the following features: 

Staccato Ratio (SR), Legato Ratio (LR) and Other 

Transitions Ratio (OTR). These features indicate the ra-

tio of each articulation type (e.g., staccato) to the total 

number of transitions between notes. 

Staccato Notes Duration Ratio (SNDR), Legato 

Notes Duration Ratio (LNDR) and Other Transition 

Notes Duration Ratio (OTNDR) statistics. These repre-

sent statistics based on the duration of notes for each artic-

ulation type. As an example, with staccato (SNDR), the ra-

tio of the duration of notes with staccato articulation to the 

sum of the duration of all notes, as in Eq. 1. For each, the 

6 statistics described in Section 3.3.2 are calculated. 

 

𝑆𝑁𝐷𝑅 =  
∑ [𝑎𝑟𝑡𝑖 = 1] ∙ 𝑛𝑑𝑖

𝑁−1
𝑖=1

∑ 𝑛𝑑𝑖
𝑁−1
𝑖=1

 (1) 

 
Glissando Features 

Glissando is another expressive articulation, which is the 

slide from one note to another. Normally used as an orna-

mentation, to add interest to a piece, may be related to spe-

cific emotions in music.  

We assess glissando by analyzing the transition be-

tween two notes, as described in Algorithm 2. This transi-

tion part is saved at the beginning of the second note by 

the segmentation method applied (mentioned in Section 

3.3.1) [35]. The second note must start with a climb or de-

scent, of at least 100 cents, which may contain spikes and 

slight oscillations in frequency estimates, followed by a 

stable sequence.  

 
ALGORITHM 2 

GLISSANDO DETECTION. 

1. For each note i: 

1.1. Get the list of unique MIDI note numbers, 𝑢𝑧,𝑖 , 𝑧 = 1, 2, ⋯ , 𝑈𝑖, 

from the corresponding sequence of MIDI note numbers (for each 

f0), 𝑚𝑖𝑑𝑖𝑗,𝑖, where 𝑧 denotes a distinct MIDI note number (from 

a total of 𝑈𝑖 unique MIDI note numbers). 
1.2. If there are at least two unique MIDI note numbers: 

1.2.1. Find the start of the steady-state region, i.e., the index, 𝑘, 
of the first note in the MIDI note numbers sequence, 

𝑚𝑖𝑑𝑖𝑗,𝑖 , with the same value as the overall MIDI 

note, 𝑀𝐼𝐷𝐼𝑖, i.e.,  𝑘 = min
1≤𝑗≤𝐿𝑖, 𝑚𝑖𝑑𝑖𝑗,𝑖=𝑀𝐼𝐷𝐼𝑖

𝑗, 

1.2.2. Identify the end of the glissando segment as the first index, 

𝑒, before the steady-state region, i.e., 𝑒 = 𝑘 − 1. 
1.3. Define 

1.3.1. 𝑔𝑑𝑖 = glissando duration (sec) in note i, i.e., 𝑔𝑑𝑖  =  𝑒 ∙
ℎ𝑜𝑝. 

1.3.2. 𝑔𝑝𝑖 = glissando presence in note i, i.e., 𝑔𝑝𝑖 = 1 if  𝑔𝑑𝑖 >
0; 0, otherwise.  

1.3.3. 𝑔𝑒𝑖  = glissando extent in note i, i.e., 𝑔𝑒𝑖 = |𝑓01,𝑖 −

𝑓0𝑒,𝑖| in cents. 

1.3.4. 𝑔𝑐𝑖 = glissando coverage of note i, i.e., 𝑔𝑐𝑖 =  𝑔𝑑𝑖/𝑑𝑢𝑟𝑖. 

1.3.5. 𝑔𝑑𝑖𝑟𝑖  = glissando direction of note i, i.e., 𝑔𝑑𝑖𝑟𝑖 =
 𝑠𝑖𝑔𝑛(𝑓0𝑒,𝑖−𝑓01,𝑖). 

1.3.6. 𝑔𝑠𝑖  = glissando slope of note i, i.e., 𝑔𝑠𝑖 =  𝑔𝑑𝑖𝑟𝑖 ∙ 𝑔𝑒𝑖/
𝑔𝑑𝑖. 

 
Based on the output of Algorithm 2 we define: 

Glissando Presence (GP). A song clip contains glis-

sando if any of its notes has glissando, as in (2). 

𝐺𝑃 = {
1, if ∃ 𝑖 ∈  {1, 2, … , 𝑁} ∶  𝑔𝑝𝑖 = 1
0, otherwise

    (2) 

 

If GP = 1, we then compute the remaining glissando 

features. 
Glissando Extent (GE) statistics. Using the glissando 

extent of each note, 𝑔𝑒𝑖 (see Algorithm 2), we compute the 

6 statistics (Section 3.3.2) for notes containing glissando. 

Glissando Duration (GD) and Glissando Slope (GS) 

statistics. Similarly to GE, we also compute the same sta-

tistics for glissando duration, based on 𝑔𝑑𝑖  and slope, 

based on 𝑔𝑠𝑖 (see Algorithm 2).  

Glissando Coverage (GC). For glissando coverage, we 

compute the global coverage, based on 𝑔𝑐𝑖, using (3). 

 

𝐺𝐶 =
∑ 𝑔𝑐𝑖 ∙ 𝑛𝑑𝑖

𝑁
𝑖=1

∑ 𝑛𝑑𝑖
𝑁
𝑖=1

    (3) 

 
Glissando Direction (GDIR). This feature indicates 

the global direction of the glissandos in a song, (4): 

 

𝐺𝐷𝐼𝑅 =
∑ 𝑔𝑝𝑖

𝑁
𝑖=1

𝑁
, 𝑤ℎ𝑒𝑛 𝑔𝑑𝑖𝑟𝑖 = 1    (4) 

 
Glissando to Non-Glissando Ratio (GNGR). This 

feature represents the ratio of the notes containing glis-

sando to the total number of notes, as in (5): 

𝐺𝑁𝐺𝑅 =
∑ 𝑔𝑝𝑖

𝑁
𝑖=1

𝑁
    (5) 

 

Vibrato and Tremolo Features 

Vibrato and tremolo are expressive technique used in vocal 

and instrumental music. Vibrato consists in a steady oscil-

lation of pitch in a note or sequence of notes. Its properties 

are the: 1) the velocity (rate) of pitch variation; 2) amount 

of pitch variation (extent); and 3) duration. It varies across 

music styles and emotional expression [38].  

Given its possible relevance to MER, we apply the vi-

brato detection algorithm described in Algorithm 3, which 

was adapted from [40]. We then compute features such as 

vibrato presence, rate, coverage and extent. 

 
ALGORITHM 3 

VIBRATO DETECTION. 

1. For each note i: 

1.1. Compute the STFT, |F0𝑤,𝑖|, 𝑤 = 1, 2, ⋯ , 𝑊𝑖,   of the sequence 

𝑓0𝑖 , where 𝑤  denotes an analysis window (from a total of 𝑊𝑖 
windows). Here, a 371.2 msec (128 samples) Blackman-Harris 

window was employed, with 185.6 msec (64 samples) hopsize. 

1.2. Look for a prominent peak, 𝑝𝑝𝑤,𝑖, in each analysis window, in the 

expected range for vibrato. In this work, we employ the typical 

range for vibrato in the human voice, i.e., [5, 8] Hz [40]. If a peak 
is detected, the corresponding window contains vibrato. 

1.3. Define:  

1.3.1. 𝑣𝑝𝑖 = vibrato presence in note i, i.e.,  

𝑣𝑝𝑖 = 1 if ∃ 𝑝𝑝𝑤,𝑖;   𝑣𝑝𝑖 = 0, otherwise. 

1.3.2. 𝑊𝑉𝑖 = number of windows containing vibrato in note i. 

1.3.3. 𝑣𝑐𝑖 = vibrato coverage of note i, i.e., 𝑣𝑐𝑖 =  𝑊𝑉𝑖 𝑊𝑖⁄  (ra-
tio of windows with vibrato to the total number of win-

dows). 

1.3.4. 𝑣𝑑𝑖 = vibrato duration of note i (sec), i.e., 𝑣𝑑𝑖 =  𝑣𝑐𝑖 ∙ 𝑑𝑖. 

1.3.5. freq(𝑝𝑝𝑤,𝑖) = frequency of the prominent peak 𝑝𝑝𝑤,𝑖 (i.e., 

vibrato frequency, in Hz). 

1.3.6. 𝑣𝑟𝑖  = vibrato rate of note i (in Hz), i.e., 𝑣𝑟𝑖  = 

∑ freq(𝑝𝑝𝑤,𝑖)
𝑊𝑉𝑖
𝑤=1 𝑊𝑉𝑖⁄  (average vibrato frequency). 

1.3.7. |𝑝𝑝𝑤,𝑖|  = magnitude of the prominent peak 𝑝𝑝𝑤,𝑖  (in 

cents). 

1.3.8. 𝑣𝑒𝑖 = vibrato extent of note i, i.e., 𝑣𝑒𝑖 = ∑ |𝑝𝑝𝑤,𝑖|
𝑊𝑉𝑖
𝑤=1 𝑊𝑉𝑖⁄  

(average amplitude of vibrato). 
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Then, we define the following features. 

Vibrato Presence (VP). A song clip contains vibrato if 

any of its notes have vibrato, similarly to (2). 

Vibrato Rate (VR) statistics. Based on the vibrato rate 

value of each note, 𝑣𝑟𝑖  (see Algorithm 3), we compute 6 

statistics described in Section 3.3.2 (e.g., the vibrato rate 

weighted mean of all notes with vibrato as in Eq. 6). 

𝑉𝑅𝑚𝑒𝑎𝑛 =
∑ 𝑣𝑟𝑖 ∙ 𝑣𝑐𝑖 ∙ 𝑛𝑑𝑖

𝑁
𝑖=1

∑ 𝑣𝑐𝑖 ∙ 𝑛𝑑𝑖
𝑁
𝑖=1

    (6) 

 
Vibrato Extent (VE) and Vibrato Duration (VD) sta-

tistics. Similarly to VR, these features represent the same 

statistics for vibrato extent, based on 𝑣𝑒𝑖 and vibrato dura-

tion, based on 𝑣𝑑𝑖  (see Algorithm 3).  

Vibrato Notes Base Frequency (VNBF) statistics. As 

with VR features, we compute the same statistics for the 

base frequency (in cents) of all notes containing vibrato. 

Vibrato Coverage (VC). This represents the global vi-

brato coverage in a song, based on 𝑣𝑐𝑖 , similarly to (3). 

High-Frequency Vibrato Coverage (HFVC). Here, 

the VC is computed only for notes over C4 (261.6 Hz), 

which is the lower limit of the soprano’s vocal range [41].  

 Vibrato to Non-Vibrato Ratio (VNVR). This feature 

is defined as the ratio of the notes containing vibrato to the 

total number of notes, similarly to (5). 

 

An approach similar to vibrato was applied to compute 

tremolo features. Tremolo can be described as a trembling 

effect, to a certain degree similar to vibrato but regarding 

variation of amplitude. Here, instead of using the f0 se-

quences, the sequence of pitch saliences of each note is 

used to assess variations in intensity or amplitude. Due to 

the lack of research regarding tremolo range, we decided 

to use vibrato range (i.e., 5-8Hz). 

3.4 Emotion Classification 

Given the high number of features, ReliefF feature selec-

tion algorithms [31] were used to rank the better suited 

ones emotion classification. This algorithm outputs feature 

weights in the range of -1 to 1, with higher values indicat-

ing attributes more suited to the problem. This, in conjunc-

tion with the strategy described in Section 3.2, were used 

to reduce and merge baseline and novel features sets. 

For classification we selected Support Vector Machines 

(SVM) [42] as the machine learning technique, since it has 

performed well in previous MER studies. SVM parameters 

were tuned with grid search and a Gaussian kernel (RBF) 

was selected based on preliminary tests. The experiments 

were validated with 20 repetitions of 10-fold cross valida-

tion [43], where we report the average (macro weighted) 

results. 

4. RESULTS AND DISCUSSION 

In this section we discuss the results of our classification 

tests. Our main objective was to assess the relevance of 

existing audio features to MER and understand if and how 

our novel proposed ones improve the current scenario. 

With this in mind, we start by testing the existing baseline 

(standard) features only, followed by tests using the com-

bination of baseline and novel, to assess if the obtained re-

sults improve and if the differences are statistically signif-

icant. 

A summary of the classification results is shown in Ta-

ble 1. The baseline feature set obtained its best result, of 

71.7% F1-score, with an extremely high number of fea-

tures (800). Considering a more reasonable number of fea-

tures, up to the best 100 according to ReliefF, the best 

model used the top70, and attained 67.5%. Next, including 

novel features (with the baseline) increased the best result 

to 76.0% F1-score using the best 100 features, a consider-

ably lower number (100 instead of 800). This difference is 

statistically significant (at p < 0.01, paired T-test). Inter-

estingly, we observed decreasing results with models using 

higher number of features, indicating that those extra fea-

tures might not be relevant but introducing noise. 

 

Classifier Feature set # feats. F1-Score 

SVM baseline 70 67.5% ± 0.05 

SVM baseline 100 67.4% ± 0.05 

SVM baseline 800 71.7% ± 0.05 

SVM baseline+novel 70 74.0% ± 0.05 

SVM baseline+novel 100 76.0% ± 0.05 

SVM baseline+novel 800 73.5% ± 0.04 

Table 1. Results of the classification by quadrants. 

Of the 100 features used in the best result, 29 are novel, 

which demonstrates the relevance of adding novel features 

to MER. Of these, 8 are related with texture, such as the 

number of musical layers (MLmean), while the remaining 

21 are expressive techniques such as tremolo, glissando 

and especially vibrato (12). The remaining 71 baseline fea-

tures are mainly tone color related (50), with the few others 

capturing dynamics, harmony, rhythm and melody. 

Further analysis to the results per individual quadrant, 

presented in Table 2, gives us a deeper understanding 

about which emotions are harder to classify and where the 

new features were more significant. According to it, Q1 

and Q2 obtained a higher result compared to the remain-

ing. This seems to indicate that emotions in songs with 

higher arousal are easier to differentiate. Also, Q2 result is 

significantly higher, indicating that it might be markedly 

distinct from the remaining, explained by the fact that sev-

eral excerpts from Q2 belong to genres such as punk, hard-

core or heavy-metal, which have very distinctive, noise-

like, acoustic features. This goes in the same direction as 

the results obtained in previous studies [44]. 

 

 baseline novel 

Quads Prec. Recall F1-Score Prec. Recall F1-Score 

Q1 62.6% 73.4% 67.6% 72.9% 81.9% 77.2% 

Q2 82.3% 79.6% 80.9% 88.9% 82.7% 85.7% 

Q3 61.3% 57.5% 59.3% 73.0% 69.2% 71.1% 

Q4 62.8% 57.9% 60.2% 68.5% 68.6% 68.5% 

Table 2. Results per quadrant using 100 features. 

Several factors can be thought to explain the lower re-

sults in Q3 and Q4 (average of -11.7%). First, a higher 

number of ambiguous songs exist in these quadrants, con-

taining unclear or contrasting emotions. This is supported 
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by the low agreement (45.3%) between the subject’s and 

the original AllMusic annotations during the annotation 

process. In addition, the two quadrants contain songs 

which share similar musical characteristics, sometimes 

with each characteristic related to contrasting emotional 

cues (e.g., a happy melody and a sad voice or lyric). This 

agrees with the conclusions presented in [45]. As a final 

point, these similarities may explain why the subjects re-

ported having more difficulty distinguishing valence for 

songs with low arousal. 

The addition of novel features improved the results by 

8.6% when considering the top 100 features’ results. Novel 

features seemed more relevant to Q3, with the most signif-

icant improvement (by 11.8%), which was before the 

worst performing quadrant, followed by Q1 (9.6%). On the 

opposite end, Q2 was already the best performing with 

baseline features and thus is lower improvement (4.8%). 

In addition to assessing the importance of baseline and 

novel features for quadrants classification, where we iden-

tified 29 novel features in the best 100, we also studied the 

best features to discriminate each specific quadrant from 

the others. This was done by analyzing specific feature 

rankings, e.g., the ranking of features that are best to sepa-

rate Q1 songs from non-Q1 songs (a set containing Q2, Q3 

and Q4 annotated as non-Q1). As expected based on for-

mer tests, tone color is the most represented concept in the 

list of the 10 best features for each of the four quadrants. 

The reason is in part due to being overrepresented in orig-

inal feature set, while relevant features from other concepts 

may be missing.  

Of the four quadrants, Q2 and Q4 seem to have the most 

suited features to distinguish them (e.g., features to iden-

tify a clip as Q2 vs non-Q2), according to the obtained Re-

liefF weights. This was confirmed experimentally, where 

we observed that 10 features or less was enough to obtain 

95% of the max score in binary problems for Q2 and Q4, 

while the top 30 and 20 features, for Q1 and Q3 respec-

tively, were needed to attain the same goal. 
Regarding the first quadrant, some of the novel features 

related with musical texture information were shown to be 

very relevant. As an example, in the top features, 3 are 

novel, capturing information related with the number of 

musical layers and the transitions between different texture 

types, together with 3 rhythmic features related with events 

density and fluctuation. Q1 represents happy emotions, 

which are typically energetic. Associated songs tend to be 

high in energy and have appealing (“catchy”) rhythm. 

Thus, features related with rhythm, together with texture 

and tone color (mostly energy metrics) support this. Nev-

ertheless, as stated before the weight of these features to 

Q1 is low when compared with the top features of other 

quadrants.  

For Q2 the features identified as most suited are related 

with tone color, such as: roughness - capturing the disso-

nance in the song; rolloff – measuring the amount of high 

frequency; MFCCs – total energy in the signal; and spec-

tral flatness measure – indicating how noise-like the sound 

is. Other important features are related with dynamics, 

such as tonal dissonance. As for novel features, expressive 

techniques ones, mainly vibrato, which makes 43% of the 

top 30 features. Some research supports this association of 

vibrato and negative energetic emotions such as anger 

[46]. Generally, the associations found seem reasonable. 

After all, Q2 is made of tense, aggressive music, and mu-

sical characteristics like sensory dissonance, high energy, 

and complexity are usually present. 

Apart from tone color features (extracting energy infor-

mation), quadrant 3 is also identified higher level features 

from concepts such as musical texture, dynamics and har-

mony and expressive techniques. Namely, the number of 

musical layers, spectral dissonance, inharmonicity, and 

tremolos. As for quadrant 4, in addition to tone color fea-

tures related to spectrum (such as skewness or entropy) or 

measures of how noise-like is the spectrum (spectral flat-

ness), the remaining are again related with dynamics (dis-

sonance) and harmony, as well as some vibrato metrics. 

More and better features are needed to better understand 

and discriminate Q3 from Q4. From our tests, songs from 

both quadrants share some common musical characteris-

tics such as lower tempo, less musical layers and energy, 

use of glissandos and other expressive techniques. 

5. CONCLUSIONS AND FUTURE WORK 

We studied the relevance of musical audio features, pro-

posing novel features that complement the existing ones. 

To this end, the features available in known frameworks 

were studied and classified in one of eight musical con-

cepts - dynamics, expressive techniques, harmony, mel-

ody, musical form, musical texture, rhythm and tone color. 

Concepts such as musical form, musical texture and ex-

pressive techniques were identified as the ones most lack-

ing available audio extractors. Based on this, we proposed 

novel audio features to mitigate the identified gaps and 

break the current glass ceiling. Namely, related with ex-

pressive techniques, capturing information related with vi-

brato, tremolo, glissando and articulation. Also, related 

with musical texture, capturing statistics regarding the mu-

sical layers of a musical piece.  

Since no public available dataset fulfilled our needs, a 

new dataset with 900 clips and metadata (e.g., title, artist, 

genres and moods), annotated according to the Russell’s 

emotion model quadrants was built semi-automatically, 

used in our tests and is available to other researchers. 

Our experimental tests demonstrated that the novel pro-

posed features are relevant and improve MER classifica-

tion. As an example, using a similar number of features 

(100), adding our novel proposed features increased the re-

sults by 8.6% (to 76.0%), when compared to the baseline. 

This result was obtained using 29 novel features and 71 

baseline, which demonstrates the relevance of this work. 

Additional experiments were conducted to uncovered 

and better understand relations between audio features, 

musical concepts and specific emotions (quadrants). 

In the future, we would like to study multi-modal ap-

proaches and the relation between the voice signal and lyr-

ics, as well as testing the features influence in finer grained 

categorical and dimensional emotion models. Also, other 

features (e.g. related with musical form), are still to be de-

veloped. Moreover, we would like to derive a more under-

standable set of knowledge (e.g. rules) of how musical fea-

tures influence emotion, something that lacks when black-

box classification methods such as SVMs are employed. 

388 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



  

 

6. ACKNOWLEDGMENT 

This work was supported by the MOODetector project 

(PTDC/EIA-EIA/102185/2008), financed by the Funda-

ção para Ciência e a Tecnologia (FCT) and Programa 

Operacional Temático Factores de Competitivid-ade 

(COMPETE) – Portugal, as well as the PhD Scholarship 

SFRH/BD/91523/2012, funded by the Fundação para 

Ciência e a Tecnologia (FCT), Programa Operacional Po-

tencial Humano (POPH) and Fundo Social Europeu (FSE).  

7. REFERENCES 

[1] A. Pannese, M.-A. Rappaz, and D. Grandjean, 

“Metaphor and music emotion: Ancient views and 

future directions,” Conscious. Cogn., vol. 44, pp. 61–

71, Aug. 2016. 

[2] Y. Feng, Y. Zhuang, and Y. Pan, “Popular Music 

Retrieval by Detecting Mood,” Proc. 26th Annu. Int. 

ACM SIGIR Conf. Res. Dev. Inf. Retr., vol. 2, no. 2, 

pp. 375–376, 2003. 

[3] C. Laurier and P. Herrera, “Audio Music Mood 

Classification Using Support Vector Machine,” in 

Proc. of the 8th Int. Society for Music Information 

Retrieval Conf. (ISMIR 2007), 2007, pp. 2–4. 

[4] Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen, “A 

Regression Approach to Music Emotion 

Recognition,” IEEE Trans. Audio. Speech. Lang. 

Processing, vol. 16, no. 2, pp. 448–457, Feb. 2008. 

[5] L. Lu, D. Liu, and H.-J. Zhang, “Automatic Mood 

Detection and Tracking of Music Audio Signals,” 

IEEE Trans. Audio, Speech Lang. Process., vol. 14, 

no. 1, pp. 5–18, Jan. 2006. 

[6] R. Panda and R. P. Paiva, “Using Support Vector 

Machines for Automatic Mood Tracking in Audio 

Music,” in 130th Audio Engineering Society 

Convention, 2011, vol. 1. 

[7] A. Flexer, D. Schnitzer, M. Gasser, and G. Widmer, 

“Playlist Generation Using Start and End Songs,” in 

Proc. of the 9th Int. Society of Music Information 

Retrieval Conf. (ISMIR 2008), 2008, pp. 173–178. 

[8] O. C. Meyers, “A Mood-Based Music Classification 

and Exploration System,” MIT Press, 2007. 

[9] R. Malheiro, R. Panda, P. Gomes, and R. P. Paiva, 

“Emotionally-Relevant Features for Classification 

and Regression of Music Lyrics,” IEEE Trans. Affect. 

Comput., pp. 1–1, 2016. 

[10] X. Hu and J. S. Downie, “When lyrics outperform 

audio for music mood classification: a feature 

analysis,” in Proc. of the 11th Int. Society for Music 

Information Retrieval Conf. (ISMIR 2010), 2010, pp. 

619–624. 

[11] Y. Yang, Y. Lin, H. Cheng, I. Liao, Y. Ho, and H. H. 

Chen, “Toward multi-modal music emotion 

classification,” in Pacific-Rim Conference on 

Multimedia, 2008, vol. 5353, pp. 70–79. 

[12] R. Panda, R. Malheiro, B. Rocha, A. Oliveira, and R. 

P. Paiva, “Multi-Modal Music Emotion Recognition: 

A New Dataset, Methodology and Comparative 

Analysis,” in 10th International Symposium on 

Computer Music Multidisciplinary Research – 

CMMR’2013, 2013, pp. 570–582. 

[13] Ò. Celma, P. Herrera, and X. Serra, “Bridging the 

Music Semantic Gap,” in Workshop on Mastering the 

Gap: From Information Extraction to Semantic 

Representation, 2006, vol. 187, no. 2, pp. 177–190. 

[14] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton, 

P. Richardson, J. Scott, J. A. Speck, and D. Turnbull, 

“Music Emotion Recognition: A State of the Art 

Review,” in Proc. of the 11th Int. Society for Music 

Information Retrieval Conf. (ISMIR 2010), 2010, pp. 

255–266. 

[15] X. Yang, Y. Dong, and J. Li, “Review of data 

features-based music emotion recognition methods,” 

Multimed. Syst., pp. 1–25, Aug. 2017. 

[16] S. B. Davis and P. Mermelstein, “Comparison of 

Parametric Representations for Monosyllabic Word 

Recognition in Continuously Spoken Sentences,” 

IEEE Transactions on Acoustics, Speech, and Signal 

Processing. 1980. 

[17] J. A. Russell, “A circumplex model of affect,” J. Pers. 

Soc. Psychol., vol. 39, no. 6, pp. 1161–1178, 1980. 

[18] K. Hevner, “Experimental Studies of the Elements of 

Expression in Music,” Am. J. Psychol., vol. 48, no. 2, 

pp. 246–268, 1936. 

[19] M. Malik, S. Adavanne, K. Drossos, T. Virtanen, D. 

Ticha, and R. Jarina, “Stacked Convolutional and 

Recurrent Neural Networks for Music Emotion 

Recognition,” in Proc. of the 14th Sound & Music 

Computing Conference, 2017, pp. 208–213. 

[20] A. Aljanaki, Y.-H. Yang, and M. Soleymani, 

“Developing a benchmark for emotional analysis of 

music,” PLoS One, vol. 12, no. 3, Mar. 2017. 

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 389



  

 

[21] C. Laurier, O. Lartillot, T. Eerola, and P. Toiviainen, 

“Exploring relationships between audio features and 

emotion in music,” in Proc. of the 7th Triennial Conf. 

of European Society for the Cognitive Sciences of 

Music, 2009, vol. 3, pp. 260–264. 

[22] A. Friberg, “Digital Audio Emotions - An Overview 

of Computer Analysis and Synthesis of Emotional 

Expression in Music,” in Proc. of the 11th Int. Conf. 

on Digital Audio Effects (DAFx), 2008, pp. 1–6. 

[23] G. Tzanetakis and P. Cook, “MARSYAS: a 

framework for audio analysis,” Organised Sound, 

vol. 4, no. 3, pp. 169–175, 2000. 

[24] O. Lartillot and P. Toiviainen, “A Matlab Toolbox for 

Musical Feature Extraction from Audio,” in Proc. of 

the 10th Int. Conf. on Digital Audio Effects (DAFx), 

2007, pp. 237–244. 

[25] D. Cabrera, S. Ferguson, and E. Schubert, 

“‘Psysound3’: Software for Acoustical and 

Psychoacoustical Analysis of Sound Recordings,” in 

Proc. of the 13th Int. Conf. on Auditory Display 

(ICAD2007), 2007, pp. 356–363. 

[26] C. Laurier, “Automatic Classification of Musical 

Mood by Content-Based Analysis,” Universitat 

Pompeu Fabra, 2011. 

[27] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and 

P. Lamere, “The Million Song Dataset,” in Proc. of 

the 12th Int. Society for Music Information Retrieval 

Conf. (ISMIR 2011), 2011, pp. 591–596. 

[28] A. B. Warriner, V. Kuperman, and M. Brysbaert, 

“Norms of valence, arousal, and dominance for 

13,915 English lemmas,” Behav. Res. Methods, vol. 

45, no. 4, pp. 1191–1207, Dec. 2013. 

[29] M. M. Bradley and P. J. Lang, “Affective Norms for 

English Words (ANEW): Instruction Manual and 

Affective Ratings,” Psychology, vol. Technical, no. 

C-1, p. 0, 1999. 

[30] X. Hu and J. S. Downie, “Exploring Mood Metadata: 

Relationships with Genre, Artist and Usage 

Metadata,” in Proc. of the 8th Int. Society for Music 

Information Retrieval Conf. (ISMIR 2007), 2007, pp. 

67–72. 

[31] M. Robnik-Šikonja and I. Kononenko, “Theoretical 

and Empirical Analysis of ReliefF and RReliefF,” 

Mach. Learn., vol. 53, no. 1–2, pp. 23–69, 2003. 

[32] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, 

and A. Klapuri, “Automatic music transcription: 

challenges and future directions,” J. Intell. Inf. Syst., 

vol. 41, no. 3, pp. 407–434, 2013. 

[33] J. Salamon and E. Gómez, “Melody Extraction From 

Polyphonic Music Signals Using Pitch Contour 

Characteristics,” IEEE Trans. Audio. Speech. Lang. 

Processing, vol. 20, no. 6, pp. 1759–1770, 2012. 

[34] K. Dressler, “Automatic Transcription of the Melody 

from Polyphonic Music,” Ilmenau University of 

Technology, 2016. 

[35] R. P. Paiva, T. Mendes, and A. Cardoso, “Melody 

Detection in Polyphonic Musical Signals: Exploiting 

Perceptual Rules, Note Salience, and Melodic 

Smoothness,” Comput. Music J., vol. 30, no. 4, pp. 

80–98, Dec. 2006. 

[36] G. D. Webster and C. G. Weir, “Emotional Responses 

to Music: Interactive Effects of Mode, Texture, and 

Tempo,” Motiv. Emot., vol. 29, no. 1, pp. 19–39, Mar. 

2005. 

[37] P. Gomez and B. Danuser, “Relationships between 

musical structure and psychophysiological measures 

of emotion.,” Emotion, vol. 7, no. 2, pp. 377–387, 

May 2007. 

[38] C. Dromey, S. O. Holmes, J. A. Hopkin, and K. 

Tanner, “The Effects of Emotional Expression on 

Vibrato,” J. Voice, vol. 29, no. 2, pp. 170–181, Mar. 

2015. 

[39] T. Eerola, A. Friberg, and R. Bresin, “Emotional 

expression in music: contribution, linearity, and 

additivity of primary musical cues.,” Front. Psychol., 

vol. 4, p. 487, 2013. 

[40] J. Salamon, B. Rocha, and E. Gómez, “Musical genre 

classification using melody features extracted from 

polyphonic music signals,” in IEEE International 

Conference on Acoustics, Speech and Signal 

Processing (ICASSP), 2012, pp. 81–84. 

[41] A. Peckham, J. Crossen, T. Gebhardt, and D. 

Shrewsbury, The Contemporary Singer: Elements of 

Vocal Technique. Berklee Press, 2010. 

[42] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for 

support vector machines,” ACM Trans. Intell. Syst. 

Technol., vol. 2, no. 3, pp. 1–27, Apr. 2011. 

[43] R. O. Duda, P. E. (Peter E. Hart, and D. G. Stork, 

Pattern classification. Wiley, 2000. 

390 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



  

 

[44] G. R. Shafron and M. P. Karno, “Heavy metal music 

and emotional dysphoria among listeners.,” Psychol. 

Pop. Media Cult., vol. 2, no. 2, pp. 74–85, 2013. 

[45] Y. Hong, C.-J. Chau, and A. Horner, “An Analysis of 

Low-Arousal Piano Music Ratings to Uncover What 

Makes Calm and Sad Music So Difficult to 

Distinguish in Music Emotion Recognition,” J. Audio 

Eng. Soc., vol. 65, no. 4, 2017. 

[46] K. R. Scherer, J. Sundberg, L. Tamarit, and G. L. 

Salomão, “Comparing the acoustic expression of 

emotion in the speaking and the singing voice,” 

Comput. Speech Lang., vol. 29, no. 1, pp. 218–235, 

Jan. 2015. 

 

 

 

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 391



SHARED GENERATIVE REPRESENTATION OF AUDITORY CONCEPTS
AND EEG TO RECONSTRUCT PERCEIVED AND IMAGINED MUSIC
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ABSTRACT

Retrieving music information from brain activity is a chal-

lenging and still largely unexplored research problem. In this

paper we investigate the possibility to reconstruct perceived and

imagined musical stimuli from electroencephalography (EEG)

recordings based on two datasets. One dataset contains multi-

channel EEG of subjects listening to and imagining rhythmical

patterns presented both as sine wave tones and short looped

spoken utterances. These utterances leverage the well-known

speech-to-song illusory transformation which results in very

catchy and easy to reproduce motifs. A second dataset provides

EEG recordings for the perception of 10 full length songs. Us-

ing a multi-view deep generative model we demonstrate the fea-

sibility of learning a shared latent representation of brain activ-

ity and auditory concepts, such as rhythmical motifs appearing

across different instrumentations. Introspection of the model

trained on the rhythm dataset reveals disentangled rhythmical

and timbral features within and across subjects. The model al-

lows continuous interpolation between representations of differ-

ent observed variants of the presented stimuli. By decoding the

learned embeddings we were able to reconstruct both perceived

and imagined music. Stimulus complexity and the choice of

training data shows strong effect on the reconstruction quality.

1. INTRODUCTION

Studying the human brain‘s response to music gained a lot

of attention in recent years. Many studies in the field rely on

electroencephalography (EEG) recordings, as they provide

better temporal resolution than other techniques, such as func-

tional magnetic resonance imaging (fMRI). Previous research

suggests that a listener’s brain response is modulated in correla-

tion to the perceived auditory stimuli on many different levels

and that these modulations can be detected within EEG. One

of these effects is the correlation between the frequency and

magnitude of neural oscillation patterns, which are modulated

by accents and rhythmical patterns in music [3,20,21]. Other

studies indicate that tracking auditory attention towards a

specific sound source in EEG recordings is possible [1,30].

EEG data has been used to research event-related potentials

(ERPs) as a repeatable and distinguishable response to aspects

c© André Ofner, Sebastian Stober. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribution:

André Ofner, Sebastian Stober. “Shared generative representation of auditory

concepts and EEG to reconstruct perceived and imagined music”, 19th Interna-

tional Society for Music Information Retrieval Conference, Paris, France, 2018.

of perceived music. The characteristic brain activity patterns

underlying ERPs can be specific, for example, to the structure

of musical events, such as note onsets or rhythm and pitch

patterns [19, 24]. Other ERPs are related to the timbre of

sound and can be modulated even by differences within timbre,

such as changes in harmonics [17, 25]. While many ERP

components show similar activation across subjects, studies

suggest that some are caused by more fine-grained aspects

of music, especially within trained musicians [25]. These

brain activity patterns extend over the temporal, spatial and

frequency domain of the EEG signal.

Motivated by the existence of such features, EEG recordings

have been used in several music information retrieval studies

based on EEG, such as perceived rhythm or tempo classifi-

cation [28]. First attempts have been made to reconstruct the

loudness envelope of perceived and imagined musical stimuli,

but with unsatisfying accuracy [22,26,27]. Some of these stud-

ies use deep neural networks for classification and regression

and the achieved results hint at their usefulness in exploring

the complex brain signal. However, the power of employed

networks is restricted by size and their general application ex-

clusively to EEG signal denoising or classification. Outside

from research on music cognition, recent studies have shown

the possibility to use generative models to reconstruct perceived

visual stimuli both from fMRI and EEG recordings [4, 10].

Generative models learn to encode a meaningful internal latent

representation of a given signal. In addition, they contain a de-

coding part to either reconstruct the input or another signal that

is extractable from the internal latent variable. A recent study

has demonstrated the possibility to learn such shared latent em-

beddings for EEG recordings of music perception and use them

as a continuous semantic space representation of the audio [23].

This suggests that a more elaborate generative model could

learn a shared encoding of music and brain signals, leading

to a conjoint representation of those auditory concepts that are

perceived and processed by the brain. As previous research sug-

gests, these concepts span a spectrum of complexity, starting

on the level of the subject-specific manifestation and meaning

of specific ERP responses to high-level semantic or emotional

meaning of music. Therefore, they provide the necessary

information to reconstruct the musical stimuli as they are

perceived or imagined. Based on this motivation, we propose

a generative multi-view model that makes use of deep neural

networks to encode and decode spatio-temporal brain signal

using a latent embedding. This embedding is simultaneously

used to reconstruct and classify music presented and imagined

during EEG recording. In this paper we introduce our view
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on auditory concepts and the suggested method. We describe

two datasets of EEG recordings during music perception

and imagination that are used for training and evaluation.

Furthermore, we perform model introspection to demonstrate

the possibility of interpolating between musically meaningful

points within the learned latent space. Finally, we suggest

possible ways to extend the framework to include multi-modal

processing and learning high level musical concepts.

2. AUDITORY CONCEPTS

Our approach relies on three assumptions for auditory concepts:

1. Coupled auditory and conceptual processing

2. Shared neural representation of music perception and

imagination

3. Hierarchical structure of music

Firstly, we assume that there is a tight coupling between au-

ditory and conceptual processing [12]. Several studies suggest

that auditory stimuli are processed in a conceptual system that

is shared with other modalities, such as visual perception [31].

Furthermore, music processing is based on concepts inherent

to the auditory stimuli as well as on external factors, such as

visual and social environment or musical training [7]. Secondly,

following the ideas of embodied cognition, we assume that the

human conceptual system is essentially grounded in perception

and that through its interplay with action and cognitive states,

music perception at least partially shares conceptual and

neural representation with musical imagination [11]. Previous

research suggests that auditory concept formation can be

traced back to specific ERPs and that the magnitude of some

ERP component can be controlled by the presence of an

auditory concept in the listeners mind [29]. Thirdly, we follow

the idea that music is essentially hierarchical in structure and

that auditory concepts equivalently exist on a spectrum of ab-

straction levels, reflecting and augmenting this structure. They

can range from concepts related to single sounds or rhythm

to concepts within the emotional or aesthetic processing of

music. Together with the previous two assumptions this means

that basic elements of perceptual musical processing, such as

ERPs related to note onset expectancy, are influenced by their

integration into conceptual processing. Music cognition and

concept formation can be highly subjective, stimulus-driven

as well as context-dependent, e.g. on visual and social aspects

of a performance [18]. For these reasons, we hypothesize that

a simultaneous retrieval of auditory concepts from multiple

sources aids the reconstruction of the processed stimuli while

further deepening our understanding of music cognition.

3. RELATED WORK

Various approaches exist to learning a shared embedding from

two or more datasets. One method is Canonical Correlation

Analysis (CCA) [8]. CCA is non-probabilistic and enables the

extraction of linear components to optimize the correlations be-

tween two multivariate datasets. CCA in combination with con-

volutional neural networks has recently been used by Raposo

et al. to learn a shared semantic space between audio and EEG

signal [23]. Based on CCA, Fujiwara et al. have introduced

Bayesian Canonical Correlation Analysis (BCCA), a probabilis-

tic interpretation of CCA [5]. However, BCCA still contains

linear observation models, while EEG data is very complex

and noisy and requires non-linear computation. To surpass this

limitation, Deep Canonically Correlated Autoencoders (DC-

CAEs) were proposed by Wang et al. [32]. DCCAEs maximize

the correlation between the latent embeddings of two separate

autoencoders, but do not enable cross-reconstruction between

their inputs. While this problem is solved by correlational

neural networks (CorrNets), the unregularized latent embed-

dings of both DCCAE and CorrNet are prone to overfitting,

especially in combination with the representational power of

non-linear observation models [2]. For these reasons, we follow

the suggestion of Wang et al. to use a deep, generative and prob-

abilistic latent variable interpretation of CCA called Deep Varia-

tional Canonical Correlation Analysis (VCCA) [32]. A similar

approach tailored specifically to a missing view reconstruction

for visual stimuli in fMRI data has successfully been demon-

strated recently [4]. Here, we show that we can derive a general

multi-view generative model capable of joint EEG and stimulus

processing that allows multi-modal learning from physiological

data as well as directly from the stimuli. To our knowledge, no

comparable framework for EEG-based audio stimulus recon-

struction or for shared auditory concept learning exists.

4. DATASETS AND PREPROCESSING

We use two datasets, the OpenMIIR speech and the Naturalistic

Music EEG Dataset - Tempo (NMED-T) dataset. They are

similar in experimental setup but differ in focus and size.

4.1 OpenMIIR speech dataset

One dataset contains EEG of subjects listening to and

imagining four rhythmical patterns presented both as sine

wave tones and short looped spoken utterances. It stems from

the Open Music Imagery Information Retrieval (OpenMIIR)

initiative [28] and features four different catchy and easy to

reproduce motifs superimposed on a constant metronome

click. We refer to it as ”OpenMIIR speech dataset”. The trials

are annotated for containing either speech or sine wave tones

and can be used to train and evaluate model performance for

the perception and imagination of the same rhythmical trials

within two timbres. The metronome clicks serve as cues that

are present during perception as well as imagination. The main

intention behind this dataset is to reduce stimulus complexity

as far as possible while still retaining enough musical structure

for building and evaluating models. This dataset contains data

from seven subjects with normal hearing and no history of

brain injury. It was recorded with 64 EEG channels, horizontal

and vertical Electrooculography (EOG) channels sampled at

512 Hz. All perception stimuli have equal tempo and duration

of 12 s. Presentation was done in randomized order after

2 s of metronome clicks. They were immediately followed

by another 12 s of metronome cues. Participants were asked

to imagine the perceived stimulus directly after presentation

using these subsequent cue clicks. The concatenated
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perception-imagination trials sum up to 26 s of recorded EEG

data for each trial. As each trial was presented 6 times, this

sums up to a total of 96 presented trials. In total, the dataset

contains about 2500 s (42 min) of EEG recordings per subject.

We performed common-practice preprocessing steps using the

MNE-python toolbox by Gramfort et al. including manual bad

channel removal and interpolation after visual inspection [6].

All EEG data was bandpass filtered between 0.5 and 50 Hz.

Extended Infomax Independent Component Analysis (ICA)

was used to remove EEG artifacts using the EOG signal.

4.2 NMED-T dataset

The NMED-T dataset provides EEG recordings for the

perception of 10 naturalistic full length songs. The songs are

in Western musical tradition, have durations between 4:30 and

5:00 min in length and contain vocals. They are real-world

musical works with pronounced rhythmical properties. 125

channel EEG at 1 kHz sampling rate was recorded for all of

the 20 subjects with normal hearing and no history of brain

injury. We used the preprocessed version of the dataset, which

features EEG down-sampled to 125 Hz and bandpass filtered

between 0.3 and 50 Hz. Ocular and cardiac artifacts were

removed using the additional EOG channels with ICA after

manual bad channel removal. A more detailed description of

the preprocessed dataset can be found in [15].

Subjects in both experiments were not required to have

musical training, nor did they execute a particular task during

listening or imagination. All EEG channels were normalized

to zero mean and range [-1, 1]. For training, EEG data was

split into excerpts of 1 s length, resulting in 512 samples

(OpenMIIR) and 125 samples (NMED-T) length.

We computed Mel spectrograms of audio targets at full

sample-rate of 44100 Hz using the librosa library [16] with

64 frequency bands between 0 and 2000 Hz, FFT window size

of 2048 and hop length of 1024. Furthermore, we generated

loudness envelopes for each stimulus using Hilbert transform

of the scipy library at the full sample rate [9]. We then

down-sampled the Mel spectrograms and loudness envelopes

to the sample rates of the EEG (512 Hz for OpenMIIR and 125

Hz for NMED-T) before splitting into excerpts of 1 s length.

5. LEARNING SHARED REPRESENTATIONS

OF AUDIO AND BRAIN SIGNAL

We propose an adaptation of VCCA as proposed by Wang

et al. [32] to perform multi-view learning on audio and EEG

signal by defining EEG and audio to be two views that can

be generated independently from a shared latent embedding z:

p(audio,eeg,z)=p(z)p(audio|z)p(eeg|z). (1)

As we are essentially interested in the auditory informa-

tion within EEG signal, we formulate a default model with a

single encoder, which processes EEG. Here, z is a learnable

space of auditory concepts which are contained implicitly both

in the audio and the EEG signal and which generate signifi-

cant parts of both views. Following the VCCA principle, we

project both audio and EEG signal into the shared space z.

By declaring the prior p(z), p(audio | eeg), and p(eeg | z)

to be Gaussian, we ensure that the projections E[z | audio]
and E[z |eeg] of the maximum likelihood solution are in the

same space as the projections through CCA. As we deal with

the reconstruction of complex EEG data, we parametrize the

mean of pΘ(eeg |z) with deep neural networks (DNNs) and

apply the same procedure for the mean of pΘ(audio |z). The

approximate posterior qφ(z |eeg) is optimized by a third DNN.

Training the VCCA model is done in analogy to Variational Au-

toencoders (VAEs) with variational inference by sampling from

qφ(z |eeg). Optimizing the lower bound of the log likelihood

L(eeg,audio;θ,φ) with stochastic backpropagation is done by

optimizing the reconstruction loss of audio and EEG decoder

and the Kullback-Leibler (KL) divergence between the learned

qφ(z |eeg) and p(z) using the reparameterization trick [14].

5.1 Multimodal data and additional views

This model can be extended to arbitrary amount of decoders

to reconstruct multiple views, as long as they are dependent

mainly of a shared latent variable. Here, we use several

decoders to reconstruct different aspects of the audio signal:

Mel spectrograms of the audio stimuli, their loudness envelope

as well as an additional decoder to classify the trial types.

Based on our retrieval intention, here we focus on the learned

embedding and the reconstructed Mel spectrograms. We

use the remaining decoders to enhance the training quality.

Similarly, we can add additional encoders, if they represent

data based on the latent variable, by making use of additional

private latent variables introduced with the VCCA model.

They store only the view-specific aspects of additional input,

e.g. from other biological modalities, such as fMRI, audio or

EEG signal during imagination. Figure 1 shows an example

of the modified VCCA architecture with one EEG decoder

and two audio decoders. Here, we test the model with a single

EEG encoder and multiple decoders.

Figure 1. VCCA architecture for shared auditory concept and

EEG representation learning. Latent variables parametrized by

optional private encoders are indicated with dashed lines.
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5.2 EEG encoder architectures

Both NMED-T and OpenMIIR speech EEG encoders featured

4 convolutional layers with filter numbers linearly ascending

from 64 to 512 per layer. Convolution was performed on two

dimensional inputs. Each column of the input represented the

same linear concatenation of EEG channels for a single sample

within the inputs of 1 s length. This resulted in inputs of size

512*64 for the OpenMIIR speech and 125*125 channels for

the NMED-T inputs. The kernel size was set to [2x2] for all

layers. Here and for all further kernel dimensions, we define

the first index to be within the channel domain (or frequency

for spectrograms) and the second within the temporal domain.

Each convolutional layer was followed by 30 % dropout.

5.3 EEG and audio decoder architectures

We used similar EEG decoder architectures for both datasets.

The OpenMIIR speech EEG decoder featured 6 hidden decon-

volution layers with three layers of 16 and another three layers

of 32 filters. The kernel size was set uniformly to [2x16] with

stride 2 except for a [2x1] kernel in the third layer with stride

1. A final dense output layer consisted of 512*64 units. The

decoder for the NMED-T dataset followed the same deconvo-

lution architecture, except for kernels with dimension of [4x16]

and [4x1] instead of [2x16] and [2x1]. A final dense layer con-

sisted of 125*125 units. Both OpenMIIR speech and NMED-T

decoders for Mel spectrograms consisted of four layers: Two

deconvolution layers of 32 filters and two layers with 64 filters.

As the length of Mel spectrograms mirrors those of the EEG

excerpts, but in combination with a frequency resolution of

64 bins, the final dense layer featured 512*64 and 125*64

units respectively. The kernel dimensions were set to [4x8]

uniformly, except for the fourth deconvolution layer of the

OpenMIIR speech decoder, with a [2x8] kernel. The decoder

for loudness envelope reconstruction consisted of a bidirec-

tional LSTM layer with 128 hidden units, followed by a dense

layer of size equal to the length of the audio excerpt. Finally,

the decoder used for classification of the OpenMIIR speech

dataset consisted of two hidden dense layers with 32 filters and

a dense output layer of 1 unit. All internal units used Rectified

Linear Unit (ReLU) activations, all output units had sigmoid

activation. The size of the latent embedding was 128 units.

5.4 VCCA training and prediction

The extended VCCA model was trained both intra-subject and

cross-subject in an end-to-end fashion purely on the perception

trials using Adam optimization with a constant learning rate of

0.0001 [13]. For both datasets we used 60 % of available per-

ception trials for training and another 20 % for validation. The

remaining 20 % and the imagination trials were used for testing.

All trials were shuffled randomly before training. For tests on

imagination data, we evaluated both imagination trials whose

corresponding perception trials were included in the training as

well as entirely unknown trials. All models were trained up to

saturation of the Mel spectrogram reconstruction loss, between

1000-2000 epochs. Reconstruction loss was computed as the

mean squared error between reconstructions and targets.

5.5 Introspection

After training we inspected the learned latent space by linearly

interpolating between multiple existing EEG inputs extracted

either from the training or testing dataset. This way, we

received embeddings for the given inputs as well as a fixed

number of embeddings that connect them in the learned

projection space. We then used the model to reconstruct the

Mel spectrogram and EEG signal for the embeddings.

6. QUALITATIVE ANALYSIS

OF MUSICAL STIMULUS RECONSTRUCTION

6.1 Perceived stimulus reconstruction

We were able to use the modified VCCA model to reconstruct

the Mel spectrograms of perceived audio within both datasets

at various levels of accuracy. Figure 2 shows exemplary re-

constructions of speech and sine wave tone patterns for intra-

subject training and testing on both trial types of the OpenMIIR

speech dataset. The reconstructions are characterized by rhyth-

mical and timbral alignment with the target. In some cases we

noticed erroneous temporal shifts of the whole predicted rhyth-

mical pattern within a reconstructed excerpt. Additional tests

with smaller window sizes lead to a decrease in amount and size

of such errors, while increasing the amount of false positive pre-

dictions of both sine wave and speech patterns. In some cases

speech and sine wave patterns were mixed up, but still with cor-

rect temporal alignment of note onset positions between target

and predictions. Figure 3 shows reconstructions after training

on all subjects of the OpenMIIR speech dataset. Multi-subject

training lead to results with improved temporal alignment of tar-

gets and predictions. Here, in more cases the two timbres (sine

wave and speech pattern) were confused. This indicates that the

correct prediction of the timbre is more subject-specific than

the temporal and rhythmical aspects. Increasing the amount of

training data for both trials enhanced the overall reconstruction

quality, training only on the speech trials still lead to tempo-

rally meaningful reconstructions of the sine wave tone patterns.

We found the stimulus reconstruction quality to be best when

including 4 subjects for cross-subject training and testing.

Increasing the amount of dropout within the EEG decoder

(up to 40 %) turned out to be crucial for reconstructions of

comparable quality for trials in subjects that were excluded

entirely from the training procedure. Training with randomized

window start positions and using overlapping overlapping

windows proved to enhance the reconstruction quality. This

suggests that Mel spectrogram reconstruction quality for this

dataset is limited by the amount of available training data.

Compared to the OpenMIIR dataset, the NMED-T dataset

provided more training data with increased target complexity.

The reconstructions showed different characteristic in visual

inspection. Often times, the timbre reconstruction dominated

the reconstruction of temporal aspects, especially in parts that

featured multiple instruments or singing voice. In fewer cases,

but within all songs, the onsets of percussion, speech or other

sounds were reconstructed. For all trained models, timbre

reconstruction was visible after around 500 epochs, while

temporal aspects were learned at later stages. Figure 4 provides

examples for reconstructed excerpts of the perceived full-length

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 395



Figure 2. Mel spectrogram reconstructions of perceived rhyth-

mical trials for the VCCA model trained on subject ’P13’ of

the OpenMIIR speech dataset. Target stimuli are presented

above their reconstructions.

Figure 3. Mel spectrogram reconstructions of perceived rhyth-

mical trials for the VCCA model trained on all subjects of the

OpenMIIR speech dataset. Target stimuli are presented above

their reconstructions.

songs contained in the NMED-T dataset. We found no substan-

tial difference in the quality of reconstructions within subjects

included into training and those from subjects excluded during

training. This might be due to the small amount and long dura-

tion of 10 stimuli in combination with a single presentation per

stimulus. Increasing the dropout rate after each convolutional

layer in the EEG encoder over 30 % increased the models

tendency to reconstruct temporal aspects, such as percussion

onsets. Training sets with a larger amount of subjects generally

Figure 4. Excerpts of reconstructed Mel spectrograms from

the NMED-T dataset. The target stimuli are shown above their

reconstructions. The two top rows are based on training on

all subjects. The three bottom rows are based on training on

10 subjects and testing on subjects that were excluded during

training.

improved reconstruction quality. Furthermore, the introduction

of overlapping EEG input windows increased the amount

of reconstructed temporal features. Models trained for more

than 2000 epochs showed more sparse reconstruction within

the frequency domain. This indicates that adding more data

and increasing training length can further increase the recon-

struction quality for naturalistic music. Often times, the size

of temporal misalignments was equal at all positions within

reconstructed excerpts. This indicates that the reconstruction

quality is dependent of the window size. Future work could

test this assumption by simultaneously training on EEG or

audio excerpts of various sizes within different encoders of

the VCCA model. This would furthermore allow the repre-

sentation of the latent concepts to include contexts of various

size. For example, in the audio domain, such contexts could

range from single note onsets to changes in song structure.

6.2 Imagined stimulus reconstruction

VCCA models trained on perceptual OpenMIIR speech data

could be applied to imagination trial reconstruction. The

reconstructed stimuli showed the same typical rhythmical

patterns and could be divided into speech and sine wave

predictions. However, the correct rhythmical predictions

were less often visible and more blurry. It is important to

note that the imagination was performed superimposed on a

constant metronome click. This means, that only the difference
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between the rhythmical structure and timbre was based on

pure imaginative processes, while there were still perceptual

cues for temporal alignment. Models trained on multi-subject

perceptual data showed less blurry reconstructions. Adding

private encoders with imagination based EEG signal did not

cause a visible increase in reconstruction quality.

7. QUALITATIVE

ANALYSIS OF LEARNED AUDITORY CONCEPTS

We found musically meaningful representations of the

OpenMIIR speech stimuli in the latent space of models

trained intra-subject as well as cross-subject. Both EEG signal

from training and testing subsets could be used to produce

continuous interpolation. Processing EEG inputs from both

testing and training data sets and using the target audio stimuli

as validation, we found continuous representation across the

temporal, rhythmical and timbral domain. For any given

input, we could change the temporal position of the rhythmical

pattern as well as the timbre (within speech and sine wave

tones). Furthermore, the latent space enabled interpolation be-

tween metronome clicks and the sine wave tones of increased

loudness. However, this difference was found to a lesser degree

with data of the test set. Figure 5 (a) shows an example for

the interpolation between 3 embeddings based on EEG inputs

of the OpenMIIR speech training data set. Here, interpolation

between a syncopated and non-syncopated part of the rhythm

was done while simultaneously shifting the temporal position

of the rhythmical pattern within the reconstructed excerpt. The

non-syncopated excerpt was further interpolated into its rep-

resentation with speech signal. Figure 5 (b) shows topographic

projections of the brain activity reconstructed for each embed-

ding that was computed in Subfigure (a). For the sake of clarity

we show six topographic plots out of the total amount of 512

per embedding. Qualitative comparison of the EEG signal with

the original inputs indicated that overfitting the EEG data is not

possible when we stop training when the audio reconstruction

loss is saturated. For other use cases, higher quality EEG recon-

structions could be achieved with different training procedures,

such as unsupervised EEG reconstruction pretraining. Models

with smaller latent embeddings sizes (e.g. 8 units) did still

produce meaningful and continuous interpolations, but with

more blurring across the temporal and frequency domains. The

model forces EEG and audio to be shared even in these smaller

latent spaces. The neuroscientific meaningfulness of the EEG

reconstructions might further be validated in future work, for

example with shared fMRI representation in private encoders.

8. CONCLUSIONS

In this paper, we presented the application of a multi-view

generative model for shared auditory concept learning and

musical stimulus reconstruction from EEG signals. We showed

that the model can learn representations of simple rhythm

and timbre related concepts that are shared in audio and EEG

data. Furthermore, we could see first successes in approaching

naturalistic music and imagined stimulus reconstruction. The

presented framework is designed to be expandable to additional

modalities, such as fMRI data, or additional reconstruction

Figure 5. (a) Reconstructed Mel spectrograms after interpola-

tion in the learned latent space learned for Subject ’P13’ of the

OpenMIIR speech dataset. Embeddings that correspond to real

EEG inputs are framed. (b) Topographic visualization of the

reconstructed temporal brain activity. Each row represents the

brain activity reconstructed for the embedding in the same row

of Subfigure (a).

targets, such as emotional aspects of music cognition. In

combination with the ability to perform introspection on

the shared representation of stimuli and electrophysiological

responses, the model can be an aid for future EEG based

music information retrieval and research in music cognition.
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ABSTRACT

Music information retrieval (MIR) has been gaining in-
creasing attention in both industry and academia. While
many algorithms for MIR rely on assessing feature sub-
sequences, the user normally has no resources to interpret
the significance of these patterns. Interpreting the relations
between these temporal patterns and some aspects of the
assessed songs can help understanding not only some algo-
rithms’ outcomes but the kind of patterns which better de-
fines a set of similarly labeled recordings. In this work, we
present a novel method to assess these relations, construct-
ing an association rule network from temporal patterns ob-
tained by a simple quantization process. With an empirical
evaluation, we illustrate how we can use our method to ex-
plore these relations in a varied set of data and labels.

1. INTRODUCTION

Digital music repositories and streaming music services
have become increasingly popular in the last decades.
Along with this growth, algorithms to automatically orga-
nize, navigate, and search on music collections are more
and more necessary. For this reason, Music information
retrieval (MIR) has been gaining considerable attention in
both industry and academia.

There is a multitude of MIR methods that rely on assess-
ing subsequences of features. In other words, these meth-
ods extract features from the audio in a sliding window
fashion and use successive subsets of these features to take
decisions over the data. One example is the music genre
classification, in which a common approach is to aggregate

* The opinions expressed in this article are those of the authors
and do not necessarily reflect the official policy or position of the Itaú-
Unibanco.

c© Renan de Padua, Vernica Oliveira de Carvalho, Solange
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tribution 4.0 International License (CC BY 4.0). Attribution: Renan de
Padua, Vernica Oliveira de Carvalho, Solange Rezende, Diego Furtado
Silva. “Exploring Musical Relations Using Association Rule Networks”,
19th International Society for Music Information Retrieval Conference,
Paris, France, 2018.

features from subsequences to obtain a more robust set of
features [2, 8]. Moreover, Silva et al. [12] showed how as-
sessing distances between subsequences can be used as a
subroutine for different MIR tasks, from cover recognition
to visualization.

In this work, we propose the use of a novel category
of association rules networks to support understanding the
relations between sequential patterns and labels which de-
scribe our data. The exploration of these association rules
may provide insights on what kind of pattern defines one
label, which may have implications on musicology or other
MIR tasks.

For instance, consider the genre as the target label. If
one pattern (or a group of patterns) happens with high con-
fidence for only one label, this may help to explain the
characteristics which define that genre. Also, it may guide
us to understand how to improve music classification al-
gorithms. Besides, our method helps us to find patterns
shared between different labels. This kind of relation can
be used, for example, to improve music recommendation
systems, as well as provides insights on the musical influ-
ences between different labels.

Figure 1 illustrates one example of relations found by
our method. It represents that, for a given dataset labeled
with genre information, when the pattern indexed by 10
appears in a recording, we can say that recording belongs
to the label “classical” with 100% of confidence. Also, if
the patterns 23 and 4 happens in the same recording, it be-
longs to the label “classical” with 94% of confidence. The
patterns correspond to quantized subsequences of features
– Mel-Frequency Cepstrum Coefficients (MFCC), in this
case – and can be assessed visually or by listening to the
music excerpt that generated it.

In this paper, we introduce algorithms to represent as-
sociation rules in a graph, aiming to provide a visual tool
to understand the relations between the features that com-
pose it. Then, we apply our method on different datasets,
described by varied classes of labels, to demonstrate how
to use this representation to understand the relations be-
tween features and labels, as well as which patterns link
two different labels.
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Figure 1: Example of association rule network

The remainder of this paper is organized as following.
Section 2 introduces the main concepts of association rules
and association rules networks, accompanied by related
work. The method presented in this work is presented in
Section 3. Section 4 presents our experimental evaluation.
Finally, Section 5 concludes this work.

2. BACKGROUND AND RELATED WORK

The association rules were first proposed by Agrawal et. al.
[1]. The goal of the proposed approach was identifying, in
supermarket buying transactions, what were the items that
customers used to buy together. This analysis was made
aiming to help the supermarket owners to organize their
stock in order to raise the sales of some specific items. To
understand how association rules discovery works, we first
define some concepts related to it.

Definition 1 Given a set of items I, a set of transaction T
consisting of subsets of I, an association rule is the relation
A→ B, where A and B are subsets of I and A ∩ B = ∅.

A is called antecedent (or Left-Hand side - LHS) and B
is called consequent (or Right-Hand side - RHS). The asso-
ciation rule can be read as: “given that A happened, B also
happens in c% of the cases”, where c% is the association
rule confidence. Support (s%) is another important mea-
sure in the association rule, that describes the percentage
of transactions in which all the items of the rule appear.

Definition 2 The support σ(A) of a subset A⊂ I is defined
by the percentage of transactions that contain all the items
presented in A.

Definition 3 The confidence of a rule A → B is given by
the percentage of transactions that contain all the items in
A that also contain all the items in B. The confidence is
calculated by σ(A∪B)

σ(A) .

Also, the Lift is a widely used measure to assess the
association rule quality. It evaluates if the items on the
LHS are positively or negatively dependent with the items
on RHS, or if these sets are independent.

Definition 4 The lift value of a rule A → B is given by
the probability of A and B happen together divided by the
probability of A times the probability of B, calculated by
σ(A∪B)
σ(A)σ(B)

The Association Rule Network (ARN) was proposed by
Chawla et. al. [5] and extended by Pandey et. al. [10] and
by Chawla [4]. The ARN models all the association rules
that are directly or indirectly correlated to an specific item
(called objective item) in a directed acyclic graph (DAG),
pruning all the other rules that are not interesting in the
objective item context. According to Pandey et. al. [10],
the ARN modeling is capable of pruning the rules into a
specific context, defined by the selected objective item.

According to Thulasiraman et. al. [14], a graph G =
(V, E) consists of two sets: a finite set of vertices V and
a finite set of edges E. Each vertex represents an object
in the graph and an edge represents a link between two
vertices. Also, it is possible to define the graph G = (V, E,
W), consisting of three sets: the V and E sets remain the
same, while the W set represents the weight of the edges
in the graph G. In a graph that does not have weights, the
W may have 1 where the connection exists and 0 where
it does not exists. If the edges are ordered, i.e., the edges
are identified as “from” vertex and “to” vertex, then it is
said that the graph is directed because its edges contain a
direction. A Directed Acyclic Graph (DAG), is a particular
type of graph that contains no cycles.

Definition 5 We say that a directed graph contains cycles
if given a graph G containing N vertices V, the graph has a
path that goes from vx to vy and there is also a path from
vy to vx.

An example of an ARN with objective item “G” is pre-
sented on Figure 2. In this example, the following rules
were modeled: A→ D, B→ D, B→ C, C & D→ E and
E & F→ G. All the other extracted rules were pruned be-
cause they were not interesting in the context of the G item
exploration.

B

A

C

D

E

F

G

Figure 2: Example of ARN with objective item = G,
adapted from Pandey et. al. [10].

The final ARN is a directed acyclic graph that flows to
the objective item, i. e., all elements on the graph have
directed connections that leads to an objective item. This
graph models the association rules that better explains the
occurrence of the selected objective item. The modeling
can be used to build a hypothesis, based on the correlation
among the items in the database and the objective item that
the user wants to understand.

The ARN algorithm can be described in 3 steps, de-
scribed as follows.

Step A Given a database D, a minimum support, and a
minimum confidence value, we extract the associa-
tion rules using an algorithm, like apriori [1]. The
RHS must have size 1.
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Step B Considering all the items in the association rules’
RHS, the user selects one item to represent the ob-
jective item.

Step C Models all the rules that have the objective item
in the RHS (considered level 0) or already modeled
on other levels. The modeling must fulfill the 2 re-
strictions: 1 - The LHS of the rule is not present in
the network or 2 - the LHS level is equal the RHS
level + 1.

3. EXTRACTING AND ASSOCIATING PATTERNS

The proposed method relies on two main steps, which we
describe in details in this section. The first one extracts
frame-level features from the audio and quantize them to
create a limited dictionary of patterns. With this pro-
cedure, we transform the recordings in our database in
a transaction-like representation, where each recording is
represented by the patterns presented in it. This represen-
tation is used in the second step of our method.

The second one extracts and selects the best rules to de-
scribe all the labels on the dataset. We extract the associa-
tion rules, prune the rules which do not present interesting
knowledge on the labels context and build a DAG, explain-
ing how the patterns correlates to the labels.

3.1 Extracting and Quantizing Subsequence Patterns

As aforementioned, the first step of our method relies on
associating each recording to one or more temporal pat-
terns in a bag-of-patterns representation. For this, we split
this phase into different intermediate steps to create a dic-
tionary and, then, associate each subsequence of features
from each recording to a codeword in this dictionary.

Initially, we extract frame-level Mel-Frequency Cep-
trum Coefficients (MFCC) and Constant-Q chromagram
from the raw audio. For this, we used the LibROSA pack-
age for music and audio analysis [9]. Since our main pur-
pose is not comparing different parameter settings of each
feature extraction procedure, we applied the default param-
eters defined by the tool. We chose these features since
they represent distinct characteristics of music. Specifi-
cally, the MFCC and chromagram are intrinsic to timbre
and pitch information, respectively.

To associate each feature vector to a pattern, we first
need to create a dictionary. For this, we applied the simple
k-Means clustering algorithm on subsequences of the fea-
ture vectors. The centroid of each cluster defines one code-
word, i.e., the prototype of a temporal pattern. For the sake
of memory and time efficiency, we only used one-third of
the subsequences to estimate the centroids.

Once the codewords are defined, we associate all fea-
ture subsequences of each song with codewords, accord-
ing to their proximity. In other words, for each recording,
we find the nearest centroid of each subsequence of fea-
tures and annotate it. At the end of this step, each record-
ing is described by the set of codewords that appear in its
subsequences. In the case of repetition, we remove these
recurrences.

Although this step relies on defining the number of
codewords, we leave details regarding this to Section 4.

3.2 Extended Association Rule Network

The Extended Association Rule Network (ExARN) aims
to aid the user to understand the data and build a hypoth-
esis from that data. The objective is to model the associa-
tion rules in a graph, explaining the correlation among the
attributes in the database according to a set of attributes
selected by the user. For instance, consider the contact
lens database 1 , which is aimed to automatically prescribes
contact lenses to patients. In this case, the user may be
interested not in the classification, but in understanding
which are the patient’s characteristics that define which
kind of lens will be prescribed.

The ExARN is conceptually different from associative
classification algorithms and decision trees, which build
the model only based on the classes, ignoring all other cor-
relations present on the database. The ExARN explores
a set of previously extracted association rules and, then,
searches for the best rules to describe the set of attributes
defined by the user. Also, it has some interesting proper-
ties: i) it is built on a DAG, which means that there are no
cycles on the network, ii) it is built on levels, every rule
has the LHS on level x and the RHS on level x + 1, for
example, an objective attribute will mandatorily be on the
RHS and on level 0, all the attributes on LHS that contains
that attribute on RHS will be on level 1 and so on.

The ExARN is built in three steps. The first step con-
sists of the association rule mining phase. The only re-
striction added to this step, if compared to a conventional
association rule mining, is that the rules must an RHS with
size 1. This restriction was added, so each rule explains
only one attribute, reducing the complexity for the user to
explore the result.

The second step is the objective attribute definition.
This step will guide the entire exploration, as it will de-
fine the objective attributes which the network will be built
from. The user must select the attributes that will be ex-
plored. This selection must be done considering also the
possibility that these attributes have a common cause to be
explored or refuted.

The last step consists of the ExARN construction. This
step is responsible for getting all the rules that are directly
or indirectly related to the objective attributes and model
them following the ExARN restrictions. The ExARN
building is done recursively. First, all the attributes se-
lected as objective attributes are modeled in the graph on
the level 0. Then, all the rules that the LHS’ attributes are
not in the graph and have the RHS’ attributes on level 0 are
modeled on the network. The same process is done to all
the attributes on level 1, then to attributes on level 2 and
so on. Until there are no more rules to be modeled. The
ExARN can be defined as follows:

Definition 6 Given a set of association rule R, containing
rules with RHS of size 1, and a set of objective attributes

1 https://archive.ics.uci.edu/ml/datasets/
lenses
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Z with size ≥ 2, the ExARN is a DAG that models all the
rules related to the items on Z, such as:

1. Each vertex models a rule r ⊂ R.

2. From any point of the network, it is always possible
to reach at least 1 vertex representing an attribute
from Z.

3. Given a vertex v ⊂ ExARN, such as v 6⊂ Z. There is
no path from any item on Z to v.

The ExARN presents a wider exploration if compared
to the presented ARN because it allows the exploration of
2 or more objective items at once. That way, the user might
discover which patterns are interesting in the context of a
single objective item, also discovering which patterns are
interesting for a set of objective items.

4. EXPERIMENTAL EVALUATION

In this section, we describe the experimental evaluation
performed to assess the ExARN in different scenarios of
music data. We note that we made a supplementary web-
site 2 where we make available source codes and detailed
results, as well interactive visualizations of the networks
presented in this section and some audio excerpts to exem-
plify some of the mentioned patterns.

4.1 Rule discovery and association setup

After extracting the subsequence patterns, the database
pattern extraction begins. The sequence described here
was applied to all the databases.

First, the association rules were extracted. We mined
the association rules using the arules package in R 3 . This
step needs the definition of some parameters. The support
value, which is a threshold of minimum occurrence was
set to 1%. This value was chosen because the databases
were divided into more than 10 different labels, so each
subpattern will have a maximum occurrence of 1

numLabels

on each label. Defining the minimum support to 1% will
remove only the subpatterns that rarely happens. The
other parameter is called confidence, which can be defined
in terms of posterior probability as: Conf(A → B) =
P (B|A). We defined the minimum confidence on 25%,
which means that the B must happen in, at least, one-
quarter of the occurrence of A.

To make sure that the association rules are positively
dependent, we applied a filter using the lift measure. The
threshold was defined at 2, as rules with lift value ≥ 1 are
considered to have a positive dependency. We selected the
value 2 instead of 1 as this value discards the rules that are
on the edge of the measure. Then, we applied the ExARN
algorithm over the association rules, considering all the la-
bels as the objective items

2 https://sites.google.com/view/music-exarn
3 available at https://cran.r-project.org/web/

packages/arules/index.html

4.2 Datasets

The datasets used in our experimental evaluation aim to
provide us a diversity of characteristics and labels. For this
reason, we used diversified datasets and for one of them,
we used different labels for the same bag-of-patterns.

One of the most common labels in MIR datasets is the
genre. We evaluated our method in this context using the
GTZAN dataset [15]. This database is composed of 1000
thirty-second tracks, perfectly balanced in ten genres.

Another way to categorize music data is according to
the artist who recorded it. We also evaluated our method
in this scenario, using the Artist20 dataset [7]. This dataset
contains 1413 songs performed, as its name suggests, by
20 artists mostly of pop or rock music. The number of
recordings is not balanced among the artists.

Finally, we assessed the FMA dataset [6]. Moreover, we
took the fact that many of the recordings in these databases
are associated with “social” features provided by Echon-
est 4 to evaluate our method on varied labels for the same
data. Specifically, we applied our method targeting seven
distinct labels: acousticness, danceability, energy, instru-
mentalness, liveness, speechness, and valence. In order
to transform these continuous features in class-like values,
we discretized the features in five equally spaced intervals,
representing low, mid-low, mid, mid-high, and high levels
of each characteristic. As we used the default small portion
of this data and only kept information from the recordings
associated with Echonest features, we ended with 1023
tracks.

4.3 On the Impacts of the Codebook’s Size

The quantizing phase of our method has one parameter that
affects the results of our method. The number of clusters to
create the dictionary, i.e., the number of codewords, have
a direct impact on the confidence. Particularly, the higher
the number of codewords, the lower the confidence of the
rules. Conversely, the lower the number of clusters, the
higher is the confidence.

As we experimented with 25, 50, and 100 codewords
in each dataset, we stick our analysis on the lower value.
However, we notice that a high number of codewords may
be more appropriate for datasets with a high number of la-
bels. Otherwise, the intersection between the labels would
be too high to find meaningful rules. In this paper, the
higher number of assessed labels is 20.

There is another characteristic of using fewer code-
words regarding the interpretability of the results. As the
codewords are centroids, if we use too few clusters the
codewords will look “blurry” or few informative. How-
ever, we noticed that it does not hamper the rule discovery
and the music excerpts that were associated with each pat-
tern can listen to a better understanding of what that pattern
represents. Also, once the ExARN is computed, we can
break a pattern A in more parts, B and C for instance, in
a procedure similar to the Bisect k-Means approach [13].
With this operation, we turn the patterns more specific.

4 http://the.echonest.com/
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Figure 3: Examples of patterns in different resolutions,
given by the number of codewords in the dictionary: 25
(left) and 100 (right)

Then, instead of reading the association regarding A, one
may read it regarding “B or C.” Figure 3 illustrates two
chroma patterns obtained from different number of code-
words.

4.4 Results and Discussion

In this section, we present some of the results obtained by
our method. For simplicity, we split it into sections regard-
ing each analyzed dataset and the target labels of each of
them. Specifically, the results on GTZAN, Artist20, and
FMA are presented in the sections regarding genre, artist,
and the “social features” from Echonest.

We acknowledge that interpreting the patterns and, as
consequence, the meaning of some rules, only using tex-
tual and static graphical elements is a difficult matter. For
this reason, we make available on our website interactive
visualizations of ARNs obtained in our experiments, as
well as some music excerpts that are representative of rel-
evant patterns.

We note that association rules discovery is an unsuper-
vised task and, therefore, there is no quantitative evaluation
measure to assess the quality of these rules. The only way
to objectively evaluate the value of the learned rules would
be use it as an intermediate step of an algorithm to per-
form other task, such as classification or recommendation
systems. We leave this as an intention for future work.

4.4.1 Genre

Using MFCC, we found a few interesting rules that asso-
ciate patterns with some of the target labels. One example
is the one illustrated by Figure 1. We also found similar as-
sociations to other genres. Specifically, for metal, reggae,
and jazz. The latter two, however, with lower confidences
(around 33%).

The most interesting relations in this dataset come from
the patterns shared between distinct labels. Figure 4
presents the entire network for this dataset when associ-
ating patterns representing 10 seconds of audio.

Some of the patterns are associated with several genres
in the presented network. These patterns are not suitable
for differing the characteristics of each genre. However,
we commonly see music elements that are used in songs
belonging to different genres. So, this kind of multiple
relations was expected. For instance, we observed a pattern
associated with the genres disco, pop, and hip-hop.

On the other hand, we found patterns that link pairs of
genres. These patterns directly associate two genres that

Figure 4: ExARN obtained by associating MFCC patterns
from 10 seconds of audio in the GTZAN dataset

have somehow similar timbral information. It may help
explain the influence between genres or the mutual influ-
ences of each pair. One example of two genres linked by
this kind of association is the pair metal and blues. An-
other interesting relation regards the genres classical and
jazz. They have two patterns that are common for both.
However, they usually happen together (i.e. in the same
recording) in classical pieces but separately in jazz songs.
We noticed that we did not achieved interesting associa-
tions when using chroma features in this case.

4.4.2 Artist

Is there any link between Metallica and Roxette regarding
tonal patterns in their songs? The answer is “yes, there is
Tori Amos.” Using subsequences of chroma vectors repre-
senting 10 seconds in the Artists20 dataset, we found that
these three artist have sets of four tonal patterns each that
are confidentially linked to each of them. Moreover, Tori
Amos shares one of its patterns with Metallica and another
one with Roxette. Figure 5 illustrates these relations.

Figure 5: Subset of the rules obtained from chroma pat-
terns in the Artist20 dataset

This kind of relation is commonly seen when using
MFCC as the input features in this dataset. For instance,
when applying the ExARN algorithm on five seconds ex-
cerpts, we found rules with (at least) the minimum sup-
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port for seven artists. When using ten seconds excerpts,
we found rules for ten artists. In all of these cases, there is
at least one timbral pattern for each artist which links it to
another one.

We notice that these links are relevant since they are not
trivial. In other words, if a timbral or chromatic pattern
is present in many songs of several artists, the rules con-
taining it would have a very low support. Therefore, these
links show how two (or more artists) are musically related
each other by patterns that are not so commonly used.

4.5 Echonest Labels

We evaluated the ExARN on seven different labels from
Echonest. We found relevant rules in all of them but the
speechiness. For the other labels, the association rules net-
work demonstrated regularities in their behavior. For in-
stance, when we assess the rules associated to a single la-
bel, usually we cannot find association with minimum sup-
port for the intermediate values. This may happen because
the middle labels are fuzzy. In other words, the assessed
patterns can describe solely the high and low characteris-
tics at a minimum support. Figure 6 illustrates this fact
regarding the acousticness.

Figure 6: Association rules from MFCC that are not
shared by different intervals of acousticness

When we analyze the rules that associate different la-
bels, three main behaviors appear. The first one is not find-
ing patterns which relate different levels of these character-
istics. Figure 7 illustrates the second, and most common,
behavior. In this case, the extremes are separate into dis-
tinct components, i.e., the high and mid-high values are
linked by some patterns, similarly to what happens be-
tween low and mid-low values.

Finally, in some cases, the labels representing extreme
values are directly linked by one or more patterns while
some patterns play the rule of “bridges” between these ex-
tremes. Figure 8 illustrates this scenario.

5. CONCLUDING REMARKS

In this paper we presented the use of extended association
rules networks for exploring the correlation between tem-
poral patterns and labels of music in different scenarios.

To evaluate the meaning of the discovered rules, we pre-
sented some reasoning to verify the quality of these rules as
a qualitative approach. One example is evaluating the ex-
istence of links between labels we consider similar to each
other. In other cases, our rules may explicit some relations

Figure 7: Association rules from MFCC shared by differ-
ent intervals of energy

Figure 8: Association rules from chroma features shared
by different intervals of energy

that are not obvious. In both cases, studying the patterns
that composes such relations can be useful to understand
music data in several aspects. For instance, in some cases,
we could find interesting relations using chroma vectors in
scenarios where these features are not usually considered
(e.g. to describe valence and energy).

As future work, we intend to improve the quantization
step so we reduce the impact of the codebook generation
and we can ignore several patterns, considering them irrel-
evant. For this, we may evaluate the use of some density-
based clustering strategy [3,11]. Also, we will evaluate the
use of ExARN as an intermediate step to improve recom-
mendation systems. Finally, we intent to evaluate if this
kind of association rules network can improve the inter-
pretability of music-related learned features.
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ABSTRACT

Relative to other datasets, state-of-the-art tempo estima-
tion algorithms perform poorly on the GiantSteps Tempo
dataset for electronic dance music (EDM). In order to in-
vestigate why, we conducted a large-scale, crowdsourced
experiment involving 266 participants from two distinct
groups. The quality of the collected data was evaluated
with regard to the participants’ input devices and back-
ground. In the data itself we observed significant tempo
ambiguities, which we attribute to annotator subjectivity
and tempo instability. As a further contribution, we then
constructed new annotations consisting of tempo distri-
butions for each track. Using these annotations, we re-
evaluated two recent state-of-the-art tempo estimation sys-
tems achieving significantly improved results. The main
conclusions of this investigation are that current tempo es-
timation systems perform better than previously thought
and that evaluation quality needs to be improved. The new
crowdsourced annotations will be released for evaluation
purposes.

1. INTRODUCTION

Estimation of a music piece’s global tempo is a classic mu-
sic information retrieval (MIR) task. It is often defined as
estimating the frequency with which humans tap along to
the beat. A necessary precondition for successful global
tempo estimation is the existence of a stable tempo as it
often occurs in rock, pop, or dance music. To evaluate
a tempo estimation system one needs the system itself, a
dataset with suitable tempo annotations, and one or more
metrics. One such dataset, named GiantSteps Tempo, has
been released by Knees et al. in 2015 [6]. It was created by
scraping a forum that let listeners discuss Beatport 1 songs
with wrong tempo labels. Scraping was done via a script
and 15% of the labels were manually verified. All 664
tracks in the dataset belong to the umbrella genre electronic
dance music (EDM) with its subgenres trance, drum-and-
bass, techno, etc. Since its release, several academic and

1 http://www.beatport.com/, an online music store

© Hendrik Schreiber, Meinard Müller. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Hendrik Schreiber, Meinard Müller. “A Crowdsourced
Experiment for Tempo Estimation of Electronic Dance Music”, 19th In-
ternational Society for Music Information Retrieval Conference, Paris,
France, 2018.

commercial tempo estimation systems have been tested
against the dataset (e.g. [12]). As is common for datasets
annotated with only a single tempo per track, the two met-
rics Accuracy1 and Accuracy2 were used. Accuracy1 is
defined as the fraction of correct estimates while allowing
a tolerance of 4%. Accuracy2 additionally allows estimates
to be wrong by a factor of 2, 3, 1/2 or 1/3 (so-called octave
errors). The highest results reported for the GiantSteps
dataset are 77.0% Accuracy1 by the applications NI Trak-
tor Pro 2 2 (with octave bias 88 − 175) and 90.2% Accu-
racy2 by CrossDJ 3 (with octave bias 75 − 150). 4 These
results are surprisingly low—the highest reported Accu-
racy2 values for other commonly used datasets like ACM
Mirum [10], Ballroom [4], and GTzan [13] are greater than
95% [1]. Since EDM is often associated with repeating
bass drum patterns and steady tempi [2, 7], it should be
comparatively easy to estimate the tempo for this genre.
We hypothesize that relatively low accuracy values were
achieved for multiple possible reasons. Since the annota-
tions were scraped off a forum for disputed tempo labels,
the dataset may contain many tracks that are especially
hard to annotate for humans. And if not difficult for hu-
mans to annotate, it is conceivable that the tracks are par-
ticularly hard for algorithms to analyze. Lastly, if neither
humans nor algorithms fail, perhaps some of the scraped
annotations are simply wrong.

In this paper we investigate why tempo estimation sys-
tems perform so poorly for GiantSteps Tempo. To this end,
we conducted a large, crowdsourced experiment to collect
new tempo data for GiantSteps Tempo from human partic-
ipants. The experiment is described in detail in Section 2.
The data is analyzed in Section 3 and used to create a new
ground-truth. This ground-truth is then compared to the
original ground-truth and used to evaluate two recent al-
gorithms. The results are discussed in Section 4. Finally,
in Section 5, we summarize our findings and draw conclu-
sions.

2. EXPERIMENT

In order to generate a new ground-truth for the GiantSteps
Tempo dataset, we set up a web-based experiment in which

2 https://www.native-instruments.com/en/
products/traktor/dj-software/traktor-pro-2/

3 http://www.mixvibes.com/
cross-dj-software-mac-pc/

4 More benchmark results are available at http://www.cp.jku.
at/datasets/giantsteps/
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we asked participants to tap along to audio excerpts using
their keyboard or touchscreen. The user interface for this
experiment is depicted in Figure 1. Since most tracks from
the dataset are 2min long and tapping for the full dura-
tion is difficult, we split each track into half-overlapping
30 s segments. Out of the 664 tracks we created 4,640
such segments (in most cases 7 per track). To measure
tempo, it is not important for tap and beat to occur at the
same time. In contrast to experiments for beat tracking,
phase shifts, input method latencies, or anticipatory early
tapping—known as negative mean asynchrony (NMA)—
are irrelevant, as long as they stay constant (see [11] for an
overview of tapping and [3,5] for beat tracking). Therefore
participants were asked to tap along to randomly chosen
segments as steadily as possible, over the entire duration of
30 s without skipping beats. To encourage steady tapping,
the user interface gave immediate feedback in the form
of the mean tempo µ in BPM, the median tempo med in
BPM, the standard deviation of the inter-tap-intervals (ITI)
σ in milliseconds, as well as textual messages and emo-
jis (Figure 1). When calculating the standard deviation,
the first three taps were ignored, as those are typically of
low quality (users have to find their way into the groove).
When the standard deviation σ stayed very low, smilies,
thumbs up and textual praise were shown. When σ climbed
above a certain threshold, the user was shown sad faces
and messages like “Did you miss a beat? Try to tap more
steadily.” To prevent low quality submissions, users were
only allowed to proceed to the next track, once four condi-
tions were met:

1. 20 or more taps

2. Taps cover at least 15 s

3. ITI standard deviation: σ < 50ms

4. Median tempo: 50 ≤ med ≤ 210BPM

While the first three conditions were not explicitly com-
municated, the instructions made participants aware that
the target tempo lies between 50 and 210 BPM. Once all
four conditions were met, a large red bar turned green and
the Next button became enabled. For situations in which
the user was not able to fulfill all conditions, the user inter-
face offered a No Beat checkbox. Once checked, it allowed
users to bypass the quality check and proceed to the next
song. It must be noted that there is a tradeoff between en-
couraging participants to tap well (i.e. steadily) and a bias
towards stable tempi. We opted for this design for two rea-
sons. 1) tempo in EDM is usually is very steady [2, 7].
2) the bias is limited to individual tapping sessions at the
segment level, i.e. we can still detect tempo stability prob-
lems on the track level by aggregating segment level anno-
tations.

Participants were recruited from two distinct groups:
Academics and people interested in the consumer-level
music library management system beaTunes 5 . We refer to
the former group as academics and the latter as beaTunes.
While members of the academics group were asked to help

5 https://www.beatunes.com/

Figure 1: Illustration of the web-based interface used in
our experimental user study.

in this experiment via relevant mailing lists without offer-
ing any benefits, members of the beaTunes group were in-
centivized by promising a reward license for the beaTunes
software, if they submitted 110 valid annotations. While
it was not explicitly specified what a “valid annotation” is,
we attempted to steer people in the right direction using in-
structions and the instant feedback mechanisms described
above (Figure 1).

3. DATA ANALYSIS

Over a period of 21/2 months 266 persons participated
in the experiment, 217 (81.6%) belonging to beaTunes
and 49 (18.4%) to academics. Together they submitted
18,684 segment annotations (avg = 4.03/segment). We
made sure that all segments were annotated at least twice.
Since some segments are harder to annotate than others,
we monitored submissions and ensured that segments an-
notated by participants as very different from the origi-
nal ground-truth—exceeding a tolerance of 4%—were pre-
sented to participants more often than others. The vast ma-
jority of annotations was submitted by the beaTunes group
(95.1%). Overall 7.5% of all submissions were marked
with No Beat. With 7.6% the No Beat-rate was slightly
higher among members of the beaTunes group. Members
of academics checked No Beat only for 5.2% of their sub-
missions. Since the experiment was run in the participant’s
web-browser, the browser’s user-agent for each submission
was logged by the web-server. Among other information
the user-agent contains the name of the participant’s op-
erating system. 17,012 (91.1%) of the submissions were
sent from desktop operating systems that are typically con-
nected to a physical keyboard. 1,672 (8.9%) were from
mobile operating systems that are usually associated with
touchscreens. Participants interested in a reward license,
also had to enter name and email. Both datapoints have
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Dataset Split + - p-value
±academics 0.0074 0.0090 3.11e−29
±keyboard 0.0088 0.0095 9.74e−7
beaTunes±keyboard 0.0089 0.0099 6.71e−10
academics±keyboard 0.0074 0.0073 8.68e−1

Table 1: Average coefficients of variation cv for dataset
splits, academics or not, keyboard or not, and keyboard or
not for either beaTunes or academics. The low p-values
indicate a significant difference between the dataset splits.

been removed from the collected data to ensure anonymity.
We analyzed the submitted data to find out whether we

can find quality differences between submissions from dif-
ferent participant groups (Section 3.1). Section 3.2 intro-
duces metrics for ambiguity and stability. In Section 3.3,
we measure to which extent participants agree on one or
multiple tempi for the same segment. Then, in Section 3.4,
we take a look at segment annotations aggregated on the
track-level. Finally, in Section 3.5, we investigate whether
tempo ambiguity is a genre-dependent phenomenon.

3.1 Submission Quality

We wondered how steadily participants tapped and
whether some groups of participants tapped more steadily
than others. Specifically, are the beaTunes submissions as
good as the academics submissions? We can use the co-
efficient of variation cv = σ

µ of each submission’s ITIs
as a normalized indicator for how steadily a participant
tapped. To remove tapping outliers within a segment, we
sort each submission’s ITIs and only keep the central 10
before calculating the cv . This has the effect of reducing cv
for all submissions. The average cv for all submissions is
cv = 0.0089. Assuming a normal distribution, this means
that on average 99.7% of all central 10 ITIs lie within
±2.67% (≡ 3σ) of their submission’s mean value. Us-
ing cv as a measure for the submission quality of different
dataset splits, we found that members of academics tapped
significantly more steadily (cv = 0.0074) than members
of beaTunes (cv = 0.0090) (Table 1). To test for signif-
icance we used Welch’s t-test. Also, submissions from
desktop operating systems that are typically installed on
devices connected to a physical keyboard (i.e., no touch-
screen) are of significantly higher quality (cv = 0.0088)
than submissions from devices using iOS or Android as
operating system (cv = 0.0095). Despite the differences,
we found that even the ITIs from the group with the high-
est cv , i.e., beaTunes without keyboard, still lie within only
±2.97% (≡ 3σ) of their mean value 99.7% of the time—
again assuming a normal distribution. This is well below
the tolerance of 4% allowed by Accuracy1.

We conclude that the data submitted by academics with
keyboard is of the highest quality with regard to tempo sta-
bility, but find that the data submitted by members of bea-
Tunes without keyboard is still acceptable, because the dif-
ference in cv is not very large. This may be a direct result
of the experiment’s design which did not permit partici-
pants to submit highly irregular taps.
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Figure 2: Tempo salience distribution for segment
6 of track ‘Neoteric D&B Mix’ by Polex (Beatport
id 4397469). Measured values are: P (Ttrack) = 4,
P (Tseg6) = 2, A(Ttrack) = 0.30, A(Tseg6) = 0.40, and
JSD = 0.24.

3.2 Tempo Distribution Metrics

How steadily participants tapped does not say anything
about whether they tapped along to the true tempo. But
since the purpose of the experiment is to create a new
ground-truth, we cannot easily verify submissions for cor-
rectness. What we can do though, is to measure annotator
(dis)agreement both for a segment and for all segments be-
longing to the same track. To this end, we define some
metrics based on tapped tempo distributions. To create
such a tapped tempo distribution for a segment, we com-
bine the 10 central ITIs from each of its submissions in
a histogram T with a bin width of 1BPM and then nor-
malize so that

∑n
i=1 T (xi) = 1, with n as the number

of bins and xi as the corresponding BPM values. For T
we define local peaks as the highest non-zero T (xi) for
all intervals [xi − 5, xi + 5]. This may include very small
peaks. We interpret the BPM values xi of the histogram’s
local peaks as the perceptually strongest tempi and their
heights equivalent to their saliences. Per-track tempo dis-
tributions are created simply by averaging the 7 segment
histograms belonging to a given track. For an example,
please see Figure 2.

As a first, very simple indicator for annotator disagree-
ment, we define P (T ) as the number of histogram peaks
we find in a given tempo distribution T . A high peak count
for a single segment P (Tseg) indicates annotator disagree-
ment for that segment. This is not necessarily true for the
peak count for a track P (Ttrack), since it may also be a
sign of tempo instability, i.e., tempo changes or no-beat-
sections. Because the peak count P does not say any-
thing about the peaks’ height or salience, it is a relatively
crude measure. Therefore we define as second metric the
salience ratio between the most salient and the second most
salient peak as a measure for ambiguity. More formally, if
s1 is the salience of the highest peak and s2 the salience
of the second highest peak, then the ambiguity A(T ) is de-
fined as:

A(T ) :=


1, for P (T ) = 0

0, for P (T ) = 1

s2/s1, for P (T ) > 1

(1)

A value close to 0 indicates low and a value close to 1
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high ambiguity. This definition is inspired by McKinney
et al. [8] approach to ambiguity, but not identical. Just
like P , we can use A for both segment and track tempo
distributions. Again, for tracks we cannot be sure of the
ambiguity’s source.

Finally, we introduce a third metric that focuses more
on tempo instability within tracks. Obvious indicators for
instabilities are large differences between the tempo distri-
butions of segments belonging to one track. Since we cre-
ate tapped tempo distributions for each segment in a way
that lets us interpret them as probability distributions, we
can use the Jensen-Shannon Divergence (JSD) for this pur-
pose, which is based on the Shannon entropy H. With the
JSD we measure the difference between the tempo distri-
bution’s entropy for the whole track and the average of the
the individual segment tempo distributions’ entropies.

H(T ) := −
n∑
i=1

T (xi)logbT (xi) (2)

JSD(T1, ..., Tm) := H

(
m∑
j=1

1

m
Tj

)
−

m∑
j=1

1

m
H(Tj) (3)

To allow an easy interpretation of JSD-values, we
choose an unusual base for the entropy’s logarithm. By
setting b = n in (2), we ensure that 0 ≤ JSD ≤ 1. This
means, that a JSD-value near 0 indicates a small difference
between the tempo distributions for a track’s segments.
Correspondingly, a JSD-value closer to 1 means that the
tempo distributions of a track’s segments are very different.
To avoid detecting small tempo changes due to annotator
disagreements, we convert the segment tempo distributions
T to a bin width of 10BPM before calculating JSD.

3.3 Segment Annotator Agreement

How much do participants agree on a tempo for a given
segment? Recall that we have 4,640 segments (and 18,684
annotations for these segments) coming from 664 tracks.
As depicted in Figure 3 top, the submissions for more than
half the segments (2,500 or 53.9%) have just one peak, i.e.,
P (Tseg) = 1. For 1,514 or 32.6% of all segments we were
able to find two peaks, indicating some ambiguity. For
432 segments (9.3%) we found 3 peaks and for 184 seg-
ments (4.0%) 4 peaks or more. 10 segments have no peak
at all, because they have been marked as No Beat in all their
submissions. When interpreting these numbers one has to
keep in mind that some segments have been annotated by
very few participants (Figure 3 bottom). To give an exam-
ple, while the segments annotated with one peak are based
on 3.64 submissions on average, the segments annotated
with 6 peaks are annotated with 9.42 submissions per seg-
ment. This reflects the fact that we presented difficult seg-
ments to participants more often, but could also be caused
by increased variability introduced by a higher number of
submissions. Because submissions marked as No Beat do
not show up in this overview unless all submissions for a
segment were No Beat, we counted the segments for which
a majority of submissions were marked with No Beat. That
was the case for 118 segments (2.5%).
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Figure 3: (top) Segments per peak count. (bottom) Aver-
age number of submissions per segment by peak count.
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Figure 4: (top) Tracks per peak count. (bottom) Average
number of submissions per track by peak count.

As mentioned in Section 3.2, the peak count does not
say anything about the peaks’ height or salience and is
therefore a relatively crude measure. We found that the av-
erage ambiguity for all segments is A(Tseg) = 0.25 (with
standard deviation σ = 0.32), meaning that on average the
highest peak is 4 times more salient than the second high-
est peak. In other words, we can often observe a peak that
is much more salient than others. At the same time, there
may also be a second peak with considerable salience.

3.4 Track Annotator Agreement

Just like for the segments, we looked at the number of
tracks per peak count. We found only 81 tracks (12.2%)
with one peak and 582 tracks (87.8%) with two or more
peaks (Figure 4 top). The largest group among the multi-
peak tracks are tracks with two peaks (178 or 26.8%).
These numbers are much more reliable than the segment
peak counts as they are based on at least 25 submissions
per track (Figure 4 bottom). Compared to the segments’
peak counts we see a larger proportion of tracks with more
than one peak. But this does not necessarily mean that the
ambiguityA is much higher than for the segments, because
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Figure 5: Tempo salience distributions for segments of
the track ‘Rude Boy feat. Omar LinX Union Vocal Mix’
by Zeds Dead (Beatport id 1728723). The track’s tempo
changes in segment 4, leading to four distinct peaks. With
JSD = 0.44 its Jensen-Shannon divergence is high.

peak counts do not account for salience and even small lo-
cal peaks are counted. In fact, we measured an average
ambiguity of A(Ttrack) = 0.26 (with standard deviation
σ = 0.27)—almost the same average as for the segments.
Therefore we attribute the shift towards more peaks to the
much higher number of submissions per item and possible
tempo instabilities in the tracks themselves. By tempo in-
stability we mean for example a tempo change in the mid-
dle of the track, a quiet section, or no beat at all. Any of
these cases inherently lead to more peaks. A typical exam-
ple for a track with a tempo change is shown in Figure 5.

In an attempt to quantify tempo instabilities in the sub-
missions we calculated the JSD introduced in Section 3.2.
The histogram in Figure 6 shows the distribution of tracks
per JSD interval with a bin width of 0.05. The average
divergence for the whole dataset is µJSD = 0.15, the stan-
dard deviation is σJSD = 0.11. To test whether a high
JSD correlates with tempo instabilities, we considered all
tracks with JSD > µJSD + 2σJSD = 0.375, resulting in
39 tracks. Performing an informal listening test on these
tracks revealed that 3 had no beat, 10 contained a tempo
change (e.g. Figure 5), 7 had sections that felt half as fast
as other sections (metrical ambiguity), 8 contained larger
sections with no discernible beat, 9 were difficult to tap,
and 2 had a stable tempo through the whole track. From
this result one may conclude that a high JSD is connected
to tempo instabilities, but it may also just indicate that a
track is difficult to tap. Nevertheless, using JSD helped
us find tracks in the GiantSteps Tempo dataset that exhibit
tempo stability issues. Since 2.5% of the segments were
annotated most often with No Beat, we wondered whether
any tracks have a majority of segments that have predomi-
nantly been annotated with No Beat, hinting at the absence
of not just a local beat (e.g., a sound effect or a silent sec-
tion), but the lack of a global beat. This is true for 6 tracks,
i.e., 0.9% of the dataset. All 6 of them are among the 39
tracks with very high JSD and either have no beat, are very
difficult to tap or contain large sections without a beat.

3.5 Ambiguity by Genre

We wondered whether we can confirm findings by McK-
inney and Moelants [9] that the amount of tempo ambi-
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Figure 6: Distribution of tracks in the dataset per JSD in-
terval with a bin width of 0.05. The blue line shows µJSD

and the red line shows µJSD + 2σJSD.

Genre A(Tseg) A(Ttrack)
all 0.25 0.26
techno 0.12 0.10
trance 0.17 0.12
drum-and-bass 0.37 0.39
electronica 0.36 0.38
dubstep 0.35 0.43

Table 2: Average ambiguity for the top 5 genres.

guity depends on the genre or musical style. To ensure
meaningful results, we considered only the 5 most often
occurring genres in the dataset with 54 or more tracks
each. We found that the genres techno and trance do not
seem to be very affected by ambiguity. More than 65%
of their segments are annotated with just one peak. In
contrast to that, fewer than 38% of all segments in the
genres drum-and-bass, dubstep, and electronica are anno-
tated with just one peak (Figure 7 top). A similar picture
presents itself when looking at the average segment ambi-
guity A(Tseg). As shown in Table 2, it is 0.12 for techno
segments and thus much lower than the overall average of
0.25. The same is true for trance (0.17). Contrary to that,
the ambiguity values for drum-and-bass (0.37), electron-
ica (0.36) and dubstep (0.35) are all well above the av-
erage. We found similar relations for peak counts on the
track level (Figure 7 bottom) and the average track ambi-
guity A(Ttrack) (Table 2). This strongly supports McKin-
ney and Moelants’ finding that tapped tempo ambiguity is
genre-dependent. Perhaps it is even an inherent property.

4. EVALUATION

The tempo histograms for tracks can easily be turned into
single tempo per track or two tempi+salience labels. This
provides us the opportunity to evaluate the original ground-
truth for the GiantSteps Tempo dataset by treating it like an
algorithm. Since the original annotations are single tempo
per track only, we are using Accuracy1 and Accuracy2 as
metrics. To obtain one tempo value per track from a distri-
bution, we are using just the tempo value with the highest
salience. The three tracks without a beat have been re-
moved. We refer to these new annotations as GSNew and
to the original ones as GSOrig. Figure 8 shows the ac-
curacy results for the comparison of GSOrig with GSNew
and reveals a large discrepancy between the two. Only 81.5
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Figure 7: Percentage of segments (top) and tracks (bot-
tom) with a given number of peaks by genre. Drum-
and-bass, dubstep, and electronica suffer much more from
tapped tempo ambiguity than techno and trance.
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Figure 8: Accuracies measured when comparing GSNew
with GSOrig.

of the labels match when using Accuracy1, and only 91.1%
match when using Accuracy2.

Coming back to the original motivation for this paper—
the poor performance of tempo estimation systems for Gi-
antSteps Tempo—we evaluated the two state-of-the-art al-
gorithms schreiber [12] and böck [1] with both the
old and the new annotations. The algorithms were chosen
for their proven performance and conceptual dissimilar-
ity. While schreiber implements a conventional onset
detection approach followed by an error correction proce-
dure, böck’s core consists of a bidirectional long short-
term memory (BLSTM) recurrent neural network. De-
spite their conceptual differences, both algorithms reach
considerably higher accuracy values when tested against
GSNew (Figure 9). Accuracy1 increases for böck by
5.9 pp (58.9% to 64.8%) and for schreiber by 7.1 pp
(63.1% to 70.2%). Accuracy2 shows similar increases,
7.6 pp (86.4% to 94.0%) for böck and 6.5 pp (88.7% to
95.2%) for schreiber. Remarkably, both böck and
schreiber reach higher Accuracy2 values for GSNew
than the original annotations reached, when compared with
GSNew. The increased results for GSNew are much more
in line with values reported for other tempo datasets. We
therefore believe that this increase and the discrepancy be-
tween GSOrig and GSNew are hardly coincidences, but
strong indicators for incorrect annotations in GSOrig.
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Figure 9: Accuracies for the algorithms böck and
schreibermeasured against both GSOrig and GSNew.

5. DISCUSSION AND CONCLUSIONS

In this paper we described a crowdsourced experiment for
tempo estimation. We collected 18,684 tapped annotations
from 266 participants for electronic dance music (EDM)
tracks contained in the GiantSteps Tempo dataset. To an-
alyze the data, we used multiple metrics and found that
half of the annotated segments and more than half of the
tracks exhibit some degree of tempo ambiguity, which may
either stem from annotator disagreement or from intra-
track tempo instability. This refutes the assumption that
it is always easy to determine a single global tempo for
EDM. We were able to identify tracks with no tempo at
all, no-beat-sections or tempo changes, which raises ques-
tions about the suitability of parts of the dataset for the
global tempo estimation task. Furthermore, we provided
additional evidence for genre-dependent tempo ambiguity.
Based on the user-submitted data we derived the new an-
notations GSNew. The relatively low agreement with the
original annotations GSOrig indicates that one of the two
ground-truths contains incorrect annotations for up to 8.9%
of the tracks (ignoring octave errors). We re-evaluated two
recent tempo estimation algorithms against both ground-
truths and measured considerably higher accuracies when
testing against GSNew. This leads us to the following con-
clusions: GSOrig contains incorrectly annotated tracks as
well as tracks that are not suitable for the global tempo
estimation task. The accuracy of state-of-the-art tempo es-
timations systems is considerably higher than previously
thought. And last but not least, as a community, we have
to get better at evaluating tempo algorithms in the sense
that we need verified, high quality datasets that represent
reality with tempo distributions instead of single value an-
notations. If we cannot accurately measure progress, we
have no way of knowing when the task is done.
Datasets
All data is available at http://www.tagtraum.com/
tempo_estimation.html.
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ABSTRACT

For musicological studies on large corpora, the compila-
tion of suitable data constitutes a time-consuming step. In
particular, this is true for high-quality symbolic represen-
tations that are generated manually in a tedious process.
A recent study on Western classical music has shown that
musical phenomena such as the evolution of tonal com-
plexity over history can also be analyzed on the basis of
audio recordings. As our first contribution, we transfer this
corpus analysis method to jazz music using the Weimar
Jazz Database, which contains high-level symbolic tran-
scriptions of jazz solos along with the audio recordings.
Second, we investigate the influence of the input represen-
tation type on the corpus-level observations. In our exper-
iments, all representation types led to qualitatively similar
results. We conclude that audio recordings can build a rea-
sonable basis for conducting such type of corpus analysis.

1. INTRODUCTION

Characterized by keywords such as systematic musicology
or computational music analysis, quantitative and data-
driven methods have recently gained importance within
musicology. As one central benefit, computational meth-
ods enable corpus-based studies on a large scale. Several
studies have been conducted recently for different music
genres including pop music [13], jazz [1, 6, 9], and West-
ern classical music [2, 17, 21, 24], and also in the field of
ethnomusicology [14, 16, 19]. For conducting such corpus
studies, a number of different aspects are important. Be-
sides methodological questions such as the musical char-
acteristics under investigation (e. g., melodic, harmonic, or
rhythmic aspects), also the way these characteristics are
measured, evaluated, and presented matters. Moreover, the
corpus itself plays a crucial role. Beyond its size and com-
position, the representation of the music data constitutes an
important aspect. For example, the data can be given as a
symbolic transcription [9,16], as a graphical score [17], or
as an audio recording [6, 13, 18].

c© Christof Weiß, Stefan Balke, Jakob Abeßer, Meinard
Müller. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Christof Weiß, Stefan Balke,
Jakob Abeßer, Meinard Müller. “Computational Corpus Analysis: A
Case Study on Jazz Solos”, 19th International Society for Music Infor-
mation Retrieval Conference, Paris, France, 2018.
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Figure 1. Procedure for mapping feature values from indi-
vidual solos onto the timeline using the recording years.

In this paper, we investigate the influence of the mu-
sic representation type on the corpus analysis results. For
this purpose, we present a case study for jazz music using
the solos contained in the Weimar Jazz Database [15]. As
an example for a corpus analysis, we investigate the tonal
complexity of the jazz solos using a measure introduced
in [22]. Inspired by recent work on pop [13] and classi-
cal music [21], we apply a visualization technique where
quantitative descriptors for individual pieces are mapped
onto a timeline as shown in Figure 1. The resulting evolu-
tion curves [21] allow for studying the evolution of musical
phenomena (here: tonal complexity) over history.

As input data for this study, we compare different repre-
sentations of the jazz solos including a high-quality sym-
bolic transcription of the solo melody as well as the full
mix audio recording of the solo section. Furthermore, we
investigate intermediate representations, which rely on sig-
nal processing techniques [3,4,7,8] for enhancing the pres-
ence of the solo instrument and for suppressing accom-
panying instruments and audio-specific artifacts. Specif-
ically, we consider the approaches proposed in [4, 7].
Though the music representations—as well as the derived
features—exhibit a different behavior on the piece level,
our experiments show that on the corpus level, results
are qualitatively similar for audio-based procedures and
for analyses based on high-quality symbolic transcriptions.
Our findings encourage to perform corpus studies on the
basis of audio recordings. This opens up new ways for
musicological research since audio recordings are avail-
able easily without an extensive transcription or annotation
process that often needs to be done manually.

The remainder of this paper is structured as follows.
First, we describe our music scenario and sketch some mu-
sicological hypotheses (Section 2). Second, we detail on
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Figure 2. Complexity measure Γ based on the circle of fifths. Values for a sparse chroma vector (left), a flat chroma vector
(middle), and a more realistic chroma vector (right) are shown. The red arrows denote the resultant vectors.

our tonal complexity measure and explain its musical im-
plications (Section 3). We then describe the different repre-
sentations and signal processing techniques we use in this
study (Section 4). Next, we describe our corpus analysis
strategy and present the experimental results (Section 5).
Finally, we discuss the implications of our findings.

2. JAZZ SCENARIO

Within the scope of jazz music, the Weimar Jazz Database
(WJD) with its 456 manually generated transcriptions of
famous jazz solos constitutes a unique dataset [15]. A ma-
jor benefit of the WJD lies in its clean annotations of the
solo melody (fundamental frequency, F0), which create a
controlled environment for systematic experiments. The
data served as basis for a number of musicological studies,
which mainly focus on performance analysis [1, 6, 9].

Besides the rhythmical aspects of the solos [6] and
the melodic phrasing [9], also the played pitch material
(scales) can be of musicological interest. In our experi-
ments, we consider this dimension by measuring the tonal
complexity of the pitches played by the soloist. We expect
to find a lower tonal complexity for solos from the Chicago
Jazz era (1920s), compared to, for instance, Bebop solos
from the 1950s. However, there might be some outliers
in each period. For example, Chet Baker’s intimate solos
will probably obtain lower complexity values than Clifford
Brown’s solos—although both perform in the same period.

3. MEASURING TONAL COMPLEXITY

The analysis of music complexity has been an important
task within MIR research in the past years. Streich [20]
tackled multiple dimensions of this notion denoted as
acoustic, timbral, rhythmic, and tonal complexity. Con-
cerning tonality, many studies [5, 12, 20] focus on sequen-
tial complexity aspects such as the complexity of chord
progressions [5]. As opposed to this, chroma-based com-
plexity measures were introduced in [22], which locally
describe the pitch class distribution without explicitly cap-
turing transitional characteristics. Despite their simplicity,
these features have shown a high correspondence to an in-
tuitive understanding of music complexity over the course
of an individual piece [22]. Beyond that, they have turned
out to be useful for classifying music recordings accord-
ing to style categories [23]. Averaging such complexity
features over many pieces provides meaningful and stable

results, which has been shown in a large-scale study of mu-
sical evolution in classical music [21]. As one contribu-
tion, we transfer this concept to jazz music and show that
complexity features also yield meaningful results for this
scenario. In contrast to [21], the WJD scenario provides
data in different representations (see Section 4), whose in-
fluence we want to investigate. Moreover, we have detailed
metadata such as the recording year of each solo.

The complexity measures introduced in [22, 23] de-
scribe statistical properties of an underlying normalized
chroma distribution. Flat distributions result in high com-
plexity values while sharp distributions result in low ones.
In [23], several different measures are introduced for this
purpose such as entropy-, sparsity-, and flatness-based
quantities. Here, we restrict ourselves to one feature
that additionally accounts for the tonal relationship of the
prominent pitch classes. Following [23], we now summa-
rize the definition of this measure Γ : R12 → [0, 1]. Let
c = (c0, c1, . . . , c11)T ∈ R12 denote a chroma vector with
positive entries (cn ≥ 0) normalized with respect to the `1-
norm

(∑11
n=0 cn = 1

)
. The entries cn with n ∈ [0 : 11]

indicate the salience of the twelve pitch classes C, C], . . .,
B, respectively. Because of octave invariance, the features
show a cyclic behavior so that a transposition in pitch leads
to a circular shift.

For computing the complexity Γ(c) ∈ [0, 1] of a chroma
vector c ∈ R12, we first re-sort the chroma values to an
ordering of perfect fifth intervals (7 semitones) resulting in
the vector cfifth defined by:

cfifth
n = c(n·7) mod 12. (1)

Based on the reordered vector cfifth, we define the resultant
vector r(c) with a length of

r(c) =
∣∣ 1
N

∑N−1
n=0 cfifth

n exp
(

2πin
12

)∣∣. (2)

Then, the complexity Γ(c) is defined as:

Γ(c) =
√

1− r(c). (3)

This measure corresponds to the angular deviation and de-
scribes the spread of the pitch classes around the circle of
fifths. Figure 2 shows the complexity feature and the re-
sultant vector r(c) (in red) for three input chroma vectors
c. For a sparse vector (left), the complexity is minimal
(Γ(c) = 0). For a flat vector (middle), we obtain maximal
complexity (Γ(c) = 1).
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Figure 3. Complexity values for musical scales in several tempi, computed with different window lengths. (a) Diatonic
scale. (b) Chromatic scale. (c) Complexity values for the diatonic scale. (d) Complexity values for the chromatic scale.

In this paper, we compute complexity features for jazz
solos. Relying on chroma features of the full audio record-
ings, the features describe the complexity of the overall
tonal content—comprising the sounding pitches of the solo
instrument as well as the accompanying instruments (e. g.,
piano, double bass, drums). Since noise-like sounds such
as drum hits contribute in an approximately equal fash-
ion to each of the twelve chroma values, this results in
an overall increase of complexity. As opposed to the full
mix recording, a symbolic transcription of the solo only
captures the pitches played by the solo instrument. Since
we deal with monophonic solo instruments (mainly sax-
ophone, trumpet, trombone), there is only one non-zero
pitch class at a time. Using a small window length (fine-
grained resolution) for the chroma features, this results in
low complexity values. As soon as we use a larger window
length—e. g., by smoothing over several chroma frames—
the complexity features are computed from local pitch
class histograms and, thus, show mostly non-zero values
in case that different pitch classes are played within the
analysis interval. Hereby, the feature values depend on the
number of pitch classes played but also, on their tonal rela-
tionship. Playing many fifth-related pitch classes—such as
a diatonic scale—yields a distribution pointing towards a
specific direction in the circle of fifths and, thus, results in
a rather low complexity value (see Figure 3a and c). For a
chromatic scale, in contrast, pitch classes all over the circle
of fifths contribute equally resulting in a high complexity
value (Figure 3b and d).

Beyond the pitch classes and their relationship, the du-
ration of the notes has a crucial effect on the complexity
features. To illustrate this effect, we show in Figure 3 com-
plexity values for scales played in different tempi. For this
experiment, we synthesized a diatonic scale and a chro-
matic scale from music notation software using a saxo-
phone sound. From the generated audio, we computed
chroma features in different temporal resolutions. On the
basis of these chroma features, we calculated complex-
ity values and averaged these over the full segment. Fig-
ures 3c and d show the resulting complexity features for
different resolutions and playing tempi. In a higher tempo,
more pitch classes are sounding within a window lead-

ing to higher complexity. The absolute complexity val-
ues also depend on the analysis window length. The four
curves in Figures 3c and d refer to different chroma win-
dow lengths of 200 ms, 400 ms, 1 s, and a global chroma
histogram, respectively. With larger smoothing windows,
we obtain higher complexity values. Using global chroma
statistics, the complexity is practically independent of the
tempo since it always relies on the same pitch class dis-
tribution. For a monophonic input signal, our feature cap-
tures the tonal complexity of the melody pitches rather than
describing a “melodic complexity,” which usually accounts
for further properties such as direction, jumps, melodic in-
tervals. etc. Despite these simplifications, our complexity
feature mostly behaves in a musically meaningful way.

4. INPUT DATA AND PRE-PROCESSING

The complexity feature Γ(c) can be computed from differ-
ent pitch class representations. This enables us to compare
the feature values for different representation types. Be-
sides symbolic representations with explicit pitch informa-
tion, we can also use audio-based chromagrams. 1 In our
experiments (Section 5), we investigate how the choice of
the input representation influences the complexity features
(see Figure 4).

Beyond the symbolic transcription (Figure 4a) cre-
ated in the Jazzomat project (manual F0 annotation of
the solo melody), we consider the full mix audio sig-
nal (d), as well as two modified audio versions (b, c).
For this, we use signal processing methods to suppress
components that might affect our harmony analysis. One
such method is harmonic–percussive–residual separation
(HPRS) [7], which is an extension of the technique pre-
sented by Fitzgerald [8]. HPRS aims to decompose a given
audio recording into a harmonic component, a percussive
component, and a residual component. The residual com-
ponent captures portions of the audio recording which are
neither of harmonic, nor percussive nature, e. g., noise-like
signals such as applause or the breathy component of the
saxophone sound. For enhancing the tonal parts of the jazz

1 In contrast to our complexity measure, high-level measures as pre-
sented in [5, 20] often require pre-processing steps that involve challeng-
ing tasks such as automatic transcription.
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Figure 4. Log-frequency representations of Dexter Gordon’s solo from “Society Red” (excerpt of 14 seconds). (a) Sym-
bolic transcription. (b) Source-separated melody (score-informed). (c) Harmonic–Percussive–Residual separation, har-
monic part. (d) Full audio mix.

recordings, we use HPRS and throw away both the residual
and the percussive components (see Figure 4c).

Beyond this straight-forward separation, we also use a
more sophisticated decomposition. Hereby, we try to ex-
tract the solo signal from the full mix via source separa-
tion. Similar to previous approaches [10, 11], we make
use of score information (F0 trajectories) for the separa-
tion into solo instrument and backing track [4]. The funda-
mental frequency trajectory of the solo instrument is used
to construct time-variant masks that follow in principle a
comb filter structure covering a certain number of the in-
strument’s partials. Several post-processing steps ensure
that the bandwidth of the single comb spikes covers the
range of the individual partials and that interference from
transient sound events is attenuated. Due to the score in-
formation, the resulting solo track is almost free of back-
ground instruments (see Figure 4b). Only signals that over-
lap the solo instrument’s partials (such as broad-band per-
cussive components) are sometimes perceivable.

From the four representations, we compute pitch class
features by summing up energies from different octaves. A
comparison of the representation types is interesting since
they fundamentally differ from each other in several re-
spects. First, the representations capture different musical
parts. Symbolic transcription (a) and source-separated sig-
nal (b) only contain the solo instrument, whereas in the
other representations, accompaniment is also present. Sec-
ond, the transcription (a) only contains the fundamental
frequency while all other representations also capture over-
tones. Third, transcription (a) and HPRS-enhancement
(c) only capture harmonic information while the separated
solo (b) and the full mix (d) also contain residual and per-
cussive components. We will now study how these proper-
ties influence a large-scale analysis on the corpus level.

5. CORPUS ANALYSIS

Based on the different types of music representations dis-
cussed above, we conduct studies on the tonal complexity
of the WJD solos. Inspired by [21], we compute evolu-
tion curves mapping solo-wise complexity features onto
a historical timeline. For this purpose, we use the anno-
tated recording year of each solo. To smooth the curve, we
use a soft mapping employing a Gaussian window of size
11 years. Thus, a solo contributes not only to its concrete
recording year but also, to a smaller degree, to each 5 years

before and after. 2 With this technique, the jazz solos dis-
tribute over the timeline as shown in Figure 5a. At about
1955, more than 15 solos contribute on average. Around
1932 (beginning of our timeline) and 2002 (end), there are
hardly any solos. This means that a solo contributing to
these years has a higher influence on the evolution curve.

To investigate the complexity of the jazz solos, we first
analyze each solo individually by computing complexity
features in one resolution using the global chroma his-
togram. In Figure 5b and c, we show these complexity
values of individual solos as gray crosses. Figure 5b relies
on the symbolic transcription and Figure 5c on the HPRS-
enhanced audio (harmonic part). We find a broad range of
values for most years. Except for the first 15 years, which
do not show very high complexity values, there are solos of
diverse complexity at all times. Thus, it is hard to find gen-
eral structures and trends for individual solos. The overall
distribution, however, is similar in both figures.

To analyze this in more detail, we now compute evo-
lution curves. We project the feature value of every piece
onto the timeline using the procedure described above. The
complexity curves are normalized regarding the number of
solos contributing to each year. 3 Figure 5 shows the re-
sulting curves as blue lines. As an additional cue, we com-
pute for the most frequent soloists the complexity value av-
eraged over all their solos, respectively. For each soloist,
we plot the average value as horizontal bar from the first to
the last solo’s recording year. Overall, we observe a slight
increase of complexity over the years. The first major in-
crease develops towards the year 1948, where soloists such
as Don Byas and Charlie Parker start to contribute. Around
the 1960s, we find soloists such as Chet Baker with lower
complexity as well as Clifford Brown or Joe Henderson
with higher complexity. During the 1970s, there is a ma-
jor drop, before the complexity again increases towards the
early 2000s (David Liebman or Michael Brecker).

Comparing the two curves in Figures 5b and c, we ob-
serve that their shape is similar—only the overall scale of
the complexity values differs slightly. Most of the promi-
nent changes in complexity can be observed on the basis of
both representations—such as the increase around 1945,
the drop in the 1970s, and even smaller changes such as
the local minimum around 1950. The peak and drop after

2 The window is normalized so that the total weight of a solo summed
up over all 11 years is one.

3 We sum up the weighted complexity values for all pieces and divide
by the number of solos per year as shown in Figure 5a.
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Figure 5. (a) Average number of solos per year contained in the dataset. Evolution curve and artist means based on (b)
symbolic transcriptions and (c) harmonic component of audio recordings.

2000 behave very similar. However, we have to take these
results with care since only a few solos contribute here.
We also find differences between the two plots. For the
first years, there are higher values in the symbolic-based
plot (b). Here, we could identify several solos with longer
silence between the phrases such as Kid Ory’s solo in “Gut
Bucket Blues.” In the symbolic representation, these silent
frames are all zero which results in a flat chroma vector
(high complexity). This leads to a higher overall com-
plexity of these solos. 4 In the audio-based chromagrams,
there are accompanying instruments playing between the
phrases, which leads to a lower complexity here. At the
year 1972, the drop in Figure 5b is more extreme than in
Figure 5c. Looking at the individual solos, we can iden-
tify four points of low complexity here. These are solos
by Sonny Rollins, two of them played within the piece
“Playin’ in the Yard” and two within “The Everywhere Ca-
lypso” (red ellipses in Figure 5). Indeed, these solos are
constructed of only a few pitch classes with clear tonal re-
lationships. For “Playin’ in the Yard”, Rollins only uses a
pentatonic scale for both solos whereas the solos in “The

4 Removing silent frames before computing features suppresses this
effect to some degree but, at the same time, produces artificial pitch com-
binations within local windows (phrases squeezed together).

Everywhere Calypso” mainly consist of major scales and
broken major triads (arpeggios). In the symbolic represen-
tation, these structures lead to a low complexity since there
is no accompaniment. In the audio, the background instru-
ments dampen this drop. Overall, we can observe several
interesting structures that might be relevant for jazz his-
tory. These phenomena could be observed in a similar way
on the basis of both symbolic and audio representations.

To test these observations in more detail, we now con-
sider four different feature resolutions (see Section 4). Be-
yond the influence of the representation type, we want to
test how signal processing technologies for suppressing
background instruments affect the evolution curves. Fig-
ure 6 summarizes this experiment’s results. In addition
to the global complexity, we use chroma window lengths
of 20 s, 1 s, and 400 ms. Looking at the vertical axes, we
observe different absolute ranges. For the symbolic tran-
scription (Figure 6a), the values of Γ for the global com-
plexity (blue curve) lie in the interval [0.84, 0.95]. In con-
trast, the audio-based complexity curve (d) lies in the range
[0.93, 0.98]. The enhanced audio versions are located be-
tween these extremes. HPRS-enhancement (c) leads to a
curve with values in [0.85, 0.97]. Score-informed source
separation (b) produces a global complexity curve ranging
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Figure 6. Evolution curve based on (a) symbolic tran-
scription, (b) source-separated melody (score-informed),
(c) harmonic part of audio (HPRS), (d) full audio mix.

in [0.9, 0.96]. Interestingly, these values are higher than
in the HPRS-enhanced case (c). It seems that the percus-
sive components or other artifacts remaining in the sepa-
rated signal affect the complexity more than the harmonic
parts of the background instruments do. For other window
lengths, the behavior is similar. Only for the symbolic tran-
scription (a), the smaller window lengths of 1 s and 400 ms
(outside the plotting range) behave differently. Since the
transcription of a monophonic solo exhibits only one non-
zero pitch class at a time, this is no surprise—our complex-
ity feature drops to zero then. With larger window lengths,
we capture several pitch classes simultaneously leading to
higher complexity.

Apart from the different ranges, we find only minor
differences between the curves. As in Figure 5, the first
years show higher complexity for the symbolic transcrip-
tion (a) but also for the source-separated audio (b). As
mentioned above, this is due to the long silence gaps be-
tween solo phrases. Considering the background instru-
ments leads to a lower complexity and thus, stabilizes the
analysis in some way. We also discover a special behav-
ior at the year 1972. The symbolic-based curve (a) shows
a sharp drop here stemming from Rollins’ solos discussed
above. This drop is weakened when using source sepa-
ration (b) or the full mix (d) but it can still be observed
in the HPRS-enhanced analysis (c). We conclude that not
the background instrument but the percussive and residual
components of the melody instrument (and possible over-
lap signals) eliminate this drop.

Beyond these rather subtle differences, the overall be-
havior is similar for all curves. In all settings, we observe a
major increase around 1940 followed by a slightly increas-
ing plateau between 1945 and 1967. Then, all curves drop,
again reach a peak around 1983, and finally rise towards
the 2000s. Even detailed structures are preserved through-
out all representations such as the small drops around 1950
and 1965, or the curvature during the 1990s. Even for years
with a low number of contributing solos where we have
to take the results with care, the behavior is stable across
representations. These observations show that corpus-level
characteristics of the WJD appear in a widely coherent way
over all of our experimental settings.

6. DISCUSSION

From our experiments, we conclude that meaningful cor-
pus analyses can be performed on the basis of different
music representations. Though our evolution curves for the
WJD vary in their absolute range, general trends can be ob-
served for all representations. Some audio-related artifacts
in the analysis could be suppressed with standard signal
processing tools such as harmonic–percussive separation.
In contrast, using a high-quality score-informed technol-
ogy for melody separation did not necessarily improve the
results regarding audio-specific artifacts. It seems that tim-
bral characteristics have a greater effect on the curves than
the presence of background instruments. Quite the con-
trary, the presence of background instruments could even
stabilize the analysis since it helps to suppress extreme
complexity values when the solo instrument is silent. The
high similarity between symbolic- and audio-based analy-
ses lets us conclude that in a typical jazz scenario, the solo
instrument is prominent enough in the full mix for analyz-
ing some interesting solo characteristics directly from au-
dio. This is an encouraging finding since audio-based stud-
ies can be scaled up to a large number of solos easily—in
contrast to the time-consuming procedure needed for cre-
ating the WJD melody annotations. Since the deviations
between our curves occurred in regions with low solo cov-
erage, we suppose that in a large-scale corpus study, indi-
vidual outliers are suppressed even better leading to more
reliable results.
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1 EURECOM, Sophia Antipolis, France 2 LIRMM, University of Montpellier, CNRS, France
3 Philharmonie de Paris, France 4 Bibliothèque nationale de France 5 Radio France
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ABSTRACT

We present a set of music-specific controlled vocabularies,
formalized using Semantic Web languages, describing top-
ics like musical genres, keys, or medium of performance.
We have collected a number of existing vocabularies in
various formats, converted them to SKOS and performed
the interconnection of their equivalent terms. In addition,
novel vocabularies, not available online before, have been
designed by an editorial team. Next to multilingual labels
and definitions, we provide hierarchical relations as well as
links to external resources. We also show the application
of those vocabularies for the production of vector embed-
dings, allowing for the calculation of distances between
keys or between instruments.

1. INTRODUCTION

Describing music is an activity that involves an important
number of terms coming from domain-specific glossaries.
In addition to the cross-domain concept of genre, we can
mention musical keys, instruments or catalogues of com-
positions. Libraries and musical institutions have different
practices for describing this kind of information. In the
best case, they make use of thesauri that are often available
in different incompatible formats, and that can be either
internally defined or standardised by larger communities
such as the International Association of Musical Libraries
(IAML). In other cases, this information is codified in free
text fields, delegating to the editors the responsibility of
following the living practice about syntax and lexical form.

The new attitude for sharing the knowledge beyond
the institutional and national borders—embodied by in-
ternational consortia like IAML or in projects like Euro-
peana [7] and OpenGlam [4]—brings its effect also on the
music domain. Accordingly, Semantic Web technologies
have gained a central role in music representation, that has
reached the Linked Open Data world. A second conse-
quence is the request for a change in the previously de-
scribed current practices towards the adoption of publicly
available controlled vocabularies. The use of vocabularies

c© Lisena et al. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Lisena
et al. “Controlled Vocabularies for Music Metadata”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

opens up different possibilities, like the definition of labels
in different languages or of alternate lemmata in the same
language (i.e. the French terms “ut majeur” and “do ma-
jeur” which both refer to the key of C major). Different
kinds of relationships between terms can be defined and it
is possible to define a hierarchy between them (for exam-
ple, “violin” is a narrower concept with respect to “string”)
which can produce, as benefit, a more powerful advanced
search for the final user. Previous research demonstrated
how an RDF (for Resource Description Framework) struc-
ture helps reasoning engines to discover links between dif-
ferent levels in the hierarchy of instruments [8].

Publishing Semantic Web vocabularies is not new in
the field of music. The Musical Instruments Museum On-
line (MIMO) 1 published the biggest taxonomy of musi-
cal instrument in RDF, as result of the contribution of in-
stitutions and universities all over the world. The librar-
ian practice draws on the UNIMARC 2 thesauri of musi-
cal forms (genres) and medium of performance standard-
ised by IAML. Historically adopted by librarians world-
wide, these thesauri have recently been published in the
Web of Data, marking the growing interest in this techno-
logical environment. The French National Library (BnF)
relies on an authority vocabulary in RDF for subject head-
ings called RAMEAU, 3 containing a list of labels for en-
tities of encyclopedic interest which includes also music
genres and instruments. A musical key vocabulary is pub-
lished as side resource of the MusicOntology [14], con-
sisting in a list of English labelled concepts, with some
additional information—like the mode (major/minor), the
tonic, etc.—, without any links describing semantic con-
nections between them.

On the one hand, a large number of thesauri cover
few well-defined categories (genres and medium of per-
formance), making the reconciliation of data coming from
different sources difficult, also because of the different for-
mats of these thesauri. A reconciliation that would add a
broader and deeper nomenclature has a benefit, increasing
both the number of elements and alternate labels. On the
other hand, a large set of concepts—handled so far through
error-prone free-text—is asking for standardisation in spe-
cialised vocabularies.

1 http://www.mimo-db.eu/
2 They are commonly named after the UNIMARC standard for librar-

ian records, in which they are widely used.
3 Répertoire d’autorité-matière encyclopédique et alphabétique unifié:

http://rameau.bnf.fr/
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This paper presents a set of controlled vocabularies for
the description of the music information as Linked Open
Data, extending and finalising related work in [10]. This
research have the primary goal of the interconnection of
music information datasets, building bridges between ex-
isting vocabularies and providing tools for the automatic
matching. The final aim consists in the contribution to
the achievement of a global music knowledge graph [1]
in the Web of Data, looking at all the applications that
semantically structured data have in the music informa-
tion retrieval and recommendation field [2, 12, 13, 18]. In
Section 2, we present the complete set of vocabularies, giv-
ing detailed information about their content. The process
of realisation, collection and interlinking is described in
Section 3, while we present applications, such as embed-
dings and literal dereferencing in Section 4. Finally, we
conclude and outline some and future work in Section 5.

2. MUSIC VOCABULARIES

A controlled vocabulary is a thematic thesaurus of entities.
In the Semantic Web, each term is identified with a URI.
The Simple Knowledge Organization System (SKOS) [11]
have been chosen as format because of its capability of
defining preferred and alternate labels in each language,
relationships between terms, comments and notes for de-
scribing the entity and help the annotation activity. In the
case of the vocabulary of Catalogues of works, the used
ontology is the RDF version of Metadata Object Descrip-
tion Schema (MODS) [17], that suits the need of defining
identifiers, publication date, subject, etc.

Each vocabulary fulfils a set of requirements, including
multilingualism, open and public access, presence of def-
initions. It must also be suitable for different contexts of
use and conceptual models of musical information, which
is guaranteed by the presence in the editorial team of ex-
perts from different types of cultural institutions (libraries,
radio broadcasting networks, concert halls).

The vocabularies are all available in a triple store
server, which provides a SPARQL endpoint 4 for re-
questing the data in different formats like RDF, JSON,
csv, etc. Alternatively, the vocabularies can be ex-
plored by a web browser starting from http://data.
doremus.org/vocabularies/. The server enables
the HTTP dereferencing of URIs: this means that a
web browser pointing to the URI of a specific concept
(e.g. http://data.doremus.org/vocabulary/
derivation/medley) will land on a page containing
its human-readable description, showing all its properties.
The triple store includes also music data that use these vo-
cabularies, so that the definition and the usage of a concept
in musical works can be appreciated as part of the same
knowledge base. Finally, an RDF version in Turtle format
is available on GitHub. 5

Each vocabulary is licensed for free distribution, fol-

4 http://data.doremus.org/sparql
5 https://github.com/DOREMUS-ANR/

knowledge-base/tree/master/vocabularies

lowing a Creative Commons Attribution 4.0 license, 6 and
it is open to the community for any kind of contribution.

We collected, implemented and published 18 controlled
vocabularies belonging to 7 different families, containing
more than 9500 distinct concepts and involving 26 differ-
ent languages or dialects. In the following paragraphs, we
describe the content of those vocabularies, subdivided in
two groups.

2.1 Collection of interlinked vocabularies

This group includes vocabularies that were already avail-
able in the Web of Data, in the community or internally
to a specific institution. When two or more vocabularies
share the same high-level topic—e.g. the musical genre—
we call that group family. In order to interconnect the dif-
ferent knowledge sources, an alignment process is needed
for discovering when terms coming from vocabularies be-
longing to the same family refers to the same concept. This
process will be detailed in Section 3.3.

Musical genres. This family includes vocabularies about
the genre of a musical work. By genre, we mean the main
categories by which we describe the works, like rock, lir-
ica, funk, opera, gospel, polka, jazz, including genres of
world music. The term genre is very broad and also in-
cludes musical “forms” that gained in the centuries their
own genre definition like symphony, concerto, sonata.

We collected, republished as SKOS and interlinked the
following vocabularies:
• IAML, 607 concepts, multilingual. This list, largely

adopted in librarian environments, was available as a
set of labels and codes, in some cases with definitions
or editorial notes. We converted this big vocabulary to
SKOS from different sources (librarian tabular data, on-
line HTML version). Afterwards, a SKOS version 7 has
been published by IFLA (International Federation of Li-
brary Associations), which is however less rich than ours
in terms of alternate labels. We provide owl:sameAs
links from our vocabulary to the IFLA version.

• RAMEAU, 654 concepts, French, hierarchised. It is
published as Linked Data by the French National Li-
brary (BnF). We extracted from this large nomenclature
the part related to musical genres.

• Diabolo, 629 concepts, French, hierarchised. It is the
set of labels used in the disc catalogue of Radio France
(RF). It also includes some skos:related links, e.g.
between spiritual and gospel.

• Itema3, 40 concepts, French. It is used in the technical
documentation of the concert archive of RF.

• Itema3-MusDoc, 172 concepts, French. It is used in the
musical documentation of the concert archive of RF.

• Redomi, 297 concepts, French, hierarchised. It is used
in the musical work documentation of RF.

Medium of performance. Any instrument able to pro-
duce sounds can be considered as a medium of perfor-

6 https://creativecommons.org/licenses/by/4.0/
7 http://iflastandards.info/ns/unimarc/terms/

fom/

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 425



mance or MoP. In this family of vocabularies, we can find
musical instruments coming from different cultures (west-
ern, oriental, African, Indian, etc.), the voices in differ-
ent ranges (soprano, alto, etc.), aside from group of instru-
ments (orchestras, ensembles) and voices (choirs).

We collected, republished as SKOS and interlinked the
following vocabularies:
• MIMO, 2480 concepts, multilingual, hierarchised. The

Musical Instrument Museum Online comes from the
joint international effort of different music institutions
and museum. Despite being the most complete vocabu-
lary of instruments, it does not include voices. MIMO is
publicly available as Linked Data. 8

• IAML, 419 concepts, multilingual, hierarchised. De-
spite its smaller granularity, this vocabulary has a good
coverage for voices and groups. Like for the homonym
genre vocabulary, also in this case an official version
from IFLA is online, 9 less rich both with respect to the
languages covered and to the number of concepts (392).

• RAMEAU, 876 concepts, French, hierarchised. As in
the genre case, we selected the part related to MoP.

• Diabolo, 2117 concepts, French, hierarchised. It is the
set of labels used in the disc catalogue of RF. For ethnic
or traditional instrument, it includes also the reference
to the relative geographic area.

• Itema3, 314 concepts, French. It is used in the docu-
mentation of the concert archive of RF.

• Redomi, 179 concepts, French, hierarchised. It is used
in the musical work documentation of RF.

2.2 New vocabularies

This section presents vocabularies for which we did not
rely on any previous material, because it was not existing
or not suitable for our goals. We designed these vocabu-
laries on the basis of real data coming from institutions,
enriched by an editorial process that involved also librar-
ians. Since the work has been conducted in French, the
definitions of the terms are so far available only in this lan-
guage. However, every label has been translated at least in
English and Italian in order to facilitate their reuse.

Musical keys. 30 concepts, English, French, Spanish,
Italian. This vocabulary contains the set of keys used in
western music, labelled with the tone followed from the
type of scale (e.g. C major). The concept are linked among
them by specific properties for keys relationships, like rel-
ative, parallel and closely related keys. It contains also
sameAs links with the key vocabulary of MusicOntology.

Musical modes. 22 concepts, English, French, Italian,
Latin, hierarchised. The word mode generally refers to a
type of scale, coupled with a set of characteristic melodic
behaviours. They are mostly used for describing ancient or
medieval music.

Catalogues of works. 152 MODS resources. A thematic
catalogue or catalogue of works is a recognised editorial

8 http://www.mimo-international.com/
9 http://iflastandards.info/ns/unimarc/terms/

mop/

list of all known works of a composer. In practice, a clas-
sical composition can be univocally identified by the cata-
logue code and number. For example, Eine kleine Nacht-
musik is identified with K 525, where K is the Köchel
catalogue of Mozart’s work. Each resource contains the
information about the catalogue editor and publisher, the
language of drafting, the date of publication. The sub-
ject artist of each catalogue is disambiguated through the
DOREMUS dataset [1, 10].

Types of derivations. 16 concepts, English, French, Ital-
ian, Spanish, German, hierarchised. A work can be de-
rived from another by transforming its material into an-
other through orchestration, harmonisation, etc. All these
types (with definitions) are collected in this vocabulary.

Functions. 106 concepts, English, French and Italian,
hierarchised. A music event—a performance, a composi-
tion, a recording, etc.—involves a number of different roles
or functions like author, performer, conductor, sound engi-
neer, etc.Additional details can also be provided to account
for the different kinds of author, like composer, lyricist or
arranger. These functions are identified in this vocabulary,
together with their definitions.

3. MODELING PROCESS

We detail the modeling process, which is based on an inter-
action between music metadata experts and automatic data
conversion and fusion tools.

3.1 Editorial work

An editorial committee grouping 7 members coming from
different backgrounds (library, radio, concert hall) played
an important role in the vocabulary modeling. First, ex-
isting vocabularies have been inventoried and assessed as
candidates for being interlinked on the basis of their com-
pleteness and adoption. Next, the committee made choices
about which new vocabularies to create and what should
be their scope. These choices reflect the aim of produc-
ing powerful tools to describe recordings, publications and
their contexts of creation, instead of producing exhaus-
tive vocabularies about every aspects of the music. The
committee relies on the members experience in music data
management practices. The experts had to confront their
point of views—necessarily different because depending
on the missions of their institutions—until the list of terms,
their contexts of use and their definitions were coherent.

First of all, the group had to be consistent with respect
to the data available in those institutions. For example, we
chose not to publish a rhythmic patterns vocabulary since
the data which is available was not created in a musical
analysis perspective. Then, the work had to be based upon
the team’s area of competence. This is one of the reasons
why we decided to limit the scope of the musical modes
vocabulary to old and European ones only. Listing and
describing scales coming from other continents would re-
quire an additional work that would largely involve musi-
cologists.
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We chose first to create the new vocabularies described
in Section 2.2. The catalogues of works vocabulary is a
special one since it contains only a list of bibliographic
references and does not have the structure of a thesaurus.
It was established from the titles used by the BnF. The mu-
sical keys and musical modes vocabularies were the eas-
iest to model since they contain a small number of well-
defined concepts with clear translations. The other ones
were more complex to model. A first set of entities was
generated on the basis of the initial datasets. Then, the ex-
perts had to confront their point of views until the list of
terms, their contexts of use and their definitions were co-
herent. The functions vocabulary was especially complex
to define since it had to reconcile very different ways of
describing performing art activities: What is the relevant
description for “sound engineer”? How to describe the act
of improvising? etc.

3.2 Conversion to Semantic Web formats

Two different steps take part in the generation of the vo-
cabularies as RDF graphs.

The first one is a preliminary conversion from spread-
sheets or XML files to RDF, using the OpenRefine [6] tool
or with specific scripts. The collections of concepts already
in the Web of Data (like RAMEAU) have been instead ex-
tracted through specific SPARQL queries on an endpoint.

In the second step, additional vocabulary-specific ac-
tions are performed. In some cases, hierarchy is inferred
on the basis of specific properties and rules (e.g. in the
IAML MoP vocabulary, the hierarchy is taken from the let-
ters included in the last part of the URI). All the language
tags are normalised in order to follow the ISO 639 stan-
dard. Moreover, the indication of the use of Latin script
is made explicit for transliterated labels in languages that
use different alphabets. In this phase, some interlinking
to external datasets is performed, using SPARQL queries
(DOREMUS dataset, MusicOntology keys vocabulary) or
REST APIs like GeoNames [19].

3.3 Vocabulary Alignments

The sets of vocabularies of musical genres and those of
medium of performance, described in Section 2.1, group
together a number of well-established or internally used
within a given institution reference lists. There is an im-
portant overlap between the sets of entities (genres or mu-
sical instruments) described across these vocabularies in
each of the two categories. For example, the music genre
“folk song” is described both in the IAML vocabulary (la-
belled by the French “chanson populaire” and the English
“folk song”) and in the Radio France-hosted Diabolo vo-
cabulary (labelled by “folksong”). The task of vocabulary
alignment consists in automatically establishing links of
identity between the elements of two vocabularies from the
same category. This would allow to discover automatically
the equivalence between the two folk-song terms across
IAML and Diabolo. Since our vocabularies are described
in SKOS, the procedure comes down to discovering and
declaring skos:exactMatch relations across the terms

of two given vocabularies. In our example, this would re-
sult in bounding the IAML and Diabolo identifiers 10 of
the folk-song genre in a skos:exactMatch relation.

We have proceeded to establish pairwise alignments
between the concepts of the vocabularies in each of
these two categories (genres and MoP). We have cho-
sen IAML as a target vocabulary for the alignments of
the genres-vocabularies, meaning that all remaining genre-
vocabularies will be aligned to IAML. This decision is mo-
tivated by the fact that this vocabulary is large in size and
also largely adopted in the librarian world. In the same line
of thought, we have selected MIMO from the MoP family
as a target for the alignments. This results in the perfor-
mance of five pair-wise alignments for each category (all
to IAML in the genre category and all to MIMO in the MoP
category).

Figure 1. The overall alignment and expert-validation
framework. An example with the genres family.

The overall alignment process consists of automatic
alignment and manual validation and enrichment (see
Figure 1). For the automatic alignment, we have taken a
simplistic string-based approach that relies on a compari-
son between the labels of SKOS concepts by looking both
at preferred and alternative labels, returning in output a
confidence score. Note that in many cases, we have lan-
guage tags associated to the terms. However, there is no
consensus among the different vocabulary providers on the
language of origin of the terms of interest – in many cases a
musical instrument or a genre will be labelled as “French”
in one vocabulary and “Italian” in another, although the la-
bel originates in, say, Italian in both cases, simply because
the Italian word is commonly employed in French. For that
reason, we have ignored the language tags when compar-
ing the labels. This process aims to generate a large pool of
mapping candidates, ensuring high recall at this step. The
alignments are stored in the standard EDOAL format, 11

which allows to keep the confidence score of each aligned
pair of terms.

In order to guarantee high quality of the produced align-
ments and to improve precision, the automatically gener-
ated mappings are subjected to validation by the librar-
ian experts. In order to facilitate this laborious task, we
have developed a web application that allows to assist this
process. The application has been conceived as a module
of YAM++ online [3]—a multi-task web platform for on-

10 Respectively, http://data.doremus.org/vocabulary/
iaml/genre/fso and http://data.doremus.org/
vocabulary/diabolo/genre/folksong

11 http://alignapi.gforge.inria.fr/edoal.html
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Figure 2. The mapping validator interface.

tology and thesaurus matching and validation, 12 although
the Validator interface can be seen as a standalone tool.
It takes as input a valid EDOAL alignment file, together
with its two OWL ontologies or SKOS vocabularies (via
an URL or a file path). A list of mappings (pairs of la-
bels of aligned concepts) appears on the main page, to-
gether with information about the portions of the vocabu-
laries covered by the alignment (Figure 2, above). A con-
text description of each of the two concepts in each line is
displayed (Figure 2, right), containing all alternate labels,
as well as the labels (or URIs) of parents and children. The
user can take benefit of the confidence score of the previ-
ously computed alignments (shown at the right end of each
line) for filtering the pairs of concepts by the help of a hori-
zontal cursor. For each concept pair, the expert is given the
possibility to modify and select a relation type from a list
of SKOS relations, or simply discard the mapping. Experts
spotted out and corrected a number of invalid alignments
(507 over 1022 for genres and 2039 over 3981 for MoP).
In particular for small differences in the label (i.e. plural
forms) the role of the human validation is crucial for en-
suring quality in the vocabularies.

The expert is given the possibility to manually enrich
the proposed alignment by the help of the alignment en-
richment environment, accessible via the “Add new map-
pings” button (Figure 2, bottom left). A new page opens
containing the full label lists of the two vocabularies. A
key-word search on both lists, including preferred and al-
ternate labels, allows to browse and select manually a pair
of concepts and define their relation. The newly defined
mappings are added to the initial alignment. Finally, all
modifications are added to the alignment file, which can
be either saved in the default EDOAL format, or exported
in the form of RDF/XML triples.

4. USAGE OF VOCABULARIES

The availability of controlled vocabularies opens up new
possibilities that involve the data conversion and usage. In
this section, we present recent work that aims to be com-
plementary to the vocabulary publishing, providing further
tools and resources to support their effectiveness.

12 http://yamplusplus.lirmm.fr

4.1 String2Vocabulary

A common task in what is called knowledge graph pop-
ulation (which is the generation of semantic triples start-
ing from differently structured data sources) is the passage
from plain text nodes or literals to a more representative
object node or entity. Often, the target of this task consists
in a set of vocabularies.

A string2uri algorithm – developed in the context of the
Datalift platform [15] – performs an automatic mapping of
string literals to URIs coming from controlled vocabularies
in SKOS. The software reads a RDF graph and searches for
exact matches between literal nodes and vocabulary terms.

Some experiences in knowledge base population of
classical music data, have shown up some critical points.
Often the title of a classical work includes or, even more,
consists in the name of an instrument or a key or a genre
(e.g. Ravel’s Bolero), that should be excluded from the
replacement process and be kept as textual literals. More-
over, the complexity itself of this data – involving an im-
portant number of properties – in addition to the commonly
used file formats (i.e. MARC), has led in the years to a cat-
aloguing practise particularly prone to editorial mistakes.
This is the case of musical keys declared as genre, or fields
for the opus number that contain actually a catalog number
and vice-versa [10].

For these reasons, we adapted the Datalift strategy in a
new String2Vocabulary open-source library. 13 The soft-
ware uses the file name of vocabularies for grouping them
in families: mop-mimo.ttl and mop-iaml.ttl are part of the
family mop, while key.ttl is the sole member of the fam-
ily key. This library accepts a configuration file that as-
signs a family to a RDF property. For each input graph,
it searches for the properties one after the other, retrieving
their values. Each value is then compared to all the terms
of the vocabulary, until it finds one equal to the value. All
variants for a concept label – namely skos:prefLabel
and skos:altLabel – are considered in order to deal
with potential differences in naming terms, and both graph
values and terms receive a normalisation that has the effect
of removing the punctuation, lower-casing the text and de-
coding it to ASCII. Then, a substitution of that node with

13 https://github.com/DOREMUS-ANR/
string2vocabulary
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the found concept URI is performed.
String2Vocabulary works both with literal values and

with entities labelled through rdfs:label. In the latter
case, the label to be matched against the vocabulary and the
whole node – with all its properties – is replaced. For max-
imising the possibilities of selecting, if it exists, the right
concept, two searches are performed in sequence. The first
requires that both the given text and language match with
the concept ones. If this search fails, a second one requires
a match excluding the language information.

As additional feature, the configuration file allows to
request the lemmatisation for certain vocabularies. Tak-
ing the MoP vocabulary as representative example, three
sequential matches are tried: singularising the first word
of the label (for matching cases such as “cornets à pis-
tons”@fr), singualising the whole label (“sassofoni con-
tralti”@it) and leaving the label as is for matching instru-
ments that are always plural (“cymbals”@en).

4.2 Music Embeddings

What are the closest keys to C major? Is it possible to de-
cide which instrument between the cello and the oboe is
more similar to the clarinet? The answer to those ques-
tions would provide application in different fields, from
musicology studies to the development of specialised rec-
ommendation systems. The graph structure of RDF allows
to define some kind of distance between two entities, by
considering the number of nodes that separate them. Hier-
archies and other kind of links between vocabulary terms
can be considered for computing this distance.

Node2vec [5] is a state-of-the-art algorithm for comput-
ing entity embeddings. The algorithm computes random
walks in the graph following the links (edges) between
nodes, computing the neighbourhood for each of them.
Each edge can have a different weight, which affects the
probability that it participates to the walk. Through this
method, the graph is mapped to a vector space, in which
nodes becomes points represented by numeric vectors.

A set of music embeddings for the concepts defined
in controlled vocabularies are being produced and pub-
lished. 14 Two different graphs are considered:
• the graph of vocabularies, which defines structural and

semantic connections between entities, such as hierar-
chies, sameAs links, properties in common, specific
music properties (i.e. relationships between keys);

• the graph of usage, which includes all the usages of the
vocabularies in the DOREMUS dataset. We considered
musical works for the genre and the key, castings and
performances for MoPs, composition and performance
events for functions.
On these two graphs, we computed the embeddings us-

ing node2vec. We arbitrarily set to the graph of vocabular-
ies a weight 6 times bigger than the graph of usage in order
to counterbalance the richly larger number of triples 15 and

14 https://github.com/DOREMUS-ANR/
music-embeddings

15 More than 16 millions triples against around 100.000 ones for the
vocabulary graph.

Figure 3. A 2D representation of the vector space of
medium of performance, with some recognisable clusters.

avoid to nullify the contribution of each one. After a post-
processing step that removes all the literals and the extra
nodes involved, a L2 normalisation is then applied in order
to have values in {-1;+1}.

In order to appreciate the effectiveness of this strategy,
we used t-SNE [16] for visualising the embeddings on a
2D image. As an example, Figure 3 16 shows the vector
space of medium of performance. By observing the groups
of closer entities, we can clearly identifies clusters of in-
struments. It is interesting to observe that even if the hi-
erarchy of the instrument families is preserved, the usage
graph strongly influenced the result, by reflecting the dif-
ferences of instruments in genres and periods. This is the
case of the orchestra instruments group, which puts the vi-
olin closer to his orchestra colleague clarinet than to its
15th-century relative tromba d’amore.

Further research is being conducted about the combina-
tion of this embedding in more complex ones (artists and
works embeddings) in order to compute the similarity be-
tween musical entities [9].

5. CONCLUSION

We have presented a set of multilingual vocabularies for
the description of music-specific concepts using the Se-
mantic Web framework. Two main contributions consist
in the interconnection of already in-use vocabularies of
genres and medium of performance and the realisation of
previously-unreleased ones. We described our working
strategies as an interaction between editors and an auto-
matic system. A dereferencing library and a set of em-
beddings are presented as side works, allowing to identify
application benefits coming from these vocabularies.

Those vocabularies are intended to become references
in the field and we strongly encourage their reuse and
adoption by the community at large in all their forms. Sev-
eral additional vocabularies are currently under develop-
ment, covering concepts like vocal techniques, types of
work, type of recording support or partitioning of musical
works. Once completed, these vocabularies will be pub-
lished by following the procedures described in this paper.

16 A higher-resolution image is available at https://github.
com/DOREMUS-ANR/music-embeddings/tree/master/img
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ABSTRACT

The goal of this paper is twofold. First, we introduce
DALI, a large and rich multimodal dataset containing 5358
audio tracks with their time-aligned vocal melody notes
and lyrics at four levels of granularity.

The second goal is to explain our methodology where
dataset creation and learning models interact using a
teacher-student machine learning paradigm that benefits
each other. We start with a set of manual annotations of
draft time-aligned lyrics and notes made by non-expert
users of Karaoke games. This set comes without audio.
Therefore, we need to find the corresponding audio and
adapt the annotations to it. To that end, we retrieve audio
candidates from the Web. Each candidate is then turned
into a singing-voice probability over time using a teacher,
a deep convolutional neural network singing-voice detec-
tion system (SVD), trained on cleaned data. Comparing
the time-aligned lyrics and the singing-voice probability,
we detect matches and update the time-alignment lyrics ac-
cordingly. From this, we obtain new audio sets. They are
then used to train new SVD students used to perform again
the above comparison. The process could be repeated it-
eratively. We show that this allows to progressively im-
prove the performances of our SVD and get better audio-
matching and alignment.

1. INTRODUCTION

Singing voice is one of the most important elements in pop-
ular music. It combines its two main dimensions: melody
and lyrics. Together, they tell stories and convey emo-
tions improving our listening experience. Singing voice is
usually the central element around which songs are com-
posed. It adds a linguistic dimension that complements the
abstraction of the musical instruments. The relationship
between lyrics and music is both global (lyrics topics are
usually highly related to music genre) and local (it con-

© Gabriel Meseguer-Brocal, Alice Cohen-Hadria, Geoffroy
Peeters. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Gabriel Meseguer-Brocal,
Alice Cohen-Hadria, Geoffroy Peeters. “DALI: a large Dataset of syn-
chronized Audio, LyrIcs and notes, automatically created using teacher-
student machine learning paradigm”, 19th International Society for Music
Information Retrieval Conference, Paris, France, 2018.

nects specific musical parts with a concrete lexical mean-
ing, and also defines the structure of a song).

Despite its importance, singing voice has not received
much attention from the MIR community. It has only been
introduced a few years ago as a standalone topic [12, 17].
One of the most important factors that prevents its de-
velopment is the absence of large and good quality ref-
erence datasets. This problem also exists in other MIR
fields, nevertheless several solutions have been proposed
[3, 9]. Currently, researchers working in singing voice
use small designed dataset following different methodol-
ogy [10]. Large datasets as the one used in [13] are private
and not accessible to the community.

The goal of this paper is to propose such a dataset and
to describe the methodology followed to construct it.

1.1 Proposal

We present the DALI dataset: a large Dataset of synchro-
nised Audio, LyrIcs and notes that aims to stand as a ref-
erence for the singing voice community. It contains 5358
songs (real music) each with – its audio in full-duration,
– its time-aligned lyrics and – its time-aligned notes (of
the vocal melody). Lyrics are described according to four
levels of granularity: notes (and textual information un-
derlying a given note), words, lines and paragraphs. For
each song, we also provide additional multimodal infor-
mation such as genre, language, musician, album covers or
links to video clips. The rest of this paper focuses on our
methodology for creating DALI. In Figure 1, we illustrate
the input and output of our dataset creation system. See
Section 4 for more details about the dataset itself.

The DALI dataset has been created automatically. Our
approach consists in a constant interaction between dataset
creation and learning models where they benefit from each
other. We developed a system that acquires lyrics and notes
aligned in time and finds the corresponding audio tracks.
The time-aligned lyrics and notes come from Karaoke re-
sources (see Section 3.1 for more deatils). Here, non-
expert users manually describe the lyrics of a song as a se-
quence of annotations: time aligned notes with their asso-
ciated textual information. While this information is pow-
erful it has two major problems: 1) there is no information
about the exact audio used for the annotation process (only
the song title and artist name which may lead to many dif-
ferent audio versions), 2) even if the right audio is found,
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Figure 1: [Left part] The inputs of our dataset creation system are karaoke-user annotations presented as a triple of {time
(start + duration), musical-notes, text}. [Right part] Our dataset creation system automatically finds the corresponding
full-audio track and aligned the vocal melody and the lyrics to it. In this example, we illustrate the alignment for a small
excerpts. We only represent two levels of lyrics granularity: notes and lines.

annotations may need to be adjusted to fit the audio per-
fectly. In Section 3.2, we define how we retrieve from the
Web the possible audio candidates for each song. In Sec-
tion 3.3, we describe how we select the right audio among
all the possible candidates and how we automatically adapt
the annotated time-alignment lyrics to this audio. In order
to do this, we propose a distance that measures the corre-
spondence between an audio track and a sequence of man-
ual annotations. This distance is also used to perform the
necessary adaptations on the annotations to be perfectly
aligned with the audio. Our distance requires the audio
to be described as a singing voice probability sequence.
This is computed using a singing voice detection (SVD)
system based on deep convolutional neural network (Con-
vNet). The performance of our system highly depends on
the precision of the SVD. Our first version is trained on
few but accurately-labeled ground truths. While this sys-
tem is sufficient to select the right audio it is not to get
the best alignment. To improve the SVD, in Section 3.4
we propose to use a teacher-student paradigm. Thanks to
the first SVD system (the teacher) we selected a first set
of audio tracks and their corresponding annotations. Using
them, we train new SVD systems (the students). We show
in Section 3.4.1 that new SVD systems (the students) are
better than the initial one (the teacher). With this new ver-
sion, we increase the quality and size of the DALI dataset.
Finally, we discuss our research in Section 5.

2. RELATED WORKS

We review previous works related to our work: singing
voice detection methods and the teacher-student paradigm.

Singing Voice detection. Most approaches share a
common architecture. Short-time observations are used to
train a classifier that discriminates observations (per frame)
in vocal or non-vocal classes. The final stream of predic-
tions is then post-processed to reduce artifacts.

Early works explore classification techniques such as
Support Vector Machines (SVMs) [16, 20], Gaussian mix-
ture model (GMM) [11] or multi-layer perceptron (MLP)
[4]. Other approaches also tried to use specific vocal traits
such as vibrato and tremolo [21] or to adapt speech recog-
nition systems for the particularities of singing voice [5].

Over the past few years, most works focus on the use of
deep learning techniques. For example, [23, 24] propose
the use of ConvNet combined with data augmentation tech-
niques (to increase the size of the training set) or trained
on weakly labeled data (the data are only labeled at the
file level, not at the segment level). [13] also proposes the
use of CNN but with a Constant-Q input and a training
on a very large private datasets mined from Spotify re-
sources. Some researchers suggest the use of Recurrent
Neural Networks (RNN) [15] or Long Short-Term Mem-
ory (LSTM) [14]. One advantage of these models is that
they directly model the decisions sequence over time and
no post-processing is needed. Other singing voice detec-
tion systems are developed to be used as a pre-processing-
step: for lyrics transcription [17] or for source separation
[25] trained then to obtain ideal binary masks.

Teacher-student paradigm. Teacher-student learning
paradigm [2,28] has appeared as a solution to overcome the
problem of insufficient labeled training data in MIR. Since
manual labeling is a time-consuming tasks, the teacher-
student paradigm explores the use of unlabeled data for su-
pervised problems. The two main agents of this paradigm
are: the teacher and the student. The teacher is trained with
labels of well known ground truths datasets (often manu-
ally annotated). It is then used to automatically label unla-
beled data on a (usually) larger dataset. These new labels
(the one given by the teacher) are the ones used for training
the student(s). Student(s) indirectly acquire(s) the desired
knowledge by mimicking the “teacher behaviour”. This
model has achived great results for tasks in speech recog-
nition [27] and multilingual models [8]. It has also been
proved that student(s) can achieve superior performances
than the teacher [8, 28].

3. SINGING VOICE DATASET: CREATION

3.1 Karaoke resources

Outside the MIR community there are rich sources of in-
formation that can be explored. One of these sources is
Karaoke video games that fit exactly our requirements. In
these games, users have to sing along with the music to
win points according to their singing accuracy. To mea-
sure their accuracy, the user melody is compared with a
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Table 1: Terms overview: definition of each term used in this paper.

Term Definition

Annotation basic alignment unit as a triple of time (start + duration wrt Fr), musical-notes (with 0 = C3) and text.
A file with annotations group of annotations that define the alignment of a particular song.

Offset time asO it indicates the start of the annotations, its modifications moves all bock to the right or left.
Frame rate as Fr it controls the annotation grid size stretching or compressing its basic unit.

Annotation voice sequence as avs(t) ∈ {0, 1} singing voice (SV) sequence extracted from karaoke-users annotations.
Predictions as p̂(t) ∈ [0, 1] SV probability sequence provided by our singing voice detection.

Labels labels sequence of well known ground truths datasets checked by the MIR community.
Teacher first SV detection (SVD) system trained on Labels.
Student new SVD system trained on the avs(t) for the subset of track for which NCC(ô, f̂r) ≥ Tcorr .

reference timing note (that has fine time and frequency).
Hence, large datasets of time-aligned note and lyrics exist.

Such datasets can be found as open-source. Nowadays,
there are several active and big karaoke open-source com-
munities. In those, non-expert users exchange text files
containing lyrics and melody annotations. However there
is no further professional revision. Each file contains all
the necessary information to describe a song:

• the sequence of triplets {time, musical-notes, text},
• the offset time (start of the sequence) and frame

rate (annotation time-grid),

• the song title and the artist name.

We refer to Table 1 for the definition of all the terms we
use. These annotations can be transformed to get the time
and note frequencies as seen Figure 1.

We were able to retrieve 13339 karaoke annotation files.
Although this information is outstanding for our commu-
nity, it presents several problems that have to be solved:

Global. When performing the annotation, users can choose
the audio file they want. The problem is that only the
song title and artist name are provided. This combi-
nation might refer to different audio versions (studio, ra-
dio edit, live, remix, etc.). Consequently, we do not know
which audio version has been used. Annotations made
for a version do not work for another. Besides, even if
the correct audio is known, annotations may not perfectly
fit it. As a result annotations must be adapted. This is
done by modifying the provided offset time and frame

rate. These issues are not problematic for karaoke-users
but critical To the automatic creation of a large dataset for
MIR research.

Local. It refers to errors due to fact the that users are non-
professionals. It covers local alignment problems of par-
ticular lyric blocks, text misspellings or note mistakes.

In this paper we only focus on global problems leaving
the local ones for future works.

WASABI is a semantic database of song knowledge
gathering metadata collected from various music databases
on the Web [18]. In order to benefit from the richness
of this database, we first linked each annotation file to
Wasabi. To that end, we connected a specific song title

and artist name with all possible corresponding audio
versions (studio, radio, edit, live, remix, etc.). The

WASABI also provides lyrics in a text only annotations
(grouped by lines and paragraphs). Using the two lyrics
representations (note-based annotations and text only an-
notations), we created four levels of granularity: notes,
words, lines and paragraphs. Finally, WASABI also pro-
vides extra multimodal information such as cover images,
links to video clips, metadata, biography, expert notes, etc.

3.2 Retrieving audio candidates

Our input is an annotation file connected to the WASABI
database. This database provides us with the different ex-
isting versions (studio, radio, edit, live, remix, etc.) for a
song title and artist name combination. Knowing the
possible versions, we then automatically query YouTube 1

to get a set of audio candidates. We now need to select
among the set of audio candidates the one corresponding
to the annotation file.

3.3 Selecting the right audio from the candidate and
adapting annotation to it

Each audio candidate is compared to the reference annota-
tion file. We do this by measuring a distance between both
and keeping the one with the largest value.

Audio and annotations live in two different representa-
tion spaces that cannot be directly compared. In order to
find a proper distance, we need to transform them to a com-
mon representation space. Two directions were studied:

Annotations as audio. We have explored lyrics synchro-
nization techniques [10] but their complexity and pho-
netic model limitations prevent us to use them. As anno-
tations can be transformed into musical notes, score align-
ment approaches [7, 26] seem a natural choice. However,
due to missing information in the corresponding score
(we only have the score of the vocal melody) these sys-
tems failed. We then tried to reduce the audio to the vocal
melody (using Melodia [22]) and then align it to the vocal
melody score but this also failed. Consequently, we did
not persist in this direction.

Audio as annotations. The idea we develop in the remain-
der is the following. We convert the audio track to a
singing-voice probability p̂(t) over time t. This sequence
has value p̂(t) → 1 when voice is present at time t and
p̂(t) → 0 otherwise. This probability is computed from
the audio signal using a Singing Voice Detection (SVD)

1 We use https://github.com/rg3/youtube-dl
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Figure 2: Architecture of our Singing Voice Detection system using a ConvNet.

system described below. We name this function predic-
tions. Similarly, the sequence of annotated triplets {time,
musical-notes, text} can be mapped to the same space:
avs(t) = 1 when a vocal note exists at t and avs(t) = 0
otherwise. We name this function annotation voice se-
quence.

Singing Voice Detection system. Our system is based
on the deep Convolutionnal Neural Network proposed
by [24]. The audio signal is first converted to a sequence
of patches of 80 Log-Mel bands over 115 time frames.
Figure 2 shows the architecture of the network. The output
of the system represents the singing voice probability
for the center time-frame of the patch. The network is
trained on binary target using cross-entropy loss-function,
ADAMAX optimizer, mini-batch of 128, and 10 epochs.

Cross-correlation. To compare audio and annotation,
we simply compare the functions p̂(t) and avs(t). As ex-
plained before, the annotation files also come with a pro-
posed offset time and frame rate. We denote them by
O and Fr in the following. The alignment between p̂(t)
and avs(t) depends on the correctness ofO and Fr values.
We will search around O and Fr to find the best possible
alignment. We denote by o the correction to be applied to
O and by fr the best Fr. Our goals are to:

1. find the value of o and fr that provides the best
alignment between p̂(t) and avs(t),

2. based on this best alignment, deciding if p̂(t) and
avs(t) actually match each other and establishing if
the match is good enough to be kept.

Since we are interested in a global matching between
p̂(t) ∈ [0, 1] and avs(t) ∈ {0, 1} we use the normalized
cross-correlation (NCC) as distance 2 :

NCC(o, fr) =

∑
t avsfr(t− o)p̂(t)√∑
t avsfr(t)

2
√∑

t p̂(t)
2

The NCC provides us directly with the best ô value.
This value directly provides the necessary correction to be
applied to O to best align both sequences.

To find the best value of fr we compress or stretch
annotation by changing the grid size. This warp is con-
stant and respect the annotation structure. We denote it as
avsfr(t). The optimal fr value is computed using a brute

2 Matches between p̂(t) and avs(t) can also be found using Dynamic
Time Warping (DTW). However, we found its application not successfull
for our purpose. Indeed, DTW computes local warps that does not respect
the global structure of the user annotations. In addition, its score is not
normalized preventing its use for matches selection.

force approach, testing the values of fr around the original
Fr in an interval controlled by α (we use α = Fr ∗ 0.05):

f̂ r, ô = argmax
fr∈[Fr−α,Fr+α],o

NCC(o, fr)

Our final score is given by NCC(ô, f̂ r).
The audio is considered as good match the annotation

if NCC(ô, f̂ r) ≥ Tcorr. The value of Tcorr has been
found empirically to be Tcorr = 0.8. For a specific
annotation, if several audio candidate tracks have a value
NCC ≥ Tcorr, we only keep the one with the largest
value. Tcorr = 0.8 is quite restrictive but even if we may
loose good pairs we ensure that those we keep are well
aligned. When an audio match is found, the annotations
are adapted to it using f̂ r and ô.

Necessity to improve the Singing Voice Detection
system. The score NCC proposed above strongly de-
pends on the quality of p̂(t) (the prediction provided by
the Singing Voice Detection (SVD) system). Small dif-
ferences in predictions lead to similar NCC(ô, f̂ r) values
but very different alignments. While the predictions of the
baseline SVD system are good enough to select the cor-
rect audio candidates (although there are still quite a few
false negatives), it is not good enough to correctly estimate
f̂ r and ô. As improving the SVD system the number of
false negatives will be reduced and we will also find better
alignments. We hence need to improve our SVD system.

The idea we propose below is to re-train the SVD sys-
tem using the set of candidates audio that match the an-
notations. This is a much larger training set (around 2000)
than the one used to train the baseline system (around 100).
We do this using a teacher-student paradigm.

3.4 Teacher-Student

Our goal is to improve our Singing Voice Detection (SVD)
system. If it becomes better, it will find better matches
and align more precisely audio and annotations. Conse-
quently, we will obtain a better DALI dataset. This larger
dataset can then be used to train a new SVD system which
again, can be used to find more and better matches improv-
ing and increasing the DALI dataset. This can be repeated
iteratively. After our first iteration and using our best SVD
system, we reach 5358 songs in the DALI dataset.

We formulate this procedure as a Teacher-Student
paradigm. The processing steps of the whole Singing
Voice Dataset creation is summarized in Figure 3.

Upper left box. We start from Karaoke resources that pro-
vide our set of annotation files. Each annotation file de-
fines a sequence of triplets {time, note, next} that we con-
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Figure 3: Singing Voice Dataset creation using a teacher-student paradigm.

vert to an annotation voice sequence avs(t). For each an-
notation file, we retrieve a set of audio candidates.

Upper right box. We independently trained a first version
of the SVD system (based on ConvNet) using the training
set of a ground truth labeled dataset as provided by the
Jamendo [20] or MedleyDB [6] datasets. We call this first
version the teacher.

Upper middle part. This teacher is then applied on each
audio candidate to predict p̂(t).

Lower left box. We measure the distance between avs(t)
and p̂(t) using our cross-correlation method. It allows us
to find the best audio candidate for an annotation file and
the best alignment parameters f̂ r, ô.

Lower middle box. We select the audio annotation pairs
for which NCC(ô, f̂ r) ≥ Tcorr = 0.8. The set of se-
lected audio tracks forms a new training set.

Lower right box. This new set is then used to train a new
SVD systems based on the same CNN architecture. This
new version is called the student. To this end, we need to
define the target p to be minimized in the loss L(p, p̂).

There are three choices:

a) we use as target p the predicted value p̂ given right
by the teacher (usual teacher-student paradigm).

b) we use as target p the value avs corresponding to the
annotations after aligning them using f̂ r and ô.

c) a combination of both, keeping only these frames for
which p̂(t) = avs(t).

Up to now and since the avs have been found more pre-
cise than the p̂ we only investigated option b).

We compare in the following part the results obtained
using different teachers and students.

3.4.1 Validating the teacher-student pardigm

In this part, we demonstrate that the students trained on the
new training-set actually perform better than the teacher
trained on the ground-truth label dataset.

Ground-truth datasets: We use two ground-truth labels
datasets: Jamendo [20] and MedleyDB [6]. We created a
third dataset by merging Jamendo and MedleyDB named
as J+M. Each dataset is split into a train and a test part us-
ing an artist filter (the same artist cannot appear in both).

Teachers: With each ground-truth datasets we trained a
teacher using only the training part. Once trained, each
teacher is used to select the audio matches as described
in Section 3.3. As a result, we produce three new train-
ing sets. They contains 2440, 2673 and 1596 items for
the teacher J+M, Jamendo and MedleyDB respectively.
The intersection of the three sets (not presented here) in-
dicates that 89.8 % of the tracks selected using the Med-
leyDB teacher are also present within the tracks selected
using the J+M teacher or the Jamendo teacher. Also, 91.4
% of the tracks selected using the Jamendo teacher are
within the tracks selected using the J+M teacher. It means
that the three teachers agree most of the time on selecting
the audio candidates.

Students: We train three students using the audio and the
avs value of the new training sets. Even if there is a large
audio files overlap within the training sets, their alignment
(and therefore the avs value) is different. The reason to
this is that each teacher gets a different p̂ which results in
different f̂ r, ô values.

3.4.2 Results

We evaluate the performances of the various teachers
and students SVD systems using the test parts of Ja-
mendo (J test) and MedleyDB (M test). We measure the
quality of each SVD system using the frame accuracy i.e.
average value over all the tracks of the test set.

Results are indicated in Table 2. In this table, e.g. “Stu-
dent (Teacher J train) (2673)” refers to the student trained
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on the 2673 audio candidates and the avs values computed
with the Teacher trained on Jamendo train set.

Table 2: Performances of the teachers and students using
the various datasets. Number of tracks in brackets.

SVD system
Test set J test (16) M test (36)

Teacher J train (61) 87% 82%
Student (Teacher J train) (2673) 82% 82%

Teacher M train (98) 76% 85%
Student (Teacher M train) (1596) 80% 84%

Teacher J+M train (159) 82% 82%
Student (teacher J+M train) (2440) 86% 87%

Performance of the teachers. We first test the teachers.
Teacher J train obtains the best results on J test (87%).
Teacher M train obtains the best results on M test (85%).
In both cases, since training and testing are performed on
two parts of the same dataset, they share similar audio
characteristics. These results are artificially high. To best
demonstrate the generalization of the trained SVD sys-
tems, we need to test them in a cross-dataset scenario,
namely train and test in different datasets.

Indeed, in this scenario the results are quite differ-
ent. Applying Teacher J train on M test the results de-
creases down to 82% (a 5% drop). Similarly when apply-
ing Teacher M train on J test the results decreases down
to 76% (a 9% drop). Consequently, we can say that the
teachers do not generalize very well.

Lastly, the Teacher J+M train trained on J+M train
actually performs worse on both J test (82%) and M test
(82%) than their non-joined teacher (87% and 85%).
These results are surprising and remain unexplained.

Performance of the students. We now test the students. It
is important to note that students are always evaluated in
a cross-dataset scenario since the DALI dataset (on which
they have been trained) does not contain any track from
Jamendo or MedleyDB. Hence, there is no possible over-
fitting for those. Our hypothesis is that students achieve
better the results than the teachers because they have seen
more data. Especially, we assume that their generalization
to unseen data will be better.

This is true for the performances obtained with the stu-
dent based on Teacher M train . When applied to J test,
it reaches 80% which is higher than the performances of
the Teacher M train directly (76%).

This is also true for the performances computed with
the student based on Teacher J+M train. When applied
either to J test or M test, it reaches 86.5% (86% on
Jamendo and 86% on MedleyDB) which is above the
Teacher J+M train (82%). Also, 86.5% is similar or
above the results obtained with Teacher J train on J test
(87%) and Teacher M train on M test (85%). This is a
very interesting result that demonstrates the generaliza-
tion of the student system whichever data-set it is applied
to. The student based on Teacher J+M train is the one
used for defining the final 5358 songs of the DALI dataset.

However, the performances obtained with the student

based on Teacher J train applied to M test (82%) do not
improve over the direct use of the Teacher J train (82%).

On alignment. Not explained in this paper is the fact that
the f̂ r and ô values computed with the students are much
better (almost perfect) than the ones obtained with the
teacher. However, we cannot measure it precisely since
DALI dataset does not have ground-truth label annota-
tions to that end. Indeed, the goal of this paper is exactly
to obtain such annotations automatically.

4. SINGING VOICE DATASET: ACCESS

The DALI dataset can be downloaded at https://github.
com/gabolsgabs/DALI. There, we provide the detailed de-
sciption of the dataset as well as all the necessary informa-
tion for using it. DALI is presented under the recommen-
dation made by [19] for the description of MIR corpora.
The current version of DALI is 1.0. Future updates will be
detailed in the website.

5. CONCLUSION AND FUTURE WORKS

In this paper we introduced DALI, a large and rich mul-
timodal dataset containing 5358 audio tracks with their
time-aligned vocal melody notes and lyrics at four levels
of granularity.

We explained our methodology where dataset cre-
ation and learning models interact using a teacher-student
paradigm benefiting one-another. From manual karaoke
user annotations of time-aligned lyrics and notes, we found
a set of matching audio candidates from the Web. To se-
lect and align the best candidate, we compare the annotated
vocal sequence (corresponding to the lyrics) to the singing
voice probability (obtained with a ConvNet). To improve
the latter (and therefore obtain a better selection and align-
ment) we applied a teacher-student paradigm.

Through an experiment, we proved that the students
outperform the teachers notably in a cross-dataset scenario,
when train-set and test-set are from different datasets.

It is important to note that the results of the students are
higher than the teacher ones, even if they have been train-
ing on imperfect data. In our case, we showed that, in the
context of deep learning, it is better to have imperfect but
large dataset rather than small and perfect ones. However,
other works went in the opposite direction [1].

Future work. We have only performed the teacher-
student iteration once. In next works will use the results
of the first student generations to train a second student
generations. This will define a new DALI dataset. We plan
to quantitative measure the quality of ô, f̂ r and to continue
exploring the alignments between note annotations and the
audio. Currently, we trained our student using as target
p = avs, which do not transfer directly the knowledge of
the teacher. We will explore other possibilities of knowl-
edge transfer using other targets (points a) and c) in Section
3.4) as well as the local problems describe at Section 3.1.
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ABSTRACT

Identification of instruments in polyphonic recordings is a
challenging, but fundamental problem in music informa-
tion retrieval. While there has been significant progress in
developing predictive models for this and related classifi-
cation tasks, we as a community lack a common data-set
which is large, freely available, diverse, and representative
of naturally occurring recordings. This limits our ability to
measure the efficacy of computational models.

This article describes the construction of a new, open
data-set for multi-instrument recognition. The dataset con-
tains 20,000 examples of Creative Commons-licensed mu-
sic available on the Free Music Archive. Each example is a
10-second excerpt which has been partially labeled for the
presence or absence of 20 instrument classes by annotators
on a crowd-sourcing platform. We describe in detail how
the instrument taxonomy was constructed, how the data-
set was sampled and annotated, and compare its character-
istics to similar, previous data-sets. Finally, we present ex-
perimental results and baseline model performance to mo-
tivate future work.

1. INTRODUCTION

Music information retrieval (MIR) applications often de-
pend on statistical models and machine learning algorithms
to relate audio content to semantically meaningful repre-
sentations. The development and evaluation of these meth-
ods, in turn, depends on access to data, typically audio
recordings which have been annotated for a particular task
such as chord recognition or tag prediction. Ideally, the
data we use to develop and evaluate models should be
large, diverse, and open access, so that we as researchers
and engineers can diagnose failure modes and propose im-
provements. However, because the vast majority of music
is subject to copyright, this has historically been difficult
to achieve. This has resulted in a proliferation of de facto
standard data-sets which are small, biased, and not freely
available, which ultimately impedes scientific progress.

c© Eric J. Humphrey, Simon Durand, Brian McFee. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Eric J. Humphrey, Simon Durand, Brian
McFee. “OpenMIC-2018: An open dataset for multiple instrument recog-
nition”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

To address this problem, McFee et al. [15] proposed
an iterative evaluation framework for developing open ac-
cess data-sets for MIR, with a specific focus on instrument
recognition. While this proposal was apparently met with
enthusiasm from the community, little progress has been
made in the intervening time toward enacting the proposal.
We hypothesize that this was primarily due to two factors:
a lack of a conveniently accessible audio data, and the ex-
pense of creating the initial development set. Recently, two
complementary data-sets have been published, which we
combine here to resolve both of these issues: the Free Mu-
sic Archive data-set [8], and AudioSet [11]. The result is a
diverse, open access collection of 20,000 audio clips anno-
tated for the presence of 20 distinct instrument categories,
which we denote as OpenMIC-2018.

1.1 Our contributions

Our primary technical contribution is a new, open dataset
for training and evaluating instrument recognition algo-
rithms. This article describes in detail how the dataset was
constructed by using a combination of model transfer from
previous datasets and crowd-sourced annotation. Our goals
in documenting the data construction process are two-fold.
First, it provides transparency around the various decisions
and compromises made in this specific dataset. Second, we
describe technical issues and general solutions which may
be of interest to future developers of music datasets.

1.2 Related work

Instrument recognition, either monophonic or polyphonic,
is a long-standing problem in MIR, and many datasets for
evaluating methods have been developed over the years.
Table 1 lists some of the commonly used datasets, along
with various descriptive attributes. Of specific interest
are the size of the collections, the number of instrument
classes, the duration of each example, the diversity of the
collection (e.g., genre or style), whether the examples are
polyphonic, the number of instrument labels per example,
and whether the data is open access.

Broadly speaking, existing datasets can be broken into
two categories, according to whether samples contain
notes played by isolated instruments (RWC [12], Good-
sounds [1], or NSynth [10]), or recordings of instrument
ensembles. Datasets of isolated instrument recordings are
often easier to produce and annotate at large scale because
long recordings spanning multiple notes can be segmented
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Table 1. A qualitative comparison of different existing datasets for instrument identification.
Collection # Examples # Instruments Duration Diverse Polyphonic Multi-label Open

RWC [12] 3,544 50 scale
Good-sounds [1] 6,548 12 note X
NSynth [10] 305,979 1,006 note X
MedleyDB [3] 122 80 song X X X
MusicNet [19] 330 11 song X X X
IRMAS [4] 6,705 11 3s X X

OpenMIC-2018 20,000 20 10s X X X X

to generate examples with a shared label. However, the
acoustic properties of ensemble recordings differ signifi-
cantly from those of isolated recordings, so models devel-
oped on single-instrument data often do not generalize to
the polyphonic case. Conversely, ensemble recordings are
typically difficult to precisely annotate, which results in
either high-quality collections with a small number of dis-
tinct tracks (MedleyDB [3] or MusicNet [19]), or in col-
lections with more tracks but with only partial annotations
(such as IRMAS [4] with predominant instrument tags for
short excerpts). An ideal dataset would be large, diverse,
strongly annotated (including both positive and negative
examples), and freely available, so that at each instant in
any recording, full information about all active instruments
is available. While existing datasets succeed on some of
these criteria, none achieves all simultaneously.

1.3 The Free Music Archive

The Free Music Archive 1 (FMA) is a web-based repos-
itory of freely available music recordings. Recently, a
snapshot of FMA has been released to the research com-
munity to facilitate content-based music analysis evalua-
tion [8]. The FMA snapshot includes 106,574 tracks by
some 16,341 artists, along with pre-computed features.
Each track is annotated with both coarse (16 categories)
and fine (161 categories) genre tags. Tracks are provided
under a small variety of licenses, with the vast majority
being Creative Commons [7]. This allows practitioners
to archive and redistribute data (with some minor restric-
tions), which is fundamental to the practice of open and
reproducible scientific research.

While previous authors have noted the particular genre
biases present on FMA [8], it nonetheless provides a large
pool of realistic musical content which could be used in re-
search applications. Despite the specific quirks of the FMA
collection, using it as a basis for large-scale MIR evalua-
tion has several benefits. In addition to the obvious benefits
of being open access, it also facilitates data revision and in-
clusion of new contributions from the community at large.
This in turn makes it easier for corrections to be integrated,
and the collection to grow over time and not become stale.

2. CONSTRUCTING OpenMIC-2018

In developing OpenMIC-2018, we took inspiration from
ImageNet [9]. ImageNet was constructed by selecting

1 http://freemusicarchive.org/
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Figure 1. A multi-label instrument detector (Instru-
mentDNN, section 2.2) is trained on AudioSet data. The
model is used to score each 10s clip in FMA by likeli-
hood of each instrument (section 2.3). Clips are sorted
into quantiles for each instrument, then sub-sampled and
annotated by CrowdFlower workers (section 3).

and annotating natural images to represent categories (syn-
onym sets, or synsets) drawn from the WordNet ontol-
ogy [16], with a goal of having at least 500 positive ex-
amples for each category. Candidate images were selected
by querying image search engines for each category term,
and then labels were verified by crowd-sourced annotation.
The label correction and verification step was critical at
the time, due to the poor accuracy of image search engines
when the dataset was constructed in 2009.

We follow a similar strategy here, with a few notable
modifications. Rather than querying the Internet for candi-
date samples, we restrict attention to freely available con-
tent hosted on the Free Music Archive, and specifically
those with explicit Creative Commons licensing. Addi-
tionally, instead of the WordNet ontology, we use the re-
cently published AudioSet concept ontology [11], which
itself derives from WordNet, but is adapted to acoustically
meaningful concepts. Using existing AudioSet data, we
construct a multi-instrument estimator and use this model
to rank the unlabeled FMA data and provide candidates for
annotation. The remainder of this section describes the en-
tire process in detail, which is visualized in Figure 1.

2.1 AudioSet

AudioSet is a recently released concept ontology and
human-annotated dataset derived from YouTube videos,
with the goal of providing a testbed for identifying acoustic
events [11]. The ontology consists of 632 classes, repre-
sented as a lattice-like graph, rather than hierarchical tree
structure, i.e. one low-level class may have two distinct
parents. The annotated dataset consists of at least 100 pos-
itive examples of 485 classes, distributed (non-uniformly)
across nearly 1.8M video clips of 10 seconds (or less)
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drawn from YouTube. Similar in spirit to the work pre-
sented here, AudioSet is motivated by a lack of large-scale
annotated audio data for scientific research purposes.

While the AudioSet ontology includes musical instru-
ments, the audio data does not match our requirements for
an open music instrument sample. The collection is de-
rived from YouTube videos, for which there are no guar-
antees on the legality of licensing, sharing, and archiv-
ing the content. Though abstract features are made avail-
able via a publicly available acoustic model, an inability to
make the source content directly accessible has limited the
value of other large collections, such as the Million Song
Dataset [2]. Furthermore, the content is often quite differ-
ent from musical performances, an important characteristic
at the root of what makes this task both challenging and in-
teresting: many of the positively labeled examples are solo
performances, which makes it difficult to model and evalu-
ate on realistic, highly correlated ensemble performances.

That said, AudioSet serves two important functions in
this project. It is impractical to annotate the entire FMA
collection of more than 100K recordings outright; how-
ever, it is also extremely unlikely that one could draw a
random subsample with sufficient representation across a
number of instruments. The occurrence of musical instru-
ments is heavily biased by popularity, such as voice, gui-
tar, or piano, and this is especially true in the Free Mu-
sic Archive. Here, we leverage AudioSet to build a multi-
instrument estimator that allows us to sub-sample and more
efficiently use annotation resources. For better or worse,
we also leverage the previous work in ontology construc-
tion, while circumventing the important, but difficult, chal-
lenge of selecting which instruments to consider: here, we
are limited to only those with enough signal in AudioSet
on which to build a baseline model.

We manually identify the classes that correspond to mu-
sical instruments, resulting in a set of more than 70 relevant
classes. For the sake of coverage, they are merged into “in-
struments”, e.g. “Acoustic Guitar”, “Electric Guitar”, and
“Tapping (guitar technique)” become guitar, while “Cello”
and “Violin” remain distinct. Note that this class resolu-
tion is intentionally approximate, as the long-term goals
of this project include iteratively refining these concepts
as acoustic models improve. We then filter the 1.8M clips
in AudioSet to those containing these classes. Unsurpris-
ingly, the distribution skews toward instruments common
in Western popular music, such as guitar, violin, or drums,
and we cut this list at 1500 examples. Additionally, we
randomly draw 8000 non-musical examples as negative
instances for building the instrument model described in
section 2.2. In summary, the resulting instrument subset
consists of 206K clips, totalling roughly 2M seconds (570
hours) of annotated content for 23 instruments. 2

2.2 Multi-instrument modeling

AudioSet offers no licensing guarantees on the source con-
tent, and there is no approved mechanism for directly ac-
cessing the audio data. To make the dataset more gener-

2 https://github.com/cosmir/open-mic-data

ally useful, the developers of AudioSet have released both
a pre-trained feature embedding model [13] based on the
VGG architecture for object detection in images [18], 3

and its outputs over the original AudioSet audio signals. 4

This model, referred to as “VGGish”, produces a 128-
dimensional feature vector every 0.96 seconds with an
equal window size, such that adjacent features capture non-
overlapping context. VGGish features are ZCA-whitened
and each coefficient is quantized to 8-bits to reduce the
footprint of the dataset.

Using the sub-sampling process described above, we fil-
tered the AudioSet features down to those clips relevant
for the instrument ontology considered here. The data are
conditionally partitioned by YouTube ID into training, val-
idation, and test splits with a 3 : 1 : 1 ratio. We randomly
generate over 200 unique, fully connected deep network ar-
chitectures and hyper-parameter configurations, spanning
depth (1–8 layers), width (128 to 2048 units, by powers
of 2), the application of dropout and batch normalization,
different optimization algorithms (stochastic gradient de-
scent, RMSProp, and Adam [14]), as well as various pa-
rameters for each operation. All models are trained for 50
epochs of the training data, and the parameter checkpoint
with the highest macro-F1 (class-averaged) score over the
validation data is taken as the best model.

Overall, we find that roughly 15% of the models be-
have with statistical equivalence, achieving a mean macro-
F1 score of 0.514 (σ = 0.0095) and a micro-F1 (item-
averaged) score of 0.656 (σ = 0.0056) on the test partition.
The best configuration is determined to be a 7-layer net-
work, with widths of [1024, 512, 256, 1024, 256, 1024, 23],
batch-normalization on the first four layers, and point-
wise dropout applied to the inputs of the last five
[0.0, 0.0, 0.25, 0.125, 0.25, 0.25, 0.5]. The winning model,
which we refer to as InstrumentDNN, is trained with the
Adam optimizer in Keras for 8 epochs, with a learning rate
of 0.0001 and a β1 of 0.99. For reproducibility, the train-
ing data and trained model are made publicly available in
the source repository.

2.3 FMA clip sampling

The VGGish model is applied to each track in FMA,
and the resulting ZCA features are processed by Instru-
mentDNN to produce time-varying instrument likelihoods.
Full tracks are then divided into candidate clips by per-
forming maximum-likelihood aggregation over 10 second
windows with a 4 second hop size. To account for fram-
ing effects, the maximum likelihood of each instrument is
taken over the middle 8 seconds, centered on the frame.
This produces over 7M clip candidates.

We ultimately want an approximately balanced sample
that has good positive representation of each instrument
class. Therefore the candidate set is sub-sampled by the
following process. First, we consider the median like-

3 https://github.com/tensorflow/models/tree/
master/research/audioset

4 https://research.google.com/audioset/
download.html
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lihood of each class over all candidates, and sort instru-
ments in ascending order, as a proxy for class occurrence
in the FMA. Then, proceeding from least to most likely
instrument class, the clip candidate set is reordered by de-
scending conditional class likelihood. We randomly se-
lected N instances from the 99th percentile rank of that
class, such that no two clips share a source track, i.e. sam-
pled clips are recording-independent. All remaining clip
candidates that also share a common recording with any
sampled are discarded, and the process is repeated for the
next instrument. For K instruments, the sampling process
yields N × K clips from distinct tracks. Initially, we set
N = 1000,K = 23, but manual inspection of the results
revealed three classes that either InstrumentDNN cannot
reliably detect, are poorly represented in FMA, or both:
harp, bagpipes, and harmonica. We removed these classes,
leaving K = 20 instruments and 20K clips.

3. CROWD-SOURCED ANNOTATION

At this stage, roughly 25M seconds of audio have been
sub-sampled to 200K, a 105 reduction, while rebalancing
for instrument occurrence. Strongly labeling a collection
of this size is still cost-prohibitive, and we must be prag-
matic with our annotation efforts. In tackling this chal-
lenge, one can think of annotation as a sparse, binary ma-
trix completion problem where most of the values in the
instrument occurrence matrix will be zero. Therefore an-
notation effort is best allocated by flattening this matrix
into clip-instrument pairs, and prioritizing likely positives.

Framed this way, our most likely positives are iden-
tified by the clip selection process: each instrument has
1K potential positive examples that must be validated by
human annotators. We would also like to obtain a num-
ber of strong negatives as well, and draw 500 instances
per class that fall in the bottom 10th likelihood percentile
from the space of examples contained in OpenMIC-2018.
Instrument-wise percentile thresholds are computed over
the full space of clip candidates. In contrast to positive
sampling, negative samples are drawn working from most
to least likely instruments. This is because the most likely
instrument categories will have the fewest potential strong
negatives. Additionally, random sampling is constrained
to draw no more than three strong negatives per clip, so as
to distribute this information across the collection. Finally,
to capture potential correlations and confusions, all addi-
tional likelihoods in the 99th percentile rank of their re-
spective instrument classes are added to the pool of binary
questions for human annotators. This results in 33,250 po-
tential positive and 10,000 potential negative binary esti-
mates for human validation, which makes up roughly 10%
of all possible clip-instrument judgements.

Having identified the questions worth asking, audio an-
notation presents unique design challenges around how to
best ask these questions of humans. Unlike images, audio
clips cannot be scanned in parallel by humans, and must
be auditioned sequentially. This encourages annotation de-
signs that ask several binary questions about the same ex-
ample. Our first attempt to annotate OpenMIC-2018 took

Figure 2. An example annotation task, showing the Mel-
spectrogram visualization, playback, response field, and li-
censing meta-data.

this approach, but we found that annotators struggled with
the increased burden of simultaneously judging multiple
instrument tags. This resulted in poor agreement, unhappy
annotators, and an increased level of effort and skill to
complete. Our second attempt used 20 separate annota-
tion tasks, one per instrument, and annotators were asked
to determine the presence or absence of a specific instru-
ment across multiple recordings.

Annotation was performed on the CrowdFlower 5 plat-
form (CF). In contrast to Amazon Mechanical Turk, CF
provides quality controls on sets of questions, collectively
called a “job”. A single contributor can provide at most 50
responses (or 10% of the job, whichever is larger), and a
question is finalized when annotators reach a set agreement
level and number of responses.

Additionally, CF makes it easy to include control ques-
tions for which an answer is already known. These are
used to “quiz” contributors before they can perform any
(paid) work on a job, and remove contributors whose accu-
racy drops below a threshold, e.g. 70%. It is important that
control questions use clear, unambiguous examples. While
these can be easily identified for popular classes, it is diffi-
cult in the rare classes, notably mandolin and clarinet. For
these classes, control questions were generated by rank-
ing clips according to the margin between the target instru-
ment’s likelihood and the maximum over other instruments
for that clip, which gives preference toward clips where the
target instrument was both present and prominent.

Each question is a single judgement of an instrument’s
presence or absence for a given audio clip. As shown in
Figure 2, we use a radio button interface for the judge-
ment, provide audio playback in the browser, and addition-
ally display an approximately aligned Mel-spectrogram to
facilitate the task, inspired by previous audio annotation
research [5]. Finally, we are legally obligated to display
track title, artist, and license information, which may pro-
vide coincidental information about a given track.

4. OpenMIC-2018 ANALYSIS

We collected over 230K judgements from more than 2,500
unique contributors across the 20 instrument classes. Fig-
ure 3 summarizes the resulting annotation distributions for

5 http://crowdflower.com
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instrument in OpenMIC-2018.
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Figure 4. Annotator agreement for each instrument.

each instrument. For each instrument class, the number
of confirmed positive and negative clips are plotted sep-
arately. Each class has at least 500 confirmed positives,
and at least 1500 confirmed positive or negative. Although
not every clip is tagged for every instrument, the abun-
dance of strong negative labels facilitates supervised learn-
ing and strong evaluation. Figure 4 summarizes the inter-
annotator agreements for each instrument’s presence or ab-
sence. Some instruments produce more agreement for ab-
sence than presence (accordion, violin), while the reverse
is true for others (synthesizer). Overall, we observed a high
amount of agreement across all instruments.

Figure 5 compares InstrumentDNN’s predicted likeli-
hoods to the annotations for three instrument classes. In-
strumentDNN produces a wide range of likelihood values
on mandolin (fig. 5, left), indicating that the 99th percentile
likelihood is well below the threshold for positive detec-
tion. This is likely due to a combination of model calibra-
tion errors and poor representation in AudioSet. However,
the sampling strategy still produced a large number of val-
idated positive examples. For more common classes, such
as cymbals (fig. 5, center), there is a clearer distinction be-
tween the positive and negative selections. For the most
common classes, such as voice (fig. 5, right), the vast ma-
jority of positive selections are validated by the annotators

as positive, and conversely for the negative selections.
To measure the diversity of the annotated subset, fig. 6

compares the distribution of genres over both the sample
and the background population of FMA. While both distri-
butions exhibit non-uniform genre distributions, the sam-
ple is fairly representative of FMA. The instrument-based
sampling does introduce some systematic bias, increasing
representation of styles with distinctive instrumentation,
such as classical or jazz. This effect can be observed di-
rectly in fig. 7, which shows the number of clips in each
genre that are positively labeled for each instrument. For
example, the majority of organ and piano examples are
tagged as classical, while synthesizer is drawn primarily
from electronic and experimental.

4.1 Experiment: baseline modeling

To estimate the expected performance of standard methods
on OpenMIC-2018, we conducted a set of baseline exper-
iments. We trained independent binary classifiers for each
instrument. We report the accuracy of each of those mod-
els on 100 splits of the data, randomly selecting 500 test
instances, and splitting the resulting training set in 3 folds
for hyper-parameter selection. As input representation, we
use the mean and standard deviation of VGGish features
over the clip’s duration.

We tested several baseline models, and for simplicity
report only the best performing one: a random forest (RF)
classifier. The hyper-parameter search is done on the num-
ber of trees ({10, 100, 1000}) and on the maximum depth
of the tree ({2, 4, 8}). We also report the bias point of
each instrument category, and the performance of Instru-
mentDNN. This last comparison point gives us a measure
of how much information is gained by the crowd-sourced
labels. This experiment is done with the scikit-learn [17],
and the code to reproduce will be made available.

The results are shown in fig. 8. We see an overall gain
in accuracy of more than 10 percent point (pp) compared
to both the bias points and InstrumentDNN. The perfor-
mance difference can partly be explained by the difference
in training distributions between RF and InstrumentDNN,
and because a strong signal can be learned from the dataset.
The RF model performance is also more consistent across
instruments with only a 20 pp difference between the worst
and best instrument accuracy, compared to a 34 pp dif-
ference for InstrumentDNN. The gain compared to In-
strumentDNN is therefore larger on the more difficult in-
struments, such as saxophone, mandolin and ukulele. In
that case the crowd-sourced judgments might provide more
value and help build a robust system.

5. CONCLUSION

OpenMIC-2018 should prove to be useful for developing
and evaluating instrument detection models. We note that
the dataset is not “complete” in that not every clip has been
annotated for the presence or absence of every instrument.
While this is true for every instrument dataset—if one con-
siders instruments outside its vocabulary—it is usually not
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taken into consideration as part of the dataset design.
More generally, previous datasets have not typically

been designed with a plan for future correction, revi-
sion, and expansion. We are explicitly planning to ex-
pand and revise the dataset over time, either by additional
crowd-sourcing, semi-supervised learning [6], or incre-
mental evaluation [15]. OpenMIC-2018 will be placed un-
der version control, archived, and each revision will re-
ceive a unique document object identifier (DOI) via Zen-
odo. 6

In addition to supporting corrections and expanded cov-
erage, we anticipate expanding the vocabulary beyond the
initial 20 classes, both in breadth of instrument classes, and
in depth to provide refinements of classes, such as alto sax-
ophone and tenor saxophone rather than saxophone. Simi-
larly, future work could re-use much of the framework de-
veloped here to annotate the same collection for a variety
of qualities beyond instrumentation, and facilitate the de-
velopment of integrated multi-task models.
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6 http://about.zenodo.org/
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ABSTRACT

Automatic Drum Transcription (ADT), like many other mu-
sic information retrieval tasks, has made progress in the past
years through the integration of machine learning and audio
signal processing techniques. However, with the increasing
popularity of data-hungry approaches such as deep learning,
the insufficient amount of data becomes more and more
a challenge that concerns the generality of the resulting
models and the validity of the evaluation. To address this
challenge in ADT, this paper first examines the existing
labeled datasets and how representative they are of the re-
search problem. Next, possibilities of using unlabeled data
to improve general ADT systems are explored. Specifically,
two paradigms that harness information from unlabeled
data, namely feature learning and student-teacher learning,
are applied to two major types of ADT systems. All sys-
tems are evaluated on four different drum datasets. The
results highlight the necessity of more and larger annotated
datasets and indicate the feasibility of exploiting unlabeled
data for improving ADT systems.

1. INTRODUCTION

Automatic drum transcription (ADT), a sub-task of Auto-
matic Music Transcription (AMT) [2] that concerns the
extraction of drum events from music signals, witnesses a
growth in data-driven approaches such as deep learning in
recent years [24, 25, 31–33]. The majority of these ADT
studies use the popular ENST-Drums dataset [11] for de-
velopment by splitting the dataset into different subsets for
training, validation, and testing purposes. Nevertheless,
the limited amount of labeled data and its potential impact
on ADT systems are rarely discussed. The heavy reliance
on one dataset raises two major concerns: (i) the model
could easily overfit the data, which questions its generality,
and (ii) the evaluation results could be overly optimistic
due to the small sample size of the split. To avoid these
pitfalls, larger datasets and cross-dataset evaluation are nec-
essary. This need has been identified by researchers and
has been addressed with newly released annotated datasets
such as MDB-Drums [26] and RBMA [33]. These new

c© Chih-Wei Wu, Alexander Lerch. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Chih-Wei Wu, Alexander Lerch. “From labeled to unlabeled data
– on the data challenge in automatic drum transcription”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

data enable us to revisit ENST-Drums and re-examine the
representativeness of this widely-used dataset through a
unified comparison.

Motivated by the above mentioned issues concerning the
data in ADT, this paper aims to address the challenge from
two different angles, (i) examining the effectiveness of the
existing datasets and (ii) investigating additional resources
(e.g., unlabeled data) and techniques for supporting the
development of general ADT systems. The contributions
of this work include: first, the examination of four differ-
ent datasets, highlighting the importance of data diversity.
Second, the evaluation of two paradigms for integrating
unlabeled data to two major types of ADT systems. Third,
the demonstration of potential improvements of both types
of ADT systems on different drum instruments using unla-
beled data.

2. RELATED WORK

2.1 Automatic Drum Transcription

The task of automatic drum transcription can be described
as converting drum related audio events into music notation.
Most of the early ADT systems, as summarized by FitzGer-
ald and Paulus [9], detect onsets of HiHat (HH), Bass Drum
(BD), and Snare Drum (SD) in drum only recordings. Re-
cently, this focus has shifted towards transcribing drums
in polyphonic mixtures comprised of both percussive and
melodic instruments. Following these conventions, this pa-
per defines the ADT task as detecting HH, BD, and SD in
polyphonic mixtures.

Generally speaking, the existing ADT systems can be cat-
egorized into four types according to the literature [12, 19].
These are (i) Segment and Classify: following the standard
pattern recognition pipeline, these approaches extract audio
features from detected onset locations and classifies them
with pre-trained models; this is a popular approach with
many proposed systems using different combinations of
classifiers and features [10, 12, 27, 28], (ii) Separate and
Detect: deriving activation functions from recordings to rep-
resent the activities of each drum, these systems subsequen-
tially perform onset detection on these activation functions
to locate drum hits; approaches include matrix factoriza-
tion methods such as Non-negative Matrix Factorization
(NMF) [6,23,35] and deep-learning-based methods such as
Recurrent Neural Networks (RNNs) [24,31,32] and Convo-
lutional Neural Networks (CNNs) [25, 33], (iii) Match and
Adapt: identifying drum events by comparing with a set of
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Figure 1. The overview of the evaluated paradigms for
integrating unlabeled data to two major ADT approaches

pre-defined templates, these systems often iteratively up-
date the templates [38], and (iv) HMM-based Recognition:
modeling the temporal connections between drum events
using probabilistic models such as Hidden Markov Models
(HMMs), these models try to identify the underlying drum
sequence by using the Viterbi algorithm [7, 20].

To date, the majority of the existing ADT systems fall
into the categories of Segment and Classify and Separate
and Detect. Both these types of systems, despite having
fundamental differences, use data-driven methods and face
the challenge described in Sect. 1. Therefore, in this paper,
we considered both types of systems in our experiments.

2.2 Learning from Unlabeled Data

To address the data challenge in MIR tasks, techniques that
build upon the existing labeled data have been proposed.
For example, in transfer learning [4], a deep neural network
trained on a task that has sufficient data can be used to derive
features for another task with limited data. This method alle-
viates the data insufficiency by re-using the effective models
in the similar domains. Data augmentation, a technique
to increase diversity of training data through music-related
deformations (e.g., time-stretching, pitch shifting, or distor-
tion) and synthesis, has been successfully applied to MIR
tasks [18] and in ADT specifically [32, 36]. However, these
techniques still require a reasonably sized correctly anno-
tated dataset as a starting point, which remains a challenge
in certain scenarios.

Another direction for addressing the data scarcity is to
use unlabeled data. Intuitively, a large collection of un-
labeled data can be helpful in deriving more generalized
features. This is the main concept of unsupervised feature
learning, and it can be implemented with algorithms such
as Sparse Coding [22], Deep Belief Networks [13], and
Auto-encoders [17]. More recently, the student-teacher
learning paradigm has also emerged as an interesting con-
cept to incorporate unlabeled data. Referred by Hinton et
al. as “knowledge distillation” [14], this paradigm transfers
the knowledge of a teacher model to a student model us-
ing the soft-targets generated by the teacher. As opposed
to learning from the hard targets (i.e., ground truth), the
student learns from the “dark knowledge” residing in the
soft-targets, which can be created using either labeled or
unlabeled data [15]. A successful student model can reduce
the complexity of the original teacher model without signif-
icant performance loss. Several studies also report superior
performance of the student models [5, 34, 37]. Overall,
methods that work directly with unlabeled data obviously
have less dependency on existing labeled data and have
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Figure 2. The flowchart of the feature learning paradigm
for ADT

higher potential to be applicable to more tasks.

3. METHOD

3.1 Overview

To connect general ADT systems to the abundant resources
of unlabeled data, this paper investigates the application of
feature learning and student-teacher learning to Segment
and Classify-based and Separate and Detect-based ADT
systems, respectively. Figure 1 shows the two paradigms for
integrating unlabeled data to ADT systems as investigated
in this paper. The feature learning paradigm is designed for
Segment and Classify-based ADT systems. In this paradigm,
the unlabeled data is used to derive a feature extractor using
an unsupervised feature learning algorithm. The resulting
feature extractor is then integrated into a generic Segment
and Classify ADT framework. The student-teacher learning
paradigm is suitable for Separate and Detect-based ADT
systems. This paradigm uses teacher models and unlabeled
data to generate soft-targets; these soft-targets play the
important role of connecting any Separate and Detect-based
system with unlabeled data and enable the training of the
student model. In the following sections, more details of
both paradigms are presented.

3.2 Feature Learning

The flowchart in Fig. 2 shows the feature learning paradigm
for ADT, including both training and testing. The training
phase starts with the training of a feature extractor using the
unlabeled data. Specifically, we use a Convolutional Auto-
encoder (CAE) as the feature extractor. A generic Segment
and Classify-based ADT system is then constructed with
the following steps: first, the features are extracted from the
audio signals using the pre-trained feature extractor. Sec-
ond, the onset locations are determined by using the ground
truth annotations while training. Finally, the feature vectors
around the onset locations are collected and used to train
three binary classifiers for HH, BD, and SD, respectively.
The classifiers used in this paper are Support Vector Ma-
chines (SVMs). In the testing phase, the same pipeline is
followed except for the onset detection step, which uses
an onset detector instead of the ground truth locations. Fi-
nally, the presence of each drum can be predicted using the
pre-trained SVMs.

The architecture of the CAE is shown in Fig. 3. The
input X of the CAE is a Mel-spectrogram, and the output
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Figure 3. The architecture of the proposed CAE for un-
supervised feature learning. The input X is a 128 × N
Mel-spectrogram.

X ′ is the reconstruction of X . The encoder consists of four
convolutional layers with {32, 16, 8, 4} channels of 3× 3
kernels, accordingly. Each convolutional layer is used by a
batch normalization layer and a max-pooling layer of (2, 1).
This design maintains the temporal resolution, allowing the
extraction of block-wise features. The bottleneck layer is
also a convolutional layer with 4 channels of 3× 3 kernels.
All non-linear units are Rectified Linear Units (ReLUs).
The structure of the decoder is symmetric to the encoder
with the max-pooling layers replaced by the up-sampling
layers. The CAE is trained to minimize the Mean Squared
Error (MSE) between X and X ′ using a gradient-descent-
based optimization process, and the number of training
epochs is 30.

The feature extraction process, as shown in Fig. 3, is
inspired by the method proposed by Choi et al. [4]: first, the
intermediate activation maps from all the layers in the en-
coder (including the bottleneck layer) are computed. Next,
average pooling is performed on these maps across the Mel-
frequency axis. Finally, these outputs are stacked into a
64×N feature matrix, where N is the number of blocks.
To derive the final feature vector at each block, the feature
vectors from the current block and the following two blocks
are spliced together to capture the temporal variations of
the event. This leads to a final feature vector with a dimen-
sionality d = 3× F , in which F is the number of features
(i.e., 64).

In addition to the learned features, a set of baseline fea-
tures consisting of 20 Mel Frequency Cepstral Coefficients
(MFCCs) and their first and second derivatives is also in-
cluded in this paradigm. As a result, the baseline feature
vector has a dimensionality d = 3 × 60 = 180 after the
feature splicing.

3.3 Student-Teacher Learning

Figure 4 shows the flowchart of the student-teacher learning
paradigm for ADT. In the training phase, the teacher models
are used to analyze the unlabeled data and generate the soft-
targets. These soft-targets, used as pseudo ground truth to
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Figure 4. The flowchart of the student-teacher learning
paradigm for ADT

train a student model, contain the activation functions for
the different drums. When multiple teachers are present,
the student model can be trained by iteratively passing the
unlabeled data and its corresponding soft-targets from each
teacher. The student model is trained by minimizing the
MSE between the soft-targets and the model outputs. In the
testing phase, the trained student model processes the test
data and generates the corresponding activation functions.
The estimated locations of drum hits are identified with a
simple peak picking process.

The model architecture, configuration, and parametriza-
tion of this evaluated paradigm generally follows the setup
described in [37]. This includes two teacher models based
on Partially-Fixed NMF (PFNMF) [35] and one student
model using a fully-connected, feed-forward Deep Neural
Network (DNN). The soft-targets are scaled to a numerical
range between 0 and 1 using min-max scaling across the
training data for each instrument in order to ensure their
compatibility with the outputs from the student DNN.

3.4 Implementation

The main input representations for both paradigms are de-
rived from the magnitude spectrogram of the Short Time
Fourier Transform (STFT), which is computed using a block
size of 2048 and a hop size of 512 samples with Hann win-
dow. All of the audio signals are normalized to a range
between 1 and -1, down-mixed to mono, and resampled to
44.1 kHz prior to the computation of STFT.

For the feature learning paradigm, both the Mel-
spectrogram in dB scale with 128 bins and the MFCCs
are computed using librosa, 1 a Python library for audio sig-
nal processing. The onset detection is implemented using
the CNNOnsetProcessor from Madmom. 2 Additionally,
the implementation of Linear SVMs from scikit-learn, 3 a
Python library for machine learning, is used. A grid search
on the penalty parameter C within {0.1, 1, 10, 100, 1000}
is performed to optimize the performance of the SVMs.

For student-teacher learning paradigm, the teacher mod-
els are implemented using the PFNMF function from Nmf-
DrumToolbox. 4 The peak-picking parameters are set to
the same as in the original paper [37].

1 https://librosa.github.io, last access 2018/03/27
2 https://madmom.readthedocs.io/en/latest/, last access 2018/03/27
3 http://scikit-learn.org/stable/, last access 2018/03/27
4 https://github.com/cwu307/NmfDrumToolbox, last access 2018/03/27
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The neural networks in both paradigms are implemented
using Keras 5 and the Tensorflow [1] backend. The weights
are randomly initialized with normal distributions, and the
parameters of the ADAM optimizer are set to default. The
source code used in this paper is available on Github. 6

4. EXPERIMENT

4.1 Unlabeled Data

The unlabeled dataset in this paper is built using the source
code provided in [37]; this tool allows the compilation of
a list of songs from the Billboard Chart 7 and the retrieval
of these songs from Youtube. This dataset consists of six
musical genres, including R&B/HipHop, Pop, Rock, Latin,
Alternative, and Dance/Electronic. Each genre has 1900
songs, which leads to a collection of 11400 songs. All the
songs are cross-checked for duplicates and converted to
mp3 format with a sampling rate of 44.1 kHz. In our exper-
iments, this dataset is further split into training, validation,
and testing set with a percentage of 70%, 15%, and 15%,
respectively. To speed up the process while maintaining the
diversity, only a 30 s segment is extracted from each song
for training. The segment starts in the middle of the song to
avoid potential inactivity at the beginning. As a result, the
entire training set has a total duration of 66.5 hrs, which is
significantly larger than any existing ADT dataset. The list
of songs and links are available on Github. 8

4.2 Labeled Data

In this paper, four different labeled datasets featuring poly-
phonic mixtures are used: (i) the popular ENST-Drums (re-
ferred to as ENST) [11], (ii) the MIREX 2005 (referred to
as m2005),(iii) the MDB-Drums (referred to as MDB) [26],
and (iv) the RBMA dataset [33]. The latter three public sets
have been used in the 2017 Music Information Retrieval
Evaluation eXchange (MIREX) 9 drum transcription task.

ENST minus one subset consists of 64 recordings per-
formed by three different drummers on their own drum
kits. The average duration of the recordings is 55 s. These
recordings feature different musical genres and playing
styles, and the multi-track files are available for remixing.
In this paper, the accompaniments are mixed with their cor-
responding drum tracks using a scaling factor of 1/3 and 2/3,
respectively. This setup is consistent with several previous
studies [24, 31, 35].

m2005 was originally collected for the first MIREX
drum transcription task in 2005 and recently made avail-
able for MIREX 2017 drum transcription task participants.
The public set includes 23 recordings contributed from all
the participants of MIREX 2005. While covering a variety
of musical genres, J-pop has the highest presence in this

5 https://keras.io, last access 2018/03/27
6 https://github.com/cwu307/ADT with unlabeledData, last access

2018/06/14
7 https://www.billboard.com/charts, last access 2018/03/27
8 https://github.com/cwu307/unlabeledDrumDataset, last access

2018/06/14
9 http://www.music-ir.org/mirex/wiki/2017, last access 2018/03/27

dataset with 10 recordings. The average duration of this
dataset is 125 s.

MDB consists of 23 recordings of the MusicDelta sub-
set from the MEDLEYDB dataset [3]. These recordings
include a variety of musical genres such as Rock, Coun-
try, Disco, Reggae, and Jazz. The average duration of the
recordings is 54 s. Similar to ENST, this dataset contains
multi-track files as well as the full mixtures. In this paper,
we use the full-mixtures directly without any adjustment of
the mixing levels.

RBMA was released as part of the public set for the
MIREX 2017 drum transcription task. This public set in-
cludes 27 recordings featuring mostly Electronic Dance
Music (EDM). The average duration of the tracks is 230 s.
Since this dataset focuses on electronic music, it contains
electronic drum sounds that can be distinctively different
from the other three datasets.

In total, there are 137 files with annotations available for
evaluation. All files have a sampling rate of 44.1 kHz.

4.3 Metrics

The evaluation metrics in this paper are Precision (P), Re-
call (R), and F-measure (F). Only the averaged F-measure
is reported due to the limited space. These metrics are
implemented using mir eval, a Python library of common
MIR metrics [21]. To determine whether an onset is a
match with the ground truth, a tolerance window of 50 ms
on both sides is used. This setting is consistent with the
literature [12, 24, 35], although some authors use smaller
tolerance windows such as 30 ms [20] and 20 ms [32].

4.4 Experiment Setup

This paper evaluates 9 ADT systems, comprising 4 systems
for the feature learning paradigm and 5 systems for the
student-teacher learning paradigm. The configurations of
these systems are described as follows:

For the feature learning paradigm, the 4 systems are
differentiated by their features. These features are:

(i) MFCC: this set of features has shown its effectiveness
in previous ADT studies [20, 27, 29]. Therefore, it is
included as a baseline.

(ii) CONV-RANDOM: this set of features is extracted
using the proposed CAE architecture with all the
weights randomly initialized without further training.
This is another baseline inspired by [4] to serve as a
sanity check for the effectiveness of the unsupervised
training process.

(iii) CONV-AE: this is the set of features extracted from
the proposed CAE after training. During the training
procedure, the original input is used as the target for
optimization. In other words, the CAE is trained to
reconstruct the input.

(iv) CONV-DAE: this set of features is similar to CONV-
AE except for the optimization target. In this case, a
processed input is used as the target. Specifically, the
percussive component from the Harmonic Percussive
Source Separation (HPSS) [8] algorithm is used, and
the CAE is trained to approximate the percussive
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Figure 5. The evaluation results of all labeled datasets with
averaged F-measure across all systems.

component. This configuration is inspired by the
concept of the Denoising Autoencoder (DAE) [30]
and is designed to encourage the extraction of
drum-related features.

The teacher models for student-teacher learning
paradigm are described in [37]. The 3 student models can
be differentiated by their training data. The systems are:

(i) PFNMF (SMT): a teacher PFNMF initialized with the
drum templates extracted from the IDMT-SMT-Drum
dataset [6].

(ii) PFNMF (200D): a teacher PFNMF initialized with the
drum templates extracted from the 200 Drum Machine
dataset. 10

(iii) FC-200: a fully-connected student DNN trained with
a subset of the unlabeled dataset, which consists of
200 randomly selected songs from each genre.

(iv) FC-ALL: a fully-connected student DNN trained with
all the songs from all genres.

(v) FC-ALL (ALT): a fully connected student DNN
trained with all the songs from only the “Alternative”
genre. This particular genre is selected for its superior
performance in preliminary tests.

Based on these 9 systems, the following experiments are
conducted:

E1: Experiment 1 aims to examine the variance of the
labeled datasets. For each dataset, the averaged
F-measures across all 9 systems are reported.

E2: Experiment 2 aims to evaluate the usefulness of un-
labeled data for Segment and Classify-based ADT
systems using the feature learning paradigm. For
each system, the averaged F-measures across all the
datasets are reported.

E3: Experiment 3 aims to evaluate the usefulness of un-
labeled data for Separate and Detect-based ADT sys-
tems using the student-teacher learning paradigm.
For each system, the averaged F-measures across all
the datasets are reported.

Note that for the feature learning paradigm, a cross-
dataset validation process is performed (e.g., train on three
datasets and test on the remaining one) in order to train
the binary classifiers (see Sect. 3.2). For student-teacher

10 http://www.hexawe.net/mess/200.Drum.Machines/, last access
2018/03/27

Experiments Averaged F-measure
Role System HH BD SD

Baseline MFCC 0.61 0.62 0.40
Baseline CONV-RANDOM 0.61 0.54 0.39

Evaluated CONV-AE 0.61 0.62 0.42
Evaluated CONV-DAE 0.61 0.61 0.42

Table 1. Evaluation results of the feature-learning-
paradigm-based systems.

learning paradigm, since the student model does not need
additional labeled data for training so that a cross-dataset
validation is unnecessary.

4.5 Results

Figure 5 shows the evaluation result of E1. On average, all
systems tend to perform the best on ENST and the worst on
RBMA. For some instruments, this gap can be as large as
22% in F-measure. There are two possible reasons for the
good performance on ENST. First, as many ADT systems,
including Segment and Classify-based and Separate and
Detect-based, have been developed and evaluated on ENST,
there could be potential bias towards this dataset. Second,
the ENST dataset might be relatively simple compared to
the others. A closer examination of the dataset shows a lack
of singing voices and the dominance of MIDI synthesized
accompaniments, which could potentially over-simplify the
ADT problem. The relative poor performance on the RBMA
dataset might be related to its focus on EDM; the electronic
drum sounds with strong audio effects could possibly in-
crease the difficulty for ADT. This seems to be especially
true in case of the SD. Overall, the results show that the
evaluated systems leave much room for optimization; since
many of the parameters in these systems are not extensively
tuned, this result is to be expected. However, this also re-
flects the challenge of building an ADT system that is easily
generalizable.

The results of E2 are shown in Table 1. The following
trends can be observed: first, the unlabeled data seems to be
helpful in Segment and Classify-based ADT systems. A di-
rect comparison between CONV-AE and MFCC shows that
the features learned from unlabeled data seem to slightly im-
prove for SD while achieving equal performance on HH and
BD. Second, the unsupervised training process is useful for
deriving better features. Compared to CONV-RANDOM,
both CONV-AE and CONV-DAE show improvements on
nearly all instruments, indicating the advantage of the train-
ing process. Third, the DAE-inspired training process does
not lead to improvements for ADT. This is shown by the
almost equivalent results from CONV-AE and CONV-DAE.
Since HPSS also introduces artifacts, it might not be the
most ideal method for this task; experimentation with other
source separation algorithms might provide more insights.

Table 3 shows the results of E3. The general trends
can be summarized as follows: first, the student-teacher
learning seems to be useful for Separate and Detect-based
ADT systems as all students show a noticeable improve-
ment on HH over the teacher models. This observation
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Compared Systems Inst. Paradigm Improvement Deterioration
Test Ref # Files F-measure Gain # Files F-measure Loss

CONV-AE MFCC SD Feature Learning 70/137 6.5% 40/137 -4.6%
FC-200 PFNMF (SMT) HH S-T Learning 78/137 13.8% 44/137 -7.6%

Table 2. Significance check of the most improved pair from each paradigm.

Experiments Averaged F-measure
Role System HH BD SD
Teacher PFNMF (SMT) 0.47 0.61 0.45
Teacher PFNMF (200D) 0.47 0.67 0.40
Student FC-200 0.56 0.57 0.44
Student FC-ALL 0.53 0.59 0.42
Student FC-ALL (ALT) 0.55 0.58 0.44

Table 3. Evaluation results of the student-teacher-paradigm-
based systems. The performance of the teacher models are
the baseline.

consolidates the preliminary finding reported in [37]. Sec-
ond, more unlabeled data do not necessarily lead to better
results. For example, FC-200 and FC-ALL (ALT) both out-
perform FC-ALL on HH and SD. Since the student model is
a simple feed-forward DNN, the lack of model capacity and
temporal information could limit its potential for further
improvement as the data size grows. Experiments using
other student models (e.g., CNNs and RNNs) are neces-
sary for confirmation. Third, the student models seem to
struggle on BD. A detailed examination on the individual
results from each dataset shows that teachers and students
are mostly comparable on BD except for RBMA. This is
possibly due to the challenging nature of RBMA as dis-
cussed in E1. However, further investigation is needed
before drawing conclusions.

The results of E2 and E3 show that feature learning and
student-teacher learning paradigms are able to improve the
performance on SD and HH, respectively. In light of these
results, an interesting question is: “Are these improvements
significant?” In an attempt to answer this question, two
pairs of systems are selected for further analysis. Each
pair consists of the best baseline and the best evaluated
system of each paradigm. A t-test is performed on each
pair by comparing their results on all 137 files. Both pairs
have shown significant improvements with p � 0.0014
for both t-tests. Furthermore, the number of improved
and deteriorated files is calculated. The results, shown in
Table 2, show a positive trend: the number of improved files
is, in both cases, greater than the number of deteriorated
files. Moreover, the averaged F-measure gains are also
higher than the averaged F-measure loss for both pairs.

From Table 2, it can be observed that the improvements
on HH from the student-teacher learning paradigm seems
to be more substantial. To further investigate the cause
of this improvement, one example from the ENST dataset,
which has the largest F-measure gain among all files, is
selected. The HH activation functions generated from both
teacher and student model are shown in Fig. 6. Compared
to the teacher’s activation function, the student’s activation
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Figure 6. Example of the (top) teacher’s and (bottom)
student’s HH activation function in comparison.

function is sharper and less noisy, demonstrating the benefit
of this paradigm.

5. CONCLUSION

We discussed the data challenge in ADT and investigated
two approaches to address this challenge by considering
both labeled and unlabeled data. First, we compared sys-
tem performance on multiple existing labeled datasets in an
unified setting. The results indicate a potential bias of rely-
ing on one dataset and highlight the necessity of including
more datasets in the future ADT evaluation. Furthermore,
we evaluated the usefulness of unlabeled data for two major
types of ADT systems via two different learning paradigms,
feature learning and the student-teacher learning approach.
For both paradigms, we got encouraging (and statistically
significant) results demonstrating the potential of achieving
better performance than the baseline systems on different
drum instruments.

These results, while suggesting the need for additional
labeled data in the field of ADT, also encourage the ex-
ploration of incorporating unlabeled data in the training.
Possible future directions include (i) the evaluation of var-
ious methods for unsupervised feature learning such as
Sparse Coding [22] and Deep Belief Networks [13], (ii) the
evaluation of different combinations of teacher and student
models, for example, the combination of different types of
DNN either as teachers or students; the identification of suit-
able architectures for these roles could also be an interesting
direction, and (iii) the application of outlier detection [16]
approaches to filter out noisy unlabeled data.
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ABSTRACT

The guitar is a popular instrument for a variety of reasons,
including its ability to produce polyphonic sound and its
musical versatility. The resulting variability of sounds,
however, poses significant challenges to automated meth-
ods for analyzing guitar recordings. As data driven meth-
ods become increasingly popular for difficult problems
like guitar transcription, sets of labeled audio data are
highly valuable resources. In this paper we present Gui-
tarSet, a dataset that provides high quality guitar record-
ings alongside rich annotations and metadata. In partic-
ular, by recording guitars using a hexaphonic pickup, we
are able to not only provide recordings of the individual
strings but also to largely automate the expensive annota-
tion process. The dataset contains recordings of a vari-
ety of musical excerpts played on an acoustic guitar, along
with time-aligned annotations of string and fret positions,
chords, beats, downbeats, and playing style. We conclude
with an analysis of new challenges presented by this data,
and see that it is interesting for a wide variety of tasks
in addition to guitar transcription, including performance
analysis, beat/downbeat tracking, and chord estimation.

1. INTRODUCTION

Well-annotated audio files are key to MIR research. They
are necessary both for evaluating algorithm performance
and for developing models. For time-varying musical in-
formation such as notes in a polyphonic context, the pro-
cess of creating accurate annotations can be an especially
difficult and slow process. For monophonic audio, there
are software tools, such as Tony [12], built to facilitate the
manual annotation process by first providing an estimate
and allowing the user to manually correct the mistakes.
However, there is no equivalent tool for polyphonic au-
dio, and the accuracy of pitch estimation methods on poly-
phonic audio is significantly worse than for monophonic
audio.

c© Qingyang Xi, Rachel Bittner, Johan Pauwels, Xuzhou
Ye, Juan Bello. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Qingyang Xi, Rachel
Bittner, Johan Pauwels, Xuzhou Ye, Juan Bello. “GuitarSet: A Dataset
for Guitar Transcription”, 19th International Society for Music Informa-
tion Retrieval Conference, Paris, France, 2018.

Recently, several methods have been developed to ad-
dress the problem of creating pitch annotations. Most no-
tably, Su and Yang’s work [22] provides an efficient way
of generating note-level annotations for recordings of poly-
phonic music by utilizing the midi-keyboard as an annota-
tion interface. An alternative approach was proposed that
uses an analysis-synthesis framework to generate annota-
tions by re-synthesizing estimates [18]. However, these
methods are insufficient when applied to guitar record-
ings. In the midi-keyboard approach, it would be very dif-
ficult for a keyboard player to replicate note-by-note what
a guitarist is playing. The analysis-synthesis approach re-
quires the analysis (i.e. estimate of the correct notes) to
be reasonably close to the ground truth in order to gen-
erate realistic sounding audio; unfortunately, the existing
transcription algorithms perform woefully badly on poly-
phonic solo guitar recordings. Unsurprisingly, there is no
sizable database of guitar recordings with note-level anno-
tations and realistic guitar playing.

In this paper, we present GuitarSet: a sizable dataset of
richly annotated, realistic guitar recordings. We describe
our data collection and annotation process in detail and in-
troduce our solution for efficiently creating note-level an-
notations. Our solution relies on the use of an acoustic
guitar with a hexaphonic pickup, which outputs one chan-
nel of audio signal per guitar string; as well as custom
annotation tools. This effectively turns polyphonic tran-
scription into monophonic transcription. We conclude with
an analysis of new challenges presented by this data, and
see that it is interesting for a wide variety of tasks in ad-
dition to guitar transcription, including performance anal-
ysis, beat/downbeat tracking, and chord estimation. The
dataset (audio and annotations) and the code used to gen-
erate the annotations are made freely available online. 1

2. RELATED WORK

A handful of datasets exist for polyphonic instrument tran-
scription. The MAPS dataset [7] contains a large collec-
tion of transcribed piano notes, chords, and pieces (us-
ing a Disklavier), recorded in different acoustic conditions.
Similarly, the UMA-Piano [2] dataset contains all possible
combinations of notes at varying dynamics. These datasets
have been critical to the development of automated pi-
ano transcription methods; Sigtia’s deep-learning powered

1 https://github.com/marl/GuitarSet
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piano transcription algorithm [20] and Ewert’s algorithm
based on non-negative matrix deconvolution [8] are just
two of many data driven algorithms that rely on the MAPS
dataset. More recently, efforts devoted to historic preser-
vation of player piano rolls also provide new ways of ex-
tending transcription datasets for piano music [19].

For guitar, the Guitar Playing Techniques dataset [23]
contains 6580 clips of single notes along with playing
technique annotations. The IDMT-SMT-Audio-Effects
dataset [21] contains ≈ 20 hours of single guitar notes
and chords with varying audio effects. Finally, the IDMT-
SMT-Guitar dataset [11] contains several types of guitar
data, including single notes, playing techniques, note clus-
ters, and note and chord-level annotations for short ex-
cerpts. While each of these datasets are useful, none of
them provide note-level annotations of realistic polyphonic
guitar pieces, which is a limiting factor in exploring many
interesting new research directions.

The absence of a sizable dataset for realistic polyphonic
guitar playing is largely due to the difficulty of annotating
complex guitar recordings directly. In order to help facili-
tate analysis of guitar recordings, hexaphonic guitar pick-
ups have become a useful research tool. The idea of us-
ing hexaphonic pickups to generate transcriptions was first
proposed by O’Grady and Rickard in 2009 [16]. In their
method, signals from individual strings are analyzed using
supervised non-negative matrix factorization. Hexaphonic
pickups have also been used for analysis and resynthesis of
monophonic single-note guitar recordings [15], as well as
for visualizing guitar performances [1].

We posit that, despite piano and guitar having compara-
ble popularity, research has focused much more heavily on
analysis of piano recordings simply because of the avail-
ability of data. Online communities that provide guitar tab-
lature such as Ultimate Guitar 2 are very popular, and accu-
rate methods for guitar tablature transcription would have
the potential to attract a vibrant community. By creating
GuitarSet, and therefore demonstrating an efficient process
of creating detailed note level annotations for guitar, we
hope to provide the community with better resources for
studying guitar transcription and more.

The collection and analysis methods for GuitarSet was
designed with the principles described by Su and Yang [22]
in mind: (1) Generality: We chose well-known progres-
sions in popular styles as the basis of GuitarSet’s mate-
rial, and collect realistic, complex and polyphonic musi-
cal phrases. (2) Efficiency: The method of creating an-
notations for GuitarSet is mostly automated, with human
experts focusing on correcting onsets, which requires con-
text and expertise. GuitarSet can be easily extended for
this reason. (3) Cost: The key equipment, the hexaphonic
pickup, is very affordable. and (4) Quality: In order to
preserve nuances in the performance, including intra-note
pitch deviations and inter-string onset-time patterns, we
craft special tools and provide multiple annotation formats
to ensure high quality annotations.

2 http://www.ultimate-guitar.com/

3. DATA COLLECTION PROCESS

Hexaphonic pickups are magnetic pickups that have in-
dividual outputs for each magnet. We ordered a clip-on
hexaphonic pickup from ubertar.com, which has 6 in-
dividual single coil magnets, and is manually attached to
an acoustic guitar. For better pickup signal-to-noise ratio
(SNR), nickel wound steel strings are used for the acoustic
guitar.

The audio was recorded in a small, soundproof record-
ing studio with minimal reverberation. In addition to the
six channels from the hexaphonic pickup, we also record
the guitar using a Neumann U87 condenser microphone,
placed ≈30 cm in front of the 18th fret of the guitar. This
results in seven channels of audio overall.

Six experienced guitarists were recruited to record for
this database. All six players have more than 10 years of
guitar playing experience, and were recruited by the au-
thors. The guitarists were asked to play 30 twelve to six-
teen bar excerpts from lead-sheets in a variety of keys, tem-
pos, and musical genres, described in Section 4. During
recording, guitarists were provided with a backing track
that consisted of a click track, drum set, and bass line,
heard through monitoring headphones. For each excerpt,
players were asked to comp (play chords), and then to solo
over their own comping. The guitarists were allowed to
replay excerpts until they were aesthetically satisfied with
their performance.

4. DATASET OVERVIEW

We use the JAMS file format [10] to store the rich collec-
tion of annotations for this dataset. For each recording,
the JAMS file contains annotations for tempo, key, and
style (metadata); beats and downbeats (inferred from the
click track); instructed chords (from the lead-sheets); per-
formed chords (via automatic estimation); note-level tran-
scription, including string and fret position (via automatic
estimation), onsets (via annotation), offsets (via automatic
estimation) and pitch contour for each note (via validated
automatic estimation). Descriptions of each of these an-
notation types are detailed in Section 5. Figure 1 gives a
visualization of some of the annotations provided for an
excerpt of the dataset.

In total, each player provided 30.47 minutes of musical
material, resulting in just over 3 hours of content in to-
tal. Each player was asked to play 30 excerpts, organized
as follows: 3 different chord progressions are paired with
each of the 5 different genres, all recorded at two differ-
ent tempi: slow and fast. The three progressions were the
12 bar blues, Autumn Leaves, and Pachelbel’s Canon. The
five different genres were Rock, Jazz, Funk, Bossa Nova
(BN), and Singer-Songwriter (SS). In order to broaden the
chord gamut in GuitarSet, key signatures were indepen-
dently assigned to each of the 30 excerpts.

5. ANNOTATION METHODS

The hexaphonic recordings are analyzed to generate anno-
tations for each string individually, and a complete tran-
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Figure 1. A 5 second excerpt of Jazz comping. Downbeats
and beats are indicated with solid and dashed vertical lines
respectively. (Top) Played chords and pitch contours, col-
ored by string. (Bottom) Instructed chords (lead sheet) and
string/fret positions.

scription of the excerpt is generated by aggregation. For
each string, onset/offset time pairs along with continuous
pitch tracks are annotated semi-automatically, with manual
validation. The validated transcriptions are then used to au-
tomatically create derivative annotations, including chords,
string and fret number, and more.

We first pre-process the hexaphonic recordings using
the KAMIR bleed removal algorithm [17] to reduce noise
picked up by the single coil magnets from adjacent strings.
We then generate a rough note-level transcription by run-
ning pYIN-note [13] over the recording of each string; this
rough transcription is used as the starting point for manual
validation.

5.1 Note-Level Annotations

We focus our manual annotation efforts on creating note-
level annotations, such as the one shown in Figure 1 (Top).
Accurately creating or correcting annotations of individual
string recordings requires contextual information and mu-
sical expertise. For example, an intentionally muted string
in a full chord still produces a clear pitch and onset when
examining the single muted string in isolation. However,
when mixed together with the other more resonant strings,
the muted note is completely masked. Because the muted
note is neither intended by performer nor heard by listen-
ers, we chose not to annotate it.

In order to address this issue efficiently and maximize
automation, we simplify the problem by taking a compo-
nent approach, and determine the onsets, offsets and pitch
tracks sequentially. We first focus on generating high qual-
ity onset annotations.By manually validating the onsets,
muted notes that shouldn’t be included in the annotation

and other non-note events are left out of the annotation.
Offsets are then automatically estimated, and the result-
ing note regions are used to facilitate highly accurate pitch
track estimations.

5.1.1 Onsets

Given automatically estimated onsets, removing false posi-
tive onsets can efficiently be done manually, but accurately
adding missed onsets efficiently requires machine assis-
tance. In order to allow annotators to easily add missed on-
sets, we automatically adjust human-estimated onset times
by searching for the most likely spectral flux peak in a lo-
cal neighborhood. Concretely, for a human estimated onset
time ã, the true onset time a is determined by finding the
position for which the windowed onset strength function
Ga(t) is maximized.

Let E(t) be the root-mean-squared (RMS) energy cal-
culated at time t, and Na(t) be the spectral flux novelty
function at time t [3]:

Na(t) =

n/2∑
k=1

H(|X(t, k)| − |X(t− l, k)|) (1)

where H(x) = x+|x|
2 is the half-wave rectification func-

tion and l = 5.8ms is a constant lag in time, n is the num-
ber of analysis bins, and k is the bin index.

The windowed onset strength function Ga(t) is con-
structed as follows,

Ga(t) = E(t) ∗Na(t) ∗ N (ã, σ2) (2)

and the onset time is computed as

a = argmax
t

(Ga(t)), (3)

where t ∈ [max(aprev + τa, a− 3σ), a+ 3σ], τa = 50ms
and σ = 30ms. The lower limit on t ensures there are at
least τa seconds between consecutive onsets. The Gaus-
sian component in Ga(t) ensures the locality of the on-
set search, favoring proximity with the human estimate.
Figure 2 shows an instance of such an adjustment.

5.1.2 Offsets

For all onsets a, the corresponding offset b is estimated
automatically, using the following criteria. First the offset
novelty Nb(t) is modified slightly from Equation 1:

Nb(t) = −
n/2∑
k=1

H ′(|X(t, k)| − |X(t− l, k)|) (4)

where H ′(x) = x−|x|
2 is the negative half wave rectifica-

tion function and l = 5.8ms.
Using the generated offset novelty function, an offset

strength function Gb(t) is generated.

Gb(t) =
Nb(t) ∗ (logE(t− l)− logE(t))

E(t)
(5)

where t ∈ [a + τb, anext) and τb = 30 ms. l = 5.8ms is
the hop length in time of the analysis window.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 455



Figure 2. (Top) Waveform of a single note. (Upper Mid-
dle) Human estimated onsets, adjusted by examining the
onset strength function. (Lower Middle) Offset novelty
functions and the detected offset in black. (Bottom) Gb(t)
and detected peaks.

The intuition behind the offset strength function Gb(t)
is straightforward: log-RMS difference and spectral flux
both give peaks for potential offsets, the RMS in the de-
nominator penalizes peaks of Gb(t) that still have signif-
icant energy. The peaks of the offset strength function
Gb(t) are then thresholded to generate the offset candi-
dates as shown in Figure 2. Offset candidates within 30
ms of the onset a are discarded, and the first offset candi-
date in time is then chosen from the remaining offsets as
b.

5.1.3 Pitch

After onsets and offsets are determined, the pitch tracks of
voiced regions are then estimated using pYin. The result-
ing estimation is then cleaned by the first author in Tony,
mostly correcting octave mistakes.

While we annotated the continuous pitch trajectories of
each note, the overall center pitches still needs to be in-
ferred. We choose a simple heuristic that averages the pitch
track frequencies. For a note with onset at time a and as-
sociated pitch track f(t), t ∈ [a, b); the center pitch of the
note p is estimated by taking the average pitch track over
a subset of the note region t ∈ [a′, b′), where a′ and b′ are
25% and 50% of the note duration respectively:

p =
1

b′ − a′
b′∑

t=a′

f(t) (6)

We only consider the subset t ∈ [a′, b′) to ensure a percep-
tually relevant average pitch, since the pitch near the onset
and offset of a guitar note can sometimes be unstable (e.g.
see Figure 1).

5.2 Derivative Annotations

Given note-level annotations, the lead sheets and the click
track, we automatically generate a series of derivative an-
notations.

5.2.1 String and Fret Position

Since the tuning of the guitar is known at the time of data
collection, fret positions can be determined simply by find-
ing the difference in semitones between the annotated pitch
and the pitch of the open string. A visualization of these
annotations is shown in Figure 1 (Bottom).

5.2.2 Chords

Two different types of chord annotations accompany each
of the 180 excerpts. The first type of chord annotation
is the chord written in the lead sheet that is provided to
the guitar players at the time of data collection. How-
ever, in order to better fit the given genre, the players of-
ten modified the given chords, hereafter called instructed
chords. Therefore the performed chords are not necessar-
ily the same as the instructed chords. Because the backing
track contains a bass line that is aligned to the root and
the timing of the instructed chords, the instructed and per-
formed chords vary mostly in chord type, not root. The
instructed chords have only four types (major, minor, dom-
inant seventh, half-diminished seventh); specific voicings,
extensions and alterations could be freely determined by
the players without suggestion bias.

We infer the performed chords by combining informa-
tion from the lead sheet and the annotated notes. In order to
make the comparison between the chords as instructed by
the lead sheet and the actual performed chords straightfor-
ward, the chord segmentation is determined from the lead
sheets. A drawback of this approach is that anticipated or
lagging chords changes lead to a slight mismatch between
the audio signal and the annotations, which may disturb
data-driven methods using this data as a training set. How-
ever, we argue that such quantization leads to annotations
that are more fit for displaying as sheet music and more
consistent than human segmentation, which is subjective
in this regard 3 . Furthermore, these cases are expected to
be rare because of the aforementioned backing track.

For each chord segment, we first determine if a string is
active by verifying whether the total duration of all notes
played on that string exceeds 5% of the segment duration.
This activity thresholding ensures that notes in adjacent
chord segments do not accidentally cause otherwise silent
strings to appear active simply because of an offset in chord
changes between the lead sheet and recording. Next, the
predominant note is determined for all active strings per
segment. This is done by taking the MIDI note value with
the longest total duration per-string (summed over all note
repetitions in the chord segment), resulting in a set of up to
six notes per chord segment from which we subsequently
derive a chord label.

3 Informal experiments with symbolic chord recognition software re-
sulted in a far worse segmentation.
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The root of the chord is also taken from the lead sheet
and the inversion naturally arises from the lowest note in
the set. Finally, the chord type is determined from the
chroma of the set of notes per string through a decision
tree that is part of the open-source MusOO library 4 . See
Figure 1 for examples of instructed and played chords.

It is notable that our approach of determining the played
chord has several biases; namely, the boundary of each
chord and the root of each chord is predetermined. More
in depth investigation is needed to determine chord bound-
aries and roots purely automatically, but this is left for fu-
ture work.

5.2.3 Beats and Downbeats

Since the data is recorded against a click track, the tempo,
beats, downbeats and meter of all the excerpts are known.
These annotations are generated for each excerpt automat-
ically given this known metadata.

5.3 Inferred Stroke Information

Another pattern that can be recognized from the annotated
data is the inter-string onsets. With the help of the on-
set adjustment step, the annotation captures minute tim-
ing differences across onsets on different strings; and by
looking at these onset patterns, one can gain a much better
understanding of the picking activity that would be other-
wise complex to analyze. Figure 3 shows the onsets per
string for a short excerpt. Four different strokes can be
clearly identified within this 650 ms excerpt. By examin-
ing the relative order of strings in each of the strokes, we
can clearly observe that the first and last stroke are down-
strokes, and the second and third are up-strokes. Evident
from Figure 3, the inter-string onsets are only milliseconds
apart during fast strokes, and would be very difficult for
humans to manually annotate precisely. This nuanced de-
tail would have been lost if the onset adjustment step were
not applied.

Figure 3. Onsets for each string are shown in different
colors.

6. BASELINE EXPERIMENTS

In order to better understand the new challenges posed by
this dataset, we evaluate the performance of strong base-
line algorithms against our ground truth notes, chords, and

4 https://github.com/jpauwels/libMusOO

beats/downbeats. These experiments are performed with-
out the algorithms seeing any of GuitarSet’s data. Detailed
results can be found in the GuitarSet repository. 5 All box
plots used in this section have box edges showing the first
and third quartile, and the whiskers showing 1.5 interquar-
tile range (IQR) away from the box edges.

6.1 Notes

We evaluate the performance of the Deep Salience
multiple-f0 estimation algorithm [4] on GuitarSet’s poly-
phonic rhythmic recordings. Figure 4 shows the results
across different splits of the data.

Overall, the model has an accuracy of ≈ 46%, and the
most common type of error is missed, rather than incor-
rect, notes. Looking at Figure 4 (Top Left), the results are
split by genre, and we see that Jazz is overall the most dif-
ficult genre to transcribe (likely due to the more complex
chord combinations), while Funk has the highest recall and
lowest precision (due to short notes and more unvoiced re-
gions). In Figure 4 (Bottom Left), we see that the audio
from the pickup is easier to transcribe than the audio from
the microphone, likely because the pickup signal is cleaner.

From Figure 4 (Top Right), we see that the performance
varies by player, both in terms of average accuracy and
in terms of the variance across all the player’s recordings.
This suggests that each player’s technique or playing style
is different enough that algorithm performance differs sig-
nificantly. Finally, in Figure 4 (Bottom Right), we see the
clear trend that the faster the tempo, the more difficult the
excerpt is to transcribe.

Figure 4. Baseline algorithm multiple-f0 scores on differ-
ent splits of GuitarSet. The metrics are A (Accuracy), CA
(Chroma Accuracy), P (Precision), and R (Recall). (Top
Left) Scores split by recording mode. (Top Right) Scores
split by excerpt tempo. (Bottom Left) Scores split by
genre. (Bottom Right) Scores split by player.

If only the microphone split of the data is considered,
we see that the Deep Salience model performs worse on

5 https://github.com/marl/GuitarSet
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GuitarSet than it does on Bach10 and MedleyDB [4]. With
the accuracy at only ≈ 43%, there are still significant pos-
sible performance gains to be had.

6.2 Chords

Next, we evaluate the performance of a state-of-the-art
chord recognition baseline [14] against the GuitarSet chord
labels. The results, stratified by genre, are show in
Figure 5. First, we see that again, some genre’s chord la-
bels are easier to estimate than others; in particular, the
Rock and Singer Songwriter genres are much easier due
to the generally simpler chord types used in those gen-
res compared with the others. Next, we see that there is
a large variance in the scores and that there are many out-
liers. Upon investigating the reason for these outliers, we
discovered that some popular guitar textures are not repre-
sented in the estimation algorithm’s output space. Power
chords and octaves, for example, are common guitar tex-
tures that are not within the range of typical chord esti-
mation output. While the lead sheet that guides the data
collection contains 42 unique chords, the actual detailed
chord annotations had a total of 478 unique chord labels
(counting all inversions and variations as unique), most of
which were small variations of the 42 due to players adding
or removing notes.

As shown in Table 1, the overall performance of the
baseline chord recognition algorithm on GuitarSet is com-
parable with the dataset evaluated by Humphrey and
Bello [9]. However, as mentioned above, some strata of
the dataset are considerably more difficult than the rest.

Figure 5. Chord recognition baseline algorithm results on
GuitarSet, stratified by genre.

6.3 Beats and Downbeats

The performance of a state-of-the-art beat and downbeat
detection algorithm [6] is evaluated on GuitarSet, and the
results, stratified by player, are shown in Figure 6. More so
than for the previous two tasks, there is a substantial dif-
ference between the beat tracker’s performance for differ-
ent players. This suggests that the guitarists have different

Dataset Root 3rds Triads 7ths Tetrads

GuitarSet
— Instructed 0.903 0.862 0.838 0.669 0.619
— Played 0.903 0.866 0.708 0.810 0.544

H. & B. [9] 0.861 0.836 0.812 0.729 0.671

Table 1. Median weighted recall scores for the baseline
algorithm [14] performed on different datasets

characteristics in how they play that affect beat detection,
such as their choice of strumming patterns or the strength
of their attacks. For example, player 00 has a fast strum-
ming style, and plays chords with embedded melodies,
which proves difficult for the algorithm.

Figure 6. Evaluation of baseline beat/downbeat detection
algorithm on GuitarSet, split by player. The metrics are
F (F-measure), AML-t (Any Metric Level-Total), and IG
(Information gain).

While the median beat and downbeat tracking F-
measure is in the 90% range for several players (which is
typical for state-of-the art-beat tracking [5]), several sub-
stratas of GuitarSet are challenging for beat and downbeat
estimation. This is especially true because the tempo and
meter do not change over time for each excerpt, yet the data
is still challenging for a state-of-the-art beat and downbeat
estimation algorithm.

7. CONCLUSIONS

In this paper, we presented a large and carefully anno-
tated dataset of guitar recordings which is available as an
open source resource to the research community. We gave
a detailed overview of the data collection process and a
description of the data itself. Finally, we described our
novel process for efficiently and accurately creating note,
chord, and beat annotations, and reported the performance
of state-of-the-art algorithms on these annotations.

We hope GuitarSet will be useful beyond providing
training and evaluation data for transcription models by
providing a gateway to investigate interesting problems
such as stroke analysis or harmony segmentation. We are
pleased to release GuitarSet to the research community and
hope that it will foster new, guitar-focused research.
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ABSTRACT

The Italian madrigal, a polyphonic secular a cappella com-
position of the 16th century, is characterised by a strong
musical-linguistic relationship, which has made it an icon
of the ‘Renaissance humanism’. In madrigals, lyrical
meaning is mimicked by the music, through the utilisa-
tion of a composition technique known as madrigalism.
The synergy between Renaissance music and poetry makes
madrigals of great value to musicologists, linguists, and
historians—thus, it is a promising repertoire for computa-
tional musicology. However, the application of computa-
tional techniques for automatic detection of madrigalisms
within scores of such repertoire is limited by the lack of
annotations to refer to. In this regard, we present 30 madri-
gals of the anthology Il Lauro Secco encoded in two sym-
bolic formats, MEI and **kern, with hand-encoded an-
notations of madrigalisms. This work aims to encourage
the development of algorithms for madrigalism detection,
a composition procedure typical of early music, but still
underrepresented in music information retrieval research.

1. INTRODUCTION

The Italian madrigal of the 16th century is a secular
polyphonic vocal composition characterised by the use of
madrigalisms, a composition technique that mimics the
linguistic content of the lyrics (e. g., emotional concepts
such as happiness or sorrow) through the music [14]. This
synergy between poetry and music shows the important
role that the arts played in the development of the ‘Re-
naissance humanism’ [29]. Given the intellectual and cul-
tural repercussion of this philosophical movement in West-
ern Europe [13], madrigals evoke high interest for musi-
cological, linguistic, and historical research. Yet, for the
comprehension of madrigals, advanced knowledge of the
Italian language and poetry, as well as music analysis ex-
pertise and knowledge of mensural notation [1] are essen-
tial. Since music historians, literary scholars, and librari-
ans not always have all these abilities, the development of
automatic systems for musical-linguistic synergy detection

c© Emilia Parada-Cabaleiro, Maximilian Schmitt, Anton
Batliner, Björn W. Schuller. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Emilia Parada-
Cabaleiro, Maximilian Schmitt, Anton Batliner, Björn W. Schuller.
“Musical-linguistic annotations of Il Lauro Secco”, 19th International So-
ciety for Music Information Retrieval Conference, Paris, France, 2018.

within madrigals would assist them in analytical, pedagog-
ical, and cataloguing tasks.

The application of machine learning techniques to early
music is restricted by early music being mainly con-
served in scanned copies of the original, i. e., no sym-
bolic (machine-readable) information is available. To ad-
dress this limitation, Optical Music Recognition (OMR)
has shown promising results in the automatic generation
of symbolic representations of such repertoire [6]. Nev-
ertheless, in the framework of automatic analysis within
symbolically encoded scores, for the development of suc-
cessful systems able to automatically interpret composition
procedures, appropriate annotations of such techniques are
essential. Despite the large amount of scores from early
music repertoire freely available on-line, symbolically en-
coded or not, labeled early music is still missing. Our work
represents an initial contribution to address this lacuna,
by presenting the symbolically encoded transcription and
annotated representation of 30 madrigals of the Il Lauro
Secco anthology [21]. A total of 120 scores are presented,
60 in MEI and 60 in **kern—30 of each annotated 1 .

With the presented work, we aim at encouraging the de-
velopment of algorithms for pattern recognition that would
pursue identification of musical-linguistic synergies, as
e. g., madrigalisms. This will advance automatic analy-
sis techniques, whose practical applications could help re-
searchers from diverse fields (e. g., musicology, linguistics,
and history) by assisting them in the evaluation of artis-
tic Renaissance manifestations. The manuscript is laid out
as follows: an overview of related work (Section 2); an
evaluation of musical-linguistic connections in the Italian
madrigal and in the presented repertoire (Sections 3 and
4); a description of the annotation methodology (Section
5); an outline of the annotated repertoire (Section 6); fi-
nally, conclusions and future work (Section 7).

2. RELATED WORK

Given the musical, literary, and historical value of the Ital-
ian repertoire of the late 16th and early 17th centuries,
some initiatives, such as Tasso in Music Project [25] 2 or
The Marenzio Online Digital Edition – MODE 3 , spend
great effort in making available online symbolic represen-
tations of such repertoire. Even though analytical tools are

1 https://github.com/SEILSdataset/SEILSdataset
2 http://www.tassomusic.org/
3 http://www.marenzio.org/about-mode.html
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Figure 1: Example of Contrapunctal madrigalism (CON) in Gio-
vanelli’s madrigal. The word foco (fire) is mimicked by a contra-
punctal texture where the five voices are involved: C (Canto) and
Q (Quinto) perform the motive 1 (highlighted in red), in which
the word foco is displayed by a melisma; A (Alto), T (Tenor),
and B (Basso) perform the motive 2 (in blue for T and B), being
considered the contrary motion for A (in green).

provided by these initiatives, such as text extraction, word
counting, or graphic representation of pitch and rhythm,
the symbolically encoded scores, presented in a variety of
formats, such as MEI [27] 4 or **kern [15], do not con-
tain annotations of the musical content. This may limit,
e. g., the evaluation of the performance of analytical toolk-
its, such as Humdrum Toolkit [15] 5 and music21 [7] 6 ,
since no ground truth is provided.

Ground truth is essential in the development of algo-
rithms for music information retrieval. Due to this, datasets
with annotated information have been developed in order
to support a variety of machine learning tasks, as e. g.,
OMR [22], or harmonic analysis [8]. With the rise of the
world-wide web, crowd-sourcing has become a very effec-
tive strategy to collect annotations [9]. Indeed, within the
framework of digital score libraries, this has been consid-
ered for web-based annotation tools [26] as well as to col-
laboratively perform hand-written transcription [4]. Nev-
ertheless, the annotation of musical content could require a
musicological expertise, as e. g., harmonic analysis [8], or
the identification of melodic similarities [28] which would
make a collaborative annotation system impracticable, thus
leading to consider only a limited number of annotators.

3. RHETORIC & MUSIC IN THE ITALIAN
MADRIGAL

Rhetoric is the discipline that, through an efficient codifi-
cation of the discourse (either spoken or written), achieves
to convince the audience. Having a consolidated tradition
from the times of the ancient Greece [2], in the 16th cen-
tury, this discipline has been directly applied to music, lay-
ing the foundation of Musica Poetica [5]. This stylistic
movement is founded in a close collaboration between po-
etry and music, by highlighting the emotional content of
the text through the use of musical-rhetoric figures, which
will evolve in the 17th century into the Affektenlehre, i. e.,

4 http://music-encoding.org/
5 http://www.humdrum.org/
6 http://web.mit.edu/music21/

the ‘Doctrine of the affections’ [17]. As these musical-
rhetoric principles are characteristic of the Italian madrigal
from the 16th century, such ‘word painting’ strategies are
also known as madrigalisms [24]. In madrigalisms, the
use of ‘chromatism’ is progressively introduced, a prac-
tice typical of Monteverdi, who at the beginning of the
17th century coined that known as Seconda pratica [3]: a
new conception of composition in which the music should
be governed by the words, thus justifying dissonances and
melodic movements that were considered unacceptable till
that time, according to Zarlino’s harmonic rules [30].

Yet, the madrigal of the 16th century is characterised
by madrigalisms which relate to the alternation of musical
textures, and not to chromatism, as typical for the madri-
gal of the 17th century. The madrigal of the 16th century,
since based on strong musical-linguistic synergies, differs
clearly from other contemporary musical genres such as
frottola, in which such ‘word painting’ strategies are not
present [14]. Indeed, the artistic value of this madrigal re-
lates also to the high qualification of poets, composers, and
interpreters involved in such artistic representation, though
to be interpreted in high status social reunions, i. e., in the
court [20]. In this regard, the music of the madrigal, in
contrast to the frottola, shows a more free representation
of the text, highlighting its content (usually related to pas-
toral, sentimental, and erotic themes) through virtuous mu-
sical writing [12]. Thus, the essential point of the Italian
madrigal of the 16th century is that the composer puts the
music into the same artistic level as the poetry [14].

The Il Lauro Secco anthology, published for the first
time by Angelo Gardano in 1582 at Ferrara (Italy) [18], is
a good example of such a repertoire, since both music and
lyrics were created by some of the most reputable com-
posers and poets of the time [20]. Furthermore, it was in-
tended to be interpreted in the court of Ferrara, by the Con-
certo delle donne [10], a vocal ensemble of professional
singers, which rapidly became an example for other con-
temporary courts, transforming Italy, for the first time, into
the center of music in Europe [14]. Moreover, Il Lauro
Secco was conceived as a unitary anthology with a com-
mon theme where music and poetry of all the madrigals
were expressively created for the anthology itself, whose
purpose was to be a wedding present for Laura Pever-
ara [11,19], one of the singers of the Concerto delle donne.

4. MUSICAL-LINGUISTIC SYNERGIES IN
IL LAURO SECCO

In the madrigals of Il Lauro Secco (‘The Dry Laurel’), the
meaning of the lyrics is expressed mainly through textu-
ral ‘musical metaphors’ and diatonic writing. Thus, the
‘word painting’ procedures are musically driven by the al-
ternation of diverse musical textures, which we will iden-
tify as contrapunctal, homorhythmic, and antiphonal; the
melodic development flows through step-wise motion, i. e.,
the melody is performed in conjunction, so each note is
followed by the immediate upper or lower note. For this,
rhythmic-melodic ‘motifs’ are chosen to represent each
verse of the lyrics, and are placed into specific musical tex-
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Figure 2: Example of homorhythmic madrigalism (HOM) in
Giovannelli’s madrigal. The voices C (Canto), A (Alto), Q
(Quinto), and T (Tenor) perform the same musical-linguistic pat-
tern simultaneously to musically mimic the lyrics’ content. No-
tice that all the voices are written in treble clef (for T subctave).

tures. These motifs are characterised by specific rhythms
and melodic contours that musically mimic the meaning
of the lyrics, both linguistically (e. g., love as positive and
hate as negative), and metaphorically (e. g., the word green
as a synonym for life); thus, we refer to these motifs and
their related lyrics as ‘musical-linguistic patterns’. The
musical texture determines how the musical-linguistic pat-
terns interact between them across the different voices.
Since other ‘word painting’ strategies, as e. g., those based
on melodic contour and chromatism [14], are not as rep-
resentative of the presented anthology as those based on
musical texture, only madrigalisms which relate to the al-
ternation of musical textures will be taken into account for
the annotations. For an evaluation of more ‘typical’ madri-
galism, as those based on chromatism, repertoire from the
17th century should be considered.

4.1 Madrigalisms based on Contrapunctal Texture

In contrapunctal madrigalisms—CONs, the same musical-
linguistic pattern is staggered along the timeline over the
different voices: Canto (C), Alto (A), Quinto (Q), Tenor
(T), and Basso (B), from the highest to the lowest. In Fig-
ure 1, an example of CON is given. The extracted pas-
sage is composed considering two different motifs: motif
1 highlighted in red (voices C and Q), motif 2 highlighted
in green (voice A) and blue (voices T and B). Motif 2 in
voice A is displayed in contrary motion, i. e., a melody in
opposite direction w. r. t. the voices T and B.

In this madrigalism, the word foco (fire) is mimicked by
music as a dynamic and confused state, as it relates to fire
as a physical phenomenon (and its typical instability) as
well as a metaphor of love. The dynamism and confusion
inherent of this concept is enhanced through a contrapunc-
tal texture (most typical composition technique to create
movement) as well as through the use of two contrasting
motifs. The first of these is characterised by fast rhythm
(made up of eighth-notes) and rising ‘melismatic prosody’
(a single syllable of text is sung through several different
notes), whereas the second is characterised by a slower
rhythm and descending ‘syllabic prosody’ (each syllable

œ
œI

Œ œ

Œ œ

Œ œ

Œ œ
Œ œ

?

ŒC

Figure 3: Example of antiphonal madrigalism (ANTIF) in Mas-
saino’s madrigal. The musical-linguistic pattern is displayed al-
ternatively by couples of voices: Q (Quinto) and T (Tenor)—in
green, C (Canto) and B (Basso)—in blue, A and T—in red, high-
lighting the word eco (similar to ‘echo’) by a musical metaphor.
C, A, Q, and T are written in treble clef (for T suboctave), B in
tenor clef, i. e., C–clef in the fourth line from the bottom.

of the text corresponds to a different note).

4.2 Madrigalisms based on Homorhythmic Texture

In homorhythmic madrigalisms—HOMs, a given musical-
linguistic pattern occurs simultaneously in the different
voices. In the identification of HOM, rhythmically char-
acterised musical-linguistic patterns must be considered,
regardless of the melodic contours, since in homorhythmic
textures, melodic changes in voices are essential for creat-
ing harmonic relationships between voices, so no charac-
teristic melodies would be found. In Figure 2, homorhyth-
mic texture is used to represent the sentence come unica
Fenice (as the only one Phoenix) in music. This sentence
is a metaphor of reciprocal love, so the composer utilises
HOM to mimic the stillness related to the stability typical
of this emotional state. This quiet atmosphere is encour-
aged by the use of step-wise motion in all the voices.

4.3 Madrigalisms based on Antiphonal Texture

In antiphonal madrigalisms—ANTIFs, a given musical-
linguistic pattern (usually performed by two voices si-
multaneously) is displayed by alternating ‘entries’ through
the different voices, creating an acoustic effect similar to
‘echo’. ANTIFs could be identified as a texture at the
mid-point between counterpoint and homorhythm, since
the consecutive repetition of a musical-linguistic pattern
is displayed sometimes before the previous has concluded
(as in contrapunctal texture), and this is displayed in dif-
ferent voices simultaneously (as in homorhythmic texture).
Yet, ANTIFs are characterised by a clear alternation of the
musical-linguistic pattern entries, which are mainly per-
formed by a couple of voices, thus showing a texture not
so confused as in CON, and less dense as in HOM.

In Figure 3, antiphonal texture is used to highlight
the similarity between the word ecco (interjection used to
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Figure 4: Engraved version of the annotation in MEI for the
first madrigalism (CON) of Giovanelli’s madrigal. Two motifs
(CON1 and CON2), one displayed in contrary motion (inv), and
a melisma are indicated (cf. Figure 1).

claim attention), and eco (acoustic phenomenon for which
a sound, through the reflections, is repeatedly perceived,
i. e., ‘echo’). Here, the ‘word painting’ procedure is based
on the acoustic metaphor generated by the phonetic simi-
larity between the two words. This is a typical example of
ANTIF, where each repetition of the musical-linguistic pat-
tern (which consist in two repetitions of the word ecco mu-
sicalised by a syllabic motif based on a descending third)
starts just before the previous has finished and is performed
alternatively by different couples of voices.

5. ANNOTATION METHODOLOGY

5.1 Encoding formats

We present 30 madrigals of the Il Lauro Secco anthol-
ogy transcribed in modern notation and encoded in MEI
and **kern format. For both formats, the annotated and
not annotated symbolic scores (cf. subsections 5.2 and
5.3) are included—120 symbolic representations in to-
tal, 60 for each format (30 annotated). Both represen-
tations have been generated from the Music XML repre-
sentation of the repertoire given in [21]. The MEI rep-
resentation has been generated through the on-line Mu-
sic XML converter Verovio [23] 7 , whereas **kern files
have been produced by using the xml2hum compiled pro-
gram of Humdrum-extras toolkit [16] 8 . Conversion
errors were manually corrected; given the difficulty to
find several annotators with the adequate expertise, the 30
madrigals were annotated by only one expert (one of the
authors). Aware of the limitations due to taking into ac-
count one single annotator, we will focus on the devel-
opment of an annotation methodology which adequately
describes the considered composition strategies; yet, the
presented annotations might be subject to some bias. No-
tice that both, the original Music XML file and the newly
presented symbolic transcriptions in MEI and **kern, take

7 http://www.verovio.org/musicxml.html
8 extras.humdrum.org/man/xml2hum/

into account the accidentals of the original source, some-
thing relevant to consider since in early music, even though
some accidentals are not written, they might be considered
when performing the repertoire. In this regard, when play-
ing the MEI and **kern files, some dissonances should
not be considered as ‘real’ indications of the composer,
but just as the result of performing a ‘diplomatic’, faithful
transcription of the source. A transcription which contains
cautionary accidentals is included in finale and pdf formats
in [21].

5.2 Annotation in MEI

For the annotation of the madrigalisms in MEI, the func-
tion <harm> has been considered, which visually en-
graves the annotations above each staff. For each voice,
each single musical-linguistic pattern within a madrigal-
ism has been marked by a starting and ending point, indi-
cated by ‘ * ’, followed by the name of the madrigalism,
i. e., CON, HOM, and ANTIF (cf. Figure 4). Additional
composition strategies have also been indicated:

Melisma (mel): When several notes are performed for a
syllable of the text (cf. Figure 4 upper staff). Notice that
typical embellishments, i. e., ornaments added to a note to
‘briefly’ decorate it are not considered a melisma.

Inversion (inv): When the melodic line of a musical-
linguistic pattern is displayed in contrary motion w. r. t.
the ‘reference’, i. e., the first presentation of such musical-
linguistic pattern (cf. Figure 4, second staff from the top).

Acephalous (acef): When a musical-linguistic pattern
starts without the initial part present in the reference. See,
e. g., CON in Marenzio’s madrigal at measure 27.

Multiple voices: Double and triple voices, i. e., voices
that perform simultaneously the same musical-linguistic
pattern, are intrinsic of HOMs and ANTIFs. However,
this procedure may also be considered in CONs—when a
musical-linguistic pattern is performed simultaneously by
more than one voice; yet, it is possible to perceive the
contrapunctal texture. Such voices have been indicated
as ‘CONdouble’ or ‘CONtriple’ (see, e. g., the CON of
Gabrieli’s madrigal at measure 12). Notice that ‘anticipa-
tions’ and ‘retardations’ (i. e., when one of the voices, per-
formed simultaneously, starts before or finishes after the
others), since typical of madrigalisms, have not been taken
into account for the annotation.

Repetition (rep): When a musical-linguistic pattern is re-
peated in the same voice within a madrigalism, this has
been indicated as *rep*. When a whole madrigalism is re-
peated, this has been indicated as *CONrep*, *HOMrep*,
and *ANTIFrep*. Notice that the end of madrigalisms is
usually denoted by rests, and their repetition uses to be per-
formed by a different combination of voices. See, e. g., the
HOM of Fronti’s madrigal at measure 19 (four voices) and
its repetition at measure 23 (five voices).

Variation (var): When a musical-linguistic pattern is per-
ceived as similar to the reference, due to rhythmic-melodic
aspects still present but with modifications that goes be-
yond minimal melodic alterations, which would be typical
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Figure 5: **kern annotation for the CON at the beginning of of Giovanelli’s madrigal, in which five voices (5v) and two motifs (2mot)
are involved. Notice that the annotation would be visually displayed above the first staff, in the same position as *CON1 (cf. Figure 4).

in order to prevent dissonant collisions. See, e. g., Mas-
saino’s madrigal at measure 50.

Imitation (imit): When a voice within a madrigalism
‘freely’ imitates a musical-linguistic pattern, usually by re-
peating single elements taken from it, such as a rhythm
and/or melodic extracts, and by repeating words or by an-
ticipating the next verse. See, e. g., the first madrigalism
(ANTIF) of Perue’s madrigal at measure 2–5.

Libero (lib): In CON and ANTIF, when all the voices per-
form the same verse of the lyrics in ‘free musical imitation’
among them, i. e., since no specific rhythmic-melodic pat-
tern is associated to the textual verse, no musical-linguistic
pattern can be identified as reference. In HOM, this indi-
cates that a madrigalism starts and finishes in homorhythm
but in its central area, the voices present rhythmic varia-
tions that disrupt their perfect vertical alignment; see, e. g.,
Fronti’s madrigal at measure 71.

Different motifs: When a verse of the text is musicalised
by different musical motifs within the same madrigal-
ism; this has been identified with a different number, e. g.,
CON1 and CON2 (cf. Figure 4).

Diminution (dim): When a musical-linguistic pattern is
performed in rhythmic diminution, i. e., the rhythm dis-
played is divided by half w. r. t. the reference. See, e. g., the
last madrigalism of Giovanelli’s madrial at measure 62.

5.3 Annotation in **kern

For the annotation of madrigalisms in **kern, the **harm
spine has been considered, which visually displays the har-
monic annotations below the staff, where the lyrics are lo-
cated in the presented repertoire. In order to avoid collision
with the lyrics, and since our intention is not to annotate
harmonic content, we have engraved the annotations above
the first staff from the top, by using the command ‘cdata’,
i. e., **cdata-harm (cf. Figure 5). For each madrigalism,
the starting and ending point has been identified as ‘< ’
and ‘> ’, respectively. When a madrigalism starts before

the previous has finished, i. e., there is a overlap between
both, ‘<<>> ’ has been considered. In addition to these,
other elements have been indicated:

(i) The number of voices, i. e., for CON and HOM the
voices participating (from 1v to 5v); for ANTIF the al-
ternating entries (e. g., four entries—4v). When in CON
‘multiple voices’ are involved (cf. Section 5. 2), these were
also indicated (e. g., one doubled voice—1doub).

(ii) The combination among textures: HOM + imit and
ANTIF + imit—when the majority of the voices are ho-
morhythmic or antiphonal and one performs imitatively
(see, e. g., the first madrigalism of Perue’s madrigal);
HOM + CON and ANTIF + CON—when the majority of
the voices are homorhythmic or antiphonal and one per-
forms the same musical–linguistic pattern in counterpoint.

(iii) The number of motifs considered, when ‘different
motifs’ (cf. Section 5. 2) have been used to musicalise a
verse of the lyrics (e. g., two motives—2mot).

(iv) The repetitions of a madrigalism are indicated as
<CONrep, <HOMrep, and <ANTIFrep (cf. Section 5. 2).

6. ANNOTATIONS ASSESSMENT

6.1 Musical Evaluation

In the presented repertoire, we identified a total of 437
madrigalisms across the 30 madrigals (mean of 14.5, and
standard deviation (std) 3.7): 199 CON (mean of 6.6, std
2.9); 139 HOM (mean of 4.6, std 3); 59 ANTIF (mean
of 1.9, std 1.9); 40 combination between the previous—
comb (mean of 1.3, std 1). In Table 1, the distribution of
madrigalisms across the 30 madrigals displays the typical
alternation between contrapunctal and homorhythmic tex-
tures, which is shown by almost all the madrigals present-
ing both CON and HOM. Even those in which HOM has
not been considered, i. e., Correggio’s and Strigio’s madri-
gals, present a high number of multiple voices, which de-
creases the sensation of movement typical of CON; this is
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CON 11 8 5 8 8 9 2 3 4 5 8 8 9 14 3 3 8 10 7 10 4 6 3 7 4 11 5 6 5 5

HOM 2 4 8 1 − 7 7 5 15 5 5 2 4 3 3 3 7 5 8 7 9 1 3 6 3 − 3 5 5 3

ANTIF 1 − 1 − − 4 3 − − 3 − 1 3 2 1 6 7 4 1 2 − 2 2 2 7 − 2 1 2 2

comb 2 2 − 1 1 1 3 3 − − 2 2 1 − 3 4 2 − 1 1 1 1 2 2 − 2 1 − 2 −
TOTAL 16 14 14 10 9 21 15 11 19 13 15 13 17 19 10 16 24 19 17 20 14 10 10 17 14 13 11 12 14 10

voicemul 3 6 4 3 5 3 − 1 1 2 − 2 6 5 − 1 6 8 3 6 − 5 3 4 1 5 − 2 1 2

<<>> 2 − − 1 2 3 − 1 1 1 − 4 1 2 1 2 − 2 1 3 3 1 − − 1 5 − − 1 −
rep − − 3 − 2 4 3 2 5 1 4 1 1 6 1 2 2 − 6 − − − − 3 2 1 − − 3 −

motdif 1 − − 1 − − − − − 3 1 2 2 3 1 − − 1 − 2 − − − − − − 2 3 1 −
mel 2 − 5 5 1 − 4 2 − − 5 − 10 22 13 − 30 2 − − − 14 3 3 1 13 3 4 − −
# ms 77 61 66 75 71 84 69 63 87 65 82 81 99 130 71 71 100 96 81 92 50 75 63 69 72 96 70 79 96 66

Table 1: Occurrence for each madrigal of CON, HOM, ANTIF, and textural combinations (comb). Total number of madrigalisms,
overlap between these (<<>>), their repetitions, and length of the madrigals in measures (# ms). The use within madrigalisms of
multiple voices (voicemul), different motifs (motdif ), and melisma (mel), is also given.

also observed in madrigals with more CON than HOM (see
e. g., Luzzaschi’s madrigal amongst others).

The madrigals with more HOM than CON are rare, and
present the opposite tendency, i. e., a low number of mul-
tiple voices, as e. g., those from Fronti and Perue. The use
of ANTIF, even less typical than the other madrigalisms, is
characteristic in the musical writing of Marenzio, Stabile,
and Manara. As it would be expected, the use of repetitions
is mostly related to longer madrigals, with the exception of
the one by Belli that—only 66 measures long—presents
three repetitions of a madrigalism. However, this is re-
lated to the fact that Belli’s madrigal presents a majority
of HOM, which commonly are shorter than CON. This is
clear in Perue’s madrigal, i. e., the shortest (50 measures),
presenting 14 madrigalisms (9 of them HOM), whose com-
pactness is increased by the use of 3 overlaps between
madrigalisms. For general statistics of the dataset, such
as total number of notes or accidentals, see [21].

6.2 Linguistic Evaluation: Melismas

One of the most interesting musical-linguistic synergies
within madrigals is the use of melisma (cf. Section 5.2).
By annotating the presented repertoire, we have identified
142 melismas, which usually are displayed within CON.
Indeed, apart from Macque’s madrigal, which presents 13
melismas and only 3 CON, all the other madrigals with
a high number of melismas are also characterised by pre-
senting a high number of CON. Yet, we should also con-
sider that in Macque’s madrigal, there are 3 combined
madrigalisms, which implicitly present contrapunctal tex-
ture. Furthermore, the relationship between counterpoint
and melismatic writing should not be taken as a rule but
only as a tendency, as shown by Mosto’s madrigal, with
10 CON and no melismas. The purpose of a melisma is to
highlight a word, thus this rhetoric ‘artifact’ relates most
of the times to linguistic concepts that have an important
meaning within a madrigal.

The evaluation of the melisma in the presented reper-
toire makes the unity of the Il Lauro Secco anthology ev-
ident, whose madrigals have been composed expressively
for the creation of the anthology itself. The majority of the

linguistic concepts highlighted through melisma are there-
fore mostly the same across the whole anthology, and can
be clustered into three categories: (i) Nature, i. e., words
such as leaf or green, making often a meaning game with
the name of the addressee of the anthology—‘Laura’ and
‘lauro’ ( laurel in Italian); (ii) Emotion, i. e., words such
as love, happiness, or rage; (iii) Elements of nature, i. e.,
words such as fire or wind. Out of the 142 melisma, 46
relate to nature and are displayed across 11 madrigals, the
most recurrent words being lauro (laurel), verde (green),
foglie (leaves), and rami (branch), as well as synonyms
of those; 42 relate to emotions, displayed across 8 madri-
gals through recurrent words such as lieto (happy), amore
(love), and ira (ire), and synonyms of those; 34 relate
to elements, displayed across 9 madrigals through recur-
rent words such as venti (winds), acqua (water), and fuoco
(fire), as well as synonyms and other related words.

7. CONCLUSIONS AND FUTURE WORK

Our study presents symbolically codified scores and anno-
tations, in **kern and MEI format, of 30 madrigals of the
anthology Il Lauro Secco. The evaluation of the annota-
tions confirms the unity of the presented repertoire, by dis-
playing similarities across the different madrigals, related
in a particular way to musical-linguistic synergies, such as
the use of melisma to highlight specific concepts. The re-
lationships between poetry and music inherent in the pre-
sented repertoire, and consistently presented across pieces
by different composers, make it promising for the applica-
tion of machine learning techniques aimed at the detection
of similarities among composers. Our future goals include
to continue the annotation of the anthology by other ex-
perts, in order to offer an appropriate ‘gold standard’ to re-
fer to. We also plan to further evaluate the presented reper-
toire through available toolkits for automatic music anal-
ysis, as e. g., music21. In addition, we will also work on
symbolic annotations of similar repertoires, in order to pro-
mote the advancement of algorithms for automatic analysis
of scores in early music, especially considering the auto-
matic recognition of music-linguistic synergies.
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for handwritten optical music recognition: Introduc-
ing MUSCIMA++. arXiv preprint arXiv:1703.04824,
1:1–16, 2017.

[23] Laurent Pugin, Rodolfo Zitellini, and Perry Roland.
Verovio: A library for engraving MEI music notation
into SVG. In Proc. ISMIR, pages 107–112, Taipei, Tai-
wan, 2014. ISMIR.

[24] Don Michael Randel. The Harvard dictionary of mu-
sic. Harvard University Press, Cambridge, MA, USA,
4 edition, 2003.

[25] Emiliano Ricciardi. The Tasso in music project. Early
Music, 43(4):667–671, 2015.

[26] Philippe Rigaux, Lylia Abrouk, Hervé Audéon, Nadine
Cullot, Cécile Davy-Rigaux, Zoé Faget, Elisabeth Gav-
ignet, David Gross-Amblard, Alice Tacaille, and Vir-
ginie Thion-Goasdoué. The design and implementation
of Neuma, a collaborative digital scores library. Inter-
national Journal on Digital Libraries, 12(2-3):73–88,
2012.

[27] Perry Roland, Andrew Hankinson, and Laurent Pugin.
Early music and the music encoding initiative. Early
Music, 42(4):605–611, 2014.

[28] Anja Volk, Peter Van Kranenburg, Jörg Garbers, Frans
Wiering, Remco C. Veltkamp, and Louis P. Grijp. A
manual annotation method for melodic similarity and
the study of melody feature sets. In Proc. of ISMIR,
pages 101–106, Philadelphia, PA, USA, 2008. ISMIR.

[29] James Anderson Winn. Unsuspected eloquence: A his-
tory of the relations between poetry and music. Yale
University Press, New Haven, CT, USA, 1981.

[30] Gioseffo Zarlino. Le istituzioni harmoniche. Gregg
Press, Ridgewood, NJ, USA, 1966.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 467



VOCALSET: A SINGING VOICE DATASET

Julia Wilkins1,2 Prem Seetharaman1 Alison Wahl2,3 Bryan Pardo1

1 Computer Science, Northwestern University, Evanston, IL
2 School of Music, Northwestern University, Evanston, IL

3 School of Music, Ithaca College, Ithaca, NY
juliawilkins2018@u.northwestern.edu

ABSTRACT

We present VocalSet, a singing voice dataset of a capella
singing. Existing singing voice datasets either do not
capture a large range of vocal techniques, have very few
singers, or are single-pitch and devoid of musical context.
VocalSet captures not only a range of vowels, but also a
diverse set of voices on many different vocal techniques,
sung in contexts of scales, arpeggios, long tones, and ex-
cerpts. VocalSet has recordings of 10.1 hours of 20 pro-
fessional singers (11 male, 9 female) performing 17 differ-
ent different vocal techniques. This data will facilitate the
development of new machine learning models for singer
identification, vocal technique identification, singing gen-
eration and other related applications. To illustrate this, we
establish baseline results on vocal technique classification
and singer identification by training convolutional network
classifiers on VocalSet to perform these tasks.

1. INTRODUCTION

VocalSet is a singing voice dataset containing 10.1 hours
of recordings of professional singers demonstrating both
standard and extended vocal techniques in a variety of mu-
sical contexts. Existing singing voice datasets aim to cap-
ture a focused subset of singing voice characteristics, and
generally consist of fewer than five singers. VocalSet con-
tains recordings from 20 different singers (11 male, 9 fe-
male) performing a variety of vocal techniques on 5 vow-
els. The breakdown of singer demographics is shown in
Figure 1 and Figure 3, and the ontology of the dataset is
shown in Figure 4. VocalSet improves the state of exist-
ing singing voice datasets and singing voice research by
capturing not only a range of vowels, but also a diverse
set of voices on many different vocal techniques, sung in
contexts of scales, arpeggios, long tones, and excerpts.

Recent generative audio models based on machine
learning [11, 25] have mostly focused on speech applica-
tions, using multi-speaker speech datasets [6, 13]. Gen-
eration of musical instruments has also recently been ex-

c© Julia Wilkins, Prem Seetharaman, Alison Wahl, Bryan
Pardo. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Julia Wilkins, Prem Seetharaman,
Alison Wahl, Bryan Pardo. “VocalSet: A Singing Voice Dataset”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.
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Figure 1. Distribution of singer gender and voice type.
VocalSet data comes from 20 professional male and female
singers ranging in voice type.

plored [2,5]. VocalSet can be used in a similar way, but for
singing voice generation. Our dataset can also be used to
train systems for vocal technique transfer (e.g. transform-
ing a sung tone without vibrato into one with vibrato) and
singer style transfer (e.g. transforming a female singing
voice to a male singing voice). Deep learning models for
multi-speaker source separation have shown great success
for speech [7, 21]. They work less well on singing voice.
This is likely because they were never trained on a vari-
ety of singers and singing techniques. This dataset could
be used to train machine learning models to separate mix-
tures of multiple singing voices. The dataset also con-
tains recordings of the same musical material with different
modulation patterns (vibrato, straight, trill, etc), making it
useful for training models or testing algorithms that per-
form unison source separation using modulation pattern as
a cue [17, 22]. Other obvious uses for such data are train-
ing models to identify singing technique, style [9, 19], or a
unique singer’s voice [1, 10, 12, 14].

The structure of this article is as follows: we first com-
pare VocalSet to existing singing voice datasets and cover
existing work in singing voice analysis and applications.
We then describe the collection and recording process for
VocalSet and detail the structure of the dataset. Finally, we
illustrate the utility of VocalSet by implementing baseline
classification systems for identifying vocal technique and
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Figure 2. Mel spectrograms of 5-second samples of the 10 techniques used in our vocal technique classification model. All
samples are from Female 2, singing scales, except “Trill”, “Trillo”, and “Inhaled” which are found only in the Long Tones
section of the dataset, and “Spoken” which is only in the Excerpts section.

singer identification, trained on VocalSet.

2. RELATED WORK

A few singing voice datasets already exist. The Phona-
tion Modes Dataset [18] captures a range of vocal sounds,
but limits the included techniques to ’breathy’, ’pressed’,
’flow’, and ’neutral’. The dataset consists of a large num-
ber of sustained, sung vowels on a wide range of pitches
from four singers. While this dataset does contain a sub-
stantial range of pitches, the pitches are isolated, lacking
any musical context (e.g. a scale, or an arpeggio). This
makes it difficult to model changes between pitches. Vo-
calSet consists of recordings within musical contexts, al-
lowing for this modeling. The techniques listed above that
are observed in the Phonation Modes Dataset are based
on the different formations of the throat when singing
and not necessarily on musical applications of these tech-
niques. Our dataset focuses on a broader range of tech-
niques in singing, such as vibrato, trill, vocal fry, and in-
haled singing. See Table 2 for the full set of techniques in
our dataset.

The Vocobox dataset 1 focuses on single vowel and
consonant vocal samples. While they feature a broad range
of pitches, they only capture data from one singer. Our data
contains 20 singers, with a wide range of voice types and
singing styles over a larger range of pitches.

The Singing Voice Dataset [3] contains over 70 vocal
recordings of 28 professional, semi-professional, and am-
ateur singers performing predominantly Chinese Opera.
This dataset does capture a large range of voices, like Vo-
calSet. However, it does not focus on the distinction be-
tween vocal techniques but rather on providing extended
excerpts of one genre of music. VocalSet provides a wide

1 https://github.com/vocobox/human-voice-dataset

range of vocal techniques that one would not necessarily
classify within a single genre so that models trained on
VocalSet could generalize well to many different singing
voice tasks.

We illustrate the utility of VocalSet by implementing
baseline systems trained on VocalSet for identifying vo-
cal technique and singer identification. Prior work on vo-
cal technique identification includes work that explored
the salient features of singing voice recordings in order to
better understand what distinguishes one person’s singing
voice from another as well as differences in sung vow-
els [4, 12], and work using source separation and F0 es-
timation to allow a user to edit the vocal technique used in
a recorded sample [8].

Automated singer identification has been a topic of in-
terest since at least 2001 [1,10,12,14]. Typical approaches
use shallow classifiers and hand-crafted features (e.g. mel
ceptral coefficients) [16, 24]. Kako et al. [9] identifies four
singing styles music style using the phase plane. Their
work was not applied to specific vocal technique classi-
fication, likely due to the lack of a suitable dataset. We hy-
pothesize that deep models have not been proposed in this
area due to the scarcity of high-quality training data with
multiple singers. The VocalSet data addresses these issues.
We illustrate this point by training deep models for singer
identification and vocal technique classification using this
data.

For singing voice generation, [20] synthesized singing
voice by replicating distinct and natural acoustic features
of sung voice. In this work, we focus on classification tasks
rather than generation tasks. However, VocalSet could be
applied to generation tasks as well, and we hope our mak-
ing this dataset available will facilitate that research.
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Figure 3. Distribution of singer age and gender. Singer
age µ = 30.9, σ = 8.7. We observe that the majority
of singers lie in the range of 20 to 32, with a few older
outlying singers.

3. VOCALSET

3.1 Singer Recruitment

9 female and 11 male professional singers were recruited
to participate in the data collection. A professional singer
was considered to be someone who has had vocal training
leading to a bachelors or graduate degree in vocal perfor-
mance and also earns a portion of their salary from vo-
cal performance. The singers are of a wide age range and
performance specializations. Voice types present in the
dataset include soprano, mezzo, countertenor, tenor, bari-
tone, and bass. See Figure 1 for a detailed breakdown of
singer gender and voice type and Figure 3 for the distri-
bution of singer age vs. gender. We chose to include a
relatively even balance of genders and voice types in the
dataset in order to capture a wide variety of timbre and
spectral range.

3.2 Recording setup

Participants were recorded in a studio-quality recording
booth with an Audio-Technica AT2020 condenser micro-
phone, with a cardioid pickup pattern. Singers were placed
close to the microphone in a standing position. Reference
pitches were given to singers to ensure pitch accuracy. A
metronome was played for the singers immediately prior
to recording for techniques that required a specific tempo.
Techniques marked ’fast’ in Table 2 were targeted at 330
BPM, while techniques marked ’slow’ were targeted at 60
BPM. Otherwise, the tempo is varied.

3.3 Dataset Organization

The dataset consists of 3,560 WAV files, totalling 10.1
hours of recorded, edited audio. The audio files vary in
length, from less than 1 second (quick arpeggios) to 1
minute. Participants were asked to sing short vocalises
of arpeggios, scales, long tones, and excerpts during the

data collection. The arpeggios and scales were sung us-
ing 10 different techniques. The long tones were sung on
7 techniques, some of which also appear in arpeggios and
scales (see Figure 4). Each singer was also asked to sing
Row, Row, Row Your Boat, Caro Mio Ben, and Dona Nobis
Pacem each in vibrato and straight tone, as well as an ex-
cerpt of their choice. The techniques included range from
standard techniques such as ’fast, articulated forte’ to dif-
ficult extended techniques such as ’inhaled singing’. For
arpeggios, scales, and long tones, every vocalise was sung
on vowels ’a’, ’e’, ’i’, ’o’, and ’u’. A portion of the arpeg-
gios and scales are in both C major and F major (underlined
in 4, while the harsher extended techniques and long tones
are exclusively in C major. For example, singers were in-
structed to ’belt’ a C major arpeggio on each vowel, to-
talling to 5 audio clips (one per vowel). This is shown in
Figure 4. Table 2 shows the data broken down quantita-
tively by technique.

The data is sorted in nested folders specifying the
singer, type of sample, and vocal technique used. This
folder hierarchy is displayed in Figure 4.

Each sample is uniquely labelled based on this nested
folder structure that it lies within. For example, Female 2
singing a slow, forte arpeggio in the key of F and on the
vowel ’e’ is labelled as ’f2 arpeggios f slow forte e.wav’.

The dataset is publicly available 2 and samples from
the dataset used in training the classification models are
also available on a demo website 3 .

4. EXPERIMENTS

As an illustrative example of the utility of this data, we per-
form two classification tasks using a deep learning model
on the VocalSet data. In the first task, we classify vocal
techniques from raw time series audio using convolutional
neural networks. In the second task, we identify singers
from raw audio using a similar architecture. The network
architectures are shown in Table 1. Note, architectures are
identical except for the final output layer.

4.1 Training data and data preprocessing

We removed silence from the beginning, middle, and end
of the recordings and then partitioned them into 3 second,
non-overlapping chunks at a sample rate of 44.1k. The
chunks were then normalized using their mean and stan-
dard deviation so that the network didn’t use amplitude as
a feature for classification. Additionally, by limiting the
chunk to 3 seconds of audio, our models can’t use musical
context as a cue for learning the vocal technique. These
vocal techniques can be deployed in a variety of contexts,
so being context-invariant is important for generalization.

For each task, we partitioned the dataset into a training
and a test set. For the vocal technique classification, we
place all samples from 15 singers in the training set and
all samples from the remaining 5 singers in the test set.
For the singer identification, we needed to ensure that all

2 https://doi.org/10.5281/zenodo.1203819
3 https://interactiveaudiolab.github.io/demos/vocalset
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Figure 4. Breakdown of the techniques used in the VocalSet dataset. Each singer performs in four different contexts:
arpeggios, long tones, scales, and excerpts. The techniques used in each context are shown. Each technique is sung on 5
vowels, and underlined techniques indicate that the technique was sung in F major and C major.

Layer Name Input Conv1 BatchNorm1 MaxPool1 Conv2 BatchNorm2 MaxPool2 Conv3 BatchNorm3 MaxPool3 Dense1 Dense2
# of Units/Filters 3*44100 16 16 - 8 8 - 32 32 - 32 10/20
Filter Size, Stride - (1, 128), (1, 1) - (1, 64), (1, 8) (1, 64), (1, 1) - (1, 64), (1, 8) (1, 256), (1, 1) - (1, 64), (1, 8) - -
Activation function - ReLU - - ReLU - - ReLU - - ReLU softmax

Table 1. Network architecture. The input to the network is 3 seconds of time series audio samples from VocalSet. The out-
put is a 10-way classification for vocal technique classification and a 20-way classification for Singer ID. The architecture
for both classifiers is identical except for the output size of the final dense layer. For the dense layers, L2 regularization was
set to .001.

singers were present in both the training and the test sets in
order to both train and test the model using the full range
of singer ID possibilities. We randomly sampled the entire
dataset to create training and test sets with a ratio of 0.8
(train): 0.2 (test), while ensuring all singers were both in
training and testing data. The recordings were disjoint be-
tween the training and test sets, meaning that parts of the
same recording were not put in both training and testing
data.

Our vocal technique classifier model was trained and
tested on the following ten vocal techniques: vibrato,
straight tone, belt, breathy, lip trill, spoken, inhaled
singing, trill, trillo, and vocal fry (bold in Table 2). Mel
spectrograms of each technique are shown in 2, illustrating
some of the differences between these vocal techniques.

The remaining categories, such as fast/articulated forte
and messa di voce were not included in training for vo-
cal technique classification. These techniques are heav-
ily dependent on the amplitude of the recorded sample,
and the inevitable human variation in the interpretation
of dynamic instructions makes these samples highly vari-
able in amplitude. Additionally, singers were not directed
to sing a particular technique when making amplitude-
oriented technique. As a result, singers often paired
these amplitude-based techniques with other techniques at
the same time, making the categories non-exclusive (e.g.
singing fast/articulated forte with a lot of vibrato, or pos-
sibly with straight tone). Additionally, messa di voce was
excluded because this technique requires singers to slowly
crescendo and then decrescendo which, in full, was gen-
erally much longer than 3 seconds (the length of training
samples).

We train our models with a convolution neural network
using RMSProp [23], a learning rate of 1e-4, ReLU activa-
tion functions, an L2 regularization of 1e-3, and a dropout

of 0.4 for the second to last dense layer. We use cross en-
tropy as the loss function and a a batch size of 64. We train
both the singer identification and vocal technique classifi-
cation models for 200,000 iterations each, where the only
difference between the two model architectures is the out-
put size of the final dense layer (10 for vocal technique,
20 for singer ID). Both models were implemented in Py-
Torch. [15].

4.1.1 Data augmentation

We can also augment our data using standard data augmen-
tation techniques for audio such as pitch shifting. We do
this to our training set for vocal technique classification,
but not for singer identification. Every excerpt is pitch
shifted up and down 0.5 and 0.25 half steps. We report
the effect of data augmentation on our models in Table 3.
As shown in the table, we did observe some but not a sig-
nificant accuracy boost when using the augmented model.

4.2 Vocal technique classification

4.2.1 Results

Evaluation metrics for our best 10-way vocal technique
classification model are shown in Table 3. We were able
to achieve these results using the model architecture in Ta-
ble 1. This model performs well on unseen test data as we
can see from table metrics. When examining sources of
confusion for the model, we observed that the model most
frequently incorrectly labels test samples as “straight” and
“vibrato”. We attribute this in part to the class imbalance in
the training data in which there are many more “vibrato”
and “straight” samples than other techniques. Addition-
ally, for techniques such as “belt”, many singers exhib-
ited a great deal of vibrato when producing those samples
which could place such techniques under the umbrella of
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Figure 5. Confusion matrix for the technique classification
model showing the quantity of predicted labels vs. true la-
bels for each vocal technique. This model was trained on
10 vocal techniques. A class imbalance can be observed, as
the number of vibrato and straight samples is much larger
than the remaining techniques. The model performs rela-
tively well for a majority of the techniques, however we see
that nearly half of the vocal technique test samples were in-
correctly classified as straight tone.

Figure 6. Confusion matrix for the singer identification
model displaying the predicted singer identification vs. the
true singer identification. We can observe that female
voices are much more commonly classified incorrectly ver-
sus male voices, likely due to the broader range of male
voices present in the training data.

Vocal Techniques Examples (#) Time (min.)
Fast/articulated forte 394 22.57

Fast/articulated piano 386 23.03

Slow/legato forte 395 65.28

Slow/legato piano 397 69.75

Lip trill 202 24.40

Vibrato 255 57.79

Breathy 200 28.00

Belt 205 26.24

Vocal fry 198 34.10

Full voice forte 100 16.29

Full voice pianissimo 100 16.58

Trill (upper semitone) 95 18.45

Trillo (goat tone) 100 14.54

Messa di voce 99 23.47

Straight tone 361 71.65

Inhaled singing 100 9.95

Spoken excerpt 20 4.06

Straight tone excerpt 60 24.19

Molto vibrato excerpt 59 24.55

Excerpt of choice 20 20.50

Table 2. The content of VocalSet, totalling to 10.1 hours of
audio. Each vocal technique is performed by all 20 singers
(11 male, 9 female). Some vocal techniques are performed
in more musical contexts (e.g. scales) than others. Bold
techniques were used for our classification task.

“vibrato”. We also observed a little bit of expected confu-
sion between “trill” and “vibrato”, as these techniques may
have some overlap depending on the singer performing the
technique. As seen in Figure 2, the spectrogram represen-
tation of these two techniques looks very similar. To ad-
dress the issue of class imbalance, we tried using data aug-
mentation with pitch shifting to both balance the classes
and create more data, but as previously stated and shown
in Table 3, there was little improvement over the original
model when using training data augmentation.

4.3 Singer identification (ID)

4.3.1 Results

Evaluation metrics for our best 20-way singer identifica-
tion model are shown in Table 3. The model architecture is
identical to that of the vocal technique classification model
(see 1), with the exception of the number of output nodes in
the final dense layer (20 in the singer identification model
vs. 10 in the technique model). The singer identification
model did not perform as well as the vocal technique clas-
sification model. As shown in Table 3, classifying male
voices correctly was much easier for the model than clas-
sifying female voices. This is expected due to the high
similarity between the female voices in the training data.
Figure 1 shows that the female data only contains 2 voice
types, while the male data contains 5 voice types.

Because voice type is largely dependent on the vocal
range of the singer, having 5 different voice types within
the male singers makes it much easier to distinguish be-
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Classification Task Prior Precision Recall Top-2 Accuracy Top-3 Accuracy Male Accuracy Female Accuracy
Vocal Technique 0.242 0.676 0.619 0.801 0.867 - -
Vocal Technique (trained on augmented data) 0.242 0.677 0.628 0.815 0.891 - -
Singer ID - 0.473 0.516 0.638 0.700 0.684 0.351

Table 3. Evaluation metrics for our vocal technique and Singer ID classification models performing on unseen test data.
“Prior” indicates the accuracy if we were to simply choose the most popular class (“straight”) to predict test data. We
observe a very slight increase in accuracy in the augmented vocal technique model. Our singer ID model has lower
performance, likely due to the similarity between different, primarily female, singers.

tween male singers than female singers. The accuracy (re-
call) for classifying unseen male singers was nearly twice
as good as that of unseen female singers.

5. FUTURE WORK

In the future, we plan to experiment with more network
architectures and training techniques (e.g. Siamese train-
ing) to improve the performance of our classifiers. We also
expect researchers to use the VocalSet dataset to train a vo-
cal style transformation model that can transform a voice
recording into one using one of the techniques that we have
recorded in VocalSet. For example, an untrained singer
could sing a simple melody on a straight tone, and our sys-
tem could remodel their voice using the vibrato or articula-
tion of a professional singer. We envision this as a tool for
both musicians and non-musicians alike, and hope to cre-
ate a web application or even a physical sound installation
that users could transform their voices in. We would also
like to use VocalSet to train autoregressive models (e.g.
Wavenet [25]) that can generate singing voice of specific
techniques.

6. CONCLUSION

VocalSet is a large dataset of high-quality audio record-
ings of 20 professional singers demonstrating a variety of
vocal techniques on different vowels. Existing singing
voice datasets either do not capture a large range of vo-
cal techniques, have very few singers, or are single-pitch
and lacking musical context. VocalSet was collected to fill
this gap. We have shown illustrative examples of how Vo-
calSet can be used to develop systems for diverse tasks.
The VocalSet data will facilitate the development of a
number of applications, including vocal technique iden-
tification, vocal style transformation, pitch detection, and
vowel identification. VocalSet is available for download at
https://doi.org/10.5281/zenodo.1203819.
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ABSTRACT

Existing research on music generation focuses on compo-
sition, but often ignores the expressive performance char-
acteristics required for plausible renditions of resultant
pieces. In this paper, we introduce the Nintendo Entertain-
ment System Music Database (NES-MDB), a large corpus
allowing for separate examination of the tasks of composi-
tion and performance. NES-MDB contains thousands of
multi-instrumental songs composed for playback by the
compositionally-constrained NES audio synthesizer. For
each song, the dataset contains a musical score for four
instrument voices as well as expressive attributes for the
dynamics and timbre of each voice. Unlike datasets com-
prised of General MIDI files, NES-MDB includes all of the
information needed to render exact acoustic performances
of the original compositions. Alongside the dataset, we
provide a tool that renders generated compositions as NES-
style audio by emulating the device’s audio processor. Ad-
ditionally, we establish baselines for the tasks of compo-
sition, which consists of learning the semantics of com-
posing for the NES synthesizer, and performance, which
involves finding a mapping between a composition and re-
alistic expressive attributes.

1. INTRODUCTION

The problem of automating music composition is a chal-
lenging pursuit with the potential for substantial cultural
impact. While early systems were hand-crafted by musi-
cians to encode musical rules and structure [25], recent at-
tempts view composition as a statistical modeling problem
using machine learning [3]. A major challenge to casting
this problem in terms of modern machine learning meth-
ods is building representative datasets for training. So far,
most datasets only contain information necessary to model
the semantics of music composition, and lack details about
how to translate these pieces into nuanced performances.
As a result, demonstrations of machine learning systems
trained on these datasets sound rigid and deadpan. The
datasets that do contain expressive performance character-

c© Chris Donahue, Huanru Henry Mao, Julian McAuley.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Chris Donahue, Huanru Henry
Mao, Julian McAuley. “The NES Music Database: A multi-instrumental
dataset with expressive performance attributes”, 19th International Soci-
ety for Music Information Retrieval Conference, Paris, France, 2018.

istics predominantly focus on solo piano [10,27,32] rather
than multi-instrumental music.

A promising source of multi-instrumental music that
contains both compositional and expressive characteris-
tics is music from early videogames. There are nearly
1400 1 unique games licensed for the Nintendo Entertain-
ment System (NES), all of which include a musical sound-
track. The technical constraints of the system’s audio pro-
cessing unit (APU) impose a maximum of four simulta-
neous monophonic instruments. The machine code for
the games preserves the exact expressive characteristics
needed to perform each piece of music as intended by the
composer. All of the music was composed in a limited time
period and, as a result, is more stylistically cohesive than
other large datasets of multi-instrumental music. More-
over, NES music is celebrated by enthusiasts who continue
to listen to and compose music for the system [6], appreci-
ating the creativity that arises from resource limitations.

In this work, we introduce NES-MDB, and formalize
two primary tasks for which the dataset serves as a large
test bed. The first task consists of learning the semantics of
composition on a separated score, where individual instru-
ment voices are explicitly represented. This is in contrast
to the common blended score approach for modeling poly-
phonic music, which examines reductions of full scores.
The second task consists of mapping compositions onto
sets of expressive performance characteristics. Combining
strategies for separated composition and expressive perfor-
mance yields an effective pipeline for generating NES mu-
sic de novo. We establish baseline results and reproducible
evaluation methodology for both tasks. A further contri-
bution of this work is a library that converts between NES
machine code (allowing for realistic playback) and repre-
sentations suitable for machine learning. 2

2. BACKGROUND AND TASK DESCRIPTIONS

Statistical modeling of music seeks to learn the distribution
P (music) from human compositions c ∼ P (music) in
a datasetM. If this distribution could be estimated accu-
rately, a new piece could be composed simply by sampling.
Since the space of potential compositions is exponentially
large, to make sampling tractable, one usually assumes a
factorized distribution. For monophonic sequences, which
consist of no more than one note at a time, the probability

1 Including games released only on the Japanese version of the console
2 https://github.com/chrisdonahue/nesmdb
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(a) Blended score (degenerate)

(b) Separated score (melodic voices top, percussive voice bottom)

(c) Expressive score (includes dynamics and timbral changes)

Figure 1: Three representations (rendered as piano rolls)
for a segment of Ending Theme from Abadox (1989) by
composer Kiyohiro Sada. The blended score (Fig. 1a),
used in prior polyphonic composition research, is degen-
erate when multiple voices play the same note.

of a sequence c (length T ) might be factorized as

P (c) = P (n1) · P (n2 | n1) · . . . · P (nT | nt<T ). (1)

2.1 Blended composition

While Eq. 1 may be appropriate for modeling compositions
for monophonic instruments, in this work we are interested
in the problem of multi-instrumental polyphonic composi-
tion, where multiple monophonic instrument voices may
be sounding simultaneously. Much of the prior research
on this topic [2, 5, 17] represents music in a blended score
representation. A blended score B is a sparse binary ma-
trix of size N × T , where N is the number of possible
note values, and B[n, t] = 1 if any voice is playing note
n at timestep t or 0 otherwise (Fig. 1a). Often, N is con-
strained to the 88 keys on a piano keyboard, and T is deter-
mined by some subdivision of the meter, such as sixteenth
notes. When polyphonic composition c is represented by
B, statistical models often factorize the distribution as a
sequence of chords, the columns Bt:

P (c) = P (B1) · P (B2 | B1) · . . . · P (BT | Bt<T ). (2)

This representation simplifies the probabilistic frame-
work of the task, but it is problematic for music with mul-
tiple instruments (such as the music in NES-MDB). Re-
sultant systems must provide an additional mechanism for
assigning notes of a blended score to instrument voices,
or otherwise render the music on polyphonic instruments
such as the piano.

2.2 Separated composition

Given the shortcomings of the blended score, we might
prefer models which operate on a separated score repre-
sentation (Fig. 1b). A separated score S is a matrix of size
V × T , where V is the number of instrument voices, and
S[v, t] = n, the note n played by voice v at timestep t. In
other words, the format encodes a monophonic sequence
for each instrument voice. Statistical approaches to this
representation can explicitly model the relationships be-
tween various instrument voices by

P (c) =

T∏
t=1

V∏
v=1

P (Sv,t | Sv,t̂ 6=t, Sv̂ 6=v,∀t̂). (3)

This formulation explicitly models the dependencies
between Sv,t, voice v at time t, and every other note in
the score. For this reason, Eq. 3 more closely resem-
bles the process by which human composers write multi-
instrumental music, incorporating temporal and contrapun-
tal information. Another benefit is that resultant models
can be used to harmonize with existing musical material,
adding voices conditioned on existing ones. However, any
non-trivial amount of temporal context introduces high-
dimensional interdependencies, meaning that such a for-
mulation would be challenging to sample from. As a con-
sequence, solutions are often restricted to only take past
temporal context into account, allowing for simple and ef-
ficient ancestral sampling (though Gibbs sampling can also
be used to sample from Eq. 3 [13, 16]).

Most existing datasets of multi-instrumental music have
uninhibited polyphony, causing a separated score represen-
tation to be inappropriate. However, the hardware con-
straints of the NES APU impose a strict limit on the num-
ber of voices, making the format ideal for NES-MDB.

2.3 Expressive performance

Given a piece of a music, a skilled performer will em-
bellish the piece with expressive characteristics, altering
the timing and dynamics to deliver a compelling rendition.
While a few instruments have been augmented to capture
this type of information symbolically (e.g. a Disklavier),
it is rarely available for examination in datasets of multi-
instrumental music. Because NES music is comprised of
instructions that recreate an exact rendition of each piece,
expressive characteristics controlling the velocity and tim-
bre of each voice are available in NES-MDB (details in
Section 3.1). Thus, each piece can be represented as an
expressive score (Fig. 1c), the union of its separated score
and expressive characteristics.

We consider the task of mapping a composition c onto
expressive characteristics e. Hence, we would like to
model P (e | c), and the probability of a piece of music
P (m) can be expressed as P (e | c) · P (c), where P (c) is
from Eq. 3. This allows for a convenient pipeline for music
generation where a piece of music is first composed with
binary amplitudes and then mapped to realistic dynamics,
as if interpreted by a performer.
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# Games 397
# Composers 296
# Songs 5, 278
# Songs w/ length > 10s 3, 513
# Notes 2, 325, 636
Dataset length 46.1 hours
P (Pulse 1 On) 0.861
P (Pulse 2 On) 0.838
P (Triangle On) 0.701
P (Noise On) 0.390
Average polyphony 2.789

Table 1: Basic dataset information for NES-MDB.

2.4 Task summary

In summary, we propose three tasks for which NES-MDB
serves as a large test bed. A pairing of two models that
address the second and third tasks can be used to generate
novel NES music.

1. The blended composition task (Eq. 2) models the
semantics of blended scores (Fig. 1a). This task is
more useful for benchmarking new algorithms than
for NES composition.

2. The separated composition task consists of model-
ing the semantics of separated scores (Fig. 1b) using
the factorization from Eq. 3.

3. The expressive performance task seeks to map sep-
arated scores to expressive characteristics needed to
generate an expressive score (Fig. 1c).

3. DATASET DESCRIPTION

The NES APU consists of five monophonic instruments:
two pulse wave generators (P1/P2), a triangle wave gen-
erator (TR), a noise generator (NO), and a sampler which
allows for playback of audio waveforms stored in mem-
ory. Because the sampler may be used to play melodic or
percussive sounds, its usage is compositionally ambiguous
and we exclude it from our dataset.

In raw form, music for NES games exists as machine
code living in the read-only memory of cartridges, entan-
gled with the rest of the game logic. An effective method
for extracting a musical transcript is to emulate the game
and log the timing and values of writes to the APU regis-
ters. The video game music (VGM) format 3 was designed
for precisely this purpose, and consists of an ordered list
of writes to APU registers with 44.1 kHz timing resolu-
tion. An online repository 4 contains over 400 NES games
logged in this format. After removing duplicates, we split
these games into distinct training, validation and test sub-
sets with an 8:1:1 ratio, ensuring that no composer appears
in two of the subsets. Basic statistics of the dataset appear
in Table 1.

3 http://vgmrips.net/wiki/VGM_Specification
4 http://vgmrips.net/packs/chip/nes-apu

3.1 Extracting expressive scores

Given the VGM files, we emulate the functionality of the
APU to yield an expressive score (Fig. 1c) at a tempo-
ral discretization of 44.1 kHz. This rate is unnecessarily
high for symbolic music, so we subsequently downsam-
ple the scores. 5 Because the music has no explicit tempo
markings, we accommodate a variety of implicit tempos by
choosing a permissive downsampling rate of 24Hz. By re-
moving dynamics, timbre, and voicing at each timestep, we
derive separated score (Fig. 1b) and blended score (Fig. 1a)
versions of the dataset.

Instrument Note Velocity Timbre

Pulse 1 (P1) {0, 32, . . . , 108} [0, 15] [0, 3]
Pulse 2 (P2) {0, 32, . . . , 108} [0, 15] [0, 3]

Triangle (TR) {0, 21, . . . , 108}
Noise (NO) {0, 1, . . . , 16} [0, 15] [0, 1]

Table 2: Dimensionality for each timestep of the expres-
sive score representation (Fig. 1c) in NES-MDB.

In Table 2, we show the dimensionality of the instru-
ment states at each timestep of an expressive score in NES-
MDB. We constrain the frequency ranges of the melodic
voices (pulse and triangle generators) to the MIDI notes
on an 88-key piano keyboard (21 through 108 inclusive,
though the pulse generators cannot produce pitches below
MIDI note 32). The percussive noise voice has 16 possible
“notes” (these do not correspond to MIDI note numbers)
where higher values have more high-frequency noise. For
all instruments, a note value of 0 indicates that the instru-
ment is not sounding (and the corresponding velocity will
be 0). When sounding, the pulse and noise generators have
15 non-linear velocity values, while the triangle generator
has no velocity control beyond on or off.

Additionally, the pulse wave generators have 4 possi-
ble duty cycles (affecting timbre), and the noise generator
has a rarely-used mode where it instead produces metallic
tones. Unlike for velocity, a timbre value of 0 corresponds
to an actual timbre setting and does not indicate that an in-
strument is muted. In total, the pulse, triangle and noise
generators have state spaces of sizes 4621, 89, and 481
respectively—around 40 bits of information per timestep
for the full ensemble.

4. EXPERIMENTS AND DISCUSSION

Below, we describe our evaluation criteria for experiments
in separated composition and expressive performance. We
present these results only as statistical baselines for com-
parison; results do not necessarily reflect a model’s ability
to generate compelling musical examples.
Negative log-likelihood and Accuracy Negative log-
likelihood (NLL) is the (log of the) likelihood that a model
assigns to unseen real data (as per Eq. 3). A low NLL aver-
aged across unseen data may indicate that a model captures

5 We also release NES-MDB in MIDI format with no downsampling
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semantics of the data distribution. Accuracy is defined as
the proportion of timesteps where a model’s prediction is
equal to the actual composition. We report both measures
for each voice, as well as aggregations across all voices by
summing (for NLL) and averaging (for accuracy).
Points of Interest (POI). Unlike other datasets of sym-
bolic music, NES-MDB is temporally-discretized at a
high, fixed rate (24Hz), rather than at a variable rate de-
pending on the tempo of the music. As a consequence,
any given voice has around an 83% chance of playing the
same note as that voice at the previous timestep. Accord-
ingly, our primary evaluation criteria focuses on musically-
salient points of interest (POIs), timesteps at which a voice
deviates from the previous timestep (the beginning or end
of a note). This evaluation criterion is mostly invariant to
the rate of temporal discretization.

4.1 Separated composition experiments

For separated composition, we evaluate the performance
of several baselines and compare them to a cutting edge
method. Our simplest baselines are unigram and additive-
smoothed bigram distributions for each instrument. The
predictions of such models are trivial; the unigram model
always predicts “no note” and the bigram model always
predicts “last note”. The respective accuracy of these mod-
els, 37% and 83%, reflect the proportion of the timesteps
that are silent (unigram) or identical to the last timestep (bi-
gram). However, if we evaluate these models only at POIs,
their performance is substantially worse (4% and 0%).

We also measure performance of recurrent neural net-
works (RNNs) at modeling the voices independently. We
train a separate RNN (either a basic RNN cell or an
LSTM cell [15]) on each voice to form our RNN Soloists
and LSTM Soloists baselines. We compare these to
LSTM Quartet, a model consisting of a single LSTM that
processes all four voices and outputs an independent soft-
max over each note category, giving the model full con-
text of the composition in progress. All RNNs have 2
layers and 256 units, except for soloists which have 64
units each, and we train them with 512 steps of unrolling
for backpropagation through time. We train all models to
minimize NLL using the Adam optimizer [19] and employ
early stopping based on the NLL of the validation set.

While the DeepBach model [13] was designed for mod-
eling the chorales of J.S. Bach, the four-voice structure of
those chorales is shared by NES-MDB, making the model
appropriate for evaluation in our setting. DeepBach em-
beds each timestep of the four-voice score and then pro-
cesses these embeddings with a bidirectional LSTM to ag-
gregate past and future musical context. For each voice,
the activations of the bidirectional LSTM are concatenated
with an embedding of all of the other voices, providing
the model with a mechanism to alter its predictions for any
voice in context of the others at that timestep. Finally, these
merged representations are concatenated to an independent
softmax for each of the four voices. Results for DeepBach
and our baselines appear in Table 3.

As expected, the performance of all models at POIs is

worse than the global performance. DeepBach achieves
substantially better performance at POIs than the other
models, likely due to its bidirectional processing which al-
lows the model to “peek” at future notes. The LSTM Quar-
tet model is attractive because, unlike DeepBach, it permits
efficient ancestral sampling. However, we observe qualita-
tively that samples from this model are musically unsatis-
fying. While the performance of the soloists is worse than
the models which examine all voices, the superior perfor-
mance of the LSTM Soloists to the RNN Soloists suggests
that LSTMs may be beneficial in this context.

We also experimented with artificially emphasizing
POIs during training, however we found that resultant
models produced unrealistically sporadic music. Based
on this observation, we recommend that researchers who
study NES-MDB always train models with unbiased em-
phasis, in order to effectively capture the semantics of the
particular temporal discretization.

4.2 Expressive performance experiments

The expressive performance task consists of learning a
mapping from a separated score to suitable expressive
characteristics. Each timestep of a separated score in NES-
MDB has note information (random variable N ) for the
four instrument voices. An expressive score addition-
ally has velocity (V ) and timbre (T ) information for P1,
P2, and NO but not TR. We can express the distribution
of performance characteristics given the composition as
P (V, T | N). Some of our proposed solutions factorize
this further into a conditional autoregressive formulation∏T

t=1 P (Vt, Tt | N,Vt̂<t, Tt̂<t), where the model has ex-
plicit knowledge of its decisions for velocity and timbre at
earlier timesteps.

Notes Last velocity Last timbre

LSTMBidirectional
LSTM

Dense

Concatenate

Concatenate

Figure 2: LSTM Note+Auto expressive performance
model that observes both the score and its prior output.

Unlike for separated composition, there are no well-
established baselines for multi-instrumental expressive
performance, and thus we design several approaches.
For the autoregressive formulation, our most-sophisticated
model (Fig. 2) uses a bidirectional LSTM to process the
separated score, and a forward-directional LSTM for the
autoregressive expressive characteristics. The represen-
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Negative log-likelihood Accuracy
Single voice Aggregate Single voice Aggregate

Model P1 P2 TR NO POI All P1 P2 TR NO POI All

Random 4.36 4.36 4.49 2.83 16.04 16.04 .013 .013 .011 .059 .024 .024
Unigram 4.00 3.77 3.01 2.50 13.27 11.53 .020 .022 .057 .061 .040 .369
Bigram 4.91 4.93 4.15 3.52 17.50 3.63 .000 .000 .000 .000 .000 .831
RNN Soloists 4.92 4.90 3.59 2.23 15.64 3.11 .000 .000 .004 .183 .047 .830
LSTM Soloists 4.60 4.30 3.01 1.91 13.82 2.70 .014 .008 .125 .246 .098 .838
LSTM Quartet 3.87 3.71 2.45 1.62 11.65 2.21 .028 .031 .294 .449 .201 .854
DeepBach [13] 0.82 1.01 0.63 0.83 3.28 0.75 .781 .729 .784 .748 .761 .943

Table 3: Results for separated composition experiments. For each instrument, negative log-likelihood and accuracy are cal-
culated at points of interest (POIs). We also calculate aggregate statistics at POIs and globally (All). While DeepBach [13]
achieves the best statistical performance, it uses future context and hence is more expensive to sample from.

Negative log-likelihood Accuracy
Single voice Aggregate Single voice Aggregate

Model VP1 VP2 VNO TP1 TP2 POI All VP1 VP2 VNO TP1 TP2 POI All

Random 2.77 2.77 2.77 1.39 1.39 11.09 11.09 .062 .062 .062 .250 .250 .138 .138
Unigram 2.87 2.89 3.04 1.35 1.33 11.47 9.65 .020 .022 .061 .006 .004 .023 .309
Bigram 2.82 2.85 2.78 4.27 4.27 17.00 4.57 .000 .000 .000 .000 .000 .000 .741
MultiReg Note 2.74 2.72 2.23 1.27 1.18 10.13 8.49 .106 .122 .292 .406 .507 .287 .359
MultiReg Note+Auto 2.58 2.56 2.04 2.90 2.48 12.56 4.32 .073 .100 .345 .071 .096 .137 .752
LSTM Note 2.68 2.63 2.09 1.32 1.21 9.94 8.28 .115 .134 .305 .456 .532 .308 .365
LSTM Note+Auto 1.93 1.89 1.99 2.23 1.89 9.93 3.42 .305 .321 .386 .241 .432 .337 .774

Table 4: Results for expressive performance experiments evaluated at points of interest (POI). Results are broken down by
expression category (e.g. VNO is noise velocity, TP1 is pulse 1 timbre) and aggregated at POIs and globally (All).

tations from the composition and autoregressive modules
are merged and processed by an additional dense layer be-
fore projecting to six softmaxes, one for each of VP1, VP2,
VNO, TP1, TP2, and TNO. We compare this model (LSTM
Note+Auto) to a version which removes the autoregressive
module and only sees the separated score (LSTM Note).

We also measure performance of simple multinomial
regression baselines. The non-autoregressive baseline
(MultiReg Note) maps the concatenation of NP1, NP2,
NTR, and NNO directly to the six categorical outputs repre-
senting velocity and timbre (no temporal context). An au-
toregressive version of this model (MultiReg Note+Auto)
takes additional inputs consisting of the previous timestep
for the six velocity and timbre categories. Additionally, we
show results for simple baselines (per-category unigram
and bigram distributions) which do not consider N . Be-
cause the noise timbre field TNO is so rarely used (less than
0.2% of all timesteps), we exclude it from our quantitative
evaluation. Results are shown in Table 4.

Similarly to the musical notes in the separated compo-
sition task (Section 4.1), the high rate of NES-MDB re-
sults in substantial redundancy across timesteps. Averaged
across all velocity and timbre categories, any of these cat-
egories at a given timestep has a 74% chance of having the
same value as the previous timestep.

The performance of the LSTM Note model is com-
parable to that of the LSTM Note+Auto model at POIs,
however the global performance of the LSTM Note+Auto
model is substantially better. Intuitively, this suggests that
the score is useful for knowing when to change, while
the past velocity and timbre values are useful for knowing

Model NES-MDB PM NH MD BC

Random 61.00 61.00 61.00 61.00 61.00
Note 1-gram [2] 8.71 11.05 10.25 11.51 11.06
Chord 1-gram [2] 8.76 27.64 5.94 19.03 12.22
GMM [2] 12.86 15.84 7.87 12.20 11.90
NADE [2] 8.53 10.28 5.48 10.06 7.19
RNN [2] 3.04 8.37 4.46 8.13 8.71
RNN-NADE [2] 2.62 7.48 2.91 6.74 5.83
LSTM 2.54 8.31 3.49 6.35 8.72
LSTM-NADE [17] 2.48 7.36 2.02 5.02 6.00

Table 5: Negative log-likelihoods for various models on
the blended score format (Fig. 1a, Eq. 2) of NES-MDB.
We also show results for Piano-midi.de (PM), Nottingham
(NH), MuseData (MD), and the chorales of J.S. Bach (BC).

what value to output next. Interestingly, the MultiReg Note
model has better performance at POIs than the MultiReg
Note+Auto model. The latter overfit more quickly which
may explain its inferior performance despite the fact that it
sees strictly more information than the note-only model.

4.3 Blended composition experiments

In Table 5, we report the performance of several models
on the blended composition task (Eq. 2). In NES-MDB,
blended scores consist of 88 possible notes with a maxi-
mum of three simultaneous voices (noise generator is dis-
carded). This task, standardized in [2], does not preserve
the voicing of the score, and thus it is not immediately
useful for generating NES music. Nevertheless, modeling
blended scores of polyphonic music has become a standard
benchmark for sequential models [5, 18], and NES-MDB
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may be useful as a larger dataset in the same format.
In general, models assign higher likelihood to NES-

MDB than the four other datasets after training. As with
our other two tasks, this is likely due to the fact that NES-
MDB is sampled at a higher temporal rate, and thus the av-
erage deviation across timesteps is lower. Due to its large
size, a benefit of examining NES-MDB in this context is
that sequential models tend to take longer to overfit the
dataset than they do for the other four. We note that our im-
plementations of these models may deviate slightly from
those of the original authors, though our models achieve
comparable results to those reported in [2,17] when trained
on the original datasets.

5. RELATED WORK

There are several popular datasets commonly used in sta-
tistical music composition. A dataset consisting of the en-
tirety of J.S. Bach’s four-voice chorales has been exten-
sively studied under the lenses of algorithmic composition
and reharmonization [1, 2, 13, 14]. Like NES-MDB, this
dataset has a fixed number of voices and can be repre-
sented as a separated score (Fig. 1b), however it is small in
size (389 chorales) and lacks expressive information. An-
other popular dataset is Piano-midi.de, a corpus of clas-
sical piano from various composers [27]. This dataset
has expressive timing and dynamics information but has
heterogeneous time periods and only features solo piano
music. Alongside Bach’s chorales and the Piano-midi.de
dataset, Boulanger-Lewandowski et al. (2012) standard-
ized the Nottingham collection of folk tunes and MuseData
library of orchestral and piano classical music into blended
score format (Fig. 1a).

Several other symbolic datasets exist containing both
compositional and expressive characteristics. The Mag-
aloff Corpus [10] consists of Disklavier recordings of a
professional pianist playing the entirety of Chopin’s solo
piano works. The Lakh MIDI dataset [28] is the largest
corpus of symbolic music assembled to date with nearly
200k songs. While substantially larger than NES-MDB,
the dataset has unconstrained polyphony, inconsistent ex-
pressive characteristics, and encompasses a wide variety of
genres, instruments and time periods. Another paper trains
neural networks on transcriptions of video game music [9],
though their dataset only includes a handful of songs.

5.1 Statistical composition

While most of the early research in algorithmic music
composition focused on expert systems [25], statistical ap-
proaches have since become the predominant approach.
Mozer (1994) trained RNNs on monophonic melodies us-
ing a formulation similar to Eq. 1, finding the composed re-
sults to compare favorably to those from a trigram model.
Others have also explored monophonic melody generation
with RNNs [8, 26]. Boulanger-Lewandowski et al. (2012)
standardize the polyphonic prediction task for blended
scores (Eq. 2), measuring performance of a multitude of
classical baselines against RNNs [30], restricted Boltz-

mann machines [34], and NADEs [21] on polyphonic mu-
sic datasets. Several papers [5, 17, 35] directly compare to
their results. Statistical models of music have also been
employed as symbolic priors to assist music transcription
algorithms [2, 4, 24].

Progressing towards models that assist humans in com-
position, many researchers study models to create new
harmonizations for existing musical material. Allan and
Williams (2005) train HMMs to create new harmonizations
for Bach chorales [1]. Hadjeres et al. (2017) train a bidi-
rectional RNN model to consider past and future temporal
context (Eq. 3) [13]. Along with [16, 31], they advocate
for the usage of Gibbs sampling to generate music from
complex graphical models.

5.2 Statistical performance

Musicians perform music expressively by interpreting a
performance with appropriate dynamics, timing and ar-
ticulation. Computational models of expressive music
performance seek to automatically assign such attributes
to a score [36]. We point to several extensive surveys
for information about the long history of rule-based sys-
tems [7, 12, 20, 36].

Several statistical models of expressive performance
have also been proposed. Raphael (2010) learns a graph-
ical model that automates an accompanying orchestra for
a soloist, operating on acoustic features rather than sym-
bolic [29]. Flossmann et al. (2013) build a system to con-
trol velocity, articulation and timing of piano performances
by learning a graphical model from a large symbolic cor-
pus of human performances [11]. Xia et al. (2015) model
the expressive timing and dynamics of piano duet perfor-
mances using spectral methods [37]. Two end-to-end sys-
tems attempt to jointly learn the semantics of composition
and expressive performance using RNNs [23, 33]. Malik
and Ek (2017) train an RNN to generate velocity informa-
tion given a musical score [22]. These approaches differ
from our own in that they focus on piano performances
rather than multi-instrumental music.

6. CONCLUSION

The NES Music Database is a large corpus for examining
multi-instrumental polyphonic composition and expressive
performance generation. Compared to existing datasets,
NES-MDB allows for examination of the “full pipeline”
of music composition and performance. We parse the
machine code of NES music into familiar formats (e.g.
MIDI), eliminating the need for researchers to understand
low-level details of the game system. We also provide
an open-source tool which converts between the simpler
formats and machine code, allowing researchers to au-
dition their generated results as waveforms rendered by
the NES. We hope that this dataset will facilitate a new
paradigm of research on music generation—one that em-
phasizes the importance of expressive performance. To this
end, we establish several baselines with reproducible eval-
uation methodology to encourage further investigation.
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ABSTRACT

In this paper we present a new dataset of time-aligned jazz
harmony transcriptions. This dataset is a useful resource
for content-based analysis, especially for training and eval-
uating chord transcription algorithms. Most of the avail-
able chord transcription datasets only contain annotations
for rock and pop, and the characteristics of jazz, such as the
extensive use of seventh chords, are not represented. Our
dataset consists of annotations of 113 tracks selected from
“The Smithsonian Collection of Classic Jazz” and “Jazz:
The Smithsonian Anthology,” covering a range of perform-
ers, subgenres, and historical periods. Annotations were
made by a jazz musician and contain information about
the meter, structure, and chords for entire audio tracks. We
also present evaluation results of this dataset using state-
of-the-art chord estimation algorithms that support seventh
chords. The dataset is valuable for jazz scholars interested
in corpus-based research. To demonstrate this, we extract
statistics for symbolic data and chroma features from the
audio tracks.

1. INTRODUCTION

Musicians in many genres use an abbreviated notation,
known as a lead sheet, to represent chord progressions.
Digitized collections of lead sheets are used for computer-
aided corpus-based musicological research, e.g., [6,13,18,
31]. Lead sheets do not provide information about how
specific chords are rendered by musicians [21]. To reflect
this rendering, music information retrieval (MIR) and mu-
sicology communities have created several datasets of au-
dio recordings annotated with chord progressions. Such
collections are used for training and evaluating various
MIR algorithms (e.g., Automatic Chord Estimation) and
for corpus-based research.

Because providing chord annotations for audio is time-
consuming and requires qualified annotators, there are few
such datasets available for MIR research. Of the existing
datasets, most are of rock and pop music, with very few

c© Vsevolod Eremenko, Emir Demirel, Baris Bozkurt,
Xavier Serra. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Vsevolod Eremenko, Emir
Demirel, Baris Bozkurt, Xavier Serra. “ Audio-Aligned Jazz Harmony
Dataset for Automatic Chord Transcription and Corpus-based Research”,
19th International Society for Music Information Retrieval Conference,
Paris, France, 2018.

available for jazz. A balanced and comprehensive corpus
of jazz audio recordings with chord transcription would be
a useful resource for developing MIR algorithms aimed to
serve jazz scholars. The particularities of jazz also allow us
to view the dataset’s format, content selection, and chord
estimation accuracy evaluation from a different angle.

This paper starts with a review of publicly available
datasets that contain information about harmony, such as
chord progressions and structural analysis. Based on this
review, we justify the necessity of creating a representa-
tive, balanced jazz dataset in a new format. We present our
dataset, which contains lead sheet style chords, beat on-
sets, and structure annotations for a selection of jazz audio
tracks, along with full-length annotations for each record-
ing. We explain our track selection principle and transcrip-
tion methodology, and also provide pre-calculated chroma
features [27] for the entire dataset. We then discuss how to
evaluate the performance of Automatic Chord Transcrip-
tion on jazz recordings. Moreover, baseline evaluation
scores for two state-of-the-art chord estimation algorithms
are shown. Dataset is available online 1 .

2. RELATED WORKS

2.1 Chord annotated audio datasets

Here we review existing datasets with respect to their for-
mat, content selection principle, annotation methodology,
and their uses in research. We then discuss some discrep-
ancies in different approaches to chord annotation, as well
as the advantages and drawbacks of different formats.

2.1.1 Isophonics family

Isophonics 2 is one of the first time-aligned chord anno-
tation datasets, introduced in [17]. Initially, the dataset
consisted of twelve studio albums by The Beatles. Harte
justified his selection by stating that it is a small but var-
ied corpus (including various styles, recording techniques
and “complex harmonic progressions” in comparison with
other popular music artists). These albums are “widely
available in most parts of the world” and have had enor-
mous influence on the development of pop music. A num-
ber of related theoretical and critical works was also taken
into account. Later the corpus was augmented with some

1 http://doi.org/10.5281/zenodo.1290736. Documen-
tation: https://mtg.github.io/JAAH

2 Available at http://isophonics.net/content/
reference-annotations
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transcriptions of Carole King, Queen, Michael Jackson,
and Zweieck.

The corpus is organized as a directory of “.lab” files 3 .
Each line describes a chord segment with a start time,
end time (in seconds), and chord label in the “Harte et
al.” format [16]. The annotator recorded chord start times
by tapping keys on a keyboard. The chords were tran-
scribed using published analyses as a starting point, if pos-
sible. Notes from the melody line were not included in the
chords. The resulting chord progression was verified by
synthesizing the audio and playing it alongside the original
tracks. The dataset has been used for training and testing
chord evaluation algorithms (e.g., for MIREX 4 ).

The same format is used for the “Robbie Williams
dataset” 5 announced in [12]; for the chord annotations
of the RWC and USPop datasets 6 ; and for the datasets by
Deng: JayChou29, CNPop20, and JazzGuitar99 7 . Deng
presented this dataset in [11], and it is the only one in the
family which is related to jazz. However, it uses 99 short,
guitar-only pieces recorded for a study book, and thus does
not reflect the variety of jazz styles and instrumentations.

2.1.2 Billboard

Authors of the Billboard 8 dataset argued that both mu-
sicologists and MIR researchers require a wider range of
data [7]. They selected songs randomly from the Billboard
“Hot 100” chart in the United States between 1958 and
1991.

Their format is close to the traditional lead sheet: it con-
tains meter, bars, and chord labels for each bar or for par-
ticular beats of a bar. Annotations are time-aligned with
the audio by the assignment of a timestamp to the start of
each “phrase” (usually 4 bars). The “Harte et al.” syntax
was used for the chord labels (with a few additions to the
shorthand system). The authors accompanied the annota-
tions with pre-extracted NNLS Chroma features [27]. At
least three persons were involved in making and reconcil-
ing a singleton annotation for each track. The corpus is
used for training and testing chord evaluation algorithms
(e.g., MIREX ACE evaluation) and for musicological re-
search [13].

2.1.3 Rockcorpus and subjectivity dataset

Rockcorpus 9 was announced in [9]. The corpus currently
contains 200 songs selected from the “500 Greatest Songs
of All Time” list, which was compiled by the writers of
Rolling Stone magazine, based on polls of 172 “rock stars
and leading authorities.”

As in the Billboard dataset, the authors specify the
structure segmentation and assign chords to bars (and to

3 ASCII plain text files which are used by a variety of popular MIR
tools, e.g., Sonic Visualizer [8].

4 http://www.music-ir.org/mirex/wiki/MIREX_HOME
5 http://ispg.deib.polimi.it/mir-software.html
6 https://github.com/tmc323/Chord-Annotations
7 http://www.tangkk.net/label
8 http://ddmal.music.mcgill.ca/research/

billboard
9 http://rockcorpus.midside.com/2011_paper.html

beats if necessary), but not directly to time segments. A
timestamp is specified for each measure bar.

In contrast to the previous datasets, authors do not use
“absolute” chord labels, e.g., C:maj. Instead, they spec-
ify tonal centers for parts of the composition and chords
as Roman numerals. These show the chord quality and the
relation of the chord’s root to the tonic. This approach fa-
cilitates harmony analysis.

Each of the two authors provides annotations for each
recording. As opposed to the aforementioned examples,
the authors do not aim to produce a single "ground truth"
annotation, but keep both versions. Thus it becomes pos-
sible to study subjectivity in human annotations of chord
changes. The Rockcorpus is used for training and testing
chord evaluation algorithms [19], and for musicological re-
search [9].

Concerning the study of subjectivity, we should also
mention the Chordify Annotator Subjectivity Dataset 10 ,
which contains transcriptions of 50 songs from the Bill-
board dataset by four different annotators [22]. It uses
JSON-based JAMS annotation format.

2.2 Jazz-related datasets

Here we review datasets which do not have audio-aligned
chord annotations as their primary purpose, but neverthe-
less can be useful in the context of jazz harmony studies.

2.2.1 Weimar Jazz Database

The main focus of the Weimar Jazz Database (WJazzD 11 )
is jazz soloing. Data is disseminated as a SQLite database
containing transcription and meta information about 456
instrumental jazz solos from 343 different recordings
(more than 132000 beats over 12.5 hours). The database
includes: meter, structure segmentation, measures, and
beat onsets, along with chord labels in a custom format.
However, as stated by Pfleiderer [30], the chords were
taken from available lead sheets, “cloned” for all choruses
of the solo, and only in some cases transcribed from what
was actually played by the rhythm section.

The database’s metadata includes the MusicBrainz 12

Identifier, which allows users to link the annotation to
a particular audio recording and fetch meta-information
about the track from the MusicBrainz server.

Although WJazzD has significant applications for re-
search in the symbolic domain [30], our experience has
shown that obtaining audio tracks for analysis and aligning
them with the annotations is nontrivial: the MusicBrainz
identifiers are sometimes wrong, and are missing for 8%
of the tracks. Sometimes WJazzD contains annotations
of rare or old releases. In different masterings, the tempo
and therefore the beat positions, differs from modern and
widely available releases. We matched 14 tracks from
WJazzD to tracks in our dataset by the performer’s name

10 https://github.com/chordify/CASD
11 http://jazzomat.hfm-weimar.de
12 A community-supported collection of music recording metadata:

https://musicbrainz.org
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and the date of the recording. In three cases the Mu-
sicBrainz Release is missing, and in three cases rare com-
pilations were used as sources. It took some time to dis-
cover that three of the tracks (“Embraceable You”, “Lester
Leaps In”, “Work Song”) are actually alternative takes,
which are officially available only on extended reissues.
Beat positions in the other eleven tracks must be shifted
and sometimes scaled to match available audio (e.g., for
“Walking Shoes”). This may be improved by using an in-
teresting alternative introduced by Balke et al. [3]: a web-
based application, “JazzTube,” which matches YouTube
videos with WJazzD annotations and provides interactive
educational visualizations.

2.2.2 Symbolic datasets

The iRb 13 dataset (announced in [6]) contains chord pro-
gressions for 1186 jazz standards taken from a popular in-
ternet forum for jazz musicians. It lists the composer, lyri-
cist, and year of creation. The data are written in the Hum-
drum encoding system. The chord data are submitted by
anonymous enthusiasts and thus provides a rather modern
interpretation of jazz standards. Nevertheless, Broze and
Shanahan proved it was useful for corpus-based musicol-
ogy research: see [6] and [31].

“Charlie Parker’s Omnibook data” 14 contains chord
progressions, themes, and solo scores for 50 recordings by
Charlie Parker. The dataset is stored in MusicXML and
introduced in [10].

Granroth-Wilding’s “JazzCorpus” 15 contains 76 chord
progressions (approximately 3000 chords) annotated with
harmonic analyses (i.e., tonal centers and roman numerals
for the chords), with the primary goal of training and test-
ing statistical parsing models for determining chord har-
monic functions [15].

2.3 Discussion

2.3.1 Some discrepancies in chord annotation
approaches in the context of jazz

An article by Harte et al. [16] de facto sets the standard
for chord labels in MIR annotations. It describes the basic
syntax and a shorthand system. The basic syntax explic-
itly defines a chord pitch class set. For example, C:(3,
5, b7) is interpreted as C, E, G, B[. The shorthand sys-
tem contains symbols which resemble chord representa-
tions on lead sheets (e.g., C:7 stands for C dominant sev-
enth). According to [16], C:7 should be interpreted as
C:(3, 5, b7). However, this may not always be the
case in jazz. According to theoretical research [25] and ed-
ucational books, e.g., [23], the 5th degree is omitted quite
often in jazz harmony.

Generally speaking, since chord labels emerged in jazz
and pop music practice in the 1930s, they provide a higher

13 https://musiccog.ohio-state.edu/home/index.
php/iRb_Jazz_Corpus

14 https://members.loria.fr/KDeguernel/omnibook/
15 http://jazzparser.granroth-wilding.co.uk/

JazzCorpus.html

level of abstraction than sheet music scores, allowing musi-
cians to improvise their parts [21]. Similarly, a transcriber
can use the single chord label C:7 to mark the whole pas-
sage containing the walking bass line and comping piano
phrase, without even noticing, “Is the 5th really played?”
Thus, for jazz corpus annotation, we suggest accepting the
“Harte et al.” syntax for the purpose of standardization,
but sticking to shorthand system and avoiding a literal in-
terpretation of the labels.

There are two different approaches to chord annotation:

• “Lead sheet style.” Contains a lead sheet [21], which
has obvious meaning to musicians practicing the
corresponding style (e.g., jazz or rock). It is aligned
to audio with timestamps for beats or measure bars.
Chords are considered in a rhythmical framework.
This style is convenient because the annotation pro-
cess can be split into two parts: lead sheet transcrip-
tion done by a qualified musician, and beats annota-
tion done by a less skilled person or sometimes even
automatically performed.

• “Isophonics style.” Chord labels are bound to abso-
lute time segments.

We must note that musicians use chord labels for instruct-
ing and describing performance mostly within the lead
sheet framework. While the lead sheet format and the
chord-beats relationship is obvious, detecting and inter-
preting “chord onset” times in jazz is an unclear task. The
widely used comping approach to accompaniment [23] as-
sumes playing phrases instead of long isolated chords, and
a given phrase does not necessarily start with a chord tone.
Furthermore, individual players in the rhythm section (e.g.,
bassist and guitarist) may choose different strategies: they
may anticipate a new chord, play it on the downbeat, or
delay. Thus, before annotating “chord onset” times, we
should make sure that it makes musical and perceptual
sense. All known corpus-based research is based on “lead
sheet style” annotated datasets. Taking all these considera-
tions into account, we prefer to use the lead sheet approach
to chord annotations.

2.3.2 Criteria for format and dataset for chord annotated
audio

Based on the given review and our own hands-on ex-
perience with chord estimation algorithm evaluation, we
present our guidelines and propositions for building an
audio-aligned chord dataset.

1. Clearly define dataset boundaries (e.g., a certain mu-
sic style or time period). The selection of audio
tracks should be representative and balanced within
these boundaries.

2. Since sharing audio is restricted by copyright laws,
use recent releases and existing compilations to fa-
cilitate access to dataset audio.

3. Use the time-aligned lead sheet approach with
“shorthand” chord labels from [16], but avoid their
literal interpretation.
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4. Annotate entire tracks, but not excerpts. This makes
it possible to explore structure and self-similarity.

5. Provide the MusicBrainz identifier to exploit meta-
information from this service. If feasible, add meta-
information to MusicBrainz instead of storing it pri-
vately within the dataset.

6. Annotate in a format that is not only machine read-
able, but convenient for further manual editing and
verification. Relying on plain text files and specific
directory structure for storing heterogeneous anno-
tation is not practical for users. JSON-based JAMS
format introduced by Humphrey et al. [20] solves
this issue, but currently does not support lead sheet
chord annotation. It is verbose in order to be com-
fortably used by the human annotators and supervi-
sors.

7. Include pre-extracted chroma features. This makes it
possible to conduct some MIR experiments without
accessing the audio. It would be interesting to incor-
porate chroma features into corpus-based research to
demonstrate how a particular chord class is rendered
in a particular recording.

3. PROPOSED DATASET

3.1 Data format and annotation attributes

Taking into consideration the discussion from the previ-
ous section, we decided to use the JSON format. An ex-
cerpt from an annotation is shown in Figure 1. We pro-
vide the track title, artist name, and MusicBrainz ID. The
start time, duration of the annotated region, and tuning fre-
quency estimated automatically by Essentia [5] are shown.
The beat onsets array and chord annotations are nested into
the “parts” attribute, which in turn could recursively con-
tain “parts.” This hierarchy represents the structure of the
musical piece. Each part has a “name” attribute which de-
scribes the purpose of the part, such as “intro,” “head,”
“coda,” “outro,” “interlude,” etc. The inner form of the
chorus (e.g., AABA, ABAC, blues) and predominant in-
strumentation (e.g., ensemble, trumpet solo, vocals female,
etc.) are annotated explicitly. This structural annotation is
beneficial for extracting statistical information regarding
the type of chorus present in the dataset, as well as other
musically important properties. We made chord annota-
tions in the lead sheet style: each annotation string rep-
resents a sequence of measure bars, delimited with pipes:
“|”. A sequence starts and ends with a pipe as well. Chords
must be specified for each beat in a bar (e.g., four chords
for 4/4 meter). A simplification of this is possible: if a
chord occupies the whole bar, it could be typed only once;
and if chords occupy an equal number of beats in a bar
(e.g., two beats in 4/4 metre), each chord could be speci-
fied only once, e.g., |F G| instead of |F F G G|.

For chord labeling, we use the Harte et al. [16] syntax
for standardization reasons, but mainly use the shorthand
system and do not assume the literal interpretation of labels

Figure 1. An annotation example.

as pitch class sets. More details on chord label interpreta-
tion will follow in 4.1.

3.2 Content selection

The community of listeners, musicians, teachers, critics
and academic scholars defines the jazz genre, so we de-
cided to annotate a selection chosen by experts.

After considering several lists of seminal recordings
compiled by authorities in jazz history and in musical edu-
cation [14, 24], we decided to start with “The Smithsonian
Collection of Classic Jazz” [1] and “Jazz: The Smithsonian
Anthology” [2].

The “Collection” was compiled by Martin Williams and
first issued in 1973. Since then, it has been widely used
for jazz history education and numerous musicological
research studies draw examples from it [26]. The “An-
thology” contains more modern material compared to the
“Collection.” To obtain unbiased and representative selec-
tion, its curators used a multi-step polling and negotiation
process involving more than 50 “jazz experts, educators,
authors, broadcasters, and performers.” Last but not least,
audio recordings from these lists can be conveniently ob-
tained: each of the collections are issued in a CD box.

We decided to limit the first version of our dataset to
jazz styles developed before free jazz and modal jazz, be-
cause lead sheets with chord labels cannot be used effec-
tively to instruct or describe performances in these latter
styles. We also decided to postpone annotating composi-
tions which include elements of modern harmonic struc-
tures (i.e., modal or quartal harmony).

3.3 Transcription methodology

We use the following semi-automatic routine for beat de-
tection: the DBNBeatTracker algorithm from the madmom
package is run [4]; estimated beats are visualized and soni-
fied with Sonic Visualizer; if needed, DBNBeatTracker is
re-run with a different set of parameters; and finally beat
annotations are manually corrected, which is usually nec-
essary for ritardando or rubato sections in a performance.

After that, chords are transcribed. The annotator aims
to notate which chords are played by the rhythm section.
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Figure 2. Distribution of recordings from the dataset by
year.

If the chords played by the rhythm section are not clearly
audible during a solo, chords played in the “head” are repli-
cated. Useful guidelines on chord transcription in jazz are
given in the introduction of Henry Martin’s book [26]. The
annotators used existing resources as a starting point, such
as published transcriptions of a particular performance or
Real book chord progressions, but the final decisions for
each recording were made by the annotator. We developed
an automation tool for checking the annotation syntax and
chord sonification: chord sounds are generated with Shep-
ard tones and mixed with the original audio track, taking
its volume into account. If annotation errors are found dur-
ing syntax check or while listening to the sonification play-
back, they are corrected and the loop is repeated.

4. DATASET SUMMARY AND IMPLICATIONS
FOR CORPUS BASED RESEARCH

To date, 113 tracks are annotated with an overall duration
of almost 7 hours, or 68570 beats. Annotated recordings
were made from music created between 1917 and 1989,
with the greatest number coming from the formative years
of jazz: the 1920s-1960s (see Figure 2). Styles vary from
blues and ragtime to New Orleans, swing, be-bop and hard
bop with a few examples of gypsy jazz, bossa nova, Afro-
Cuban jazz, cool, and West Coast. Instrumentation varies
from solo piano to jazz combos and to big bands.

4.1 Classifying chords in the jazz way

In total, 59 distinct chord classes appear in the annotations
(89, if we count chord inversions). To manage such a di-
versity of chords, we suggest classifying chords as it done
in jazz pedagogical and theoretical literature. According to
the article by Strunk [32], chord inversions are not impor-
tant in the analysis of jazz performance, perhaps because
of the improvisational nature of bass lines. Inversions are
used in lead sheets mainly to emphasize the composed bass
line (e.g., pedal point or chromaticism). Therefore, we ig-
nore inversions in our analysis.

According to numerous instructional books, and to the-
oretical work done by Martin [25], there are only five main

Figure 3. Flow chart: how to identify chord class by de-
gree set.

Chord Beats Beats Duration Duration
class Number % (seconds) %
dom7 29786 43.44 10557 42.23
maj 18591 27.11 6606 26.42
min 13172 19.21 4681 18.72
dim 1677 2.45 583 2.33
hdim7 1280 1.87 511 2.04
no chord 3986 5.81 2032 8.13
unclassi- 78 0.11 30 0.12
fied

Table 1. Chord classes distribution.

chord classes in jazz: major (maj), minor (min), dominant
seventh (dom7), half-diminished seventh (hdim7), and di-
minished (dim). Seventh chords are more prevalent than
triads, although sixth chords are popular in some styles
(e.g., gypsy jazz). Third, fifth and seventh degrees are used
to classify chords in a bit of an asymmetric manner: the un-
altered fifth could be omitted in the major, minor and dom-
inant seventh (see chapter on three note voicing in [23]);
the diminished fifth is required in half-diminished and in
diminished chords; and [[7 is characteristic for diminished
chords. We summarize this classification approach in the
flow chart in Figure 3.

The frequencies of different chord classes in our cor-
pus are presented in Table 1. The dominant seventh is the
most popular chord, followed by major, minor, diminished
and half-diminished. Chord popularity ranks differ from
those calculated in [6] for the iRb corpus: dom7, min, maj,
hdim, and dim. This could be explained by the fact that our
dataset is shifted toward the earlier years of jazz develop-
ment, when major keys were more pervasive.

4.2 Exploring symbolic data

Exploring the distribution of chord transition bigrams and
n-grams allows us to find regularities in chord progres-
sions. The term bigram for two-chord transitions was de-
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Figure 4. Top ten chord transition n-grams. Each n-gram is expressed as sequence of chord classes (dom, maj, min, hdim7,
dim) alternated with intervals (e.g., P4 - perfect fourth, M6 - major sixth), separating adjacent chord roots.

fined in [6]. Similarly, we define an n-gram as a sequence
of n chord transitions. The ten most frequent n-grams from
our dataset are presented in Figure 4. The picture pre-
sented by the plot is what would be expected for a jazz
corpus: we see the prevalence of the root movement by the
cycle of fifths. The famous IIm-V7-I three-chord pattern
(e.g., [25]) is ranked number 5, which is even higher than
most of the shorter two-chord patterns.

5. CHORD TRANSCRIPTION ALGORITHMS
BASELINE EVALUATION

Now we turn to Automatic Chord Estimation (ACE) eval-
uation for jazz. We adopt the MIREX 16 approach to eval-
uating ACE algorithms. The approach supports multiple
ways to match ground truth chord labels with predicted
labels, by employing the different chord vocabularies in-
troduced by Pauwels [29]. The distinctions between the
five chord classes defined in 4.1 are crucial for analyzing
jazz performance. More detailed transcriptions (e.g., a dis-
tinction between maj6 and maj7, detecting extensions of
dom7, etc.) are also important but secondary to classifica-
tion into the basic five classes. To formally implement this
concept of chord classification, we develop a new vocab-
ulary, called “Jazz5,” which converts chords into the five
classes according to the flowchart in Figure 3.

For comparison, we also choose two existing MIREX
vocabularies: “Sevenths” and “Tetrads,” because they ig-
nore inversions and can distinguish between major, minor
and dom7 classes (which together occupy about 90% of
our dataset). However, these vocabularies penalize differ-
ences within a single basic class (e.g., between a major
triad and a major seventh chord). Moreover, the “Sev-
enths” vocabulary is too basic; it excludes a significant
number of chords, such as diminished chords or sixths,
from evaluation.

We choose Chordino 17 , which has been a baseline al-
gorithm for the MIREX challenge over several years, and
CREMA 18 , which was recently introduced in [28]. To
date, CREMA is one of the few open-source, state-of-the-
art algorithms which supports seventh chords.

Results are provided in the Table 2. “Coverage” signi-
fies the percentage of the dataset which can be evaluated
using the given vocabulary. “Accuracy” stands for the per-

16 http://www.music-ir.org/mirex/wiki/2017:
Audio_Chord_Estimation

17 http://www.isophonics.net/nnls-chroma
18 https://github.com/bmcfee/crema

Vocabulary Coverage Chordino CREMA
% Accuracy % Accuracy %

“Jazz5” 99.88 32.68 40.26
MirexSevenths 86.12 24.57 37.54
Tetrads 99.90 23.10 34.30

Table 2. Comparison of coverage and accuracy evaluation
for different chord dictionaries and algorithms.

centage of the covered dataset for which chords were prop-
erly predicted, according to the given vocabulary.

We see that the accuracy for the jazz dataset is almost
half of the accuracy achieved by the most advanced algo-
rithms on datasets currently involved in the MIREX chal-
lenge 19 (which is roughly 70-80%). Nevertheless, the
more recent algorithm (CREMA) performs significantly
better than the old one (Chordino) which shows that our
dataset passes a sanity check: it does not contradict tech-
nological progress in Automatic Chord Estimation. We see
from this analysis that the “Sevenths” chords vocabulary is
not appropriate for a jazz corpus because it ignores almost
14% of the data. We also note that the “Tetrads” vocabu-
lary is too punitive: it penalizes up to 9% of predictions.
However, this could potentially be tolerable in the context
of jazz harmony analysis. We provide code for this evalu-
ation in the project repository.

6. CONCLUSIONS AND FURTHER WORK

We have introduced a dataset of time-aligned jazz har-
mony transcriptions, which is useful for MIR research and
corpus-based musicology. We have demonstrated how the
particularities of the jazz genre affect our approach to data
selection, annotation, and evaluation of chord estimation
algorithms.

Further work includes growing the dataset by expand-
ing the set of annotated tracks and adding new features.
Functional harmony annotation (or local tonal centers) is
of particular interest, because we could then implement
chord detection accuracy evaluation based on jazz chord
substitution rules.

19 http://www.music-ir.org/mirex/wiki/2017:
Audio_Chord_Estimation_Results
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ABSTRACT 

The creation of a corpus of compositions in symbolic 

formats is an essential step for any project in systematic 

research. There are, however, many potential pitfalls, es-

pecially in early music, where scores are edited in differ-

ent ways: variables include clefs, note values, types of 

barline, and editorial accidentals. Different score editors 

and optical music recognition software have their own 

ways of storing and exporting musical data. Choice of 

software and file formats, and their various parameters, 

can thus unintentionally bias data, as can decisions on 

how to interpret potentially ambiguous markings in origi-

nal sources. This becomes especially problematic when 

data from different corpora are combined for computa-

tional processing, since observed regularities and irregu-

larities may in fact be linked with inconsistent corpus col-

lection methodologies, internal and external, rather than 

the underlying music.  

This paper proposes guidelines, templates, and work-

flows for the creation of consistent early music corpora, 

and for detecting encoding biases in existing corpora. We 

have assembled a corpus of Renaissance duos as a sample 

implementation, and present machine learning experi-

ments demonstrating how inconsistent or naïve encoding 

methodologies for corpus collection can distort results.  

1. INTRODUCTION 

Because creating accurate corpora is extremely labour 

intensive, early music researchers often draw on symbolic 

scores already available online. These collections, how-

ever, exhibit many different approaches to encoding 

scores, depending on the choices of the individual who 

did each encoding, the music editor used, the particular 

symbolic music file formats used, and the ways in which 

those files were generated. Even when transcribing music 

directly into a music editor, it is important to have clear 

guidelines for many elements of the transcription. A good 

corpus, therefore, requires a clear set of guidelines and 

templates for notation and file creation. It also requires a 

workflow that integrates correction, and consistent pro-

cesses for generating symbolic files. We describe an ef-

fective process for encoding a consistent corpus for re-

search projects on Renaissance music, and use it to create 

a publicly-available collection of duos. We end with an 

experiment involving this dataset showing how different 

or inconsistent encoding methodologies can distort re-

sults.  

1.1.  Related Work 

Several collections of symbolic Renaissance scores exist. 

The Choral Public Domain Library (CPDL) [4] includes 

large amounts of Renaissance music, but there is no at-

tempt at standardization. The original ELVIS database [5] 

also aimed for quantity without much curation, but with 

substantial metadata. The Josquin Research Project (JRP) 

[21] is carefully curated and extremely consistent. Small-

er collections assembled for specific projects, such as [8], 

[12], [13], [19], [20], and [22], are carefully curated, but 

each uses a different approach.  

2. RESEARCH CORPORA IN RENAISSANCE 

MUSIC: NOTATIONAL CONSISTENCY 

In Renaissance music manuscripts and prints the parts are 

not aligned in score. Instead they are presented in sepa-

rate parts (on different parts of the page or in separate 

partbooks). In order to study this music the parts must be 

transcribed and combined into a score. Mensuration signs 

(similar to time signatures) indicate the metrical organiza-

tion, but the parts have no barlines, and ties are never 

used. There are multiple different clefs (C clefs on any 

line; F clefs on three lines; G clef is rare). Performers are 

expected to add accidentals in specific melodic and con-

trapuntal situations without explicit accidentals in the 

score (resulting in debates among performers and editors 

of early music). Note values are larger than those of 

common Western notation: between 1450 and 1550 the 

beat normally falls on the semibreve (whole note). 

Modern editors have a wide variety of approaches to 

transcription, as described in in [3] and [14]. Some try to 

make the edition look like 18th-century music, while oth-

ers try to preserve elements of the original notation, and 

everything in between. There are editions of Renaissance 

music scores in original clefs and modern clefs; with bar-

lines, without barlines, or with mensurstriche (barlines 

that only appear between the staves). We can find scores 

with original, halved, quartered, and smaller note values. 
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Most editors introduce editorial accidentals, but there are 

multiple possibilities, and few agree on every decision. 

Editors often also transpose works (for performance by a 

specific ensemble, or because they believe that the origi-

nal pitch was higher or lower than the “written” pitch in 

the original source). The same piece of music edited by 

different people will look very different (see Figure 1). 

Transcribing works directly from the original sources is 

extremely time consuming, however, so if a piece is 

available in modern transcription, we normally start with 

that, either by transcribing it or by using an OMR pro-

gram such as PhotoScore, and then correct it manually.  

 
 

 
 

 
 

Figure 1. Contrasting editions of Josquin Desprez, Missa 

de beata virgine, Agnus II, mm. 1–7. Top: original note 

values with mensurstriche from [10]. Middle: halved note 

values with barlines from [9]. Bottom: our edition, with 

original note values, barlines, and time signature that 

matches the measure length.  

2.1. Problems Resulting from Inconsistent Notation 

When converting published scores into a symbolic corpus 

for music research (through OMR or transcription with a 

music editor), or when taking symbolic scores from an 

online repository, it is essential to make the notation of 

the scores consistent. Inconsistent notation can cause sig-

nificant errors in computational analysis, as we show in 

the experiment described in Section 6 below. For exam-

ple, when analysing counterpoint we normally sample the 

score at every minim (half note) in the original notation. 

If we have one score in original note values, and one in 

quartered note values, the half note will have a complete-

ly different meaning, and the results will not be compara-

ble. The length of a work can also provide information on 

genre. If the measures are different lengths, because of 

different editorial decisions, then this data will be incor-

rect. When looking at issues of mode we normally check 

final and key signature; if a work is transposed, this will 

distort the data. If the number of beats in a measure does 

not match the time signature, software such as music21 

[7] will not parse the symbolic score correctly.  

2.2. Creating and Obtaining Symbolic Scores 

The most straightforward way to create a symbolic file is 

to transcribe the piece into a music editor from images of 

the original source (Renaissance manuscript or print). 

While this is time consuming, especially if the original 

source is difficult to read, or if there are ambiguities in 

the notation, it results in a file that is very close to the 

original source.  

All the other methods involve working with a modern 

edition: transcription into a music editor from a modern 

edition (we do this when the notation of the edition is not 

suitable for OMR); obtaining symbolic files from online 

repositories, including the CPDL [4] and the JRP [21]; or 

using an OMR program such as PhotoScore on a modern 

edition. Almost all of these files need adjustment with 

regard to note values, time signatures, editorial acciden-

tals, and pitch level. As we constructed our corpus, we 

kept finding additional issues that required decisions, 

which we incorporated into guidelines and templates.  

2.3. Our Guidelines for Consistency in Scores of Re-

naissance Music c. 1450–1550  

In order to establish norms it is useful to decide on one 

source of authority, and to create a clear set of guidelines, 

as well as a template encapsulating the guidelines. We 

chose not to follow the standards of a single modern edi-

tion. Instead, we stayed as close to the original as possi-

ble, given that we are transcribing the pieces into modern 

notation in score, with barlines. This means that we use 

the original notated pitch of the work, original note val-

ues, and we do not include editorial accidentals, since 

these are often a subjective decision of a particular editor 

and there is rarely complete consensus among experts. 

For ease of reading we use modern clefs: treble clef, 

transposing treble clef, and bass clef (see Figure 1). We 

use time signatures and ties; most of our time signatures 

use the whole note as the beat (2/1 or 3/1). There are no 

time-signature change unless there is a real change of me-

ter in the piece, and the time signature must match the 

length of the measure. The traditional final long is tran-

scribed as two breves, tied over the bar. We only include 

fermatas found in the original source, and use a fermata 

symbol that does not affect the rhythmic value of the 

note. In general, correct and consistent encoding is con-

sidered more important than the appearance of the score, 

and more important than graphic features of the modern 

edition or the original notation, such as ligature brackets, 

ranges, and original clefs and note shapes. 

 

3. ENCODING EARLY MUSIC 

Once researchers have established notational norms for 

the corpus, they must also establish norms for encoding. 

When using pieces available on line, or when more than 

one person is creating symbolic files for the corpus, there 

are many possible sources of inconsistency: symbolic 

files in different formats; the use of different music nota-

tion software to generate files; different software ver-

sions; and different encoding settings for a given piece of 
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software. We created a set of basic principles to address 

such problems, and incorporated them into our workflow 

and score editor templates.  

3.1. Encoding Formats 

We generate Sibelius, MIDI, Music XML, **kern, and 

PDF files for use in several different machine learning 

and music analysis contexts. Although it is arguably de-

sirable to use purely open file formats when possible 

(e.g., for long-term compatibility), the ubiquity of a for-

mat is also an essential consideration, in order to maxim-

ize accessibility. We argue that presenting files in a varie-

ty of formats, open and closed, allows us to find a good 

compromise between these two concerns. 

Much of the detail about encoding described here is 

focused on MIDI, which is important because of its ubiq-

uity and because it requires that certain data be specified 

rather than left ambiguous (e.g., the tempo of a piece 

cannot be left undefined, as this will implicitly result in 

the default MIDI tempo being used). Although there are 

often good musicological reasons for ambiguity, it can 

cause serious problems for many systematic analysis, 

search, display, or feature extraction systems, which may 

use improper defaults or not work at all when faced with 

certain kinds of ambiguous data. From the specific per-

spective of computational music processing, MIDI help-

fully forces encoders to specify best estimates in cases 

where there is ambiguity. The most important reason for 

choosing MIDI, however, is simply that it can be both 

parsed and produced by almost any software, and follows 

a universally accepted and open standard. That being 

said, MIDI has many well-publicized imperfections and 

limitations, so it is always advisable to distribute datasets 

in other formats, as we do.  

3.2. Basic Principles for Encoding the Corpus  

 Use the same software, software version, operating sys-

tem, and encoding settings  

 Use a uniform and short file naming convention, and 

only allow ASCII characters, as archiving or moving 

files between computers or network locations can cause 

problems with long file names or non-ASCII characters 

 Encode provenance information directly in the files 

themselves, in case encapsulating databases, etc. are 

lost; use rich character sets when permitted 

 Be consistent with: 

o Instrument names (e.g., “alto” singer vs. “alto” vio-

la); be sure there are no missing instrument names 

that default to incorrect instruments 

o Dynamics 

o Tempo 

o Time signatures and meter changes  

o Key signatures 

o Voice segregation 

o Transposing treble clefs  

o Fermatas 

o Playback settings, affecting dynamics, varying tem-

po, note durations, etc. (disable rubato, swing, and 

“human playback” settings so that encodings are as 

rhythmically quantized as possible) 

 For MIDI in particular: 

o Use MIDI Type 1 

o Conform to General MIDI instruments 

o Avoid keyboard instruments for non-keyboard parts, 

as keyboard encodings can sometimes cause individ-

ual voices in a polyphonic work to be collapsed into 

one part 

o Standardize to 960 PPQN (Pulse Per Quarter Note) 

o Set tempo to whole note = 80 BPM (quarter note = 

320) 

 Avoid:  

o Encoding methodologies that needlessly throw away 

information 

o Encoding methodologies that permit ambiguity (e.g., 

in note durations) in cases where automated feature 

extraction or analysis will be used  

o Format conversions: if they are necessary (e.g., in 

order to increase accessibility), generate all alterna-

tive encodings from a single master file  

We dealt with consistency issues by building templates 

(blank pieces in the notation software with all the correct 

settings), into which we copied our pieces. These tem-

plates are available at [6]. 

3.3. Choice of Score Editing Software 

We chose to use the latest version of Sibelius for compat-

ibility and consistency reasons. It is one of the most 

widely used score editors, it works well with the Pho-

toScore OMR software, and it has a scripting language 

(ManuScript). It is also the only score editor that can be 

used to create MEI files, using the Sibelius MEI plugin 

[15]. Although there are certainly important advantages 

to using open-source software (e.g., MuseScore) when 

possible, there are no open-source alternatives to Sibelius 

that offer these essential advantages. That being said, Si-

belius did initially cause us problems: the transposing clef 

often did not encode the voice in the lower octave, even 

though the “8” below the clef showed in the score. This 

distorts contrapuntal analysis (e.g., consonant fifths be-

tween voices turn into dissonant fourths).  

4. WORKFLOW 

In the process of developing our corpus we developed a 

workflow for file creation, including both manual and 

scripted processes that allowed us to avoid inconsistent 

file production. This workflow can be used by other re-

searchers who want to create consistent corpora, and is 

available in more detail at [6]. It can be summarized 

briefly as follows: 

 Create or collect symbolic files  

 Copy the corrected symbolic files into the template  
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 Correct the files in Sibelius, following the guidelines in 

Section 2.3 

 Check the files for problems (by looking at the PDFs, 

and comparing the files to original sources), and correct 

them manually when necessary 

 Save the verified result as a “master file” 

 Once all the desired master files for the corpus are as-

sembled, generate all files in all alternative formats at 

the same time using a script  

 Check MIDI files for consistency using jSymbolic [18] 

(which reveals inconsistent settings, including meter 

changes, dynamics, and tempo settings) 

5. THE JOSQUIN / LA RUE DUOS CORPUS 

We used the workflow and templates introduced above to 

create a corpus devoted to studying differences in the mu-

sic of two leading Renaissance composers, Josquin 

Desprez (c. 1450–1521) and Pierre de la Rue (c. 1452–

1518). These two composers are particularly interesting 

because it is difficult to tell their music apart, even for 

experts. They are almost exact contemporaries, and there 

are ten compositions attributed to both composers in dif-

ferent 16th-century sources. Past attempts to describe dif-

ferences in style are often frustratingly vague, as in this 

discussion of why a La Rue Mass is not by Josquin: “the 

rhythmic motion and continuous repetition of the main 

melodic motif in mm. 45–66 lack the vitality characteris-

tic of Josquin” [11]. 

Our corpus consists of duos (two-voice sections) from 

Masses by these two composers. It is important to com-

pare works in the same genre, since different genres can 

result in different styles, even for the same composer. Al-

so, composers and improvisers in the Renaissance began 

by learning to work in two voices; this is the purest form 

of Renaissance counterpoint. For this study we included 

only duos from Masses securely attributed to the com-

posers (i.e., there is consensus that the Masses are not by 

another composer). For Josquin, we used the “secure” 

categories established by Jesse Rodin in the JRP [21]; for 

La Rue we used the assessments in the La Rue edition 

[17].  

Most of the symbolic files in the corpus came from the 

JRP [21]. We searched the Masses for duo sections sur-

rounded by double bars (separate sections of longer Mass 

movements). We downloaded the Music XML files for 

the relevant movements, opened them in Sibelius, and 

extracted the duos. Some additional movements were 

transcribed from the La Rue edition, restoring the original 

note values.  

Our final corpus, titled the JLSDD (Josquin La Rue 

Secure Duos Dataset), after systematic cleaning, correc-

tion, and format translation, consists of 33 secure Josquin 

duos and 44 secure La Rue duos, each available as Sibe-

lius, Music XML, MIDI, MEI, **kern, and PDF files at 

[6]. They are distributed with pre-extracted jSymbolic 

[10] features, and the Sibelius templates used to build the 

corpus may also be downloaded from [6].  

6. EXPERIMENTS: JOSQUIN VS. LA RUE 

We performed a series of machine learning-based com-

poser attribution experiments in order to gain empirical 

insight into the effects of different encoding methodolo-

gies. For related studies on systematic composer classifi-

cation, see [1], [2], and [16]. 

6.1. Datasets Used 

All of the experiments described here made use of the 33 

secure Josquin duos and 44 secure La Rue duos intro-

duced in Section 5. We generated three different experi-

mental MIDI datasets from this corpus:  

 Original: All 77 secure Josquin and La Rue duos, gen-

erated from the Sibelius files, as they existed before 

systematic standards were used to correct, annotate, and 

encode them. These duos used a variety of General 

MIDI instrument patches, varying amounts of rubato 

added by Sibelius, varying amounts of dynamic varia-

tion added by Sibelius and inconsistent approaches to 

metrical annotation (e.g., time signatures of 4/4 and 8/4 

vs. 2/1). Notably, these differences were distributed 

across the music of both composers, and were not 

meaningfully correlated with either of them. 

 Clean: All 77 secure Josquin and La Rue duos, generat-

ed from the Sibelius files after systematic standardiza-

tion had been applied. The files were all encoded using 

General MIDI Patch 53 (voice), all had a tempo of 80 

whole-note beats per minute, all had time signatures 

based on whole-note beats and none had added rubato 

or dynamics. These are, in effect, the clean release ver-

sion of the duos corpus described in Section 5. 

 Simulated: The 33 secure Josquin duos, generated from 

the Original Sibelius files using systematic settings that 

differed from the settings used when generating the 

Clean dataset. This was done in order to allow us to 

simulate the effects of combining datasets acquired 

from different sources, where different encoding stand-

ards were used. In this case, all files were encoded us-

ing General MIDI 1 (piano), a tempo of 120 whole-note 

beats per minute, no rubato added, and no dynamics 

added. The choice of a piano patch had the additional 

effect of causing Sibelius to encode the notes from both 

voices into a single MIDI channel and track, thereby 

losing the explicit voice segregation found in the Origi-

nal and Clean datasets. 

6.2. Feature Extraction 

Features were extracted from each of the Original, Clean, 

and Simulated datasets using the newest version (2.2) of 

the open-source jSymbolic software [18]. jSymbolic ex-

tracts 246 unique features from symbolic music files, in-

cluding a number of multidimensional features, for a total 

of 1497 values. These features can be loosely grouped 

into the following categories: pitch statistics; melodic fea-

tures; chords and vertical intervals; rhythm; instrumenta-

tion; texture; and dynamics. jSymbolic was chosen be-
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cause it includes far more features than any other musical 

symbolic feature extraction software, and its extensive 

documentation and relatively easy-to-use interface make 

it particularly accessible to musicological researchers 

who may have less experience with MIR software. 

Two sets of features were extracted for each experi-

ment: 

 All Features: All features implemented by jSymbolic 

that can be extracted from MIDI files. 

 Safe Features: A subset of the All Features group that 

consists of just 173 of jSymbolic’s 246 implemented 

features. These features omit all features associated 

with tempo, dynamics, instrumentation, and meter, 

among other things. The intention of these features is 

that they can be used even when datasets are in fact 

systematically biased based on encoding methodology 

(since the features that would be sensitive to these bias-

es are not extracted). All features known to be associat-

ed with these qualities were left out, and then a further 

feature / class correlation check (see below) was per-

formed in order to make sure no bias-sensitive features 

remained. The Safe Features are a good fit with Renais-

sance music, in which tempo, dynamics, and instrumen-

tation are not indicated in the musical sources, and are 

left to the discretion of the performers.  

We further analyzed the Clean and Original datasets 

by calculating the Pearson correlation coefficient between 

each feature in each dataset we experimented with and 

the composer class (Josquin or La Rue). For all features 

with high correlations, we manually checked to see 

whether the strong correlation was due to an actual mean-

ingful musical difference or to bias introduced by the en-

coding methodology. For example, all the Clean pieces 

had a tempo of 80 BPM, and all the Simulated pieces had 

a tempo of 120 BPM. Thus the tempo feature alone was 

perfectly correlated to the class when the Simulated Jos-

quin pieces were compared to the Clean La Rue pieces, 

and thus tempo even by itself perfectly distinguished Jos-

quin from La Rue. Of course, this is in fact due to the ar-

bitrarily chosen tempos assigned when encoding each of 

these two datasets, so the perfect classification perfor-

mance of tempo in this example is clearly due solely to an 

encoding methodology inappropriately correlated to 

class. 

6.3. Machine Learning Methodology 

The features extracted from the Original, Clean, and 

Simulated datasets were used in several supervised 10-

fold cross-validation experiments performed using the 

open-source Weka machine learning software [24]. In 

particular, Weka’s SMO support vector machine imple-

mentation was used with default hyper-parameter set-

tings. This particular configuration was chosen because it 

is a relatively quick-and-easy approach to use, while still 

being quite effective, and thus simulates what musicolog-

ical researchers with only casual expertise in machine 

learning might do relatively easily. 

6.4. Experimental Results and Analysis 

Table 1 shows the classification accuracies for each da-

taset, averaged across cross-validation folds. In some cas-

es, the pieces compared for each of the two composers 

come from the same dataset (Original, Clean, and Simu-

lated), in order to explore the internal effectiveness of the 

encoding methodology used in that dataset. In other cas-

es, the music for one composer was drawn from a differ-

ent dataset than the music for the other composer, in or-

der to simulate what one might encounter if one were to 

perform experiments using music that had been encoded 

using different methodologies. 

We can see in Row 1 that the SMO algorithm was able 

to use the jSymbolic features to correctly distinguish be-

tween the Josquin and La Rue duos 87.0% of the time 

when the Clean dataset was used. This is quite impres-

sive, given how similar the two composers are, and we 

can be confident that this result is not inflated by encod-

ing bias (because of the systematically consistent way 

that the Clean data was encoded, and because the features 

were manually examined to provide additional assurance 

that no unanticipated bias slipped through). 

In Rows 1 and 2 we can see that the Clean data per-

formed 2.6% better than the Original data (87.0% vs. 

84.4%). We can be confident that neither of these results 

are artificially inflated by encoding methods correlated 

with composers, as manual verification to guard against 

this was performed here as well. There are, notably, some 

important differences in how different pieces were en-

coded in the Original data; these differences are just not 

correlated with the composer. So, rather than causing 

classification to improve artificially, these encoding dif-

ferences could instead deflate classification performance 

by injecting noise into the features. However, it should be 

noted that the difference in performance between Rows 1 

and 2 is not large enough to be statistically significant 

(with a p-value of 0.05). 

In Rows 4, 5, 9, and 10 we can see that classification 

results were grossly inflated to 100% when the Simulated 

data for Josquin was mixed with either the Clean or Orig-

inal data for La Rue. This is because there were elements 

associated with instrumentation, tempo, meter, and dy-

namics that were strongly based on the encoding methods 

used rather than the underlying music, and these encod-

ings were correlated with the composers. This confirms 

that, if one is not careful to avoid bias when encoding da-

ta, then one can achieve results that seem impressive but 

are in fact meaningless. 

We can see that the Clean / Clean and Original / Orig-

inal results are quite the same for the All Features (Rows 

1 and 2) and Safe Features (Rows 6 and 7) groups. This 

makes sense, since the Safe Features omit all features that 

could be biased by the encoding differences in the Clean 

and Original groups, and the Clean group has no internal 
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bias based on encoding source, while the Original group 

has no correlation between the different encoding meth-

odologies used and the particular composers.  

 

Row Feature 

Set 

Josquin 

Dataset 

La Rue 

Dataset 

CA (%) 

1 All  Clean Clean 87.0 

2 All  Original Original 84.4 

3 All  Clean Original 98.7 

4 All  Simulated Clean 100.0 

5 All  Simulated Original 100.0 

6 Safe  Clean Clean 87.0 

7 Safe  Original Original 84.4 

8 Safe  Clean Original 87.0 

9 Safe  Simulated Clean 100.0 

10 Safe  Simulated Original 100.0 

Table 1. Classification accuracies (CA) averaged across 

10 folds for each of the 2-class composer attribution ex-

periments. Each experiment is performed once with all 

246 unique features (“All Features”) and once with a re-

duced set of 173 features chosen to be less vulnerable to 

encoding bias (“Safe Features”). All experiments include 

the same 33 secure Josquin duos and 44 secure La Rue 

duos, but the encodings for each vary (“Original,” 

“Clean,” or “Simulated”). 

There is a difference, however, between the All Fea-

tures and Safe Features performance for the Clean Jos-

quin vs. Original La Rue experiments: the 98.7% 

achieved by the All Features group (Row 3) was clearly 

inflated, but the 87% achieved by the Safe Features group 

(Row 8) was not (in fact, it was identical to the best real 

results found in the Clean Josquin vs. Clean La Rue ex-

periment). This is because Clean Josquin vs. Original La 

Rue does include some differences in tempo, meter, in-

strumentation, rubato and dynamics that are correlated 

with composer in this case (Clean Josquin is uniform in 

these parameters, but Original La Rue is not). The All 

Features set is sensitive to these differences, and thus 

produces inflated results, but the Safe Features set filters 

out these problems by ignoring the composer-correlated 

biased quantities. 

It is also notable that both the Simulated Josquin vs. 

Clean La Rue (Row 9) and Simulated Josquin vs. Origi-

nal La Rue (Row 10) results were clearly inflated (both 

100%), even for the Safe Features. This is because the 

Simulated encoding compressed the two distinct voices in 

each duo into a single voice (as a side effect of using a 

piano patch rather than a voice patch); although no notes 

were lost in this process, many features that rely on voice 

segregation were affected. The Safe Features did not omit 

such voice-linked features, so they were affected by the 

encoding bias. This serves as a good reminder that even 

“safe” features may not always be as safe as one thinks, 

and that cleanly and consistently encoded data is always 

better when available. 

Of course, a reduced set of “safe” features can still be 

useful when one has no choice but to use data from dif-

ferent sources that have used different encoding method-

ologies. We could, for example, have made an “Extra 

Safe Features” group that also avoided features linked to 

voice segregation. The problem with being too cautious 

in this way, however, is that one risks omitting features 

that do in fact reveal musically meaningful insights. For 

example, examination of the feature values shows that 

Josquin and La Rue used voice crossing to different ex-

tents, so features related to voice crossing distinguish the 

two composers meaningfully; if one omits all voice-

related features out of fear of biased results, then such 

insights will never be revealed. “Safe” feature sets must 

always strike a balance between security against encoding 

bias on the one hand and openness to musically meaning-

ful information on the other. 

6.5. Summary of Experimental Results 

Using consistently and systematically encoded music can 

potentially play an essential role in: 

 Avoiding inflated performances due to encoding biases 

correlated with class 

 Avoiding deflated performance due to feature noise not 

correlated with class 

Using “safe” features chosen to minimize sensitivity to 

encoding bias is a viable approach if one has no choice 

but to use data encoded in different ways, but it is inferior 

to using uniformly encoded data because: 

 Overly cautious safe features may eliminate features 

that would reveal musically meaningful insights 

 Insufficiently cautious safe features may admit unantic-

ipated biases into the feature values if one does not per-

form careful checks to avoid this 

7. CONCLUSIONS 

We have established that notational consistency and en-

coding consistency are essential to reliable computer-

aided research on Renaissance music. Our experience as-

sembling corpora with a small team of people (including 

undergraduates, graduate students, post-docs, and profes-

sors) showed that establishing clear guidelines and creat-

ing templates enabled us to reach the desired level of 

consistency; that consistency then allows us to conduct 

compelling research. Our corpus, templates and workflow 

are available online at [6]. If other scholars adopt the 

same conventions for their corpora, large and small, and 

make them available, we will be on the path to large-scale 

research into Renaissance music; a composite corpus that 

is both varied and consistent.  
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ABSTRACT

Carnatic music is replete with continuous pitch move-
ment called gamakas and can be viewed as consisting of
constant-pitch notes (CPNs) and transients. The stationary
points (STAs) of transients – points where the pitch curve
changes direction – also carry melody information. In this
paper, the precision of sung notes in Carnatic music is stud-
ied in detail by treating CPNs and STAs separately. There
is variation among the nineteen musicians considered, but
on average, the precision of CPNs increases exponentially
with duration and settles at about 10 cents for CPNs longer
than 0.5 seconds. For analyzing STAs, in contrast to West-
ern music, rāga (melody) information is found to be nec-
essary, and errors in STAs show a significantly larger stan-
dard deviation of about 60 cents.

To corroborate these observations, the music was au-
tomatically transcribed and re-synthesized using CPN and
STA information using two interpolation techniques. The
results of perceptual tests clearly indicate that the grammar
is highly flexible. We also show that the precision errors
are not due to poor pitch tracking, singer deficiencies or
delay in auditory feedback.

1. INTRODUCTION

The precision of sung notes in Western classical music
has been well studied [3, 13, 19]. However, as far as we
know, they have not been published for Indian classical
music. Previous controlled precision studies were typically
concerned with long constant-pitch notes (e.g. [3]), or vi-
bratos [18]. This approach is not suitable for Carnatic Mu-
sic (CM), where gamakas are characterized by expansive
pitch movements. Previous work on Indian music, such
as [11], studied gamakas by analyzing svaras. However,
the term ‘svara’ denotes both the note in the musical scale
and the gamakas that embellish it. Thus, separating the
steady parts of the pitch from the continuous movement is
beneficial [5] [17].

In this paper, we quantify the precision of constant-pitch
notes (CPNs) and stationary points (STA) separately (see

c© V S Viraraghavan, H A Murthy, R Aravind. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: V S Viraraghavan, H A Murthy, R Aravind. “Pre-
cision of Sung Notes in Carnatic Music”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

Figure 1. (From [21]) Blue lines are CPNs and red circles,
STAs. Some STAs’ neighbors and duration are shown.

Name Sa Ri Ga Ma Pa Da Ni
Carnatic S R1 R2 G2 G3 M1 M2 P D1 D2 N2 N3
Western C C# D D# E F F# G G# A A# B

Table 1. Svara-names and positions of the 12 semi-
tones/octave for Carnatic & Western music. C is the tonic;
the correspondence is well-defined only for CPNs.

Figure 1 for examples). We adapt below their definitions
from [21] and use the svara names given in Table 1.

1. Silence-segments (SIL) are identified by the pitch-
tracking algorithm [15].

2. A constant-pitch note (CPN) is one whose pitch does
not vary from its mean pitch by more than 0.3 semi-
tones and lasts for at least 80 ms. Non-SIL and non-
CPN regions are called transients. Anchor note(s)
are CPN(s) that flank transient(s).

3. Stationary points (STAs) [4, 20], are pitch positions
where a continuous pitch curve changes direction. In
[4] STAs also occur in CPNs, but they are restricted
to the transients in this paper. STAs carry melody
information [12] and are useful analytically [4, 14].

4. The duration of CPNs and SILs is fairly straightfor-
ward. The duration of a STA, typically 100 ms, is
defined in [21]. See Figure 1 for an illustration.

The rest of the paper is organized as follows. Section 2
describes a method to statistically analyze precision in
CM. Section 2.2 then focuses on precision-errors in CPNs
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(CPN-errors). In Section 2.3, we discuss the ambiguity
inherent in measuring the precision-errors in STAs (STA-
errors) and propose the use of rāga-specific information
to overcome it. In Section 3, we observe that STAs have
about half the precision of short CPNs, suggesting a flex-
ible grammar. Section 4 describes two re-synthesis tech-
niques with different interpolation schemes, which are
used in a listening experiment that confirms this flexibil-
ity. Section 5 discusses the nature of this flexibility in the
grammar.

2. PRECISION-ERROR MEASUREMENTS

2.1 Database, CPNs and STAs

For this work, the database comprised the same 84 con-
cert pieces used in [21], which is a subset of [8]. These
are in the rāgas tōd. ī, bhairavī, kharaharapriyā, kāmbhōji,
śankarābharan. am, varāl. ī, and kalyān. ī. The database
has the dominant pitch (strictly ‘fundamental frequency’)
tracked according to [15] and the tonic identified by the al-
gorithm specified in [7]. Silence segments identified by
the pitch tracker are ignored. For non-SIL segments in
each piece in the database, we convert the fundamental
frequency values to semitones (or equivalent cents) with
reference to its tonic. Henceforth, the term ‘pitch’ in this
paper implies measurement in semitones or cents.

Algorithm 1 of [21] is run hierarchically for the
duration-threshold of CPNs set to 1000 ms, 300 ms, and
80 ms to get an initial set of CPNs (CPN-set-f). It is then
run backwards (in time) to get CPN-set-b. Only CPNs in
the intersection of these two sets are retained. Algorithm 2
of the same work is used to identify STAs. STAs adjacent
to two CPNs of unequal pitch on either side, and having an
intermediate pitch value (jārus, see Figure 1) are ignored.
Nineteen professional singers, whose renditions had suffi-
cient data for analysis are chosen.

2.2 Precision-errors of CP-notes

We measure the statistics of the error of the mean value of
a CPN compared to a target. Instead of assuming a mu-
sical scale, the target pitch-values of CPNs are obtained
statistically as the mean-values of a pitch class [13, 19].
That is, the locations of the significant peaks (> 0.01×
max value) in the histogram of CPN pitch values folded
to one octave are chosen as the target pitch values. This
step is repeated for each piece independently and only
CPNs longer than 150 ms are considered in finding tar-
get CPN pitch-values. Two examples are shown in Fig-
ures 2(a) and 2(b). In Figure 2(a), which corresponds to a
piece of length just under 49 minutes, the important notes
of the rāga śankarābharan. am, S, G3 and P are evident.
Three other notes (M1, R2 and D2) that seldom occur in
the rāga as CPNs or anchor notes, have very small peaks.
There is no peak at N3, which reflects its rarity as a CPN in
the rāga. In Figure 2(b), corresponding to a piece of length
47 minutes, the peak at R2 is not in the defined scale of
rāga tōd. ī, but Carnatic musicians are aware of its use as
an anchor note.

A CPN-error is defined as the difference of a CPN’s
mean in semitones from the closest target CPN pitch-value.
Qualitatively, it is expected that longer CPNs have bet-
ter precision. To study this behavior, CPNs were grouped
by duration according to Equation 1, where the bin-width,
Bw = 40 ms. An additional bin was used for any duration
over 440 ms.

Bini = [iBw, (i+ 1)Bw), i ∈ {2, 3, . . . , 10} (1)

Figure 3(a) shows the histogram of CPN-errors for three
duration bins. Figures 3(b) and 3(c) show the quantile
plots [22] for two duration ranges. Note that the num-
ber of samples for the longer CPNs are smaller than for
shorter ones and thus show more outliers. We also ran the
Shapiro-Wilk parametric hypothesis test of composite nor-
mality 1 , with the default confidence level, α = 0.05. The
test showed that CPN-errors are, in general, not normally
distributed. In fact, less than a dozen duration-bins out of
over 200 across all singers showed a normal distribution.
Nevertheless, we focus on the first two orders of statistics
– mean and standard deviation – of the CPN-errors and
STA-errors. Further, we treat the standard deviation of the
errors as a quantitative measure of the precision.

The means and standard deviations of CPN-errors for
the 19 singers are shown in Figure 4 as a function of dura-
tion. The means are ±3 cents for all duration-bins. While
there is variation among singers, there is a trend of the stan-
dard deviation of CPN-errors decreasing with duration.

2.3 Statistics of Stationary Points

2.3.1 Ambiguity in defining STA targets

The peaks identified in Figure 2(a) correspond well with
rāga-characterics even though explicit rāga-information is
not used in identifying them. This result is encouraging,
and the natural step is to adopt the same procedure for
identifying STA target pitch-values. Figure 5(a) shows the
histogram of STAs, with significant peaks identified ex-
actly as for CPNs for the same piece that corresponds to
Figure 2(a). Clearly, they do not cluster around scale notes.
Further, where the peaks are visible, they are wider than in
the case of CPNs. This suggests a larger tolerance for STA
pitch errors and is worth verifying. Figure 6 shows a manu-
ally annotated spectrogram (using the method of reassign-
ment [1, 10]) of an excerpt from a piece by a very famous
singer, known for her exceptional tonal purity. Manual an-
notation removes the possibility of errors in fundamental
frequency tracking. Sixteen of 37 STAs are at semitone
values that are not expected in the rāga, but on listen-
ing to this sample, there is no hint of pitch errors. With
STA-errors being of the order of a semitone, the simple
histogram-based technique used for CPNs will not suffice.
Thus, we propose the use of domain knowledge from CM
to define target pitch-values for STAs.

1 https://in.mathworks.com/
matlabcentral/fileexchange/
13964-shapiro-wilk-and-shapiro-francia-normality-tests?
focused=3823443&tab=function
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(a) Śankarābharan. am (Singer 17) S, R2, G3, M1, P, D2, N3. (b) Tōd. ī (Singer 18) S, R1, G2, M1, P, D1, N2.

Figure 2. Histogram of CPNs of two sample rāgas. The CPNs cluster around centers close to the notes of the just-tempered
scale. Indian music note names and their values in semitones are marked per peak. Each rāga’s scale-sequence is also given.

(a) Normalized histogram (b) Duration-bin 80 ms to 120 ms (c) 440 ms to 480 ms

Figure 3. CPN-errors for Singer 04: Histogram and quantile-plots two duration-bins. Unmarked axes are in semitones.

Figure 4. CPN-error statistics for 19 singers. Mean-values
are ±3 cents, except for two singers. The standard devia-
tions are in a wider band, but decrease with duration.

2.3.2 Restricting Measurements to Specific STAs

As explained above, when a sequence of adjacent STAs
is encountered, their target pitch-values are not easy to
define. To reduce ambiguity, we propose restricting the
measurements to a specific type of STA: one that is adja-
cent to at least one CPN. This effectively pegs one side of
the continuous pitch movement, thus providing a practi-
cally usable reference. We can then define the precision-
error of such a STA with respect to its adjacent CPN. Let
such a CPN have a mean pitch pc in semitones. Then,
the target scale-note of this STA is from one of S =
{[pc ± 1], [pc ± 2], [pc ± 3]}, where [·] denotes rounding
the pitch to the nearest integer semitone. In the rare cases
that a STA is adjacent to a CPN on both sides, S is a union
of the sets formed by each adjacent CPN. Note that the el-
ements of S are integer semitones. The mean errors will
be affected by a few cents, but as we shall see later, the
standard deviation of STA-errors is much larger than the
differences between corresponding notes of different mu-

Gamakas Elements from S In S′
To {R2, M1, P} {pc − 2, pc + 1, pc + 3} Yes

To {R1, G2, M2} {pc − 3, pc − 1, pc + 2} No

Table 2. Oscillatory gamakas at G3 in śankarābharan. am

sical scales. Thus, the equal-tempered scale, or any other
similar scale, can be used to define target pitch-values for
STAs, with only a marginal effect on the measured pre-
cision. For consistency with Section 2.2, only CPNs and
STAs that have a duration ≥ 150 ms are included in the
measurement.

For each CPN in a rāga, the valid STA pitch-targets are
a subset S′ of S. For example, with the context being an
anchor note, say pc = G3 in the rāga śankarābharan. am,
the choices shown in Table 2 can be made. Such rules are
not fully documented and are known more by practice. A
(proprietary) synthesis algorithm that uses these rules was
used to check and correct them in an iterative manner. Fi-
nally, overshoots and undershoots of STAs have been re-
ported in the literature [17]. To account for them, STAs
in ascending movements of pitch, i.e. where a STA is a
local maximum, and in descending movements, where a
STA is a local minimum, were measured separately. These
subsets of STAs show histograms with sharp peaks in Fig-
ures 5(b) and 5(c). Corresponding to Table 2, the upward
gamakas from G3 (4 semitones) to M1 (5 semitones) and P
(7 semitones) are visible in Figure 5(b) and the downward
gamaka to R2 (2 semitones), in Figure 5(c). Further, the
upward gamaka from D2 (9 semitones) to N2 (10 semi-
tones) in Figure 5(b) matches CM practice, although N2 is
not in the rāga’s scale.
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(a) (b) (c)

Figure 5. (a) Histogram of STAs for the same piece as in Figure 2(a). Peaks identified automatically are not clustered
around notes of any musical scale. However, visually, STAs adjacent to anchor notes show sharp peaks in both (b) upward
and (c) downward movements. To avoid clutter, note names and exact peak-locations are not given.

Figure 6. CPNs (blue lines) and STAs (circles and diamonds) in the spectrogram of an excerpt in the
rāga śankarābharan. am. The lower dark black curve is the pitch emphasized by reassignment. The tonic (Sa) is 188
Hz. Horizontal lines mark semitones from D1. to Ṡ. Yellow diamonds mark STAs at expected pitch values and red circles,
at unexpected ones. This musician is famous for tonal purity and singer-errors can be discounted.

(a) Normalized histogram (b) Quantile plot for all duration-bins

Figure 7. STA-errors for Singer 04: Histogram and quantile-plot. Unmarked axes are in semitones.

(a) (b)

Figure 8. (a) Means and standard deviations (SDs) of precision errors in STAs for 19 singers. The SDs are mostly in a
band of ±10 cents and is more or less constant, unlike that of CPNs (also shown for comparison). (b) SDs of CPN-errors
and STA-errors for Singer 04, and for smaller CPNs ‘split’ from larger ones. The empirical fit for this singer is also shown.
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The precision error, ε, of any STA chosen thus, with
pitch value p semitones, is measured as:

I = argmin
i
|p− pi| (2)

ε = p− pI (3)

where i indexes S′ per anchor note per rāga. Table 2
does not consider gamakas traversing more than 3 semi-
tones, which are rare in CM. Even so, STAs for which
|ε| > 2 semitones are not included in the measurement.
With this more reliable definition of the precision error of
these STAs, their statistics were collected per singer. The
histogram and quantile plots of STA-errors (Singer 04) are
presented in Figures 7(a) and 7(b), which have two virtu-
ally indistinguishable plots each: one for STAs in ascend-
ing movements, and another for downward movements.
The STA-errors also do not follow a normal distribution.

3. ANALYSIS OF OBSERVATIONS

Figure 8(a) shows the means and standard deviations of
the STA-errors for the 19 singers. Unlike that of CPN-
errors, the standard deviation of STA-errors does not vary
much with duration. The standard deviation of STA-errors
is also about twice as large as that of CPN-errors for CPNs
of duration around 100 ms. The slight negative bias of the
means of STA-errors is not yet understood.

Modeling the observed precision can be useful in ap-
plications such as transcription. We propose a singer-
dependent, composite empirical model to predict the stan-
dard deviations of both CPN-errors and STA-errors. In
this model with two components, the first exponentially
decreases with time, and can be expressed as:

σx(t) = σse
−t/T (4)

As most singers do not ever reach zero precision-error
for even very long CPNs, we need to introduce a constant
term σr. Thus, the overall standard deviation, as a function
of time t, can be written as:

σ(t) =
√
σ2
x(t) + σ2

r (5)

The forms of Equations 4 and 5 serve to emphasize the first
component for low values of t (STAs and short CPNs) and
the second, for larger t (long CPNs). For each singer, σr
was set as the average of the CPN standard deviations for
the last three duration-bins. The values of t were chosen
as the mid-points of the duration-bins of Equation 1, i.e.
(i + 0.5)Bw. We also propose that STAs can be viewed
as ‘point-CPNs’. For example, the short CPN around 1.4
seconds in Figure 1 can be shrunk to a point, which would
make it a STA. Practically, a STA lasts at least as long as
the shift in windowing algorithms. For the data presented
in this paper, this shift is 4.44 ms. Consequently, we set the
value of σ(0) as the average value of the standard deviation
of STA-errors.

The best values of T and σs were found by minimiz-
ing the mean squared error of the standard deviation pre-
dicted by Equations 4 and 5 over the following ranges of

Singer ID σr T σs RMSE
01 11 120 45 2.6
03 9 115 60 2.7
04 13 170 65 2.5
05 10 155 55 0.8
06 9 200 45 2.6
07 10 165 55 2.0
08 13 225 65 3.7
09 8 155 70 3.7
10 10 165 55 1.8
13 15 145 50 2.4
17 9 165 60 3.1
18 11 180 85 6.0
19 8 115 60 2.0
20 19 140 50 7.0
21 11 210 40 2.8
27 9 110 50 1.8
28 11 120 65 1.8
30 10 75 65 1.8
31 14 145 55 3.9

Table 3. Prediction parameters for the nineteen musicians
aliased by Singer ID. The parameter T is in ms and σr, σs
and the root mean squared error (RMSE) are in cents.

values: T ∈ {20, 21, . . . , 300} ms and σs ∈ {iθ, i =
1, 2, . . . , 20}, θ = 0.05 semitones. An example for Singer
04 is given in Figure 8(b), which shows a good fit of the
model with the observations. The quantitative measure of
the fit (RMSE) and the values of T , σs and σr for the 19
singers are given in Table 3. The typical value of σr being
in the range 0.08 to 0.15 semitones (one outlier at 0.19) is
in good agreement with the precision range of 0.1 to 0.15
semitones reported for choir singers [19]. It remains to be
seen if STAs of types other than in Section 2.3 also follow
the same statistics.

The cause(s) of the precision-error trend is (are) not
fully clear, but we eliminate one possibility here. Two
types of auditory feedback have been reported in the lit-
erature. The first is involuntary, and takes about 100 ms
to take effect, and another, voluntary taking about 300
ms [9]. For the smaller duration bins, the voluntary mech-
anism does not have time to effect corrections. Even the
involuntary mechanism does not seem to explain all of
the variance. Specifically, the precision error of CPNs
is not mirrored in successively longer initial segments of
CPNs. That is, for each CPNs of duration t ≥ 300 ms,
and preceded by SIL, several CPNs of duration iTsplit, i ∈
{1, 2, . . . , b t

Tsplit
c}, where Tsplit = 20 ms, were split from

it and their precision for the duration-bins (Equation 1)
were calculated. This result for Singer 04 is also shown
in Figure 8(b). It is clear that, for durations around 100
ms, the standard deviation of precision error for such ‘split
notes’ is far lower than that for CPNs found from the def-
inition. Thus, it cannot explain the trend seen in CPN-
errors. Further, this was seen to be true for all the singers.
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Pair-set U, cosine R, cosine R, linear
1 B T NA
2 NA B T

Table 4. Pair-sets per rāga for the quantization algorithms
(U or R) and interpolation schemes (linear or cosine) of the
synthesized samples in the pair-wise comparison test.

4. EXPERIMENTAL CONFIRMATION

A musicological view (e.g [12]) is that STAs should be
precise, which is not consistent with the observations pre-
sented hitherto. In a previous experiment 2 , the STAs at
R1 and D1 in the rāga pantuvarāl. ī were shifted to R2 and
D2 respectively. The shift is not perceivable in the audio
synthesized from manual notation [16]. While this exper-
iment confirms the relatively large precision-error of the
STAs, perceptual tests were not conducted. Independently,
we designed an experiment 3 to confirm the large variabil-
ity in the pitch-values of STAs. We concatenated one ex-
cerpt at slow speed, and another relatively fast one, both
chosen from ālāpanas in four important, gamaka-heavy
rāgas. These pieces of approximately one-minute duration
were transcribed in two ways. In uniform quantization (U),
the pitch in semitones of each CPN or STA, p, was set to
p′ = [p], where [·] denotes rounding towards the nearest
integer semitone. In this method, 13% to 19% of STAs
were quantized to pitch values not in the rāga-specific list
R, i.e. Table 2 extended to all anchor notes and octaves. In
the second method (R), with i indexing R, and ei ∈ R, a
CPN/STA pitch (p) was set to p′ = eI where:

I = argmin(|p− ei|) (6)

The STAs and CPNs were then synthesized by con-
structing a pitch curve that was constant at CPN-locations.
STAs and CPNs (and SILs) were connected to each other
by using linear or cosine-interpolation. For the latter, the
phase was set to 0(π) at a starting higher (lower) STA/CPN
and to π(0) at the ending lower (higher) STA/CPN. These
pitch curves, sampled at 1 kHz, and the short-term en-
ergy of the original excerpts resampled to 1 kHz, were
fed to a good-quality, 5-harmonics synthesis algorithm [6].
We asked listeners to rate pair-wise, the synthesis sam-
ples on the basis of adherence to the rāga. The pair-sets
per rāga are given in Table 4. Twenty four participants
(twelve experts) heard all rāgas of pair-set 1 in the order
kāmbhōji, śankarābharan. am, tōd. ī, and bhairavī. Within
a pair, the order was random. This was then repeated for
pair-set 2.

Table 5 shows the results of the listening test. For each
pair, the preference-percentages, the average rating across
participants and rāgas, the average difference between rat-
ings, and the average absolute-difference between the rat-
ings are given. All measures indicate that there is no clear

2 http://carnatic2000.tripod.com/maya.zip
3 https://www.iitm.ac.in/donlab/pctestmusic/

index.html?owner=venkat1&testid=test1&testcount=
8

U vs. R Cosine vs. Linear
Measure U R Cosine Linear
Preference 34 (33) 34 (35) 25 (33) 26 (21)
percentage Equal: 31 (31) Equal: 49 (46)
Avg. rating 3.5 (3.3) 3.4 (3.3) 3.6 (3.4) 3.6 (3.4)
Avg. diff. 0.0 (0.1); 0.7 (0.7) 0.0 (0.1); 0.7 (0.7)

Table 5. Results of the pair-wise comparison test (expert-
ratings in brackets). In the last row, average differences and
average absolute-differences are separated by semicolons.

preference among the possibilities. This result can also
explain why many interpolation schemes for gamakas –
Bezier curves [2], Hermite polynomials [6, 14], Gaayaka
software [16], sine curves [17] etc. – all seem to work.

5. CONCLUSIONS

We presented the statistics of precision errors of CPNs and
STAs, and measured their means and standard deviations
as a function of duration. While the analysis was done sep-
arately, the precision-errors for both CPNs and STAs were
empirically fitted in a single model. We also presented the
results of a listening experiment using the outputs of two
synthesis algorithms, both of which also treat CPNs and
STAs separately. The key conclusions that can be drawn
from this work are:

1. The standard deviation of the precision error in
CPNs decreases with duration. A nominal value of
20 cents may be used for a duration of 200 ms, and
10 cents for long CPNs.

2. The standard deviation of the precision error in STAs
is independent of duration (45 to 85 cents across
singers). A nominal value of 60 cents may be used.

3. Even experts could not tell apart samples that had
STAs quantized to notes within a rāga’s grammar
and those that did not. Also, samples that used linear
and cosine interpolation were not distinguishable.

Thus, it appears that there is a large tolerance for both
the precision of STAs and the way they are connected,
which implies a highly flexible grammar for CM. Point
3 suggests that a rich transcription for a CM piece need
not be unique. It may also indicate that re-synthesis qual-
ity cannot be used to rate algorithms for rich transcription.
However, given that Figures 5(b) and 5(c) show peaks only
at expected locations, the existence of unique rich tran-
scription with a large tolerance for STAs is likely.

Finally, it should be noted that the flexibility in its gram-
mar does not mean that ‘CM is imprecise’ or that the preci-
sion of STAs is unimportant. Instead, this flexibility should
be seen as natural in a form of music that employs contin-
uous pitch movement in profusion.
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ABSTRACT

Since the vocal component plays a crucial role in popular
music, singing voice detection has been an active research
topic in music information retrieval. Although several pro-
posed algorithms have shown high performances, we ar-
gue that there is still room for improving the singing voice
detection system. In order to identify the area of improve-
ment, we first perform an error analysis on three recent
singing voice detection systems. Based on the analysis,
we design novel methods to test the systems on multiple
sets of internally curated and generated data to further ex-
amine the pitfalls, which are not clearly revealed with the
currently available datasets. From the experiment results,
we also propose several directions towards building a more
robust singing voice detector.

1. INTRODUCTION

Singing voice detection (or VD, vocal detection) is a music
information retrieval (MIR) task to identify vocal segments
in a song. The length of each segment is typically at a
frame level, for example, 100 ms. Since singing voice is
one of the key components in popular music, VD can be
applied to music discovery and recommendation as well as
various MIR tasks such as melody extraction [7], audio-
lyrics alignment [31], and artist recognition [2].

Existing VD methods can be categorized into three dif-
ferent classes. First, the early approaches focused on the
acoustic similarity between singing voice and speech, uti-
lizing cepstral coefficients [1] and linear predictive cod-
ing [10]. The second class would be the majority of ex-
isting methods, where the systems take advantages of ma-
chine learning classifiers such as support vector machines
or hidden Markov models, combined with large sets of au-
dio descriptors (e.g., spectral flatness) as well as dedicated
new features such as the Fluctogram [14]. Lastly, there
is a recent trend towards feature learning using deep neu-
ral networks, with which the VD systems learn optimized

c© Kyungyun Lee, Keunwoo Choi, Juhan Nam. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Kyungyun Lee, Keunwoo Choi, Juhan Nam. “Revis-
iting Singing Voice Detection: A quantitative review and the future out-
look”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

features for the task using a convolutional neural network
(CNN) [27] and a recurrent neural network (RNN) [11].
They have achieved state-of-the-art performances on com-
monly used datasets with over 90% of the true positive rate
(recall) and accuracy.

We hypothesize that there are common problems in ex-
isting VD methods in spite of such well-performing met-
rics that have been reported. Our scope primarily includes
methods in the second and third classes since they signif-
icantly outperform those in the first class. Our hypothe-
sis was inspired by inspecting the assumptions in the ex-
isting algorithms. The most common one, for example,
has been made on the spectro-temporal characteristics of
singing voices; that they include frequency modulation (or
vibrato) [15, 24], which leads to our analysis on whether
there are any problems by pursuing to be a vibrato detector.
We can also raise similar questions on the behavior of the
systems in the third class, the deep learning-based systems,
by examining on their assumptions and results. Based on
the analysis, we invent a set of empirical analysis methods
and use them to reveal the exact types of problems in the
current VD systems.

Our contributions are as follows :

• A quantitative analysis to clarify and classify common
errors of three recent VD systems (Section 4)

• An analysis using curated and generated audio con-
tents that exploit the discovered weakness of the systems
(Section 5)

• Suggestions on future research directions (Section 6)

In addition, we review previous VD systems in Section 3
and summarize the paper in Section 7.

2. BACKGROUND

2.1 Problem definition

Singing voice detection is usually defined as a binary clas-
sification task about whether a short audio segment in-
put includes singing voice. However, the details have
been rather empirically decided. By ‘short’, the segment
length for prediction is often 100 ms or 200 ms. ‘Audio’
can be provided as stereo, although they are frequently
downmixed to mono. More importantly, singing voice is
not clearly defined, for example, leaving the question that
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Size Annotations Past VD papers Notes

Jamendo Corpus 93 tracks (443 mins) Vocal activation
[13], [27], [26]
[11], [24], [12],

Train/valid/test split from [22]

RWC Popular Music 100 tracks (407 mins)
instrument annotation

Vocal activation,
[13]

[26], [27], [14]
VD annotation by [16]

MIR-1K 100 short clips (113 mins)
pitch contours

Vocal activation,
[9]

provided
Regular speech files

MedleyDB 122 tracks (437 mins)
pitch annotation

Melody annotation,
[26] Multitrack

Table 1: A summary of public datasets relevant to singing voice detection

background vocals should be regarded as singing voice or
not. In previous works, this problem has been neglected
since the majority of songs in datasets do not include back-
ground vocals that are independent of the main vocals.
These will be further discussed in Section 6.

2.2 Public Datasets

In Table 1, four public datasets for evaluating VD systems
are summarized. Three of them are well described by
Lehner et al. [12]: Jamendo Corpus [22], RWC Popular
Music Database [4] and MIR-1K Corpus [8]. In addition,
we add MedleyDB [3], which is a multitrack dataset, com-
posed of raw mono recordings for each instrument as well
as processed stereo mix tracks. Although it does not pro-
vide annotations for vocal/non-vocal segments, we utilize
the annotations for the instrument activation, which con-
siders vocals as one of the instruments. There can be more
benefits by using the multitrack dataset for VD research,
which will be discussed in Section 6.

2.3 Audio Representation

In this section, we present the properties as well as the un-
derlying assumptions of various audio representations in
the context of VD. Previous works have used a combina-
tion of numerous audio features, seeking easier ways for
the algorithm to detect the singing voice. They range from
audio representations such as short-time Fourier transform
(STFT) to high-level features such as onsets and pitch es-
timations.

• STFT provides a 2-dimensional representation of au-
dio, decomposing the frequency components. STFT is
probably the most basic (or ‘raw’) representation in VD,
based on which some other representations are either
designed and computed, or learned using deep learning
methods.

• Mel-spectrogram is a mel-scaled frequency representa-
tion and usually more compressive than STFTs and orig-
inally inspired by the human perception of speech. Be-
ing closely related to speech provides a good motivation
to be used in VD, therefore mel-spectrogram has been
actively used as an input representation of CNNs [27]
and RNNs [11]. When deep learning methods are used,
mel-spectrogram is often preferred due to its efficiency
compared to STFT.

• Spectral Features such as spectral centroid and spec-
tral roll-off are statistics of a spectral distribution of
a single frame of time-frequency representations (e.g.,
STFT). A particular and most noteworthy example
is Mel-Frequency Cepstral Coefficients (MFCCs).
MFCCs have originally been designed for automatic
speech recognition and take advantages of mel-scale
and Fourier analysis for providing approximately pitch-
invariant timbre-related information. They are often
(assumed to be) relevant to MIR tasks including VD
[12, 25]. Spectral features, in general, are not robust to
additive noise, which means that they would be heavily
affected by the instrumental part of the music when used
for VD.

3. MODELS

In this section, we introduce three recent and distinctive
VD systems that have improved the state-of-the-art perfor-
mances along with the details of our re-implementation of
them. 1 They are briefly illustrated in Figure 1, where x
and y indicate the input audio signal and the output predic-
tion, respectively.

3.1 Lehner et al. [14] (FE-VD)

This feature engineering (FE) method, FE-VD is based on
the Fluctogram, spectral flatness, vocal variance and other
hand-engineered audio features. We select this model for
its rich and task-specific feature extraction process to com-
pare with the other models. Although the features are ul-
timately computed frame-wise, context from the adjacent
frames are taken into account, supposedly enabling the sys-
tem to use dynamic aspect of the features. The features are
aimed to reduce the false positive rate caused by the confu-
sion between singing voice and pitch-varying instruments
such as woodwinds and strings. Random forest classifier
was adopted as a classifier, achieving an accuracy of 88.2%
on the Jamendo dataset. While their methods have shown
reduction in the false positive rates on strings, Lehner et al.
mentions woodwinds such as pan flutes and saxophones
still show high error rate.

Following [14], we extract 6 different audio features
(the Fluctogram, spectral flatness, spectral contraction, vo-
cal variances, MFCCs and delta MFCCs), resulting in 116-
dimensional features per frame. We use input size of

1 http://github.com/kyungyunlee/ismir2018-revisiting-svd
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Figure 1: Block diagrams for three VD systems – (a)
FE-VD [14], (b) CNN-VD [27], and (c) RNN-VD [11]. x
and y for input audio signal and output prediction (prob-
ability of singing voice). Rounded and gray blocks are
trainable classifiers or layers. The details of the features
in (a) are explained in [14]. In (c), ‘+’ indicates frequency-
axis concatenation and ‘h’ and ‘p’ are the separated har-
monic/percussive components.

1.1 seconds as the input to the random forest classifier,
where we perform grid search to find optimal parameters.
As a post-processing step, we apply the median filter of
800 ms on the output predictions.

3.2 Schlüter et al. [27] (CNN-VD)

Recently, VD systems using deep learning models have
shown the state-of-the-art results [11, 26, 27]. These sys-
tems often use basic audio representations such as STFT
as an input to the models such as CNN and RNN, expect-
ing the relevant features are learned by the model. We first
introduce a CNN-based system [27].

Schlüter et al. suggested a deep CNN architecture with
4 3-by-3 2D convolution layers. We name the CNN model
CNN-VD. As a result, the system extracts trained, rele-
vant local time-frequency patterns from its input, a mel-
spectrogram. During training, they apply data augmenta-
tion such as pitch shifting and time stretching on the audio
representation. They reported that it reduces the error rate
from 9.4% to 7.7% on the Jamendo dataset.

Our CNN architecture is identical to the original one
and uses an input size of 115 frames (1.6 sec). However,
we do not perform data augmentation or threshold opti-
mization for a fair comparison with other models. Thus,
we use 0.5 as the threshold value for the prediction. Here,
we also apply median filter of 800 ms for smoothing.

3.3 Leglaive et al. [11] (RNN-VD)

As another deep learning-based system, Leglaive et al. [11]
proposed a recurrent neural network with bi-directional
long short-term memory units (Bi-LSTMs) [6], with an
assumption that temporal information of music can pro-
vide valuable information for detecting vocal segments.
We name this system RNN-VD. For the classifier input, the
system performs double-stage harmonic-percussion source
separation (HPSS) [20] on the audio signal to extract sig-
nals relevant to the singing voice. For each frame, Mel-
spectrograms of the obtained harmonic and percussive
components are concatenated as an input for the classi-
fier. Several recurrent layers followed by a shared densely-

FE-VD CNN-VD RNN-VD

Acc.(%) 87.9 86.8 87.5
Recall(%) 91.7 89.1 87.2

Precision(%) 83.8 83.7 86.1
F-measure(%) 87.6 86.3 86.6

FPR(%) 15.3 15.1 12.2
FNR(%) 8.3 10.9 12.8

Table 2: Results of our implementations on the Jamendo
test set. FPR and FNR refer to false positive rate and false
negative rate, respectively.

connected layer (also known as time-distributed dense
layer) yield the output predictions for each input frame.
This model achieves the state-of-the-art result without data
augmentation, showing accuracy of 91.5% on the Jamendo
dataset. From this result, although the contributions from
additional preprocessing vs. recurrent layers may be com-
bined, we can assume that past and future temporal context
help to identify vocal segments.

For our RNN architecture, we use the best performing
model from the original article [11], one with three hidden
layers of size 30, 20 and 40. The input to the model is 218
frames (3.5 seconds) and the threshold value of 0.5 is used
to predict the presence of singing voice as done in [11].

4. EXPERIMENT I: ERROR CATEGORIZATION

The purpose of this experiment is to identify common er-
rors in the VD systems through our implementation of
models from Section 3. The results and observations lead
to the motivation of experiments in Section 5. Librosa [18]
is used in audio processing and feature extraction stages.

4.1 Data and Methods

Three systems (FE-VD, CNN-VD, and RNN-VD) are
trained on the Jamendo dataset with the suggested split of
61, 16 and 16 for training, validation and test sets [22], re-
spectively. They are primarily tested on the Jamendo test
set. For qualitative analysis, we also utilize MedleyDB.

4.2 Results

The test results of our implementation are shown in
Table 2. We did not focus on fine-tuning individual models
because three systems altogether are used as a tool to get
a generalized view of the recent VD systems, thus show-
ing slightly lower performances compared to the results in
original papers. Overall, FE-VD, CNN-VD and RNN-VD
show a negligible difference on the test scores. We ob-
serve trends that are similar to the original papers in terms
of performance and the precision/recall ratio.

Upon listening to the misclassified segments, we cat-
egorize the source of errors into three classes – pitch-
fluctuating instruments, low signal-to-noise ratio of the
singing voice, and non-melodic sounds.
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Song Title Confusing inst FE-VD CNN-VD RNN-VD

LIrlandaise Woodwind, Synth 46.6 29.5 22.0
Castaway Elec. Guitar 62.5 56.5 24.2
Say me Good Bye N/A 2.8 3.0 2.5
Inside N/A 5.9 6.7 5.0

Table 3: False positive rate (%) of each system for 4 songs
from the Jamendo test set. The top 2 songs are the ones
ranked within the top 5 lowest accuracy and the bottom 2
songs are the ones ranked within the top 5 highest accura-
cies at song level across all three systems.

4.2.1 Pitch-fluctuating instruments

Classes of instruments such as strings, woodwinds and
brass exhibit similar characteristics as the singing voice,
which we refer to as being ‘voice-like’ [28]. By ‘voice-
like’, we consider three aspects of the signal, namely,
pitch range, harmonic structure, and temporal dynamics
(vibrato). Especially, we find temporal dynamics as im-
portant attributes that are recognized by the VD systems to
identify vocal segments.

Frequency modulation, also known as vibrato, resem-
bles the modulation created from the vowel component of
singing voice. This is illustrated in Figure 2, where mel-
spectrograms of both female vocalist and an electric guitar
show curved lines. We observe that this similarity causes
further confusion in the system.

In Table 3, we list two songs found among the top 5
least/most accurately predicted songs in the test set of
all three systems. The woodwind in ‘05 - Llrlandaise’
causes high false positives, which may be due to the pres-
ence of vibrato and the similarity in pitch range to that of
soprano singers (above 220 Hz). FE-VD and CNN-VD
show poor performance on woodwinds, probably because
the Fluctogram of FE-VD and small 2D convolution ker-
nels of CNN-VD are specifically designed to detect vibrato
as one of the features for identifying singing voice. In the
same song, all three systems show confusion with the syn-
thesizer. Synthesizers mimicking pitch-fluctuating instru-
ments are particularly challenging as it is difficult to char-
acterize them as a specific instrument type.

In addition, electric guitars are one of the most fre-
quently found sources of false positives, as can be seen
from ‘03 - castaway’, mostly caused by the recognizable
vibrato patterns. We find the confusion worse when the
guitar is played with effects such as wah-wah, which imi-
tates the vowel sound of the human. Lastly, we note that
some of the other problematic instruments in our test sets
include saxophones, trombones and cellos, which are well-
known ‘voice-like’ instruments.

This observation, regarding the system pitfalls on vi-
brato patterns, is further investigated in Section 5.1.

4.2.2 Signal-to-noise ratio and the performance

Lastly, we note that all the three systems are affected by
the signal-to-noise ratio (SNR), or the relative gain of vo-
cal component, as one can easily expect. All of the three
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Figure 2: Excerpts of mel-spectrograms from MedleyDB:
‘Handel TornamiAVagheggiar’ with female vocalist (left)
and ‘PurlingHiss Lolita’ with electric guitar (right) (see
Section 4.2.1.)

systems exhibit high false negative rate when the vocal sig-
nal is relatively at a low level.

In systems such as FE-VD, where audio features such
as MFCCs or spectral flatness are used, the performance
varies by SNR because the features are statistics of the
whole bandwidth which includes not only the target signal
(vocal) but also additive noise (instrumental). VD systems
with deep neural networks are also not free from this issue
since the low-level operation in the layers of deep neural
networks may end up being a simple pattern matching by
computing correlation.

This is a common phenomenon in other tasks as well,
e.g., speech recognition, and we continue the discussion to
a follow-up experiment in Section 5.2 and finally a sugges-
tion on the problem definition and dataset composition in
Section 6.

4.2.3 Non-melodic Sources

Although the interest of most VD systems appears to lie
mainly in the melodic component of the song, we ex-
pected the system to learn percussive nature of the singing
voice as well, which is exhibited by consonants from the
singers. Therefore, our hypothesis is whether the system
is confused by the consonants of singing voice and percus-
sive instruments, resulting in either i) missing consonant
parts (false negative) or ii) mis-classifying percussive in-
struments (false positive).

From our test results, we encounter false positive seg-
ments containing snare drums and hi-hats, but the exact
cause of this misclassification is unclear. We further tested
the system with drum set solos for potential false positives
and with a collection of consonant sounds such as plosives
and fricatives from the human voice for potential false neg-
atives, but we did not observe a clear pattern in misclassifi-
cation. Although we do not conduct further experiment on
this, it suggests a deeper analysis, which may also lead to
a clear understanding of preprocessing strategies including
HPSS.

5. EXPERIMENT II: STRESS TESTING

5.1 Testing with artificial vibrato

Based on the confusion between ‘voice-like’ instruments
and singing voice, we hypothesize that the current VD sys-
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tems use vibrato patterns as one of the main tools for vocal
segment detection. We explore the degree of confusion for
each VD system by testing them on synthetic vibratos with
varying rate, extent and formant frequencies.

5.1.1 Data Preparation

We create a set of synthetic vibratos with low pass-filtered
sawtooth waveforms with f0=220 Hz. We vary the modu-
lation rate and frequency deviation (f∆) to investigate their
effects. Furthermore, we apply 5 bi-quad filters at the cor-
responding formant frequencies (3 for each) to synthesize
so that they would sound like the basic vowel sounds, ‘a’,
‘e’, ‘i’, ‘o’, ‘u’ [29]. The modulation rate ranges in {0.5,
1, 2, 4, 6, 8, 10 Hz} and the frequency deviation ranges in
{0.01, 0.1, 0.3, 0.6, 1, 2, 4, 8 semitones} with respect to its
f0). As a result, the set consists of 7 (rates) ×8 (f∆’s) ×6
(5 formants + 1 unfiltered) = 336 variations.

5.1.2 Results

Figure 3 shows the result of the prediction by the three VD
systems on the synthetic vibratos. The accuracy of 1.0 in-
dicates that the system does not confuse the artificial vi-
bratos with singing voice. Here, we observe the perfor-
mance difference of each model, which were not visible
from looking at the scores in Table 2. In general, confu-
sion areas tend to be concentrated on the bottom left to the
center area of the graph. The extent and rate of the artifi-
cial tones that are highly misclassified seem to be around
the range of vibratos of singers, which is said to be around
0.6 to 2 semitone with rate around 5.5 to 8 Hz [30]. We
also observe a within-system difference, i.e., the presence
and the type of formants affect the models. For instance,
vibratos mimicking the vowel ‘a’ cause higher misclassifi-
cation in all three models.
FE-VD performs much better than the latter two sys-

tems. Note that FE-VD is a feature engineering model,
where unique features, such as the Fluctogram and vocal
variance, are mostly adapted from the ones used in speech
recognition task. As these features were intentionally de-
signed to reduce false positives from pitch-varying instru-
ments, it appears to significantly reduce error rate on vi-
bratos with rate and extent that are beyond the range of
human singers.
CNN-VD confuses slightly wider range of vibratos.

This is expected to some extent since the model promi-
nently uses 3×3 filters on mel-spectrogram to detect local
features, which can be regarded as a local pattern detector.
In other words, the locality of CNN results in a system that
is easily confused by frequency modulation regardless of
the non-singing voice aspects of the signal. This implies
that the model may benefit from looking at a varying range
of time and frequency to learn vocal-specific characteris-
tics such as timbre [21].

Lastly, RNN-VD performs better than the CNN-VD,
though worse than FE-VD. On detecting vocal and non-
vocal segments, it seems natural, even for humans, that
past and future temporal context help. Also, we presume
that the preprocessing of double stage HPSS contributes to
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Figure 3: Heat-maps of the accuracies of the vibrato
experiment result. Each row corresponds to VD sys-
tems (FE-VD, CNN-VD, RNN-VD) and each column cor-
responds to the formant (unfiltered, ’a’, ’e’, ’i’, ’o’, ’u’).
Within each heat map, x- and y-axes correspond to the
vibrato rate and frequency deviation as annotated on the
lower-left subplot (see Section 5.1)

the robustness of the system against vibrato. Again, this
observation leaves a question of separating the contribu-
tions from preprocessing and model structure.

5.2 Testing with SNR
In this experiment, VD systems are tested with vocal gain
adjusted tracks to further explore the behavior of the sys-
tems on various scenarios, which can reflect the real-world
audio settings of live recordings and radios, for example.

5.2.1 Data preparation

We create a modified test set using 61 vocal-containing
tracks provided by MedleyDB. We use the first 30 seconds
of the songs to build a pair of (vocal, instrumental) tracks.
Vocal tracks are modified with SNR of {+12 dB, -12 dB,
+6 dB, -6 dB, 0 dB}.
5.2.2 Results

The results of the energy level robustness test are presented
in Figure 4 with false positive rate, false negative rate, and
overall error rate. We see a consistent trend across the per-
formance of all three VD systems, which is once again an
expected pattern as aforementioned in Section 4.2.2 – that
increasing SNR helps to reduce false negatives. Overall er-
ror rate also exhibits a noticeable decrease in common with
higher SNRs. In practice, one could take advantage of data
augmentation with changing SNR to build a more robust
system. More importantly, it can be part of the evaluation
procedure for VD, as we discuss in Section 6.

While the VD systems behave similarly on all test
cases, we note that FE-VD, owing to its additional fea-
tures, shows lowest variance and lowest value for the false
positive rate. Also, our assumption that the double-stage
HPSS, which filters out vocal-related signals, would make
RNN-VD more robust against SNR is observed to be not
necessarily true as we clearly see performance differences
across the varying SNR test cases.
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Figure 4: False positive rates, false negative rates, and overall error rates for the three systems in the stress testing with
controlling SNR (see Section 5.2).

6. DIRECTIONS TO IMPROVE

6.1 Defining the problem and the datasets

6.1.1 Defining singing voice

By using the annotations in datasets such as Jamendo,
many VD systems implicitly assume that the target
‘singing voice’ is defined as vocal components that corre-
spond to the main melody. Other voice-related components
such as backing vocal, narration, humming, and breathing
are not clearly defined to be singing voice or not.

In some applications, however, they can be of interest.
For example, a system may want to find purely instrumen-
tal tracks, avoiding tracks with backing vocal. In this case,
the method should consider backing vocal as singing voice.
However, for Karaoke applications, only the singing voice
of the main melody would matter.

Therefore, an improvement can be made on defining the
VD problem and creating datasets. For the annotation, a
hierarchy among the voice-related components can be use-
ful for both structured training and evaluation of a sys-
tem [17, 23]. For the audio input, we see a great benefit
of multitracks, where main vocal melody, backing vocal,
and other components are provided separately.

6.1.2 Varying-SNR scenarios

For a long while, varying SNR had been one of the com-
mon ways to evaluate speech recognition or enhance-
ment using dataset such as Aurora [5]. As observed in
Section 4.2.2, it can be used as a ‘test-set augmentation’
to measure the performance of a system more precisely.
Also, it can be an additional data augmentation method
along with the ones in [27] to build a VD system more
robust to various audio settings, such as audios from user
generated videos. These can both be easily achieved with
a multitrack dataset in practice.

6.1.3 Measuring dataset noise

Human annotators are neither perfect or identical, thus
causing annotation noise and disagreement. Since VD is
a binary classification problem, we may remain optimistic
by assuming that the annotation noise is a matter of tem-
poral precision, which is arbitrary and not agreed among
many datasets so far. For example, in RWC Popular Music
[16], “short background segments of less than 0.5-second
duration were merged with the preceding region” and the
annotations have 8 decimal digits (in second), while in Ja-
mendo, they are 3 decimal digits. The optimal precision

may depend on human perception of sound which is often
said around 10 ms in general [19]. Although it would re-
quire a deeper investigation, the current temporal precision
may be too high, leading to evaluate the systems with an
overly precise annotation.

6.2 Learning from human perception

The characteristic of voice was the main motivation in the
very early works exploiting speech-related features [1,10].
Clearly, however, those approaches that solely relied on
speech features showed limited performances. While fol-
lowing works has improved the performance, as our exper-
iments have demonstrated through this paper, the systems
do not completely take advantage of the cues that human is
probably using, e.g., the global formants, linguistic infor-
mation, musical knowledge, etc.

6.3 Preprocessing

A light-weight VD system was introduced in [12] where
only MFCCs were used to achieve an accuracy of 84.8%
on the Jamendo dataset. This implies that there is a possi-
bility to achieve better performance by optimizing the pre-
processing stage. One of the unanswered questions is the
effect of the preprocessing stage in RNN-VD [11] as well
as whether similar processing could lead to better perfor-
mance with other systems, e.g., CNN [27].

7. CONCLUSIONS

In this paper, we suggested that there still are several areas
to improve for the current singing voice detectors. In the
first set of experiments, we identified the common errors
through error analysis on three recent systems. Our obser-
vations that the main sources of error are pitch-fluctuating
instruments and low signal-to-noise ratios of the singing
voice motivated us to further perform stress tests. Test-
ing with synthetic vibratos revealed that some systems
(FE-VD) are more robust to non-vocal vibratos than others
(CNN-VD and RNN-VD). SNR-varying test showed that
SNR manipulation greatly affects the current VD systems,
thus it can potentially be used to strengthen the VD sys-
tems to become invariant to a wider range of audio settings.
As we propose several directions for a more robust singing
voice detector, we note that defining the VD problem is
dependent on the goal of the system, thus using multitrack
datasets can be beneficial. Our future interest is to further
investigate on SNR to extend VD systems on uncontrolled
audio settings and to examine different components of in-
dividual systems, including the preprocessing stage.
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ABSTRACT

In music information retrieval, we often make assertions
about what features of music are important to study, one of
which is vocals. While the importance of vocals in music
preference is both intuitive and anticipated by psychologi-
cal theory, we have not found any survey studies that con-
firm this commonly held assertion. We address two ques-
tions: (1) what components of music are most salient to
people’s musical taste, and (2) how do vocals rank relative
to other components of music, in regards to whether people
like or dislike a song. Lastly, we explore the aspects of the
voice that listeners find important. Two surveys of Spotify
users were conducted. The first gathered open-format re-
sponses that were then card-sorted into semantic categories
by the team of researchers. The second asked respondents
to rank the semantic categories derived from the first sur-
vey. Responses indicate that vocals were a salient compo-
nent in the minds of listeners. Further, vocals ranked high
as a self-reported factor for a listener liking or disliking
a track, among a statistically significant ranking of musi-
cal attributes. In addition, we open several new interesting
problem areas that have yet to be explored in MIR.

1. INTRODUCTION

The Music Information Retrieval (MIR) community has
historically focused on content-based understanding of
music. The type of content-based analysis studied over
time is typically driven by the data available to the task, or
the interests of the specific researchers. An alternative mo-
tivator could be to study topics that are salient in the minds
of listeners, especially with respect to listener’s musical
preference. Specifically, understanding which attributes of
music contribute the most to music preference, and their
relative weight, could help guide research efforts. One at-
tribute of music we would expect to be salient in the minds
of listeners is the singing voice.

Psychology research anticipates the importance of the
human voice as a salient stimulus, and as a component of
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music in particular. The human ability to communicate
exceeds that of any other species studied thus far, with
both speech and singing being cultural universals reliant
on vocal production. It is theorized that the advanced hu-
man ability to communicate, discriminate, and to experi-
ence emotional responses in vocalizations has allowed for
the emergence of music [8]. Our emotions are often ac-
companied by involuntary changes in our physiology and
nonverbal expressions, such as facial expressions and vo-
calizations [15]. Our reactions to the emotional content
expressed in the vocals in music may have similar effects.
As such, much psychological research has focused on the
singing voice even more than speech, due to the precision
required to execute and process musical vocalizations [5].
This makes musical vocals a well-anticipated candidate for
study as a feature of music, as we would expect people to
have a sophisticated ability to deliver, empathize with, and
process vocal communications.

We would therefore expect that the vocals in music
would be an especially salient component, if not the most
salient. While a complete review is beyond the scope of
this paper, some research is particularly worth noting. For
example, it has been shown that both adults [18] and chil-
dren [17] recall melodies more correctly when sung with
the voice than when played with instruments. Hutchins
and Moreno [5] review literature that shows relatively pre-
cise perception of pitch in the human voice, yet fewer no-
ticeable pitch errors in the voice relative to musical in-
struments or synthesized voices [6]. Neuroscience stud-
ies show specific areas of the brain involved in processing
human voices [2]. Although similar regions of the brain
are involved in processing both music and voices, there is
differential processing of the human voice relative to mu-
sic [1]. As such, the human voice may be processed as a
uniquely significant sound.

However, while prior research suggests that vocals
would be especially relevant to music preference, no study
to our knowledge has assessed the importance of the voice
in music, relative to other musical components. To address
this gap, we test the hypothesis that the voice is as or more
important than other musical components across implicit
and explicit datasets, using traditional social science tech-
niques, as well as data mining techniques. First, we mine
data available from Spotify, including playlist titles, search
data and artist biographies, to test whether terms related to
vocals are prevalent. However, we show that the results
of the data mining are inconclusive as to whether or not
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vocals are salient in the minds of listeners. Specifically, it
is not clear whether the vocals can be disentangled from
other factors in playlist titles and search queries, such as
genre. For more conclusive results, we gather data from
users explicitly. To this aim we conduct two online sur-
vey studies: the first gathered subjective data on the salient
components of music directly from listener reports, which
were separated into semantic categories using card-sorting.
The second asked participants to rank the semantic cate-
gories from the first study in terms of importance to their
musical preference. We conclude that two aspects related
to the voice are especially salient, namely the voice itself,
and the lyrics of the song. Furthermore, we highlight the
importance of gathering explicit data to complement im-
plicit techniques, in situations where factors may not be
easily disentangled.

2. VOCALS IN SEMANTIC DATA

Prior research has shown that semantic descriptors of mu-
sic may be an appropriate means for users to query music
databases [12]. Given the large amount of semantic data
available to Spotify such as playlist titles, search results,
and artist biographies, one might hypothesize that terms
describing the vocals would commonly appear in this im-
plicit data.

2.1 Playlist Tags and Search Queries

Non-common words or groups of words and emojis ap-
pearing in the titles of a large number of Spotify’s user-
generated playlists were aggregated to create a list of the
1000 most frequently occurring tags. Each of these 1000
tags was assigned a category by a professional curator
based on the tag itself and information from the tracks
most frequently associated with the tag. The categories,
determined by the curator, were Genre (e.g. “K-Pop”),
Mood (e.g. “sad”), Activity (e.g. “gym”), Popularity
(e.g. “Today’s hits”), Artist (e.g. “Justin Timberlake”), Era
(e.g. “70’s”), Culture (e.g. “Latin”), Lyrics (e.g. “clean”),
Rhythm (e.g. “groove”), Instrument (e.g. “guitar”), Tempo
(e.g. “slow”), Voice (e.g. “female singers”), or Other
(e.g. “favorites”, “Jenna”, “hi”). The percentage of
playlists containing each of these tag categories is dis-
played in Figure 1, top.

Surprisingly, we see that tags explicitly related to vocals
are not at all common compared to other types of tags, with
the most common tags being related to genre, mood, or ac-
tivity. Playlist titles can be viewed as labels for groups of
music, and this analysis suggests that people do not often
label groups of music based on explicit characteristics of
the vocals. However, specific vocal characteristics (as well
as many other musical attributes) may be implicit in many
of the other tag categories, particularly for genre, mood,
and artist. As vocal delivery style and genre are closely re-
lated, emotions communicated by the voice and the mood
of the collection of songs may be related, and as each artist
has a unique voice, we conclude that the relative weight of
vocals may not have been disentangled from other factors.
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Figure 1: (Top) Percentage of Spotify playlists containing
one of the top 1000 tags corresponding to each category.
(Middle) Percentage of descriptive search queries corre-
sponding to each tag category, sampled from one day of
search data. (Bottom) tf-idf for each term category in artist
biographies compared with Wikipedia term frequencies.

We perform a similar analysis on descriptive terms from
one day’s worth of Spotify search queries, and obtained
similarly inconclusive results, shown in Figure 1, middle.

2.2 Artist Biographies

Finally, we analyze descriptive terms that occur in 100,000
professionally authored artist biographies on Spotify. We
use TF-IDF [16] to retrieve terms that are distinctive to
music writers, by comparing the frequency of terms in
artist biographies to the frequency of the same terms in
Wikipedia. The 100 most distinctive terms, grouped into
semantic categories, are displayed in Figure 1, bottom.
While many terms are much more frequent in music text
(e.g. “bassist”, “jazz”, “songwriter”), vocals specifically
were not more frequently mentioned than other musical as-
pects. One can hypothesize that the TF-IDF method is in-
sufficient for this particular task, due to vocals being com-
monly discussed outside the context of music, and thus a
relatively more common word in Wikipedia.

2.3 Conclusions

Our results thus far do not show support for our general hy-
pothesis. It may be the case that the intuitive notion of the
relevance of vocals to user preference is misleading. On
the other hand, it may also be the case that the importance
of vocals is implicit in this data, as certain vocal styles are
indicative of genre or mood. As such, the overlap between
the voice and a number of the tags and descriptors ana-
lyzed prevents us from disentangling the unique effect of
the voice from other musical components.
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3. VOCALS IN SURVEY DATA

In order to disentangle the unique effect of the voice among
other components, we gathered explicit data from users.
Specifically, we conducted two online survey studies in or-
der to collect self-reported data on 1) the salient compo-
nents of music, and 2) their relative ranking. Unlike prior
surveys, such as [12] that presented users with short musi-
cal excerpts and groupings of adjectives to rate, we allowed
the users to freely enter their responses to the question
”When you listen to music, what things about the music
do you notice?”. This allowed us to assess whether vocals
would emerge as a salient component of music. In addi-
tion, we explored what aspects of the voice users report as
being important to their musical taste.

3.1 Survey 1: Semantic Components of Music

The aim of our first survey was to establish an unranked set
of self-reported salient components of music. While our
hypothesis was that the vocals would be prominent, it was
crucial to avoid biasing respondents as the data collected
were explicit. As such, our first survey asked participants
what they notice when listening to music that might make
them like or dislike a song. We deliberately did not spec-
ify anything further, such as the type of music, or that we
were interested in components of music, nor were partici-
pants asked to listen to musical excerpts so as not to bias
responses. As an exploratory measure, we then asked par-
ticipants to describe what about vocals specifically might
make them like or dislike a song after the previous open
ended questions, so as not to bias responses. Responses to
these two open-response questions were manually sorted
into semantic categories by the researchers.

3.1.1 Recruitment

A random sample of 50,000 people was drawn from the
database of Spotify’s Monthly Active Users (MUAs), di-
vided approximately equally between the United States
and Canada. 860 individuals responded to the survey, how-
ever 224 did not respond to any questions beyond the con-
sent form, and 9 were removed for giving nonsensical re-
sponses. 626 individuals — 338 women (average age 33.6
years with a standard deviation of 16.1); 288 men (aver-
age age 30.6 years with a standard deviation of 15.5) —
completed the survey in its entirety.

3.1.2 Survey

An online consent form was first presented to respondents.
We then asked:

Q1: When you listen to music, what things about
the music do you notice? Please list as many as you
can think of here:

The respondents were shown a screen with open-
response format fields to complete, in which they could
complete up to seven fields. On the following screen, re-
spondents were presented with a list of their responses in
random order, and asked:

emotions If it doesn’t feel like there’s emotion behind it, or
somehow lacking.

emotions When I can either relate or empathize with them
and when the song projects the emotions onto me.

Figure 2: Survey 1 sample answers for Q3. (Top) Card for
an answer to Q3a. (Bottom) Card for an answer to Q3b.

Q2: Please rank how important the aspects you
listed are to your musical preference, where 1 is
the most important.

They were then asked the following two questions about
the items they ranked from 1 to 3:

Q3: (a) What about would make you like a
song? (b) What about would make you dislike
a song?

Lastly, to explore what aspects of vocals may be rele-
vant, participants responded to the following:

Q4: (Please ignore these questions if you’ve
already mentioned the vocals, the voice, the
singer/rapper etc.) (a) When would vocals make
you like a song? (b) When would vocals make you
dislike a song?

They were then given the opportunity to comment on
the survey, and were shown a final debriefing screen.

3.1.3 Semantic Categorization

A number of partially completed surveys contained re-
sponses sufficiently complete for card sorting. 317 suffi-
cient responses — 262 from the completed surveys as well
as 55 sufficiently complete partial – were then card-sorted
by a team of researchers. Card-sorting is a common tech-
nique used in social sciences and elsewhere to discover
clusters of related concepts [14]. Traditionally, individuals
are presented with physical paper “cards” that have terms
and/or descriptions printed on them, printed pictures, or a
group of objects. They are then asked to group items in a
way that makes sense, given the research question. Here,
we apply card-sorting to derive semantically meaningful
groupings of musical components from the freely entered
words and phrases that participants entered in each field.

Participant responses to Q1 (i.e. “When you listen to
music, what things do you notice?”) were printed twice,
once next to their response to Q3a (“What about would
make you like a song?”), and again next to the response
to Q3b (“What about would make you dislike a song?”).
As such, researchers had respondents’ top 3 terms printed
out twice, once next to the positive descriptive aspects of
the term, and once next to the negative descriptive aspects.
A term (e.g. “the lyrics”) and its descriptor (e.g. “when
they have meaning”) comprised a card. Figure 2 shows
examples of positive and negative cards that were used in
card sorting.

As some responses were unclear (e.g. “the melody” was
mentioned, but the descriptor clearly focused on the qual-
ity of the singer’s voice), the research team was instructed
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to look at both the term and its descriptor when determin-
ing its semantic category. The researchers then reviewed
the cards a second time, and defined sub-categories where
necessary.

3.1.4 Results

The output of this study was two sets of semantic cate-
gories: broad semantic categories of music, and vocal-
specific semantic categories. Statistical testing was not
possible, given the intentionally imprecise nature of the re-
sponses. However, out of the 626 responses to the first
question, 186 (29.7%) mentioned the vocals, the voice, or
the singer, 348 (55.6%) mentioned the lyrics, or the words,
and 101 (16.1%) mentioned both. While this is no indi-
cation of relative importance, it does demonstrate that the
voice and the lyrics were salient musical components to
our respondents.

The broad semantic categories determined by the re-
searchers are presented in the left column of Table 1 (note
that the other results in Table 1 are from Study 2). The
category of Emotion/mood referred to the ability of a song
to evoke emotion, whether the emotion was a match or a
mismatch to the current or desired mood or current activ-
ity, whether the emotion was desirable or undesirable, and
nostalgia. Voice included genre related terms (e.g. mum-
ble rap, metal, auto-tune, speechiness/rapping), descrip-
tions of how the voice is used (e.g. unique/novel, scream-
ing, pitch/pitch range, presence or absence of effects,
intensity/effort/power, emotionality, authenticity, whini-
ness/nasality, melodic-ness), skill, the innate qualities of
the voice, liking/disliking, and the mix/blend. The Lyrics
category represented items that indicated whether or not
lyrics were present, their intelligibility, the presence of
profanity, how “well” crafted they were, the “message”,
the meaning behind them or general lyrical content and
how relatable they are. Beat/Rhythm referred to whether
it was liked/disliked, whether it “fit” the song, danceabil-
ity, and uniqueness. The Structure/complexity of songs in-
cluded liking or disliking the hook or chorus, and the song
length. Instrumentation referred to drums, bass, and guitar.
Sound referred to audio quality and related concerns. Self-
explanatory categories included Tempo/BPM, the mention
of a Specific Artist, Genre, Harmony, Chords, Musician-
ship, Melody, and Popularity/Novelty.

3.2 Survey 2: Component Ranking

While the first study aimed at determining what attributes
of music were salient in the minds of listeners, the aim
of the second survey was to determine the relative impor-
tance of each of the components. Specifically, we explored
whether the voice would be ranked highest among a list of
musical attributes. To accomplish this, participants were
asked to rank a list of attributes derived from the results of
our first survey, thus allowing an assessment of whether or
not vocals rank above other components.

3.2.1 Recruitment

A randomized sampling method was employed among the
database of Spotify’s Monthly Active Users (MAUs) that
had not opted-out of email correspondence. An email
with a link to an online survey was sent to 50,000 poten-
tial respondents, approximately equally divided among the
United States and Canada.

A total of 531 respondents — 263 of which were
women (average age 31.8 years, with a standard deviation
of 16.5); 268 were men (average age 34.2 years, with a
standard deviation of 14.8) — completed the survey in its
entirety. 429 participants completed the first half of the sur-
vey (broad semantic categories), whereas 360 participants
completed the second half (vocal semantic categories).

3.2.2 Survey

An online consent form was first presented to respondents.
The derived semantic categories were rephrased to be more
easily understood (see Table 1, Description). Participants
were presented with the new list of descriptions in random
order, and asked to “Please click all the items below that
would make you like or dislike a song.” They were then
presented with a list of all the items they had clicked, also
in random order, and asked to rank them.

As a continuation of our exploratory study of vocal
characteristics, a second list was then presented, comprised
of terms derived from the vocal and lyrics semantic cate-
gories. For clarity, the terms were rephrased as they appear
in Table 2.

3.2.3 Analytic Strategy

Responses were subjected to Borda counting [3] and Ro-
bust Rank Aggregation [9]. Borda counting is a sim-
ple procedure for aggregating votes by summing ranks.
The Borda score Bi for an item i is computed as Bi =∑N

p=0 (|rp| − rp,i) where N is the number of participants,
rp,i is participant p’s rank of item i, starting at zero, and
|rp| is the number of items ranked by p. The Borda method
does not naturally extend to partial lists [4] — we have cho-
sen to award higher scores to preferred items in long lists.

To verify the statistical significance of our findings we
supplement the Borda count with Robust Rank Aggrega-
tion (RRA), in which we compare our survey results to a
null hypothesis. Each item receives a score based on its
observed position, compared to an expected random order-
ing. Upper bounds to p-values are computed using Bonfer-
roni correction, with values of 1.0 indicating null findings.
In this work we used the implementation provided by the
ROBUSTRANKAGGREG package 1 .

3.2.4 Results and Conclusion

Results can be found in Tables 1 and 2, with categories
ordered by descending Borda count. We are able to show
statistical significance of both the most salient broad and
vocal semantic categories. Importantly, our results show
that the Vocals and Lyrics ranked second and third among

1 cran.r-project.org/web/packages/
RobustRankAggreg
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Broad Semantic Category Description Borda score p-value
Emotion/mood How it makes you feel - the emotions/mood 4641 <0.001
Voice Voice/vocals 3688 <0.001
Lyrics Lyrics 3656 <0.001
Beat/rhythm Beat/rhythm 3460 <0.001
Structure/Complexity How it’s composed, the hook, the structure 2677 1.000
Musicianship Skill of the musicians, musicianship 2583 1.000
Melody The main melody 2577 1.000
Sound The “sound”, or the recording quality 2406 1.000
Specific Artist The specific artist 2349 1.000
Genre The specific genre 2293 1.000
Instrumentation The musical instruments (e.g. drums, bass, guitar) 2084 1.000
Tempo/BPM How fast or slow the song is 1828 1.000
Harmony Harmony 1763 1.000
Chords The chords 1086 1.000
Popularity/Novelty How popular or unique it is 777 1.000

Table 1: Broad semantic categories and their clarifying descriptions created during Study 1, ordered by rankings from Study
2 (see Study 1 results for attribute descriptions). The Borda scores and p-values from Study 2 are reported in columns 3
and 4. Statistically significant p-values are shown in bold. p-values of 1.000 indicate that the ranking is no different from
random.

the list of components (Borda scores and RRA agree on the
order of the first four broad categories). This indicates that,
relative to other musical components, respondents overall
indicated the importance of the vocals and lyrics.

4. NEW AVENUES FOR RESEARCH

While the musical attributes related to the broad musical
categories (Table 1) are well studied in MIR, the attributes
related to vocals (Table 2) present a number of exciting and
unexplored research directions. A limiting factor to study-
ing some of these problems, as is often the case, is the
availability of data, and we encourage researchers to focus
data collection efforts in these areas as well. A further lim-
iting factor is that users of online musical platforms may
come from a specific demographic, e.g. regular internet
users typically younger than 35, who engage in music re-
lated activities in about one third of the online time, have
had at least some musical education, and have a preference
for pop, rock and classical music [12]. In addition, our
sample was derived from the U.S. and Canada. As such,
a cross-cultural sample may differ in their relative prefer-
ence for vocals.

Our exploratory data suggest that there is a vast space of
research in tagging and measuring different qualities of the
singing voice, such as whether a singing voice is authentic,
powerful, natural, melodic, nasal, or emotional (Table 2,
rows E, H, I, K, M and G). In addition to these categories,
determined by untrained listeners, there are a number of
other more specific categories such as modes of phonation
that could be explored. Further, in addition to vocal qual-
ities, there are genre-centric vocal styles, such as identify-
ing rap or screaming (Table 2, rows S and O).

Another interesting and (as far as we are aware) unex-
plored research area is to measure whether a voice fits or

blends well with the background music (Table 2, row B).
This is somewhat related to the problem of determining
“mashability” in automatic-mashup generation. This is a
broad problem that is likely based on many factors, such
as the style of the vocalist compared to the background,
the way the song is mixed, and the overall expectations of
the musical genre. We suspect this could be most easily
studied when isolated vocals/backgrounds are available in
order to automatically generate examples of vocals that do
not match the background by blending random combina-
tions.

The problem of identifying whether a voice is “unique”
is likely challenging (Table 2, row F), as it is not necessar-
ily a quality that can be determined in isolation, but rather
relative to many other voices. One possible approach to
this problem would be to treat the problem as one of out-
lier detection.

Production effects applied to the singing voice are in-
creasingly common, especially different types of distor-
tion or the infamous auto-tune (Table 2, row Q). Auto-
matic identification of these production effects presents an
interesting challenge, and one where data could be auto-
matically generated with the help of plugins for generating
effects and databases with isolated vocals with correspond-
ing backgrounds.

Measuring the relatability (Table 2, row J) of a singer
is a quality that is relative to the listener, rather than abso-
lute. Factors that could affect a singer’s relatability could
include the age, gender, culture or language of the singer
relative to the listener, which might require automatic iden-
tification of each of these attributes of the singer.

Lyric intelligibility (Table 2, row L) has not been well
studied, and also presents a novel challenge [7]. This prob-
lem does not necessarily directly require lyric transcrip-
tion, and may be able to be determined from qualities of
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Vocal Semantic Categories Borda score p-value
A Singing skill 3423 <0.001
B How well the voice fits or matches the rest of the music 3380 <0.001
C Lyrical skill / cleverness / wit 3145 <0.001
D The meaning, or the “message” of the words 3038 0.048
E Authenticity / “realness” 2884 <0.001
F Uniqueness 2780 <0.001
G If the voice is emotional 2771 0.006
H Voice strength / intensity / effort 2721 1.000
I If the voice sounds natural 2480 1.000
J Being able to relate 2256 1.000
K If the voice is melodic 2202 1.000
L Whether or not you can understand the lyrics 2056 1.000
M If it’s whiny or nasal 1801 1.000
N Whether or not there’s screaming 1771 1.000
O The overall pitch, or the range of the pitch 1400 1.000
P Whether or not there are lyrics 1250 1.000
Q Whether it has production effects on it, like autotune 1230 1.000
R Profanity, explicit lyrics 1086 1.000
S Whether or not there is rapping 909 1.000

Table 2: Vocal-specific semantic categories from Study 1, ordered by rankings from Study 2. Columns 2 and 3 show the
Borda scores and p-values. Statistically significant p-values are shown in bold. p-values of 1.000 indicate that the ranking
is no different from random.

the audio. Similarly, determining whether a singing voice
contains lyrics or is wordless has not been studied (Table 2,
row P).

Automatic lyric transcription has been studied [11, 13]
but is not yet solved, and would power the automatic esti-
mation of many of these vocal attributes. For lyric-related
terms, given textual lyrics, while some attributes would be
relatively simple to estimate (e.g. whether or not there is
profanity), others present interesting NLP challenges, such
as estimating whether the lyrics are “clever” or are “mean-
ingful” (Table 2, rows R, C, and D).

5. DISCUSSION AND CONCLUSIONS

While our analyses of playlist titles and search queries
were inconclusive, we show evidence that English-
speaking respondents from the U.S. and Canada clearly
indicated that the voice is a salient component of music.
Specifically, Spotify users were asked what they notice
about music while listening. Despite the unassuming na-
ture of the question, our results showed that the voice was
indeed salient among the group of reported musical at-
tributes. Furthermore, users ranked the voice as the second
most important component to their musical preference, af-
ter emotions.

Our results have a number of implications. With re-
gards to MIR research specifically, our results suggest that
the voice and lyrics are indeed relevant attributes that war-
rant further study. While individuals may not necessarily
want or know how to describe vocals themselves, i.e. in
their playlists or search queries, surveying listeners di-
rectly does indicate that they find vocals to be important.

As such, clarifying how the voice relates to music prefer-
ence is an important topic for future research.

Secondly, users indicated that the ability of a song to
evoke emotions was the most important factor. This con-
firms findings in prior research of the relevance of emo-
tional content in music, and how it is linked to musical
preference, e.g. [10]. Therefore, examining how music af-
fects the emotions of listeners remains an important theme.
Interestingly, while genre was the most frequent term used
to label playlists or search for music, respondents did not
rank the specific genre as important relative to the other at-
tributes. Understanding why this is the case warrants fur-
ther study.

More relevant to our hypothesis, is that the vocals and
the lyrics of a song were ranked second and third by re-
spondents who were directly asked what components of
music are important to their preferences. Therefore the
link between emotions perceived in the voice and lyrics,
and the emotions felt in listeners, is very relevant to ques-
tions of music preference. Clarification of these links was
out of scope in these studies, and could be addressed in
future research.

Lastly, we show the relevance of explicitly collected
data that might guide future research. While we showed
inconclusive findings regarding the prevalence of vocals in
implicit data, we did show that the unique effect of vocals
on music preference may be observed using survey data.
As such, explicit data-gathering techniques often found in
the social sciences, as well as collaborations with social
scientists, may be of great use to MIR researchers.
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ABSTRACT

The melody extraction problem is analogue to semantic
segmentation on a time-frequency image, in which every
pixel on the image is classified as a part of a melody object
or not. Such an approach can benefit from a signal process-
ing method that helps to enhance the true pitch contours on
an image, and, a music language model with structural in-
formation on large-scale symbolic music data to be trans-
fer into an audio-based model. In this paper, we propose
a novel melody extraction system, using a deep convolu-
tional neural network (DCNN) with dilated convolution as
the semantic segmentation tool. The candidate pitch con-
tours on the time-frequency image are enhanced by com-
bining the spectrogram and cepstral-based features. More-
over, an adaptive progressive neural network is employed
to transfer the semantic segmentation model in the sym-
bolic domain to the one in the audio domain. This pa-
per makes an attempt to bridge the semantic gaps between
signal-level features and perceived melodies, and between
symbolic data and audio data. Experiments show compet-
itive accuracy of the proposed method on various datasets.

1. INTRODUCTION

Melody extraction of polyphonic music has been ac-
counted a key towards bridging the semantic gap in music
processing, as melody is an intermediate object that corre-
lates to both low-level signal attributes such as pitch and
high-level semantics, i.e. the difference between melody
and accompaniment, of music [3, 12, 29]. However, it is
challenging because the notion of melody is complicated
by two levels of information extraction and data modali-
ties. For information extraction, both pitch detection and
semantic segmentation levels are required to specify the
position and shape of a melody out of other pitch con-
tours in a time-frequency representation. As to data modal-
ities, the problem arises from the difference of melody-
related features between the composed data (e.g., sym-
bolic data such as MIDI) and the performed data (e.g., au-
dio data): the former provides structural information such

c© Wei-Tsung Lu and Li Su. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Wei-Tsung Lu and Li Su. “Vocal melody extraction with seman-
tic segmentation and audio-symbolic domain transfer learning”, 19th In-
ternational Society for Music Information Retrieval Conference, Paris,
France, 2018.

as voiced/unvoiced segments and chord/non-chord notes,
while the latter provides interpretational information such
as sliding and vibrato. Both kinds of information are es-
sential for accurately identifying the melody pitch contour.

We perform vocal melody extraction using semantic
segmentation techniques. Semantic segmentation parti-
tions an image into semantically meaningful objects with
precise boundaries. Rendered as a pixel-wise classifica-
tion problem and able to be implemented by an encoder-
decoder network with 2-D convolutional feature mappings,
it brings great success in computer vision [6,7,14,25]. Se-
mantic segmentation also makes a breakthrough in solving
the source separation problem in music processing [17],
which analogously needs to resolve components coexist-
ing in a time-frequency image. In this work, a deep con-
volutional neural network (DCNN) is adopted with dilated
convolution for semantic segmentation as it achieves better
performance in multi-resolution images.

To fully utilize the advance of semantic segmentation
in vocal melody extraction, we further attend to the afore-
mentioned issues, pitch detection and multiple data modal-
ities, both of which are absent from typical image-based
semantic segmentation. For pitch detection, we notice that
when performing melody extraction with semantic seg-
mentation, the spectrogram is usually suboptimal since
it captures the harmonic peaks and information unrelated
to the melody, which accounts for one of the major er-
rors among all the melody extraction methods. This issue
is addressed by modifying the spectrogram with cepstral-
features, which results in a novel time-frequency represen-
tation that enhances the true pitch contour while also sup-
presses harmonic contours [26, 32].

The modality difference between symbolic and audio
data is relatively less noticed in melody extraction. We
address this issue with transfer learning: we first train
a melody extraction model with symbolic data, and the
model parameters are then reused in the vocal melody ex-
traction model trained with audio data. In this way, the
symbolic-based model assists in music language modeling
that audio-based models may fall short of. Incorporating
symbolic music data is of great potential to mitigate the
data scarcity problem, since building a symbolic dataset
with melody annotations is much easier than building an
audio one, and it is also very straightforward to perform
data augmentation on symbolic data. In this work, we
adopt the progressive neural network (PNN) [1], a network
structure providing cross-domain network parameter shar-
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ing to accomplish symbolic-audio transfer learning task.
To sum up, this paper attempt to apply image seman-

tic segmentation to vocal melody extraction, forming a
systematic method to perform singing voice activity de-
tection, pitch detection and melody extraction all at the
same time. This segmentation method gives competitive
results on pitch accuracy, and even works unprecedentedly
well on singing voice activity detection compared to other
deep-learning-based methods. With the integration with
the PNN, we leverage large-scale symbolic data to train the
model, and attain similar performance to the segmentation
method with less training time.

2. RELATED WORK

Melody extraction of polyphonic music has been widely
investigated with various signal processing and machine
approaches. Recent works using convolution neural net-
works (CNNs) or recurrent neural networks (RNNs) are
mostly classification-based, where the output is the frame-
level likelihood score of every pitch at a time instance
[4,22,27,30,37]. [2] adopts a fully convolution neural net-
work and output a salience representation at the song level.
Advanced semantic segmentation networks such as the U-
net [28] have been utilized in source separation [17] and
shows high potential in melody extraction.

Most of the melody extraction studies focus on the sig-
nal processing level, possibly because signal-level charac-
teristics such as slides and vibrato are still the principal fac-
tors in recognizing a melody contour. In contrast, melody
extraction on symbolic data is rarely discussed in the liter-
ature. Although not the main topic of this work, we man-
age to pose the problem of symbolic melody extraction and
emphasize its importance in music language modeling for
cross-domain transfer learning.

Previous works on transfer learning for music informa-
tion retrieval mostly aim under the same type of input data
representation [8,13]. Contrararily, transfer learning across
the data from different domains, such as adapting a model
learned from symbolic data to another learned from audio
data, is relatively less discussed. Previous works dealing
with cross-domain data mainly focus exploring audio-to-
MIDI or audio-to-sheet correspondence [10, 11].

3. METHOD

An overview of the proposed model is shown in Fig.1. The
model contains a feature extractor which computes the au-
dio data representation and a PNN which consists of two
segmentation models, with one trained on the symbolic
data and the other on the audio data. The filter is for di-
mension reduction of the audio representation to fit the
symbolic segmentation model in the PNN. Details of the
model are discussed below.

3.1 Audio data representation

In music processing, designing a data representation suit-
able for the machine learning models to better identify and
capture the information of interest can help significantly

Figure 1: The system diagram of the proposed method.

improve the performance [18]. In the task of pitch de-
tection in polyphonic music, related methods include the
feature scaling [18], the harmonic constant-Q transform
(HCQT) that combines the CQTs based on different oc-
tave numbers [2], the combined frequency and periodicity
(CFP) representation that intergrates a temporal or spectral
representation with its Fourier dual [26, 32, 34], and oth-
ers. All of these methods are designed to emphasize the
saliency of pitch contours in the music signal.

We adopt the data representation used in [33], which
has been shown effective in enhancing the true pitch com-
ponents of polyphonic signals. The adopted data repre-
sentation is essentially the product of a generalized cep-
strum (GC), a classical time-based pitch detection func-
tion [16,20,21,35,36], and a generalized cepstrum of spec-
trum (GCoS), a modified spectrum lying in the frequency
domain [32]. The GC and GCoS are complementary: a
GCoS reveals the presence of a pitch object by its funda-
mental frequency (f0) and harmonics (nf0), while a GC
reveal it by its f0 and sub-harmonics (f0/n) [26, 32, 34].
By simply multiplying GC by GCoS, we effectively sup-
press the harmonic and sub-harmonic peaks, and at the
same time localize a pitch object.

The GC and GCoS are both computed by the discrete
Fourier transform (DFT) and nonlinear activation func-
tions. Consider an input signal x := x[n] where n is the
index of time. Let the magnitude of the short-time Fourier
transform (STFT) of x be X. Given an N -point DFT ma-
trix F, high-pass filters Wf and Wt for eliminating the
DC terms, and activation functions σi, the power-scaled
spectrogram, GC and GCoS are represented as:

ZS[k, n] := σ0 (WfX) , (1)

ZGC[q, n] := σ1
(
WtF

−1ZS
)
, (2)

ZGCoS[k, n] := σ2 (WfFZGC) , (3)

σi (Z) = |relu(Z)|γi , i = 0, 1, 2 (4)

where relu(·) represents a rectified linear unit, | · |γ0 is an
element-wise root function, and we choose (γ0, γ1, γ2) =
(0.24, 0.6, 1) for a feature scaling in the power scale [32].

Besides, to fit the perceptive scale of musical pitches,
ZGC and ZGCoS are mapped onto the log-frequency scale,
by 88 ∗ 4 = 352 triangular filters ranging from 27.5 Hz
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(A0) to 4487 Hz , with 48 bands per octave. The GC and
GCoS after the filterbank are then both on the pitch scale,
as denoted by Z̃GC and Z̃GCoS. The final 2-D data repre-
sentation for semantic segmentation is

C[p, n] = Z̃GC[p, n]Z̃GCoS[p, n] , (5)

where p is the index on the log-frequency scale. The audio
files are resampled at 16 kHz and merged into one mono
channel. Data representations are computed with a Hann
window of 2048 samples. The hop size is 320 samples, and
therefore the time step is 20ms. The upper two subplots of
Figure 4 illustrate a comparison between the spectrogram
and C. We can observe that with the aid of cepstral feature,
the unwanted harmonic peaks are highly suppressed in C.

3.2 Semantic segmentation

The proposed segmentation model for vocal melody ex-
traction is mainly based on the DeepLabV3 and its im-
proved version, DeepLabV3+ [6,7], which are the state-of-
the-art models for semantic segmentation tasks. The model
is a fully convolution neural network with an encoder-
decoder architecture. The encoder is implemented by a
ResNet [15], followed by an atrous spatial pyramid pooling
process, and a decoder implemented by stacks of decoder
blocks, as shown in Figure 2.

One major utility in DeepLabV3 is the use of dilated
convolution, which can be represented as a generalized
version of the standard convolution as follows:

y[i] =
∑
k

x[i+ r · k]w[k] (6)

where x and y denotes the input and output 2-D feature
maps, respectively, w is the convolution filter and i in-
dicates the locations on the feature maps. The number r
is the dilated rate which determines the stride with which
the input are sampled and standard convolution is a spe-
cial case when r = 1. To capture the context in differ-
ent ranges, one can apply dilated convolution with differ-
ent values of r on the same input feature map parallely,
called Atrous Spatial Pyramid Pooling (ASPP) in [6]. The
outputs of these parallel convolution operations are then
concatenated to provide information collected from vari-
ous scales, as shown in Figure 2c.

Different from normal image segmentation task that
target objects usually holds certain area compared to the
whole image, the melody part of music occupies only a
small portion and appears as thin lines when visualized in
a 2-D image. To overcome this difficulty, We proposed two
modifications to improve the performance of the model.

First, the decoder module in DeepLabV3, which is
originally an up-sampling operation, is replaced by stacks
of convolution and transpose convolution layers for fine-
grained outputs. It is shown in [7] that by doing this, the
small and detailed objects in an image can be better recog-
nized. Also, better performance is achieved by introducing
the U-net [28] structure, which lets the output from each
layer of the encoder be concatenated to the corresponding
block of the decoder. This idea is also mentioned in [7].

(a) (b)

(c)

Figure 2: Model descriptions. (a) The overall structure of
the segmentation model. (b) The encoder block. The stride
rate in Stride Conv is (2,2). Stride Conv can be replaced
with standard convolution so it allows more layers in the
encoder. It can also be changed to transpose convolution
with stride (2,2), so the block can serve as a decoder block.
(c) The Atrous Spatial Pyramid Pooling unit.

Second, we adopt the focal loss [23] as the loss func-
tion for the proposed model, in order to solve the class im-
balance problem, where the negative labels, i.e., the time-
frequency pixels corresponding to accompaniment and si-
lence parts, could dominate in the input feature and thus
affect the performance. The focal loss is represented as:

FL(pt) = −αt(1− pt)γ log(pt) , (7)

where pt denotes the model’s estimated probability for an
input to be classified to class t, αt ∈ [0, 1] is a weighting
factor for balancing the importance of positive and neg-
ative examples and the term (1 − pt)

γ acts as a modu-
lating factor with γ controlling the rate at which domi-
nant examples are down-weighted. Following [23], we set
αt = 0.25, γ = 2 in this work.

3.3 Domain adaptation

Most of the existing deep learning models require a large
amount of training data to reach good performance. How-
ever, annotating melody pitch contours on audio data pre-
cisely is quite challenging; it is labor-intensive and also
needs strong expertise in music. Recent attempts to ad-
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dress the issue of data scarcity mostly focus on weakly su-
pervised learning [17, 24, 31].

In this work, we consider the potential of domain-
adaptive transfer learning, which incorporates the informa-
tion in MIDI data to assist in training the audio melody
extraction model. The primary motivation for using MIDI
files is the capability of data augmentation: one can use
MIDI files to easily create large-scale symbolic dataset
with detailed and precise notations. Besides, the symbolic
data also present some musical characteristics clearer than
the audio data do. This therefore gives more insights to the
music language modeling, such as musical structures and
phrases. Moreover, the space efficiency of symbolic data
also allows more training examples than audio data given
the same memory resource.

To discuss transfer learning between audio and sym-
bolic data, we first discuss the difference in their data for-
mats. One difference is the pitch resolution, which is 0.25
semitones in the audio data (i.e., 48 bins per octave), and 1
semitone in the symbolic data; this results in the difference
of dimension between the audio and the symbolic data. As
for the time resolution, there are some more flexible ways
to define it. Therefore, we consider two types of time res-
olution for the symbolic data: the first is time-based res-
olution with its unit length in time (e.g., 20 ms), and the
second is note-based resolution with its unit length in note
name (e.g., a 32nd note). Both the symbolic and audio
data can be represented in time-based resolution. Symbolic
data can also be represented in a more musically informa-
tive note-based resolution since obtaining beat and tempo
information in symbolic data is more straightforward.

To achieve domain-adaptive transfer learning for two
different domains, we adopt the progressive neural net-
work (PNN) [1], in which an adapter network (see
Figure 3) is designed to make one network connected to
another in different domains, regardless of the difference
in data dimension. In the general scenario of PNN, multi-
ple networks trained on various tasks are connected layer-
to-layer in parallel through the adapters, so the trained net-
works can transfer the previously learned knowledge into a
new task and to accelerate the training speed or to improve
the performance of the new task.

In our melody extraction method, we first trained a seg-
mentation model using the symbolic dataset. We connect
the symbolic segmentation model to another segmentation
model, and the latter model is then trained on the audio
dataset, with the parameters in the symbolic segmenta-
tion model frozen. In the testing phase, the input audio
representation is fed into both of the segmentation mod-
els. To make the dimension of audio representation match
the symbolic segmentation model, a triangular filterbank is
used to map the pitch resolution from 0.25 to 1 semitone,
as illustrated in Figure 1.

The adapter between two models in the PNN is illus-
trated in Figure 3. It modifies the dimension of the inter-
layer outputs and make such information be propagated
ahead. In the proposed method, transpose convolution lay-
ers are adopted for the adapter networks, since transpose

Figure 3: The connection between the two networks in
the proposed model. The parameter of the i-th layer in
the symbolic model is first fed into the adapter, and then
connected to the (i + 1)-th layer of the audio model with
an addition operation.

convolution can up-sample the output of the symbolic rep-
resentation (with lower pitch resolution) in order to fit the
audio representation (with higher pitch resolution).

3.4 Inference

Since the segmentation model only allows a limited range
of input at one time, to perform melody extraction on a
given score, we slide a window along the score and then
superpose all the resulting matrices. The analysis window
with a fixed dimension is shifted from one time-step to an-
other. As to the beginning and ending time, we pad the
score with zeros for it captures the process in which in-
formation feeds only the last column then gradually filling
up all the columns in the beginning, and gradually leaving
the window column by column at the end. After the pro-
cess above, the segmentation output is a superposed im-
age representing the salience of vocal melody in the time-
frequency plane. We then find the max value for each col-
umn of the image and set all the other elements to zero,
i.e., unvoiced. Finally, the elements smaller than the aver-
age of each column’s maximum are also set to zero, and
the remaining non-zero elements is considered as voiced.

3.5 Implementation details

The models are implemented using the Keras [9] library
with tensorflow as the back end. The width of the input
window equals 128 timesteps, and for computational con-
venience, we pad the dimension of pitch from 88 to 128,
and 352 to 384 for the symbolic and audio data, so the in-
put dimension will be (128, 128, 1) and (128, 384, 1) for
the symbolic and audio model, respectively. As shown in
Fig.1, the input feature will first be passed into a 29-layer
encoder based on Resnet. Then, the output from the en-
coder which is 16 times smaller than the original input
will be fed into the ASPP unit. Finally, a decoder which
contains 4 decoder blocks will up-sample the dense fea-
tures to the original shape by transpose convolutional lay-
ers with strides equal (2, 2). The output dimension will
be (128, 128, 2) and (128, 384, 2) for the symbolic and
audio model, respectively, with the first channel indicat-
ing the presence melody and the other is for non-melody.
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Figure 4: Data representation and melody extraction re-
sults of the first 15s of ’train06.wav’ in MIREX2005 as
input. From top to bottom: power-scale spectrogram, data
representation C, the result using segmentation, and the
result using segmentation and note-based PNN.

The superposition in the inference process is performed on
the first channel. To implement the PNN, two segmen-
tation networks with same structure are connected using
the adapters which is composed of transpose convolution
layer. These connections happen in layers with dimen-
sion changing. Batch normalizations are applied after each
activations, and a dropout rate of 30% is added after the
batch normalizations. ADAM [19] is used for optimiza-
tion. Source codes can be found at https://github.
com/s603122001/Vocal-Melody-Extraction.

4. EXPERIMENT

4.1 Data

The training data for the audio comes from two datasets,
one is the MIR1K 1 , which contains 1000 Chinese karaoke
clips, another is MedleyDB [5], where 48 songs with vo-
cal tracks are included. The total dataset contains about 3
hours of audio and without data augmentation.

A MIDI corpus contains 600 folk songs with a melody
track is used as the training data for the symbolic model. 2

In the training process, we perform data augmentation, by
pitch-shifting each song up and down by at most 6 semi-
tones in order to cover all possible keys. In addition, half
of the pieces in the dataset are modified by shifting the
melody by one octave down. As a result, we produce 7673
pieces of symbolic training data. The pieces in the dataset
are represented in two different formats. One is the time-
based with 20 ms length in each time step and the other is

1 https://sites.google.com/site/unvoicedsoundseparation/mir-1k
2 https://goo.gl/aPgzrW

the note-based that each time step equals a thirty-second
note. Due to limited computational resources, we only
use 2048 pieces when training the time-based model since
time-based data is space consuming.

The testing data are from three datasets: ADC2004,
MIREX05, 3 and MedleyDB. As the proposed model is
trained solely for singing voice melody, we follow [22] and
select only samples having melody sung by human voice
from ADC2004 and MIREX05. As a result, 12 clips in
ADC2004 and 9 clips in MIREX05 are selected. To ob-
tain the annotation of singing voice in medleyDB, 12 songs
having singing voice included in their ‘MELODY2’ anno-
tations are selected. The vocal melody labels are obtained
from the MELODY2 annotations occurring in the inter-
vals labeled by ‘female singer’ or ‘male singer’. These
12 songs are not included in the training data.

4.2 Experiment setting

To assess the performance of semantic segmentation and
the effects of transfer learning on vocal melody extraction,
we experiment on the following three different settings:

1) Segmentation: using simply the audio-level semantic
segmentation model. This audio-only semantic segmenta-
tion model is trained on the MIR1K dataset.

2) Segmentation with note-based progressive neural
network (Seg + note PNN): using both the audio-level and
symbolic-level segmentation models. The symbolic seg-
mentation model is first trained using the note-based sym-
bolic dataset, then this model is incorporated into the train-
ing stage of the audio segmentation model with the PNN.

3) Segmentation with time-based progressive neural
network (Seg + time PNN): similar to 2), while the symbo-
lic model in trained with the time-based symbolic dataset.

We compare the above-mentioned models with three
baseline methods in deep learning approaches: the multi-
column DNN (MCDNN) [22], the patch-based CNN
(pathc-CNN) [33], and the deep salience map (DSM), for
which on-line source code with the vocal option is avail-
able [2]. Since the detection results of DSM are sensitive
to the thresholding parameter, the parameter is tuned from
0 to 0.9 for all datasets to find the optimal value for bet-
ter comparison. The resulting optimal threshold th=0.1 is
used in the experiment.

The performance metrics include overall accuracy
(OA), raw pitch accuracy (RPA), raw chroma accuracy
(RCA), voice recall (VR) and voice false alarm (VFA); 4

all these metrics are computed from the mir eval standard
with the tolerance of pitch detection being 50 cents.

4.3 Result

Table 1 lists the performance metrics of all the proposed
methods together with the baselines on the three testing
datasets. Among the three proposed models, Segmentation
outperforms the other two PNN-based models in terms of
OA for all datasets except MedleyDB, where Segmenta-
tion performs on par with Seg + note PNN. Through the

3 https://labrosa.ee.columbia.edu/projects/melody/
4 http://www.music-ir.org/mirex/wiki/2016:Audio Melody Extraction
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Method OA RPA RCA VR VFA
Segmentation 74.9 71.7 74.8 73.8 3.0
Seg + note PNN 73.5 70.2 73.2 72.2 3.1
Seg + time PNN 73.2 70.4 72.9 73.2 5.4
MCDNN [22] 73.1 75.8 78.3 88.9 41.2
Patch-CNN [33] 72.4 74.7 75.7 90.1 41.3
DSM [2] 70.8 77.1 78.8 92.9 50.5

(a) ADC2004 (vocal)

Method OA RPA RCA VR VFA
Segmentation 85.8 82.2 82.9 87.3 7.9
Seg + note PNN 84.5 79.6 80.3 84.7 6.9
Seg + time PNN 84.8 82.3 83.0 87.3 9.9
MCDNN 68.4 76.3 77.4 87.0 49.0
Patch-CNN 74.4 83.1 83.5 95.1 41.1
DSM 69.6 76.3 77.3 93.6 42.8

(b) MIREX2005 (vocal)

Method OA RPA RCA VR VFA
Segmentation 70.0 68.3 70.0 77.9 22.4
Seg + note PNN 70.0 67.1 68.7 77.0 21.5
Seg + time PNN 69.1 67.4 69.0 78.7 23.6
Patch-CNN 55.2 59.7 63.8 78.4 55.1
DSM 66.2 72.0 74.8 88.4 48.7

(c) MedleyDB (vocal)

Table 1: Vocal melody extraction results of the proposed
methods and other methods on various datasets. The pro-
posed methods are: segmentation, segmentation with note-
based progressive neural network (Seg + note PNN), and
segmentation with time-based progressive neural network
(Seg + time PNN).

melody extraction accuracies of the segmentation model
are not improved by introducing the PNN structure, there
is still a notable improvement when comparing training ef-
ficiency. In fact, it takes 6 epochs for Segmentation to con-
verge, but Seg + note PNN reach similar performance with
only 2 epochs of training. Therefore, introducing the PNN
improves the training speed.

One reason why PNN does not improve the accuracy
is related to the symbolic dataset we are using: the sym-
bolic data contains only one style of music and turns out
to be of low diversity. Another reason is the lack of in-
tensity labels in symbolic data. Our pilot study indicated
that a segmentation model trained on symbolic data may
result in high RCA and RPA but also relatively high VFA.
However, a segmentation model trained on the audio data
gives inverse results, with low VFA, as shown here. This
might have something to do with the sound intensity in
the audio signal, which is an important sign for to deter-
mine the present of melody. However, our symbolic data
do not have such labels on intensity. Model training with
a larger symbolic music dataset with higher diversity and
with MIDI velocity labels are for future investigation.

The two PNN-based methods, Seg + note PNN and Seg
+ time PNN, achieve similar OA, while the former model

has lower VFA. This implies that the performance of the
symbolic model trained with note-based symbolic data is
better than training with time-based data. One reason may
be that compiling symbolic data in time-based resolution
may result in the ambiguity of musical information; in
time-based data, the same type of note may have differ-
ent lengths in time due to different tempi among the music
pieces. This could affect the model capability in learning
the musical structure.

Comparing the proposed Segmentation model to the
baseline methods, we observe that Segmentation out-
performs all of them in terms of OA. Particularly, in
MIREX2005, Segmentation achieves an OA at 85.8%, a
high accuracy outperforming DSM by 16.2%, patch-CNN
by 11.4% and MCDNN by 17.4%. In other two datasets,
Segmentation also outperforms other methods by around
1 ∼ 4% in terms of OA. These experiment results reveal
the competitiveness of the proposed semantic segmenta-
tion method in audio melody extraction. On the other hand,
when focusing on the pitch accuracy (i.e., RPA and RCA),
DSM is still competitive among all.

The high OA of Segmentation is mainly resulted from
the excellent performance of VFA with the semantic seg-
mentation approach. Among all methods and datasets,
the proposed methods significantly outperform the base-
line methods by a 20-40% reduction in VFA. In ADC2004,
Segmentation further achieves a low VFA of 3.0%. This
implies that the proposed melody extraction method itself
is highly robust to non-vocal interference, and is without
the need of a voice activity detector [27]. In other words,
the semantic segmentation model with fully convolutional
layers itself behaves as a melody pitch classifier and a
voice activity detector at the same time.

Finally, the lower two subplots in Figure 4 illustrate two
melody extraction results using Segmentation without and
with a note-based PNN. Both methods perform well in seg-
menting the main melody part from the representation C
shown in second subplot in Figure 4. This example also
demonstrates one part that using the note-based PNN does
well: in the lowest subplot, the Seg + note PNN method
well detects the unvoiced part between the 6th and the 9th
second, in which the Segmentation method regards the ex-
tended instrument part as melody.

5. CONCLUSION

We proposed a melody extraction method utilizing the se-
mantic segmentation model, the input combining spectral
and cepstral representations, and domain-adaptive transfer
learning. Experiments using a low-diversity training data
indicate the competitiveness of the segmentation model
with the data representation, especially in reducing voice
false alarm. Incorporating large-scale symbolic data pro-
vides better efficiency and exhibits potential in enhancing
contextual information. Future work will focus on the im-
provement of domain adaption. Note-level segmentation
can be considered as a future work as it is also feasible
applying symbolic-audio transfer learning and would also
benefit the melody extraction task.

526 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



6. ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve
the quality of the paper. This work is partially supported
by MOST Taiwan, under the contract MOST 106-2218-E-
001-003-MY3.

7. REFERENCES

[1] R. Andrei A., R. Neil C., D.Guillaume, S. Hubert,
K. James, K. Koray, P. Razvan, and H. Raia. Progres-
sive neural networks. eprint arXiv:1606.04671, 2016.

[2] R. M. Bittner, B. McFee, J. Salamon, P. Li, and J. P.
Bello. Deep salience representations for f0 estima-
tion in polyphonic music. In 18th Int. Soc. for Music
Info. Retrieval Conf., Suzhou, China, Oct. 2017.

[3] R. M. Bittner, J. Salamon, J. J. Bosch, and J. P. Bello.
Pitch contours as a mid-level representation for music
informatics. In Audio Engineering Society Conference:
2017 AES International Conference on Semantic Au-
dio. Audio Engineering Society, 2017.

[4] R. M. Bittner, J. Salamon, S. Essid, and J. P. Bello.
Melody extraction by contour classification. In Proc.
ISMIR, pages 500–506, 2015.

[5] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch,
C. Cannam, and J. P. Bello. Medleydb: A multitrack
dataset for annotation-intensive mir research. In Proc.
ISMIR, volume 14, pages 155–160, 2014.

[6] L.-C. Chen, P. George, S. Florian, and A. Hartwig.
Rethinking atrous convolution for semantic image seg-
mentation. eprint arXiv:1706.05587, 2017.

[7] L.-C. Chen, Y. Zhu, P. George, S. Florian, and
A. Hartwig. Encoder-decoder with atrous separable
convolution for semantic image segmentation. eprint
arXiv:1802.02611, 2018.

[8] K. Choi, G. Fazekas, M. Sandler, and K. Cho. Transfer
learning for music classification and regression tasks.
arXiv preprint arXiv:1703.09179, 2017.

[9] F. Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.

[10] R. B. Dannenberg and C. Raphael. Music score align-
ment and computer accompaniment. Communications
of the ACM, 49(8):38–43, 2006.

[11] M. Dorfer, A. Arzt, and G. Widmer. Learning audio-
sheet music correspondences for score identification
and offline alignment. In 18th Int. Soc. for Music
Info. Retrieval Conf., Oct.

[12] M. Goto. A predominant-F0 estimation method for
polyphonic musical audio signals. In Proc. Int. Cong.
Acoustics, pages 1085–1088, 2004.

[13] P. Hamel, M. Davies, K. Yoshii, and M. Goto. Transfer
learning in mir: Sharing learned latent representations
for music audio classification and similarity. 2013.

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask
r-cnn. arXiv preprint arXiv:1703.06870, 2017.

[15] K. He, X. Zhang, S Ren, and J. Sun. Identity mappings
in deep residual networks. In ECCV, 2016.

[16] H. Indefrey, W. Hess, and G. Seeser. Design and
evaluation of double-transform pitch determination al-
gorithms with nonlinear distortion in the frequency
domain-preliminary results. In Proc. IEEE Int. Conf.
Acoust. Speech Signal Process, pages 415–418, 1985.

[17] A. Jansson, E. Humphrey, N. Montecchio, R. M. Bit-
tner, A. Kumar, and T. Weyde. Singing voice sep-
aration with deep u-net convolutional networks. In
18th Int. Soc. for Music Info. Retrieval Conf., Suzhou,
China, Oct. 2017.

[18] R. Kelz, M. Dorfer, F. Korzeniowski, S. Böck, A. Arzt,
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ABSTRACT

Although music cognition and music information retrieval
have many common areas of research interest, relatively
little work utilizes a combination of signal- and human-
centric approaches when assessing complex cognitive phe-
nomena. This work explores the importance of four cogni-
tive decision-making factors (familiarity, genre preference,
ease of vocal reproducibility, and overall preference) in-
fluence in the perception of “singability”, how attractive a
song is to sing. In Experiment One, we develop a model
to validate and empirically determine to what degree these
factors are important when evaluating its singability. Re-
sults indicate that evaluations of how these four factors
impact singability strongly correlate with pairwise evalu-
ations (ρ = 0.692, p < 0.0001), supporting the notion that
singability is a measurable cognitive process. Experiment
Two examines the degree to which timbral and rhythmic
features contribute to singability. Regression and random
forest analysis find that some selected features are more
significant than others. We discuss the method we use to
empirically assess the complex decisions, and provide a
preliminary exploration regarding what acoustic features
may motivate these choices.

1. INTRODUCTION

A fundamental task of MIR is to develop of acoustic fea-
ture extractors that capture unique characteristics from a
recorded piece of sound. However, some acoustic fea-
tures may not be wholly represented in the acoustic sig-
nal, and MIR has been criticized for failing to model anal-
ysis based on psychological research [3]. For example,
“danceability” - the perceptual experience of grooviness
[23, 48] - is a feature available in signal processing pack-

c© Michael Mustaine, Karim M. Ibrahim, Chitralekha
Gupta, Ye Wang. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Michael Mustaine,
Karim M. Ibrahim, Chitralekha Gupta, Ye Wang. “Empirically Weighing
the Importance of Decision Factors when Selecting Music to Sing”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

ages [9, 10], and open-access APIs 1 using a combination
of beat salience and consistency [36]. However, based so-
ley on these acoustic properties the most danceable song
would be closer to a steady, metronomic pulse, which
clearly does not capture the perceptual nuances of what
makes music danceable [14]. The inclusion of psycholog-
ical acoustic features using signal-only analysis is surpris-
ing, given that music is a dynamic system influenced by
cognitive [20], cultural, market, and political forces [8].
Despite this knowledge, research is relatively sparse as to
how, or to what degree, specific acoustic features influence
musical preference. Part of the scarcity may be due to the
relative difficulty in quantifying the influence of important
psychological features empirically. This work examines
the extent to which a cognitive psychology, signal process-
ing, machine learning, and economic decision-making can
be used to investigate a previously unexplored psychologi-
cal perception of “singability”: the degree to which a song
is attractive to sing. To our knowledge, no empirical study
has been conducted which explores whether a feature such
as singability can be extracted from a piece of music.

Determining a complex psychological process and de-
cision making strategy like singability is a difficult task.
To start, it is intuitively difficult to quantify such a sub-
jective multiple criterion choice in a controlled, scientific
manner. Because singability will likely not contain a uni-
versally agreed upon set of factors, the major challenge is
defining a method that can quantify how - and to what de-
gree - these factors should be incorporated into a model for
evaluation. We first introduce some background on closely
related concepts to our interpretation of singability from
psychological experiments and MIR applications.

1.1 Related Work

Perhaps the most historically relevant psychological re-
search relating to singing preference was initially proposed
by Berlyne [7]. Berlyne suggests that music exhibits an
inverted-U-shaped relationship for preference, influenced
by novelty, complexity, and tone. This model has been
replicated independently from a variety of perspectives in-
cluding personality and preference research [29], and flow

1 https://developer.spotify.com/web-api/
get-audio-features/
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states [12].
Prior research on singability has focused on music

recommendation systems for digital karaoke applications
[25, 26]; they used a competence-based evaluation, and
recommended music using an individual’s singing profi-
ciency. These systems define singing preference solely on
whether one can recreate the original performance [16] and
fails to consider other aspects of preference such as fa-
miliarity on preference; if the ability to recreate an orig-
inal version of a song is the sole criteria for determining
singable tracks, a naı̈ve extension to improve performance
would be to recommend songs based on demographic fea-
tures such as age, sex, and height through automated as-
sessment of singing voice [46].

2. SINGABILITY FACTORS

We examine singability using a synthesis of multiple cri-
terion decision making processes, acoustic feature extrac-
tion, and machine learning founded on a theoretical back-
ground of music cognition. Based on the general research
discussed above, we expand the interpretation of singabil-
ity from other research [25, 26] to include more factors
than just the ability to reproduce the original rendition of
a track. For the purpose of this work, singability is de-
fined as a psychological process which includes how at-
tractive a song is to sing without concern of social conster-
nation for being unable to produce the original vocaliza-
tions. Based on this refined definition, we consider four
factors which could impact singability and include: i) fa-
miliarity, ii) genre, iii) preference to listen (listenability),
and iv) producibility.

To maintain a realistic scope for exploratory research,
we did not include an exhaustive list of potential singabil-
ity factors. These factors were selected due to their rela-
tive presence in the psychological literature. We also were
interested in selecting features that would be less demand-
ing to ask crowdsourced workers; other features we did
not explore, such as the importance of lyrics or social fac-
tors, could be analysed using methodology specific to their
disciplines should compelling evidence for singabiliity be
found. Next, we highlight research specific to these fac-
tors, then describe a method to quantify the prioritization
of them when making a complex, multiple criterion deci-
sion.

2.1 Familiarity

Familiarity has important influences on preference forma-
tion. The mere exposure effect, a foundational psycho-
logical process [28, 49], demonstrates that increased expo-
sure to essentially anything increases your preference for
it, even when unaware of it’s inclusion in your immediate
environment [24]. In [32], the mere exposure effect was
also found to impact music preference; multiple repetitions
of unfamiliar music [28], and random tone sequences [47]
increased preferences for them. A possible reason for why
familiarity increases preference is because it improves ease
of processing [30], impacting the complexity component

of Berlyne’s optimal complexity model described in Sec-
tion 1.1.The relationship between familiarity through mere
exposure appears to occur early in cognitive processing -
Korsakoff amnesics demonstrate increased liking to musi-
cal stimuli through increased exposure [19].

However, it is important to consider that increased fa-
miliarity does not increase preference in all cases; most
people do not actively listen to extremely familiar songs
such as Twinkle, Twinkle, Little Star. This still makes
sense when considering Berlyne’s optimal complexity
model (Section 1.1) - extremely familiar music is too sim-
ple or not novel enough to engage. Therefore, it is hypoth-
esized that although familiar music is important for singa-
bility, music that is too familiar will not be preferred.

2.2 Genre

Genre preference describes a specific aspect of the mere
exposure effect through common acoustic features which
are hallmark in the genres you typically listen to. For
example, Rap music has a high degree of speech, and
Metal music generally is high tempo, and with negative
valence [4]. This form of familiarity is more active and
personal, aligning more closely to the role that individ-
ual preference plays in exposure. Neurological evidence
for an active mere exposure effect through genre has been
demonstrated in brain imaging studies. Using electroen-
cephalography, Mismatch Negativity Responses (MMNs;
a spike in brainwave polarization when expectations are vi-
olated) can be elicited with tone sequences in the first few
trials regardless of formal musical training [38]. In a sub-
sequent study, authors of [39] found that MMN responses,
were stronger when genre conventions were defied in a
participants preferred musical style. In a study contain-
ing 17 million users from over 30 countries, users down-
load tracks of secondary genres acoustic features similar
to those of their most preferred genre [4]. For example,
users who had clear preferences for Rap music preferen-
tially downloaded tracks from other genres that contained
more speech sounds. We therefore hypothesize that genre
plays an important role in the selection of a preferred song
to sing.

2.3 Listenability

The definition of listenability used for this work refers to
how attractive a song is to listen to. Although it may be ap-
pealing to suggest that songs that are listenable are by ex-
tension singable, they must be considered mutually exclu-
sive. Rap or Metal music for example may fit this category
as the vocalizations required are not conducive for singing,
but are still highly popular and can be very listenable. Fur-
thermore, listenability is distinct from familiarity, but can
be influenced by it. As suggested in Section 1.1, nursery
rhymes are highly familiar, but are likely not considered
highly listenable or singable by most. Highly listenable
songs may also not be familiar because older tracks are
played significantly less than newly released songs. Lis-
tenability may be best differentiated from familiarity in
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that it can be an immediate process, requiring only a sin-
gle exposure in order to be evaluated as attractive. Cogni-
tive processing of various complex musical features such
as genre [21] can happen at millisecond timescales. Lis-
tenability is considered an important factor for singablility
because it increases the likelihood that a song will be se-
lected to or attended by users (thus directly influence the
likelihood it will be sung in the first place) and because
they are more salient in memory.

2.4 Producibility

Music cognition research has examined the distinction of
singing quality; the perceptual or acoustic features that
make trained singers sound better than amateurs. Qual-
ity of singing voice has been assessed with respect to
full upper resonance in a singer’s formant range (known
as the singer’s formant, a prominent spectral envelope of
3kHz) as of singing voice quality [5]. Professional singers
have higher formant intensity than untrained voices; rela-
tive amplitudes of singer’s formants grew as vocal inten-
sity increased and diminished as pitch rose [35], trained
voices have more energy in the formant range but not for
all pitches, and males in general have higher formant in-
tensity than females [35]. The singer’s formant appears to
be a particularly important property for classical operatic
singers to project above the orchestra [37].

Although measures regarding whether an individual has
vocal training can be assessed through the singer’s for-
mant, producibility is not contingent on these features. For
example, untrained singers with self-expressed singing tal-
ent have identical pitch matching accuracies when com-
pared to trained singers [45]. Producibility based on vo-
cal features which indicate professional training may also
not be appropriate because the correlation between genre
preference and training does not align with what is pop-
ularly sung; individuals with more musical training show
increased preferences for “serious” genres such as Classi-
cal and Jazz, but not other genres such as Pop [17].

3. EXPERIMENT ONE: VALIDATING
SINGABILITY

To our knowledge, there is no prior work that examines
whether what people think makes a song singable corre-
lates with what they actually select in natural settings. For
example, [41] instructed professional musicians to evalu-
ate recordings of top-three placing performances from pi-
ano competitions under three conditions, recordings with:
i) video only, ii) audio only, or iii) audio and video. Par-
ticipants accurately ranked the video-only condition more
consistently with who won the competition than in any
other condition; the audio-only condition was the least
consistent. This work establishes that it is possible that our
impressions of what features are important in our musical
preferences may not be internally consistent.

We combine a series of psychological analysis meth-
ods to establish whether singability can be consistently as-
sessed among individuals using a set of 50 popular song

excerpts. To establish a bottom-up ground truth, a forced
alternative choice (FAC) experiment is conducted with
pairs of songs; a complex decision-making model known
as Analytic Hierarchical Process (AHP) [33] is used to de-
termine top-down impressions. We then rank songs based
on their assessed singability using both methods (FAC and
AHP) to determine whether there is consistency between
what we think is singable, and what our decisions end up
inevitably being. An additional benefit of using AHP is
that it can weigh the degree to which each of the four fea-
tures described above contributes to an individuals choice
to sing a song. Because AHP is less commonly used, we
briefly describe AHP and how it is conducted prior to re-
porting experimental structure.

3.1 Analytic Hierarchical Process

AHP is an technique to quantify how, and to what degree,
subjective criteria influence a complex decision making
task. The validity of the AHP has been examined exten-
sively [44], and has been used within government, busi-
ness, and healthcare [42]. Figure 1 illustrates the final im-
portance values for each factor and are now described. De-
termining singability using AHP involves breaking down
the decision problem into a set of global priorities (green
boxes). Global priorities are a set of general factors that are
suspected to influence the decision-making process. After
global priorities are determined, levels within each priority
(local priorities; blue boxes) are established. Once prior-
ities have been established, the importance of each factor
can be systematically evaluated to determine their contri-
bution to the final decision. Decision makers weigh the im-
portance of each of these priorities using multiple pairwise
comparisons, and require the decision maker to evaluate
every priority relative to another. For instance, a worker
is asked ”how important was it that the vocals were easy
to reproduce, as opposed to moderately difficult”. Because
more than one worker answered the same question multi-
ple times, we take the average importance value from all
comparisons as the final importance value. Priorities are
calculated by dividing the importance of the first compari-
son over the other. A pairwise comparison matrix is gener-
ated after all evaluations are made by multiplying the en-
tries of each row and taking the nth root of the product.
The roots are then summed and normalized to produce an
eigenvector representing the priority importance. 2

3.2 Methods

The dataset contains excerpts of 50 songs (ten songs from
five genres) from the top 50 Billboard chart songs between
the years of 2011-2015. Selected songs had equal num-
bers of male and female singers (five per sex per genre).
In order to reduce high degrees of familiarity, songs from
the bottom of the list were selected. 15-seconds of audio
was extracted from each artist’s official YouTube channel.
Audio was extracted from the video as mp3 files.

2 For in-depth example, see: http://rad.ihu.edu.gr/
fileadmin/labsfiles/decision_support_systems/
lessons/ahp/AHP_Lesson_1.pdf
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A two-part online survey was crowdsourced using
Amazon’s Mechanical Turk. 3 Although some research
suggests that the quality of crowdsourced data is more di-
verse and at times better than data collected in traditional
laboratory settings [6], additional metrics which validate
or refine analysis highlighted in Section 1.1 should be con-
sidered. The first part of the experiment consisted of a se-
ries of FACs. Workers were instructed to listen to excerpts
of two songs. They were asked to determine which song
was more singable, listenable, and whether either of the
songs were familiar. Workers repeated this paradigm for
five pairs of songs in total.

After completing the FAC section, workers were then
instructed to complete an AHP after briefly reflecting on
the choices they made when selected between pairs of
songs. Different levels of local priorities are established
for each global priority. Five levels for genre were selected,
Rock, Pop, Alternative, Country, and Rap music were se-
lected; two levels for familiarity (low and high); three lev-
els for producibility (easy, medium, hard) and; three lev-
els for preference to listen (low, medium, high). In order
to keep the task as simple as possible for workers, we re-
duced the number of local priorities to as little as possi-
ble - unlike producibility and listenability, only two levels
were selected for familiarity because we wanted to know
whether any prior knowledge of a piece would influence
their choice.

Importance values were calculated by taking the av-
erage response for each priority across all respondents.
Lastly, we requested workers to report only their sex - we
did not collect information regarding worker age, socioe-
conomic status, or ethnicity. The reasoning for this was
two-fold: i) Mechanical Turk demographic variability is in
general more diverse than traditional laboratory data col-
lection [6], and; ii) we were interested in establishing the
general existence of a psychological perception from a rar-
ified set of possible influencers before examining how dy-
namic anthropological and sociological factors modulate
the preference. A benefit of using AHP is that it is a sim-
ple process to add or remove global priorities and replicate
the experiment easily with new variables and interactions.

3.3 Analysis

Pairwise comparisons were conducted for all 50 songs
(1225 pairs), each job instructed users to evaluate 5 pairs
(245 jobs), and each job was assessed 3 times (735 surveys
conducted). 88 submissions (11%) were rejected for incor-
rectly answering a confirmatory test question. 4 A worker
was compensated $0.07 USD per job and could perform up
to five surveys. 245 unique respondents (44% male, 56%
female) completed the survey. On average, workers agreed
with each other that one song was more singable than an-
other 77.8% of the time. We examined whether individuals
selected a song as more singable based on the sex of the

3 https://www.mturk.com/
4 Workers were instructed to select whether an excerpt from Michael

Jackson’s Billie Jean was more familiar than an unreleased composition
from one of the authors

artist. A binomial test indicated that individuals selected
same-sex singers slightly more often (53%; p < 0.001),
though the difference was marginal.

Once AHP priorities were calculated, songs were seg-
mented into bins for the familiarity (high and low), and
listenability (high, medium, and low) categories based on
the survey responses. Figure 1 represents the global and lo-
cal priority values generated through the Mechanical Turk
survey. Song rankings for AHP were derived for each
song by producing a rank-order based off the product of
local priority values for genre, listenability, and famil-
iarity. For example, a Rock song which was in the top
50th percentile for familiarity, and the bottom 33rd per-
centile for listenability would receive a singability value of
0.227 ∗ 0.613 ∗ 0.299 = 0.0416. Producibility was not in-
cluded in the calculation because this feature is relative to
an individual’s skill at singing and can only be evaluated
for each user, as opposed to each song. Ranks for the FAC
portion of the experiment were generated by ordering the
amount of times any given song within a pairwise compar-
ison was selected by the user as more attractive to sing.

Once ranks were generated for the bottom-up (FAC),
and top-down (AHP) processes, we conducted a
Spearman-ρ rank correlation. Ranks derived from
FAC are highly correlated with ranks derived from the
AHP (rs = 0.691, p < 0.0001). 47.61% of the variance
in rank could be accounted for across ranked derived from
FAC and AHP. Figure 2 plots the ranks derived for each
song excerpt. Each song’s coordinates represent the FAC
derived rank (x-axis) to the AHP derived rank (y-axis).
Significant Spearman-ρ correlations were also found com-
paring Billboard ranks to FAC (rs = 0.518, p < 0.001)
and AHP (rs = 0.540, p < 0.0001).

3.4 Discussion

The purpose of experiment one was to derive a method
that can determine whether people’s heuristic impressions
of preference reliably predicts their actual decisions. The
highly significant correlation (p < 0.0001) and large effect
size (r2 = 0.4761), supports the hypothesis that people’s
top-down assessments of singability are features they actu-
ally use when making the decision. This finding is signifi-
cant because it supports the notion that a less labour inten-
sive process is needed for determining a music-cognitive
process; you do not need to conduct a bottom-up com-
parison for the entire corpus of music to determine gen-
eral preference. The results suggest that listenability is the
most important feature follwed by: familiarity, genre, and
producibility. The importance values for most local priori-
ties are generally intuitive; easily produced, familiar music
we like to listen to are important factors we use when de-
ciding to sing something. Rock was the most important
genre (22.7% importance), followed by Pop (21.3%), Al-
ternative (19.6%), Country (19.3%), and Rap (16.8%). The
significant binomial correlation also indicates that user de-
mographic information such as sex should be considered
when recommending music to sing. Although the pref-
erence for same-sex singers (3%) does not account for a
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Singability

Genre (0.236)Producibility (0.204) Listenability (0.286) Familiarity (0.271)

Rock (0.227)
Pop (0.213)
Country (0.193)
Alternative (0.196)
Rap (0.168)

Difficult (0.303)
Average (0.333)
Easy (0.363)

Very (0.361)
Average (0.338)
Not very (0.299)

Very (0.613)
Not very (0.386)

Figure 1. Analytic Hierarchy Process for Singability derived from Mechanical Turk experiment. The most important global
priority was familiarity, followed by preference to listen, genre, and producibility.

Figure 2. FAC-to-AHP Rank Scatterplot. X-axis rep-
resents ranks derived from the AHP analysis for a given
track. Y-axis represents ranks deried from FAC analy-
sis. Linear regression line for this data is plotted (ŷ =
0.6922x+ 7.8490)

high degree of difference, recommendation systems based
on human behaviours are relatively rare and can improve
user satisfaction in generally unexplored ways.

A downside of this current investigation is that the vari-
ation of importance of global and local priorities was quite
low, ranging between 2-3% across most factors. A more
pronounced effect may be achievable using a more con-
trolled, laboratory recruited participant pool. Producibility
was also not a factor used to generate AHP ranking. The
rationale for this is that there is no clear or simple way to
evaluate vocalization difficulty of an excerpt relative to an
MTurk worker’s actual skill, whereas measures of familiar-
ity and preference have a high degree of comorbidity with
qualitative assessments [49].

An important component missing from this analysis is
determining whether specific acoustic features influence
ranking in meaningful way; is a song that is more singable
one that generally has more pronounced vocals, or a faster
tempo? Experiment two is a preliminary exploration into
assessing whether some acoustic features are more impor-
tant than others for determining singability based on the
ranks generated through the AHP.

4. EXPERIMENT TWO: FEATURE IMPORTANCE
EXPLORATION

After establishing that singability is a measurable cogni-
tive process, the natural next step is analysis of acoustic
features. Evaluating the importance of acoustic features re-
lated to singability may enable us to establish whether, or
which, specific auditory signals contribute to this complex
decision-making task. Experiment two provides prelimi-
nary, exploratory analysis into the importance of a specific
set of acoustic features when evaluating singability.

4.1 Methods

Similar to [43], we extract perceptually-relevant features
for singability under two categories: timbral and rhythmic.
Signal processing is conducted using a combination of Li-
bRosa [27], MIRToolbox [22], and vocal analysis work
in [18]. 24 features (4 rhythmic and 20 timbral) in total
were assessed. An averaged value for each feature was ex-
tracted for each song every 15-seconds. Timbral features
include: Vocal-to-Accompaniment Ratio (VAR) [40], High
Frequency Energy (HFE) [11], Mel-band Frequency Cep-
stral Coefficients (MFCC) 1-5 [13], spectral centroid mean
and deviation [34], spectral roll off mean and deviation,
and root mean squared (RMS) of energy mean and devia-
tion [31]; rhythmic features include: tempo, zero-crossing
mean and deviation [15], event density [2], and syllabic
rate [18]. These features were selected for exploratory pur-
poses due to their ubiquity in signal processing toolkits and
MIR research.

4.2 Analysis

To determine whether specific features are more common
in singable songs, we first conduct multiple linear regres-
sion comparing the AHP generated numeric values to the
24 extracted acoustic features. The multiple-comparisons
F-Test was marginally significant (F (23, 36) = 1.779, p =
0.05915, r2 = 0.2328), independent regressions yielded
significant two features (Deviation of RMS and MFCC 5)
and six marginally significant features (Deviations of spec-
tral roll off, MFCCs 1 and 3, and means of RMS, spectral
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Feature t-value p-value
Deviation of MFCC 5 -2.919 0.00604**

Deviation of RMS -2.539 0.01558*
Deviation MFCC 1 1.994 0.05372·

Deviation spectral roll off 1.934 0.06099·
Mean of zero crossings -1.864 0.0702·
Mean spectral centroid 1.738 0.09072·

Deviation MFCC 3 1.713 0.09525·
Mean of RMS 1.703 0.09713·

Table 1. Individual Linear Regression Significance Ta-
ble. Multiple comparisons F-Test was marginally signif-
icant (F (23, 36) = 1.779, p = 0.05915, r2 = 0.2328).
·p < 0.1, ∗ ∗ p < 0.01, ∗p < 0.05

Figure 3. Random forest with regression model. Z-scores
represent the relative importance of a feature in the deter-
mination of AHP-generated values for songs. Colours rep-
resent significance values: significant (green), marginally
significant (yellow), not significant (red), and anchor val-
ues (blue).

centroid and zero-crossing). Table 1 provides a summary
of analysis for all marginally significant features.

A statistical disadvantage of relying on standard lin-
ear regression analysis only is that multiple comparisons
increasingly introduces type-I error with each added fea-
ture. We employ a random forest for regression and com-
pare significant features across both models. An added
benefit of using random forest is that it can assess the
relative importance of each feature in the evaluation of
singability. Three features significantly influenced AHP-
generated singability scores (Mean of spectral centroid and
MFCC 4, and deviation of MFCC 2), and six marginally in-
fluenced AHP-generated singability scores (Syllabic rate,
VAR, HFR, mean of RMS, and deviation of MFCC). Fig-
ure 3 presents the relative importance of each feature (x-
axis) as a Z-score (y-axis). Features that were at least
marginally significant across both models included: mean
of spectral centroid and RMS, and deviation of MFCC 1.
Features that were at least marginally significant in the ran-
dom forest model that were not significant using indepen-
dent linear regressions included: mean of MFCC 4, spec-
tral roll off, VAR, HFE, and syllabic rate.

4.3 Discussion

Both sets of analyses suggest that acoustic features may
influence perceptions of singability. However, the mod-
els disagree on which features are maximally important
in this decision. The three significant features that were
shared across models (mean of RMS, spectral centroid, and
deviation of MFCC 1) suggest that more singable songs
are in general louder, brighter, and timbral fluctuations in
high frequency energy may be particularly important when
selecting music to sing to. Features where there was a
disagreement in singability across models include zero-
crossings, spectral roll off, VAR, HFE, and syllabic rate.
This suggests that types of percussive sounds, pronounced
vocals, and higher than average frequency in vocaliza-
tions and syllabic rate, may also contribute to evaluations
of singability. The marginal significance of the multiple-
comparisons F-test indicate that acoustic features may in-
fluence judgements of singability, however additional anal-
ysis needs to be conducted in order to demonstrate the va-
lidity of this assertion (see Section 5). Future work should
investigate whether less common features, such as chorus-
ness [1], are more relevant to singability.

Compared to Experiment One, the results from Exper-
iment Two are less intrepretable. It may be that the our
corpus size, or that extracting high-level acoustic features
from 15-second excerpts is insufficient sampling for this
kind of analysis.

5. CONCLUSIONS

The methods utilized in both experiments may be useful
for others in the refinement of psychologically-based mu-
sic features such as danceability, or enable the exploration
of other previously unexamined features.

Experiment One establishes a method for measuring
complex cognitive decision making processes like singa-
bility in an operationalized manner. A major limitation
of this operationalization is that it did not consider social
and contextual features influencing singing preference. As
described in Section 3.2, a benefit of using AHP is that
including or removing global priorities is simple; future
work should consider the role that other factors (such as
social context and song lyrics) may play in the evaluation
of singability.

Experiment Two provides a preliminary exploration of
the extent acoustic features influence singability scores
generated in experiment one. Two statistical models, one
simple and the other more complex, were used to deter-
mine what features may be contributing most to the evalu-
ation of singability. Significant features in common across
the two models suggests that further signal analysis will be
important future work.

This exploratory work does not definitively establish
singability as a core feature of the music. Rather we sug-
gest that it provides compelling evidence to support a per-
ceptual process of singability, and a refinable methodology
to explore or support other properties involving cognition.
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ABSTRACT

Musical patterns are salient passages that repeatedly ap-
pear in music. Such passages are vital for compression,
classification and prediction tasks in MIR, and algorithms
employing different techniques have been proposed to find
musical patterns automatically. Human-annotated patterns
have been collected and used to evaluate pattern discovery
algorithms, e.g., in the Discovery of Repeated Themes &
Sections MIREX task. However, state-of-the-art algorithms
are not yet able to reproduce human-annotated patterns.
To understand what gives rise to the discrepancy between
algorithmically extracted patterns and human-annotated pat-
terns, we use jSymbolic to extract features from patterns,
visualise the feature space using PCA and perform a compar-
ative analysis using classification techniques. We show that
it is possible to classify algorithmically extracted patterns,
human-annotated patterns and randomly sampled passages.
This implies: (a) Algorithmically extracted patterns possess
different properties than human-annotated patterns (b) Algo-
rithmically extracted patterns have different structures than
randomly sampled passages (c) Human-annotated patterns
contain more information than randomly sampled passages
despite subjectivity involved in the annotation process. We
further discover that rhythmic features are of high impor-
tance in the classification process, which should influence
future research on automatic pattern discovery.

1. INTRODUCTION

Patterns occur in many dimensions of life: we constantly
look for patterns to classify and predict based on our ex-
perience [40]. In music, composers employ patterns to
induce structures to their music [14]; listeners look for pat-
terns while they listen attentively [16, 19]; performers learn
patterns to better memorise, perform and improvise [39];
musicologists use patterns as evidence for categorisation
and theorisation [1, 23]. In this paper, we work mainly with
repeated patterns which characterise and categorise folk
songs.

c© Iris Yuping Ren, Anja Volk, Wouter Swierstra, Remco C.
Veltkamp. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Iris Yuping Ren, Anja Volk,
Wouter Swierstra, Remco C. Veltkamp. “Analysis by classification: A
comparative study of annotated and algorithmically extracted patterns in
symbolic music data”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

Because of the many potential applications of musical
patterns, algorithms that can automatically identify patterns
are useful in many contexts. Automatic pattern discovery
is an active research area in which many different meth-
ods have been developed, such as string-based approaches
[5, 8, 17, 21, 22, 32], geometric approaches [4, 7, 29, 41],
data mining approaches [6, 36], and machine learning ap-
proaches [34, 46].

One open question is how one should evaluate the qual-
ity of algorithmically extracted patterns. One common
approach is to compare the extracted patterns with human-
annotated patterns [2,11,15]. However, because of the afore-
mentioned versatile application possibilities and diverse
definitions of musical patterns, we face several challenges
using human-annotated patterns to evaluate the algorithms.
First, there is a lack of human-annotated pattern datasets in
general [37]. Second, subjectivity and irreducible human
errors could be introduced in the annotation process [27].
Third, it is not straightforward to see what metrics one
should compute to compare the human-annotated patterns
with automatically extracted patterns.

Previous research has addressed these challenges to a
certain extent. Historically, algorithms have been tested
on unassociated datasets with disparate metrics [15]. One
attempt to standardise the evaluation of algorithms is the
MIREX Discovery of Repeated Themes & Sections task
initiated in 2014. In the task, a pattern is defined as a
set of time-pitch pairs that occurs at least twice in a piece
of music and the JKU-PDD dataset was introduced [11].
According to the evaluation metrics in this task, the state-
of-the-art algorithms perform acceptably well in precision,
recall, and F1-scores, although they cannot reproduce the
human-annotated patterns yet. Another pattern annotation
dataset which has been used for evaluating the algorithms
is the MTC-ANN Dutch Folk Song dataset [43]: human-
annotations have been compared with algorithmically ex-
tracted patterns by their performance in a classification
task [2] showing the annotated patterns perform better. Fur-
thermore, a large disagreement between annotated and com-
putationally extracted patterns has been shown in both the
JKU-PDD and MTC-ANN dataset in [37].

The aim of this paper is to identify and analyse the dis-
crepancy between human annotations and algorithmically
extracted patterns. To achieve this goal, we extract charac-
teristic features from human-annotated and automatically
extracted patterns, and conduct a comparative study on the
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Figure 1. Pipeline of our experiments. Given the music
data, experts annotate patterns, algorithms extract patterns,
and we randomly sample passages in the corpus. Tasks are
shown in rounded boxes. Diamond boxes are transformed
data/features. Section 2 gives a detailed description.

pattern features using classification methods. To establish a
baseline, we randomly sample passages that have the same
lengths as human annotations. By performing a ternary
classification task amongst the human-annotated patterns,
algorithmically extracted patterns and random passages,
we provide evidence that they are separable by classifiers.
Despite taking musical patterns out of context and only
considering the local structures annotated by humans and
extracted by algorithms, the result of the experiment shows
preliminary implications for the future design and evalua-
tion of pattern discovery algorithms.

Contribution Using the monophonic MTC-ANN Dutch
Folk Song dataset [43], our main contributions are: (a)
By calculating features of human-annotated, automatically
extracted and sampled passages, we summarise and visu-
alise the distributions of patterns in the feature space using
Principal Component Analysis (PCA) (b) Our classifiers suc-
cessfully discriminate between human-annotated patterns
and algorithmically extracted patterns above random chance
level, which enables us to analyse what characterises the dif-
ferences between human-annotated patterns, automatically
extracted patterns and random passages (c) Based on the
analysis of features and classification results, we propose
several ways to improve pattern discovery algorithms.

Figure 1 is the pipeline of our experiments to be detailed
in the next section. Abbreviations such as Anno (Annota-
tions), Ran (Random passages), and Alg (Algorithmically
extracted patterns) are used in tables and figures.

2. DATA PREPARATION

We use the MTC-ANN Dutch Folk Song dataset [43], which
contains an exceptionally large number of annotated pat-
terns and is therefore suitable for a classification experiment.
In this section, we examine groups of patterns, random pas-
sages, and their features in this dataset.

Algorithm #Pattern #Occurrences Incl.
(Annotation) 153 1657 3

SIAR 893 5576 3

SIAP 250 3650 3

SIAF1 822 5308 3

VM 182 25679 3

VM2 159 4658 3

SC 126 355 3

SCFP 200 724 3

PatMinr 105663 182306 7

ME 3339951 5651956 7

MDGP 3543940 5457210 7

COSIATEC 61499 99501 7

Table 1. Algorithms and the count of extracted pat-
terns. Abbreviation correspondence and details are given in
Section 2.1. The counts of PatMinr, ME, MDGP, and COSI-
ATEC are larger by serveral magnitude because we include
a parameter sweep, while other algorithms use a parameter
setting preset by authors of the algorithms. A comprehen-
sive investigation into parameter settings of algorithms is
not conducted in this paper.

2.1 Pattern groups in MTC-ANN

Annotated patterns During the making of MTC-ANN,
three experts have been asked to annotate the prominent
patterns in each song which best classify the song into one
of 26 tune families. Tune family is a concept in ethnomusi-
cology that groups together tunes sharing the same ancestor
in the process of oral transmission [9]. The dataset consists
of 360 Dutch folk songs with 1657 annotated pattern occur-
rences. In an annotation study on what influences human
judgements when categorising melodies belonging to the
same tune family, repeated patterns turned out to play the
most important role [45]. It is, therefore, reasonable to use
repeated pattern discovery algorithms on this dataset.

Patterns from algorithms Table 1 shows the number of
extracted patterns from state-of-the-art musical pattern dis-
covery algorithms that have been used and compared in pre-
vious research [2, 37]. The count numbers for PatMinr [22],
MotivesExtractor (ME) [32], MDGP [8], and COSIATEC [26]
include different parameter settings of the algorithm and are
therefore several magnitudes larger than other entries. We
do not include these patterns because a comprehensive pa-
rameter search of the algorithms would be out of the scope
of this paper. For the same reason, although algorithms such
as SIATECCompress - TLP (SIAP), SIATECCompress - TLF
(SIAF), SIATECCompress - TLR (SIAR) are not optimised
for MTC-ANN, a parameter search is not conducted.

We use the seven pattern discovery algorithms and ex-
tract the patterns from the MTC-ANN dataset using the same
setup as in [2, 37]. The extracted patterns from each algo-
rithm form a subgroup under the umbrella of the extracted
pattern group. The seven algorithms were submitted to
the MIREX task during 2014-2017: SIATECCompress - TLP

(SIAP), SIATECCompress - TLF (SIAF1), SIATECCompress
- TLR (SIAR) [28], VM & VM2 [44], SYMCHM (SC) [35],
and SIARCT-CFP (SIACFP) [7].
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Sampling random passages We compare annotated
and extracted patterns with randomly sampled passages
as a baseline in order to potentially support or refuse the
significance of musical patterns. In more detail, taking the
annotated patterns from MTC-ANN, random passages are
sampled with the following procedures: for each annotated
pattern, we find the corresponding song where the anno-
tation appears. We then find a random starting point and
take an excerpt of the same length as the pattern to con-
struct a candidate excerpt. Finally, we repeat the sampling
procedures five times to prevent accidental results.

2.2 Compute features

Much work of research exists on how to design and com-
pute musical features. As we are concerned with repeated
patterns, and there are many possibilities as to what features
make a pattern repetitive [42], we hence adopt a standard-
ised feature extraction process as described below.

Feature Calculation We calculate features from the
patterns by using a common feature extraction tool: the
jSymbolic toolbox in the jMIR toolset [25]. jSymbolic
takes MIDI files as input and computes 155 musically mean-
ingful features in six categories: texture, rhythm, dynamics,
pitch, melody and chords. After computing all the features
for all the patterns, we have a feature vector of 155 dimen-
sions associated with each pattern. Another well-known
feature extraction package, the FANTASTIC toolbox [30] is
not used because it cannot process input of short length,
which excludes valuable annotated patterns from contribut-
ing to subsequent classification tasks.

Feature Selection We perform a feature selection step
and retain 63 features by first eliminating the features which
are constant across all patterns, such as Vibrato Prevalence,
Average Range of Glissandos, and so forth. Next, we elimi-
nate the features which are not relevant to the music content
of time and pitch, such as the dynamics features and arte-
facts introduced by MIDI conversion.

PCA and Visualisation PCA is known to be a practical
preprocessing step and visualisation tool for classification
problems. PCA produces linear combinations of features
which maximise variances in a given dataset and are suitable
for visualising differences in data.

In Figure 2, we plot different groups and subgroups of
patterns in a two-dimensional 1 PCA embedding of the fea-
ture space. We make four cross-group comparisons to show
typical cases of how musical patterns distribute in the fea-
ture space spanned by the first two components of the PCA

decomposition. The visualisation is generated by using the
annotated patterns as training data to obtain the PCA em-
bedding, then project random passages and patterns from
different algorithms onto this PCA embedding space.

From the four snapshots we take from the musical pattern
PCA feature space as shown in Figure 2, we make several
observations: (1) Annotated patterns and random passages
have an extensive area of overlap, which makes it impos-
sible to find a linear classifier using the first two principal
components of the annotated patterns, which in turn makes

1 More visualisations can be found at https://goo.gl/qmyxdh

it nontrivial to differentiate the two groups of patterns as
shown in the upper left figure. (2) SIAR patterns exhibit
very different distribution from the annotated patterns and
random passages as shown in the top right subfigure. No-
tice the annotated patterns concentrate at the top left corner.
In this case, it is relatively easy to separate the long-tail
area of the extracted patterns from the annotation area. By
applying this observation and designing a filtering process,
it could substantially improve the performance of the SIAR

algorithm on MTC-ANN. (3) The overlap between the anno-
tated patterns and extracted patterns is small in the bottom
left figure. A linear classifier can be devised to separate
the two groups of data using the first two principal dimen-
sions of the annotated patterns. The extracted patterns of
the SC algorithm have different features than the annotated
patterns. (4) In the bottom right figure, we show all the het-
erogeneous patterns as extracted by algorithms, annotated
by humans or randomly sampled in the same PCA embed-
ding. Patterns extracted by algorithms of the same family,
namely SIATECCompress - TLP (SIAP), SIATECCompress -
TLF (SIAF), SIATECCompress - TLR (SIAR), and SIACFP

tend to share the same long-tail property, and therefore their
performance on MTC-ANN can be improved by an extra
filtering step as described above.

In summary, setting out from the visual examination and
our observations above, it is promising to apply classifi-
cation techniques to discriminate the features of different
groups of patterns. We commence on the classification task
and conduct a comparative analysis using the classification
results in the next section.

3. METHOD CONFIGURATION

In this section, we introduce the classifiers and evaluation
metrics we use for the classification task.

3.1 Classification

Supervised classification methods have been used exten-
sively in MIR tasks such as genre classification and classi-
fying geographically different corpora. In addition, com-
parative analyses using classification methods have been
performed in many areas of research [10, 33]. To the best
of our knowledge, using supervised classification for con-
ducting comparative analyses have not been used with sym-
bolic musical patterns. In this paper, we use supervised
classification methods to differentiate human-annotated, al-
gorithmically extracted and randomly sampled passages in
MTC-ANN. By putting patterns into groups (the group of
algorithmically extracted patterns, the group of annotations,
and the group of random passages) and observing whether
there are systematic differences on the group level, we gain
a different perspective than using the metrics based on indi-
vidual patterns, such as the precision, recall, and F1-score
used in MIREX.

To prevent the results to be classifier-specific, we use a
mixture of simple and more sophisticated, linear and non-
linear classifiers to perform the ternary classification task.
We also use standard machine learning techniques to train
and test classifiers: first, scaling and centering preprocess-
ing steps are performed on all the features and PCA input;
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Figure 2. Visualisation of different groups of patterns using the space spanned by the first two principal components of
the annotated pattern features. The legend denoting the colour correspondence with algorithms/annotated patterns/random
passages is on the top of each subfigure. Notice that the scopes of figures in the left column are subregions of figures on
the right. Notes on each subfigure: (1) Upper left: Random passages and annotated patterns. The overlap between the two
groups is large, and it is nontrivial to separate them in this two-dimensional PCA embedding. (2) Upper right: SIAR patterns
and the annotated patterns. SIAR patterns exhibit a long-tail behaviour which is not shared by the annotated patterns. (3)
Bottom left: SC patterns and the annotated patterns. The overlap of the data points is small, which makes it easier to separate
the two groups in this embedding. (4) Bottom right: Random passages, annotated patterns and patterns from all algorithms.
We see some of the algorithmically extracted patterns are very different from the annotated patterns, and the algorithms
belonging to the same family exhibit the same long-tail behaviour.

additionally, to avoid overfitting, for all experiments, we
use a 10-fold cross-validation 3-times repetition scheme.
The PCA projection and parameter search of each classifier
are performed separately on each fold. The six statistical
classifiers we use are:

GBM [13] (Gradient Boosting Machine) produces a pre-
diction model consisting of an ensemble of decision trees.
The parameters we search through are the learning rate, the
complexity of trees, the minimum number of samples to
commence splitting and the number of iterations.

LVQ [18] (Linear Vector Quantisation) applies a winner-
takes-all Hebbian learning-based approach. We search
through two parameters in this classifier: the codebook
size and the number of prototypes.

LDA [38] (Linear Discriminant Analysis) produces a
linear classifier which finds a linear combination of fea-
tures that best separates different classes in datasets. This
classifier does not contain parameters.

NB [31] (Naive Bayes) computes the conditional a-

posterior probabilities of a categorical class variable given
independent predictor variables using the Bayes rule. Three
parameters are tuned for this classifier: the Laplace smooth-
ing, kernel bandwidth and distribution type.

RF [3] (Random Forest) operates by constructing a mul-
titude of decision tree. The parameter we consider is the
number of variables per level.

SVM [12] (Support Vector Machine) calculates a map
from data to a new representation so that the data points
of the separate categories are divided by a gap that is as
wide as possible. We use the radial basis function kernel
and consider two parameters: the smoothing factor and the
weight of training examples.

The experiments have been performed using R. The
task takes about 2 hours on an i7 CPU with a maximum
memory usage of 2Gb. For reproducibility, the data and
code to replicate the experiments can be downloaded 2 .

2 https://github.com/irisyupingren/patdisISMIR2018
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Figure 3. Accuracy values of classifiers in thirty experi-
ments (10-fold cross-validation repeated three times) using
six classifiers with jSymbolic features and features after
PCA decomposition.

Other schemes with different parameters and with a new
test set split were used, too, but are omitted because they
give similar results to our analysis.

3.2 Evaluation

We mainly use accuracy and its variance as a measure of the
performance of classifiers. To further interpret the results of
the classification task, we compute confusion matrices and
feature importance measures. Ten other metrics for each
classifier are provided for further inspection 3 . In the next
section, we report the most relevant results.

4. RESULTS AND DISCUSSION

In this section, we first report the model metrics of classi-
fiers. By comparing the metrics, we identify Random Forest
as the best classifier. Then we interpret the performance
of the Random Forest classifier using the confusion matrix.
Last, we examine important features in our best model.

4.1 Model metrics

In Figure 3, we show the accuracy and variance of different
classifiers using two groups of features: the raw features and
features after PCA decomposition. The baseline accuracy
is 1

#group ∼ 33% because the number of patterns in each
group is the same = 1657, as ensured by uniform sampling.

We see that all the classifiers give a result higher than the
baseline accuracy. PCA improves the performance of the
classifier NB; for three classifiers, LVQ, SVM and LDA, using
PCA or raw input does not make a significant difference
on the performance; the performance of other classifiers
is worse when using the PCA input. PCA has different
influences on the performance of classifiers because there
are different internal feature transformation mechanisms in
each classifier. Overall, the random forest classifier gives
the best results with the raw feature input and the parameter
#variables = 32.

The high accuracy and the fact that we can construct a
classifier to differentiate the three groups of data imply that:
first, algorithmically extracted patterns possess different
properties than human-annotated patterns, which suggests
an extra consideration to features of patterns when trying
to discover patterns automatically; second, algorithmically

3 https://goo.gl/ezuTCT

Original→
Classified ↓ Alg Ran Anno

Alg 1595(±7.4) 17.2(±4.6) 24.8(±8.4)
Ran 8.3(±2.7) 1597(±2.8) 5.0(±2.2)

Anno 54.1(±9.9) 42.6(±2.7) 1627(±10.0)

Table 2. Confusion matrix results from the ternary classifi-
cation experiment using the Random Forest classifier: mean
and variance (in parenthesis) of ten experiments. The row
names indicate the patterns are classified into the group of
this name by the classifier; the column names indicate the
patterns are orginally from the group of this name. Three
groups of data are classified with high accuracies and sig-
nificant p-values� 0.05.

extracted patterns have different structures than random
passages, which means the extracted patterns cannot be re-
placed by sampled passages and could be more useful than
sampled passages for various applications that employ mu-
sical patterns; last, human-annotated patterns contain more
information than randomness despite subjectivity involved
in the annotation process, which is in agreement with the
carefully designed annotation acquiring process [43] and
the previous findings that the annotations are useful for
classifying tune families [2].

4.2 Confusion Matrix

In Table 2, we give the confusion matrix results calculated
from the classifier which has the best classification results:
Random Forest. We perform the repeated cross-validation
experiment ten times and take the average and variance
of the resulting ten confusion matrices. The results show
us on the individual patterns level how different groups
of data are separable to one another. The sum of each
column is roughly 1657, which is the group size of our data.
The row sums do not have this constraint because we do
not put restrictions on the group size as determined by the
classifier. To read the table, for example, the number 24.8
in the right top corner of the table is the mean number of
patterns classified as algorithmically extracted patterns but
are actually annotations.

We see the classifier can differentiate the three groups
with few misclassified instances. Although it would indicate
a good performance of the algorithms if the count in the
confusion matrix is larger in the algorithm pattern group and
the annotation pattern group, we come to the conclusion that
the algorithmically extracted patterns, annotated patterns
and random passages all possess their own traits and are not
similar enough for the classifier to fail. This is in accordance
with previous research that the extracted patterns are not yet
indistinguishable from the human annotations [2, 37]. On
the positive side, we establish that neither annotated patterns
nor extracted patterns are as meaningless as random data.

4.3 Feature Importance

In Figure 4, we show the individual importance value of the
features in the classification process by using the Boruta
algorithm [20]. The Boruta algorithm randomly duplicates
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Figure 4. Feature importance in classifying annotated patterns, extracted patterns and randomly sampled passages using a
random forest classifier. The boxplot shows the mean and variance (interquartile ranges) of the feature importance value [20].
The features are ranked by their importance. We omit the y-axis label because the absolute importance values are not relevant
for our analysis. The colour green indicates features that are more important than the random features and are therefore
confirmed to be important; blue entries show the performance of the random features; red and yellow indicate unimportant
and tentative features respectively.

and shuffles the values in the original features. The algo-
rithm then employs the random features together with the
original features in classification tasks. During the classifi-
cation process, the algorithm calculates and compares the
Mean Decrease Impurity importance value [24].

Although we have 23 rhythmic features out of 63 fea-
tures in total, all top ten most important features are rhyth-
mic features. This suggests that these rhythmic features are
relatively more important than other features in constructing
the random forest classifier. The prominent features give
hints on potential improvements to current existing pattern
discovery algorithms. String-based and data mining algo-
rithms translate pitch and duration pairs into a list of sym-
bols and do not take into account metric structures imposed
by musical punctuations such as bar lines and measures.
Other known algorithms also seldom explicitly consider
metric features in patterns. The feature importance values
send the message that, in designing and evaluating pattern
discovery algorithms, at least for the MTC-ANN dataset, we
should take metric structures into considerations as well as
the repetitions and pitch related features in the patterns.

In addition, the importance of other jSymbolic features
is confirmed with the exception of three features which
performed worse or at the same level as random features,
as shown in Figure 4. For example, the Melodic Octaves
feature is confirmed to be unimportant and the Melodic

Sevenths and Melodic Tritones feature are marked to be a
tentative attribute. They are unessential features because
such intervals rarely happen in the MTC-ANN dataset.

5. CONCLUSIONS AND FUTURE WORK

We visualised and successfully classified human-annotated
patterns, algorithmically extracted patterns and random pas-
sages in MTC-ANN. An analysis of the classification results
suggests that the automatically extracted patterns are not
yet indistinguishable from the human-annotated patterns,
and both extracted and annotated patterns show different
traits than randomly sampled passages. Using classifica-
tion methods for comparative analysis of pattern groups
provides a new perspective on examining the output of pat-
tern discovery algorithms than the comparison of individual
patterns in the MIREX task. In this way, we discover that
rhythmic features play an important role in distinguishing
the groups of patterns in MTC-ANN.

Future research needs to consider different contexts of
patterns, such as within a melody, within a tune family and
within the corpus, in order to investigate the influence of
the context on what establishes a musical pattern. Expand-
ing our research to other datasets once pattern annotations
become available will allow us to verify whether the impor-
tance of rhythmic features is specific to MTC-ANN.
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ABSTRACT

The discovery of patterns using a minimal set of assump-
tions constitutes a central challenge in the modeling of
polyphonic music and complex streams in general. Skip-
grams have been found to be a powerful model for captur-
ing semi-local dependencies in sequences of entities when
dependencies may not be directly adjacent (see, for in-
stance, the problems of modeling sequences of words or
letters in computational linguistics). Since common skip-
grams define locality based on indices, they can only be
applied to a single stream of non-overlapping entities. This
paper proposes a generalized skipgram model that allows
arbitrary cost functions (defining locality), efficient filter-
ing, recursive application (skipgrams over skipgrams), and
memory efficient streaming. Further, a sampling mecha-
nism is proposed that flexibly controls runtime and out-
put size. These generalizations and optimizations make
it possible to employ skipgrams for the discovery of re-
peated patterns of close, nonsimultaneous events or notes.
The extensions to the skipgram model provided here do not
only apply to musical notes but to any list of entities that is
monotonic with respect to a given cost function.

1. INTRODUCTION

Discovering relevant patterns in a given corpus of musical
pieces is a central problem for music modeling and music
information retrieval (MIR) and is crucial for a range of
applications from search to stylistic modeling. While there
exist many approaches for modeling monophonic melodies
[8, 7], polyphony constitutes a persistent challenge due
to the vast amount of latent structural patterns that occur
on multiple levels. These patterns involve surface orna-
ments and accompaniment figurations, contrapuntal con-
figurations, latent polyphony comprising multiple inter-
leaved voices, and harmonic and voice-leading schemata.

While many of the underlying patterns are themselves
relatively simple, identifying these patterns is challenging,
because it involves distinguishing the relevant notes while

c© Christoph Finkensiep, Markus Neuwirth, Martin
Rohrmeier. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Christoph Finkensiep,
Markus Neuwirth, Martin Rohrmeier. “Generalized Skipgrams for
Pattern Discovery in Polyphonic Streams”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

ignoring others. In addition, many patterns do not spec-
ify notes exactly but leave some flexibility when being in-
stantiated, especially concerning timing. Finally, multiple
patterns may co-occur simultaneously or in an interleaved
manner.

When modeling the latent structure of polyphony, it is
important to find the characteristic properties of the struc-
ture to be modeled. Therefore, it is advantageous to start
from a model with minimal assumptions about the target
structure and add assumptions to the basic model until the
desired patterns are found. This way, the properties of
the modeled structure are always clear and well-separated
from the assumptions inherent in the underlying represen-
tation.

There are a variety of methods for modeling sequential
data with minimal assumptions, such as those developed in
computer linguistics, that treat the data as a single stream
of events. However, these cannot be straightforwardly ap-
plied to polyphonic data without adding further implicit as-
sumptions or removing information contained in the orig-
inal data. Therefore, a generalization of skipgrams [4] is
developed in this paper that is applicable to a stream of
polyphonic notes that need not be explicitly presented as
separate voices. This model is applied to a musical corpus
for the discovery of polyphonic patterns.

In the remainder of this paper, we first discuss related
work in more detail (Section 2); we then describe our ap-
proach for generalized skipgrams (Section 3); finally, we
describe and discuss our empirical evaluations (Sections 4
and 5).

2. RELATED WORK

Among polyphonic structures, voice-leading schemata are
particularly prominent in recent research [3]. Schemata
can be understood as structural building blocks that can
be elaborated in multiple ways. They are defined as fixed
patterns of two to four voices where the soprano and bass
constitute specific patterns relative to the key of the piece
(or a segment within that piece) and may be supplemented
with one or two middle voices. The core challenge from
an MIR perspective is that the structural elements in each
stage of the sequence need not occur simultaneously, ow-
ing to highly flexible note elaborations. Thus, instances of
schemata in the music are “semi-local”. An example of this
problem can be seen in Figure 1. The underlying schema
consists of four stages and is elaborated by neighbor and
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5̂ 4̂ 4̂ 3̂

#1̂ 2̂ 7̂ 1̂

(a) The “Fonte” schema as characterized by a typical outer-voice
movement in scale degrees

(b) A realization of the Fonte in a piece

Figure 1: An example of a voice-leading schema

passing notes. The first stage consists of non-overlapping
notes, so there is no point in time where both notes sound
together. The same applies for the third stage.

This semi-locality property of schema patterns can be
met by formalizing an extension of the skipgram formal-
ism, which has been successfully applied in linguistics to
sequences of words or letters (for a review see [4]). Skip-
grams in the original version can only be applied to “mono-
phonic” streams like text, melodies or slices of polyphonic
music, as has been done in [10]. The generalized version
of skipgrams as proposed in the present paper allows not
only the application to truly polyphonic streams but also
recursive application, which can be used to build nested
structures like schema patterns.

Previously, polyphonic music was mainly modeled us-
ing slicing techniques, i.e., cutting the piece vertically at
each note onset or offset. In [10], common, index-based
skipgrams as well as an onset-time-based variant are ap-
plied to slices reduced to a “voice-leading type” represen-
tation, similar to the representation used here (for more de-
tails see Section 4.2). The approach presented in this pa-
per takes the idea two steps further by generalizing the cost
function (allowing non-slice representations as input) and
by building even the vertical structure with this generalized
skipgram method, in addition to the horizontal structure.

Multiple viewpoint systems (e.g., [1, 2, 12, 11]) take a
sequence of slices and derive sequence features, or “view-
points”, from it. Polyphonic structure is modeled by in-
cluding information about the continuation of notes across
slices. For prediction, n-grams of all lengths are combined
by comparing all suffixes of a given gram to other grams
of the corresponding length. However, slicing techniques
are generally problematic when grouping non-overlapping
notes, as these are not contained in any single slice.

An alternative to slices is suggested in [6] where poly-
phonic music is encoded as a set of data points in a mul-
tidimensional space. Accordingly, patterns are orthogonal
projections (i.e., considering only some features, not all) of
subsets of the data points that can be translated to a differ-
ent position (in both pitch and time). This translation oper-
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Figure 2: An example of applying skipgrams to poly-
phonic music displayed in a piano-roll visualization. The
highlighted notes are members of the skipgram, the stages
are indicated by solid lines between notes belonging to
the same stage. The skip cost within and between stages
is given by inter-onset intervals. This 2 × 4 skipgram
represents the same pattern as the polyphonic schema in
Figure 1.

ation, however, permits only exact matches in the selected
dimensions and cannot account for temporally varied pat-
terns.

3. GRAM-BASED METHODS AND
GENERALIZED SKIPGRAMS

Gram-based methods extract short sequences of entities
from a longer stream of entities (e.g., words, letters, or
notes). The most basic gram model, the n-gram, is just
a consecutive subsequence in the input stream that has n
elements. Skipgrams extend the n-gram idea by allowing
non-adjacent subsequences that “skip” up to k elements
[4].

Both n-grams and skipgrams assume that the distance
between entities is determined by their position in the
stream. While this assumption might be reasonable for
text, it is problematic for other applications that involve
general temporal streams, in particular streams of musical
events such as notes. Therefore, it is desirable to measure
the distance between events (notes) based on their timing
information, i.e., onset, offset, and duration. Second, while
notes might be simultaneous in a score, they occur sequen-
tially in a stream or list-of-notes representation, which be-
comes problematic if distance is measured by index.

Sears et al. [10] avoid the latter problem by operating
on a slice representation of a piece, in which slices have a
unique onset and do not overlap. They partially solve the
first problem by replacing the maximal number of skips
with a maximal inter-onset-interval, i.e., a time-based dis-
tance measure. Our paper presents a generalization of skip-
grams to arbitrary pairwise cost functions for streams that
are monotonic with respect to the cost function, which al-
lows both efficient implementation and streams of overlap-
ping entities.

Consider Figure 2, a piano-roll representation of a poly-
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phonic piece of music. The notes that make up a single
stage of a voice-leading schema might not be simultane-
ous, but should be close together. Given the notes of the
piece as a list of triples (onset, offset, pitch), candidates
for a schema stage can be found by considering all groups
of notes (pairs, in the case of two voices) that lie within a
certain distance. In the traditional skipgram approach, this
distance would be measured by the index of each note in
the list. However, in the case of voice-leading schemata, it
is more meaningful to measure this distance with respect
to the timing of the notes, e.g., as the distance between on-
sets or the distance between the offset of the earlier and the
onset of the latter note.

Since a voice-leading schema consists of several con-
secutive stages, it is natural to apply this more general idea
of skipgrams again, now to the list possible stages. As
with notes, the distance between two stages can be defined
in several ways, e.g., as the distance from the beginning
of the first stage to the beginning of the second, or the
amount of time between the stages. In the following sec-
tion, an algorithm that enumerates skipgrams over streams
of arbitrary objects for arbitrary definitions of distance is
presented along with some useful extensions.

3.1 The Generalized Skipgram Algorithm

The basic algorithm for generalized skipgrams is shown in
Algorithm 1. It takes a stream of objects (e.g., notes or
schema stages), an upper bound on the allowed “skip” k,
the length of the generated skipgrams n, and a cost func-
tion c. The cost function is used to represent the distance
between two objects: the combined cost across a skipgram
must not be greater than k. While it traverses the input
stream, a set of prefixes (incomplete skipgrams) is main-
tained. For each prefix that can be extended by the current
element without increasing the total cost beyond k, the ex-
tended version is added to the prefix set. Prefixes of length
n are added to the output and removed from the set of pre-
fixes. Finally, the current element starts a new prefix.

In order to keep the set of prefixes small, a prefix is re-
moved as soon as extending it increases the cost beyond k.
As long as the stream is sorted in a way that every subse-
quent element would increase the cost of the prefix even
further, this optimization does not discard valid skipgrams.
That means the input stream input must satisfy

∀x < y < z ∈ input : c(x, y) ≤ c(x, z),

where x < y denotes that x appears before y in input .
The cost function can handle the distance in several

ways. For example, if the distance between the first and
the last note in a skipgram should be limited, then the cost
equals the distance between the onsets of two neighboring
notes in the skipgram. On the other hand, if the distance
between two neighboring notes is to be limited, the cost
can be defined non-continuously as 0 if the notes are within
the allowed distance and k + 1. This way, the combined
cost is 0, except when a single neighbor pair of notes is too
far apart, in which case it exceeds k.

Algorithm 1 The basic algorithm for enumerating gener-
alized skipgrams.

1: function SKIPGRAMS(input , k, n, c)
2: pfxs ← {}
3: output ← [ ]

4: cost(p, x) =
∑l−1

i=1 c(pi, pi+1) + c(pl, x)
5: for x ← input do
6: open ← {p | p ∈ pfxs, cost(p, x) ≤ k}
7: ext ← {p ◦ x | p ∈ open}
8: append(output , [p | p ∈ ext , |p| = n])
9: pfxs ← open ∪ {p | p ∈ ext , |p| < n} ∪ {x}

10: end for
11: return output
12: end function

Note that the skipgram algorithm traverses the input
stream exactly once, so streaming it is straightforward.
Similarly, the output can be streamed instead of collected,
either using some form of concurrency and a channel be-
tween the output of the skipgram generator and some con-
sumer, or non-concurrently using an iterator pattern.

3.2 Early Filtering

If the list of generated skipgrams will be filtered for some
property (e.g., only selecting notes that do not overlap or
that match a given schema prototype), it is desirable to
filter out prefixes that cannot be completed to satisfy the
predicate as early as possible, instead of generating all of
its completions first. Therefore, an extension of Algorithm
1 additionally takes a predicate pred , which it applies to
every generated prefix. Every prefix that does not satisfy
pred is removed. As with the cost function, this predicate
can be defined freely.

3.3 Stable Ordering

Algorithm 1 adds its output in the order in which prefixes
are completed. As a consequence, the output stream does
not retain the order of the first element in each skipgram
with respect to the input order. Instead the input order is
reflected in the last element of each skipgram.

For some applications, it might be desirable to keep the
order of the first elements intact. For example, when com-
puting skipgrams of skipgrams (e.g., first groups of notes,
then sequences of groups), the second skipgram pass ex-
pects its input to be monotonic with respect to the cost
function. In the case of note groups, this will likely depend
on the earliest onset in the group. The first skipgram pass
takes a list of notes ordered by onset, but the note groups
it returns will not be ordered by the onset of their first (and
therefore earliest) note but by the onset of their last note.

In general, the appropriate order of skipgrams can be
obtained by generating the whole list of skipgrams and
sorting it, but this would destroy the streaming property of
the algorithm. As the number of skipgrams grows quickly,
it might not even be feasible to keep all skipgrams in mem-
ory. Furthermore, as k is intended to limit the range of
skipgrams, a skipgram can only be displaced as much as k,
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so the array will almost be sorted, and sorting can be done
on the fly.

Stable ordering can be ensured efficiently by holding
back completed skipgrams (instead of adding them to the
output as soon as they are generated) until no new skip-
grams can be generated that should precede them. This
can be achieved by using a priority queue to hold the fin-
ished but not yet released skipgrams in the correct order. In
each iteration, the open prefixes are searched for the “old-
est” first element. Then, all skipgrams in the output queue
starting with an element not younger than this oldest ini-
tial prefix element are released. If the output needs to be
ordered lexicographically, the queue content must be com-
pared not to the oldest initial element but to the complete
lexicographically oldest open prefix. The queue can be up-
dated efficiently by sorting the newly generated prefixes
and merging the resulting list with the existing queue as in
a merge sort.

3.4 Sampling Skipgrams

The number of generated skipgrams as well as the asymp-
totic runtime of the algorithm are difficult to estimate, as
they depend on the number of elements within a range of
k or the number of currently open prefixes, respectively, at
any point in the stream. This, in turn, depends on the com-
bination of input and cost function, so no general statement
about runtime and space complexity can be made without
knowing both. In the worst case, generalized skipgrams
consist of all subsets of length n from the list of L entities,
generating

(
L
n

)
skipgrams.

Because this amount of skipgrams is costly to enumer-
ate and process, an alternative is to uniformly draw sam-
ples from the list of all skipgrams. For a given probability
p, a biased coin is tossed for each skipgram, which deter-
mines whether the skipgram is selected or not. If this is
done after the skipgram is completely generated, all skip-
grams must be enumerated once, so computation time is
saved only during consumption but not production. Con-
versely, one could toss the coin for each new prefix of
length 1. This way, all extensions of a discarded prefix
need not be computed, which saves computation time but
also removes a whole family of related skipgrams from the
output.

A third approach combines the other two by tossing a
coin each time a prefix is extended. As this happens n− 1
times for a prefix of length n (not counting the creation of
the initial length 1 prefix), so the coin is biased not with p
but with p′ = n−1

√
p. This way, a skipgram is only included

if all of its prefix extensions succeed, i.e., with probability
(p′)n−1 = p. Furthermore, computation time can be saved
by discarding short prefixes, while variety is preserved by
also discarding prefixes in later stages.

With this method, it is not possible to uniformly draw
a fixed number of samples. However, the expected num-
ber of samples can be estimated by choosing a small p and
extrapolating the resulting amount of sampled skipgrams.
The total number of skipgrams N can be estimated simi-
larly, as the number of sampled skipgrams is expected to

be Np.

4. SKIPGRAMS ON POLYPHONIC MUSIC

4.1 Dataset

The described method is applied to 17 piano sonatas by
Wolfgang Amadeus Mozart in MIDI format. 1 A schema
has 2 or 3 voices and consists of 2 to 4 stages. These
dimensions of a schema are notated as voices × stages
or nv × ns. and the sampling parameters pv and ps are
adapted to these dimensions. The skip limit within a stage
kv is one bar in total, the limit between the stages ks is also
one bar, but per pair of stages.

4.2 Method

For the discovery of musical schemata, three assumptions
are made. First, schemata are semi-local structures, that
is, they extend over a limited range of time. This prop-
erty is inherent in the skipgram formalism with an appro-
priate cost function. Second, they consist of a horizon-
tal sequence of pseudo-vertical structures, which consist
of a fixed number of possibly non-simultaneous or even
non-overlapping notes. Third, patterns are characterized
by their pitch content, not by their temporal properties.
This pitch content is subject to certain equivalences, e.g.,
regarding transposition of the whole pattern or the exact
octave of each pitch.

In order to find vertical structures in polyphonic pieces,
skipgrams can be applied to a stream of notes. Each note
has a pitch, an onset and an offset, and the notes are sorted
by their onsets. For this purpose, the cost function is the
difference between the onsets of two notes in the skipgram

cv(n1, n2) = onset(n2)− onset(n1),

which in sum amounts to the onset difference between the
earliest and the latest note in the group. This allows notes
to overlap but restricts their temporal distance. The stable
variant of the skipgram algorithm is used to ensure that
the output stream is again ordered by (earliest) onset. The
number of notes nv in the first pass can be regarded as the
number of voices in the vertical structure.

A second skipgram pass builds length ns sequences of
vertical structures by taking the output of the first pass as
the new input. Since these structures should be horizon-
tally organized, temporal overlap between their stages is
forbidden (by defining an appropriate pred ). The amount
of time between the onsets of slices is restricted by a step
function that admits a skip up to ks for each pair of neigh-
bors:

cs(s1, s2) =

{
0 if onset(s2,1)− onset(s1,1) ≤ ks

ks + 1 otherwise.

Due to the large amount of skipgrams generated, the sam-
pling parameters are adapted to the number of voices (pv)

1 Encoded by Craig Sapp in Kern format and converted to
MIDI. Available at https://github.com/craigsapp/
mozart-piano-sonatas.
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nv ns ps pv sampled total cov

2 2 1.0 1.0 3.30 · 108 108 1.0
2 3 1.0 0.001 9.92 · 107 1011 0.99998
2 4 1.0 10−6 3.77 · 107 1013 0.30
3 2 0.1 1.0 3.53 · 108 1010 0.9997

Table 1: The combinations of parameters used to generate
the results. For each combination, the sampled and the
rough estimated total number of skipgrams, as well as the
coverage are given. Coverage is the ratio of the number of
skipgram classes encountered and the number of possible
classes for the given dimensions (12nvns−1). 2

and stages (ps). An example of such a nested skipgram is
shown in Figure 2.

The pitch content of the resulting structures is sum-
marized by summing the occurrences of skipgrams with
similar pitch content (“skipgram classes”). Pitch combi-
nations are grouped by sorting the pitches in each stage
in ascending order, removing octave information (pitch
classes), and transposing every pitch class relative to the
lowest note of the first stage. For example, the sequence
(f, c′, a′) → (e, c′, g′) would be encoded as (0, 7, 4) →
(11, 7, 2). This is similar but not identical to the voice-
leading type representation used in [10], which addition-
ally removes the order of the pitches and the magnitude
of each pitch class. Since the focus here is on polyphonic
voice-leading schemata, both order and magnitude are re-
tained. For nv voices and ns stages, there are 12nvns−1

possible skipgram classes, as the transposition step always
sets the first bass note to 0.

5. RESULTS AND DISCUSSION

5.1 Results

Table 1 gives an overview of the used parameter combina-
tions. For each set of parameters, it shows the number of
generated skipgrams, the estimated number of total skip-
grams, as well as the coverage, which is the ratio of the
number of encountered skipgram classes and the number
of possible classes for the given dimensions. Good cov-
erage is important for prediction tasks, where the zero-
frequency problem occurs (i.e., where a prediction context
has not been encountered at least once, see [10]).

As the outer-voice movement is most characteristic of
voice-leading schemata, the most general insight can be
provided by two-voiced skipgram classes, which also have
a good coverage for reasonable computational effort. Ad-
ditionally, the 3 × 2 skipgrams were generated to observe
the effect of increasing the number of voices on the found
patterns. Larger dimensions did not produce a sufficient
coverage due to computational constraints. The total num-
ber of skipgrams without sampling can be estimated by

2 Runtimes ranged from a few minutes to several hours. While paral-
lelization was straightforward by splitting the dataset, memory usage was
problematic and prevented generating skipgrams with larger dimensions.

class abs rel

1 (0, 3)→ (0, 2)→ (10, 2)→ (10, 0) 1190 0.32
2 (0, 3)→ (3, 3)→ (0, 3)→ (3, 3) 1029 0.27
3 (0, 1)→ (10, 1)→ (8, 0)→ (8, 10) 1009 0.27
4 (0, 0)→ (5, 0)→ (0, 0)→ (5, 0) 976 0.26
5 (0, 0)→ (9, 0)→ (5, 0)→ (0, 0) 964 0.26
6 (0, 3)→ (3, 3)→ (8, 3)→ (3, 3) 937 0.25
7 (0, 1)→ (10, 1)→ (0, 0)→ (8, 10) 934 0.25
8 (0, 0)→ (9, 0)→ (0, 0)→ (9, 0) 921 0.24
9 (0, 0)→ (10, 1)→ (10, 0)→ (8, 10) 902 0.24
10 (0, 3)→ (0, 1)→ (10, 1)→ (10, 0) 897 0.24

Table 2: The 10 most frequent 2× 4 skipgram classes that
have no repeating stages

multiplying the sampled skipgrams with ps(p
ns
v ). pv needs

to be exponentiated, as it factors in the output probability
of a skipgram on each of its stages.

Table 3 shows the 10 most frequent skipgram classes
found for each set of parameters. As the most frequent
patterns mainly indicate arpeggiation patterns (see Section
5.2), an additional filter is applied to the 2 × 4 skipgrams,
which forbids the repetition of a stage. The resulting 10
most frequent patterns are shown in Table 2.

In addition to enumerating (or sampling from) all skip-
grams in the corpus, the generalized skipgram algorithm
can be used as a pattern matcher or schema finder. Figure 2
shows the first skipgram matching a two voiced pattern
(0, 6) → (1, 4) → (10, 4) → (11, 3) in the third move-
ment of Mozart’s third piano sonata (from which the exam-
ple in Figure 1 is taken), found by enumerating the pieces
2 × 4 skipgrams. Pattern matching can be performed effi-
ciently by using the early filtering mechanism described in
Section 3.2 to remove prefixes that cannot match.

5.2 Discussion

As Table 1 shows, even with moderate sampling the cov-
erage is excellent for smaller dimensions. As the dimen-
sions increase and the sampling probability decreases, the
coverage rapidly decreases as well, because the large num-
ber of possible pitch combinations conflicts with the in-
creased need for reducing the computational effort via
sampling. For example, for 2 voices and 4 stages, there
are 127 ≈ 3.58 · 107 possible skipgram classes, but the to-
tal number of sampled skipgrams was only 3.77 · 107. In
principle, however, the flexibility of nested skipgrams pro-
vides a good coverage, confirming the results in [10] for
flat skipgrams. For larger problem instances of up to 4× 4
skipgrams, the computational problem can be solved by
good parallelization and sufficient computation resources.

Based on frequency, the patterns found in the corpus
are dominated by interval combinations as they appear in
major and minor triads, followed by simple step-wise rela-
tions. This cannot be explained by the fact that the mu-
sic of Mozart is mostly triadic to a large extent, as the
stages of a single skipgram are strictly non-simultaneous.
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In music that is triadic but consists of sequences of non-
arpeggiated, non-repeating chords, the stages of a skip-
gram will be taken from different chords. Thus, the found
patterns reveal the usage of harmonic surface patterns such
as Alberti bass. This becomes especially clear from vari-
ants of (0, 0) → (5, 0) and (0, 0) → (9, 0), which are
consistently ranked very high and indicate a prevalence of
the fifth in combination with the third or the root of a major
triad, resembling the Alberti bass pattern.

In contrast, the filtered patterns shown in Table 2 mainly
consist of instances of the typical voice-leading pattern of
descending 3-2 suspension sequences. This pattern is used
as a typical elaboration procedure in several voice-leading
schemata. This finding shows that nested skipgrams are
very well capable of representing polyphonic structures.
The remaining question is how to automatically distinguish
surface patterns from patterns on higher structural levels in
the generated skipgrams.

6. CONCLUSION

The results clearly show that the generalized skipgram for-
malism is capable of modeling streams of events that have
a non-flat shape, such as streams of notes in polyphonic
music. The monotonicity property explained in Section 3.1
is a general criterion for the applicability of the presented
algorithm. Thus, generalized skipgrams can prove useful
for a wide range of problems from various domains other
than music that deal with sequential but overlapping data.

With respect to polyphonic music, generalized skip-
grams provide a powerful mechanism for accessing poly-
phonic structure, solving the problem of building vertical
structures from non-overlapping notes. Hence, a poten-
tially powerful application of generalized skipgrams is to
use them as the basic representation in variety of other
methods that provide rich pattern languages, replacing the
currently used sequence-of-slices structure. For example,
it is possible to apply viewpoint techniques to the skip-
grams generated from a polyphonic stream.

Finally, the skipgram approach requires very little as-
sumptions on its own, but can easily be extended to filter
for more advanced, theoretically or empirically motivated
properties. The discovery of schema-like patterns, for ex-
ample, will require to add appropriate filters that separate
surface from middleground patterns. This helps to advance
the understanding of the essential properties of schemata,
as the added assumptions can be clearly separated from the
ones inherent in the skipgram representation.
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class abs rel

1 (0, 0)→ (0, 0) 3.3e6 10.0
2 (0, 0)→ (5, 0) 1.38e6 4.18
3 (0, 0)→ (0, 5) 1.34e6 4.06
4 (0, 0)→ (9, 0) 1.34e6 4.06
5 (0, 0)→ (7, 0) 1.32e6 4.01
6 (0, 7)→ (7, 7) 1.31e6 3.96
7 (0, 5)→ (0, 0) 1.28e6 3.89
8 (0, 3)→ (3, 3) 1.27e6 3.86
9 (0, 0)→ (0, 7) 1.22e6 3.7
10 (0, 0)→ (10, 0) 1.21e6 3.68

1 (0, 0)→ (0, 0)→ (0, 0) 121073 1.22
2 (0, 0)→ (0, 0)→ (9, 0) 44143 0.44
3 (0, 0)→ (0, 0)→ (5, 0) 43764 0.44
4 (0, 0)→ (5, 0)→ (0, 0) 40859 0.41
5 (0, 3)→ (3, 3)→ (3, 3) 40543 0.40
6 (0, 7)→ (7, 7)→ (7, 7) 39470 0.39
7 (0, 0)→ (9, 0)→ (0, 0) 39056 0.39
8 (0, 0)→ (0, 0)→ (10, 0) 34975 0.35
9 (0, 0)→ (0, 0)→ (0, 5) 29343 0.29

10 (0, 0)→ (0, 0)→ (7, 0) 28667 0.28

1 (0, 0)→ (0, 0)→ 6381 0.169
(0, 0)→ (0, 0)

2 (0, 0)→ (0, 0)→ 2436 0.065
(0, 0)→ (9, 0)

3 (0, 0)→ (0, 0)→ 2386 0.063
(0, 0)→ (5, 0)

4 (0, 0)→ (0, 0)→ 2184 0.058
(9, 0)→ (0, 0)

5 (0, 0)→ (0, 0)→ 2173 0.058
(5, 0)→ (0, 0)

6 (0, 0)→ (5, 0)→ 2075 0.055
(0, 0)→ (0, 0)

7 (0, 3)→ (3, 3)→ 2031 0.054
(3, 3)→ (3, 3)

8 (0, 0)→ (9, 0)→ 2001 0.053
(0, 0)→ (0, 0)

9 (0, 7)→ (7, 7)→ 1918 0.051
(7, 7)→ (7, 7)

10 (0, 0)→ (0, 0)→ 1753 0.046
(0, 0)→ (10, 0)

1 (0, 0, 0)→ (0, 0, 0) 461238 1.31
2 (0, 0, 0)→ (9, 0, 0) 214255 0.61
3 (0, 3, 3)→ (3, 3, 3) 208562 0.59
4 (0, 0, 0)→ (5, 0, 0) 205212 0.58
5 (0, 7, 7)→ (7, 7, 7) 200170 0.57
6 (0, 3, 3)→ (0, 3, 3) 172370 0.49
7 (0, 0, 0)→ (10, 0, 0) 162212 0.46
8 (0, 2, 2)→ (2, 2, 2) 133658 0.38
9 (0, 7, 7)→ (0, 7, 7) 131357 0.37
10 (0, 0, 2)→ (0, 0, 0) 128846 0.37

Table 3: The 10 most frequent 2 × 2, 2 × 3, 2 × 4, and
3 × 2 skipgram classes. Relative frequencies have been
scaled by 103 and rounded appropriately.
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ABSTRACT

Studies on instrument recognition are almost always re-
stricted to either Western or ethnic music. Only little work
has been done to compare both musical worlds. In this
paper, we analyse the performance of various audio fea-
tures for recognition of Western and ethnic instruments in
chords. The feature selection is done with the help of a
minimum redundancy - maximum relevance strategy and
a multi-objective evolutionary algorithm. We compare the
features found to be the best for individual categories and
propose a novel strategy based on non-dominated sorting
to evaluate and select trade-off features which may con-
tribute as best as possible to the recognition of individual
and all instruments.

1. INTRODUCTION

Instrument recognition in polyphonic audio signals, when
acoustic properties of multiple simultaneously played
sources contribute together to the spectrum, corresponds to
a very challenging problem in music information retrieval.
An unknown number of sound sources, instrument bod-
ies with different characteristics, dissimilarities of over-
tone distribution across pitches, various playing styles, ap-
plied effects, etc. hinder the robust identification of playing
instruments. Earlier works started with recognition of in-
dividual tones [6, 15]. Several years later first studies on
polyphonic instrument recognition were published [5, 7].
In further works, many different and complex methods
were proposed, like source separation [14], complex fea-
ture engineering [27], or deep neural networks [12].

However, most studies concentrate on the detection of
Western instruments in Western classical or popular mu-
sic. Recently, more attention was paid to analyse also eth-
nic/world music, for example for onset detection in Car-
natic music [22] or rhythm analysis in Indian music [23],
but only little work was reported on recognition of eth-
nic instruments, in particularly in polyphonic recordings,
or in both Western and ethnic recordings. [10] presented a

c© Igor Vatolkin, Günter Rudolph. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Igor Vatolkin, Günter Rudolph. “Comparison of Audio Features
for Recognition of Western and Ethnic Instruments in Polyphonic Mix-
tures”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

study on recognition of 10 Indian stringed, wind, and per-
cussive instruments (sitar, edakkai, indian flute, etc.), how-
ever only two instruments were mixed together at the same
time. Classification of solo recordings into three families
(string, woodwind, percussion) of 9 Pakistani instruments
(benju, bainsuri, tabla, etc.) was done in [17]. [2] exam-
ined properties of various acoustic features for recognition
of five Hindustani instruments. In [25], the performance
of models trained for recognition of Western instruments
in Western mixtures was validated when applied for poly-
phonic mixtures with ethnic samples.

The goal of our study was to propose a strategy how au-
dio features can be automatically validated for their ability
to detect Western and/or ethnic instruments. We adopt the
general experiment setup from [25], starting with a large
feature set and applying feature selection for identifica-
tion of the most relevant features. However, in contrast
to [25], we aim at the recognition of not only Western, but
also ethnic instruments, and incorporate datasets created
with both Western and ethnic samples, making recogni-
tion tasks harder, but also allowing the classification mod-
els to be more robust and not restricted to data sets created
with more similar instruments. Furthermore, we propose a
novel strategy based on non-dominated sorting to identify
features which are particularly well suited to classify either
Western, ethnic, or both categories of instruments.

The remainder of this paper is organised as follows. In
Section 2, we introduce the backgrounds of multi-objective
feature selection. Section 3 describes the study setup. In
Section 4, we discuss the results, compare the features, and
present our strategy how the most relevant features for the
recognition of Western, ethnic, and both groups of instru-
ments can be identified. We conclude with Section 5.

2. MULTI-OBJECTIVE FEATURE SELECTION

The goal of feature selection (FS) is to identify relevant
features and to remove irrelevant and redundant ones. Rel-
evant features contribute to the “best” classification mod-
els, so that their removal would decrease the classification
quality. Irrelevant features do not capture any important
properties of classification categories; if too many of such
features are contained in the data set, some of them may
be identified by chance as relevant, leading to decreased
generalisation ability of models. Redundant features can
be removed from the feature set without decrease of clas-
sification quality for models trained with this set, because
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other features already describe the same properties. For a
good introduction into feature selection, we refer to [11].

To evaluate feature sets, some criterion is needed, like
classification accuracy, or correlation with the target. In
the multi-objective feature selection (MO-FS), several of
such criteria are optimised simultaneously:

q∗ = arg min
q

{mi (y, ŷ,Φ(F ,q)) : i = 1, ...,K} , (1)

where F is the complete feature set, Φ(F ,q) is the se-
lected feature set, q is the binary vector which indicates
features to be selected (zero entry at position i means that
i-th feature is not selected), y are correct labels (categories
to predict), ŷ are predicted labels, and m1, ...,mK are K
evaluation or objective functions, which may measure clas-
sification performance (accuracy, precision, recall, etc.)
but also other relevant criteria (number of selected features,
degree of internal redundancies across features, etc.)

In [25], it is proposed to minimise two criteria: the num-
ber of selected features and the balanced classification er-
ror, which is defined as follows:

e =
1

2

(
FN

TP + FN
+

FP

TN + FP

)
, (2)

where TP is the number of true positives, TN true neg-
atives, FP false positives, and FN false negatives.

When MO-FS is applied, some feature sets cannot be
compared: consider a smaller feature set, which leads to a
higher classification error, and a larger feature set, which
leads to a lower error; none of these sets can be described
as superior to another one. However, some sets may be
worse with regard to both criteria, and can be identified
with the help of non-dominance relation: feature set q1

dominates feature set q2 (q1 ≺ q2), if and only if

∀i ∈ {1, ...,K} : mi(q1) ≤ mi(q2) and

∃j ∈ {1, ...,K} : mj(q1) < mj(q2).
(3)

In other words, q1 dominates q2, when it is not worse
than q2 with regard to all criteria, and is better with regard
to at least one criterium. Here, we restrict us to minimi-
sation of all criteria; criteria to be maximised can be sim-
ply redefined for minimisation (e.g., multiplying them with
-1). The goal of MO-FS is to find a non-dominated front
of incomparable feature sets, which are not dominated by
any other feature set.

3. EXPERIMENTAL SETUP

In the experimental setup, we mostly follow [25]. Table
1 lists all instruments used in this study. The instruments
which were recognised in classification experiments, are
written in normal font. Further instruments, which were
present in audio mixtures, but were not considered as
classes to be identified, are written in italic font. The
Western instrument samples are taken from MUMS [4],

RWC [9], and University of Iowa 1 databases, and ethnic
from Ethno World 5 Professional & Voices 2 .

The chords are randomly mixed from individual sam-
ples as described in [25], however, in contrast to previous
work, we have created heterogeneous data sets, so that in
each mixture of three to four tones at least one Western and
at least one ethnic sample is contained. The experiment set
consists of 3000 chords. During feature selection, it is di-
vided into the training and optimisation set by means of
5-fold cross-validation. Training set is used to train clas-
sification models, and optimisation set to estimate the bal-
anced classification error e. Other independently mixed
3000 chords are used as holdout set to measure the effect
of overfitting towards the experiment set.

The audio features comprise acoustic characteristics
available for extraction with open-source AMUSE frame-
work [26], including mel frequency cepstral coefficients
(MFCCs) [21], root mean square (RMS) of the time sig-
nal, various spectral characteristics (centroid, bandwidth,
kurtosis, skewness, flux, etc.), chroma [8] and chroma en-
ergy normalized statistics (CENS) [20], but also other less
frequently used features like characteristics of ERB bands
and Bark scale domain [19] or phase domain [18]. Before
the extraction, the audio was downsampled to 22,1 kHz
mono signal, and the most short-framed features were ex-
tracted from 512 samples without overlap; for exact details
see [24]. For each feature, three dimensions are stored sep-
arately: a value from the middle of the attack interval, from
the onset frame (the end of the attack interval equal to the
beginning of the release interval), and from the middle of
the release interval, where attack and release intervals were
previously extracted with MIR Toolbox [16], leading to the
complete set of 795 feature dimensions. Classification is
done with random forest classifier [13].

The first FS strategy was minimum redundancy-
maximum relevance (MRMR) [3], which aims at the min-
imisation of redundancy between selected features and
maximisation of relevance to the target category. The sec-
ond FS strategy was evolutionary multi-objective feature
selection (EMO-FS) with S-metric selection evolutionary
multi-objective algorithm (SMS-EMOA) [1], for further
details please see [25].

4. DISCUSSION OF RESULTS

4.1 Performance Analysis

Table 2 provides the summary of results after feature se-
lection. eH(Φ) denotes the baseline classification error us-
ing the complete feature set. |Φ̂O| denotes the cardinal-
ity of the feature set with the smallest optimisation error
eO(Φ̂O). eH(Φ̂O) denotes the holdout error for that feature
set, and eH(Φ̂H) the best holdout error among all output
feature sets after feature selection.

Both MRMR and EMO-FS significantly outperform the
baseline method which trains models with all features.
This means, that FS explicitly makes sense. As it can be

1 http://theremin.music.uiowa.edu/MIS.html
2 http://www.bestservice.de
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Category Instruments
WESTERN
Bowed Cello, viola, violin
Key Piano
Stringed Acoustic guitar, electric guitar
Woodwind/brass Flute, trumpet
ETHNIC
Bowed Dilruba, egyptian fiddle, erhu, jinghu opera violin, morin khuur violin
Key Hohner melodica, scale changer harmonium
Stringed Balalaika, bandura, banjolin, banjo framus, bouzouki, ceylon guitar, cümbüs, domra, kantele, oud, sitar, tampura, tanbur, saz, ukulele
Woodwind/brass Bawu, dung dkar trumpet, fujara, pan flute, pinkillo, pivana, shakuhachi

Table 1: Instruments used in this study.

No FS MRMR EMO-FS
Task eH(Φ) |Φ̂O| eO(Φ̂O) eH(Φ̂O) eH(Φ̂H) |Φ̂O| eO(Φ̂O) eH(Φ̂O) eH(Φ̂H)
WESTERN
Acoustic guitar 0.4395 10 0.3962 0.3906 0.3906 46 0.3809 0.3885 0.3751
Cello 0.4696 12 0.4295 0.4382 0.4382 37 0.4358 0.4574 0.4404
Electric guitar 0.1704 309 0.1532 0.1424 0.1369 44 0.1238 0.1158 0.1084
Flute 0.4907 3 0.4485 0.4651 0.4516 45 0.4513 0.4675 0.4547
Piano 0.2531 7 0.2148 0.2411 0.2260 54 0.2112 0.2320 0.2237
Trumpet 0.3119 20 0.2516 0.2538 0.2506 64 0.2706 0.2604 0.2488
Viola 0.4968 13 0.4735 0.4857 0.4687 36 0.4417 0.4561 0.4406
Violin 0.4791 8 0.4518 0.4639 0.4632 55 0.4538 0.4605 0.4504
ETHNIC
Balalaika 0.3976 34 0.3070 0.2987 0.2821 48 0.3113 0.3226 0.2931
Bandura 0.5000 2 0.4653 0.4893 0.4587 50 0.4713 0.4809 0.4689
Banjo framus 0.4909 11 0.3915 0.4252 0.4151 39 0.4184 0.4139 0.3994
Banjolin 0.4827 18 0.3504 0.3895 0.3895 32 0.3661 0.4012 0.3937
Bawu 0.3776 12 0.1814 0.2150 0.1836 66 0.2028 0.2138 0.1963
Dilruba 0.4492 32 0.3769 0.3987 0.3974 59 0.3297 0.3761 0.3503
Dung dkar 0.4213 47 0.3971 0.3487 0.3487 49 0.3478 0.3373 0.2983
Egyptian fiddle 0.3533 79 0.2387 0.2750 0.2420 57 0.1763 0.1984 0.1692
Erhu 0.4507 12 0.3719 0.3766 0.3672 42 0.3609 0.3489 0.3293
Fujara 0.3061 28 0.1945 0.1887 0.1840 51 0.1994 0.2236 0.1959
Melodica 0.3889 33 0.2721 0.3041 0.2926 48 0.2638 0.2898 0.2633
Scale changer harmonium 0.3192 22 0.2342 0.2590 0.2445 43 0.2263 0.2578 0.2149

Table 2: Results after feature selection, details are explained in Section 4.1.

expected, eH(Φ̂O) is often higher than eO(Φ̂O). However,
this difference is significant only for ethnic instruments and
EMO-FS. The null hypothesis that both errors come from
the same distribution is rejected by means of Wilcoxon
signed rank test for paired observations (MATLAB func-
tion SIGNRANK) only for ethnic instruments/EMO-FS
with p-value of 0.0210. For combination Western/EMO-
FS, p = 0.1484, for Western/MRMR p = 0.1094 and eth-
nic/MRMR p = 0.0922. Both MRMR and EMO-FS are
comparable: each method leads to a smaller eO(Φ̂O) for
exactly a half of Western and a half of ethnic categories,
and there is no significant difference between these errors
after the application of Wilcoxon rank sum test for un-
paired observations (MATLAB function RANKSUM).

4.2 Best Features for Individual Categories

To identify the most relevant features for each category, we
may estimate feature ranks as follows. Let Nc be the num-
ber of solutions (feature sets) in the non-dominated front
after the multi-objective optimisation for category c (recall
that the non-dominated front contains the best incompara-
ble solutions, cf. Section 2). Let qk,i be 1 when feature
k in non-dominated solution i is selected, and 0 when this
feature is not selected. We may count the number of occur-

rences of feature k in the front and normalise this number
by the size of the front:

r(c, k) =
1

Nc
·

Nc∑
i=1

qk,i. (4)

Table 3 lists two most relevant features for individual
classification tasks using either MRMR (columns 2-5) or
EMO-FS (columns 6-9). As MRMR starts with the most
relevant feature and only adds further features during the
iteration process, r = 1 for all 1st best features in that case.
Because of the differences in operating methods (EMO-
FS explores a significantly larger number of feature sets,
but is slower), the two most relevant features are usually
not the same. However, for cello, flute, and erhu the best
feature is exactly the same for MRMR and EMO-FS. For
scale changer harmonium and bawu the 1st best feature for
MRMR is the same as the 2nd best feature for EMO-FS.

One observation is that MFCCs seem to play a more
important role for the recognition of Western instruments:
although all processed MFCC dimensions together account
for appr. 17% of the complete feature set, they correspond
to 56.25% of all 16 entries for 1st best features (8 entries
for each MRMR and EMO-FS) and 18.75% for 2nd best
features for Western instruments, but only to 20.83% for
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MRMR EMO-FS
Task 1st best feature r 2nd best feature r 1st best feature r 2nd best feature r
WESTERN
Ac. guitar A(MFCC 2) 1 O(Bark scale magn. 6) 0.83 A(Phase domain angles) 0.80 A(Chroma 11) 0.60
Cello O(MFCC 4) 1 A(Spectral slope) 0.89 O(MFCC 4) 0.50 A(RMS) 0.42
El. guitar A(1st period. ampl. peak) 1 A(RMS ERB band 2) 0.95 R(Bark scale magn. 19) 0.58 R(Delta MFCC 3) 0.42
Flute A(MFCC 3) 1 R(MFCC 6) 0.67 A(MFCC 3) 0.55 O(LPC 2) 0.36
Piano R(MFCC 1) 1 O(RMS ERB band 2) 0.83 O(RMS ERB band 1) 0.67 A(Sum corr. components) 0.56
Trumpet R(Ampl. 4th spectr. peak) 1 R(Inharmonicity) 0.92 R(Ampl. 5th spectr. peak) 0.73 R(MFCC 2) 0.64
Viola O(Low energy) 1 A(CENS chroma 11) 0.80 O(MFCC 9) 0.82 R(RMS ERB band 1) 0.55
Violin A(MFCC 1) 1 A(Var. aver. dist. betw. ZC) 0.80 O(MFCC 5) 0.60 A(RMS ERB band 2) 0.50
ETHNIC
Balalaika O(Bark scale magn. 21) 1 A(LPC 3) 0.89 O(Bark scale magn. 21) 0.73 O(LPC 3) 0.53
Bandura A(Sub-band energy rat. 4) 1 R (MFCC 1) 0.50 A(MFCC 3) 0.86 A(Spectral kurtosis) 0.71
Banjo framus O(Spectral flux) 1 A(LPC 4) 0.83 A(LPC 4) 0.89 A(ZC rate ERB band 6) 0.67
Banjolin O(Bark scale magn. 23) 1 O(MFCC 8) 0.92 A(LPC 2) 0.80 O(Sum corr. components) 0.80
Bawu A(RMS peak num. above

mean ampl.)
1 O(Bark scale magn. 6) 0.83 O(RMS peak number) 0.56 A(RMS peak num. above

mean ampl.)
0.56

Dilruba O(MFCC 3) 1 O(MFCC 1) 0.88 A(Spectral extent) 0.88 O(RMS ERB band 2) 0.75
Dung dkar O(Spectral kurtosis) 1 R(ZC rate ERB band 2) 0.89 R(Ampl. 1st spectr. peak) 0.88 R(LPC 1) 0.63
Egypt. fiddle A(Phase domain angles) 1 A(MFCC 7) 0.94 A(Spectral flux)) 0.69 O(Bark scale magn. 23) 0.62
Erhu R(MFCC 4) 1 A(RMS peak number) 0.80 R(MFCC 4) 0.70 R(RMS) 0.60
Fujara A(Max. ampl. chroma) 1 O(Ampl. 4th spectr. peak) 0.91 R(RMS) 0.90 O(Spectral flatness 4) 0.70
Melodica R(RMS ERB band 8) 1 A(Spectral bandwidth) 0.92 R(MFCC 2) 0.56 A(ZC rate ERB band 6) 0.44
Scale changer
harmonium

R(LPC 5) 1 A(MFCC 1) 0.91 R(Phase domain angles) 0.60 R(LPC 5) 0.50

Table 3: Ranks of features for categorisation of individual instruments. A(·): features from middles of attack intervals;
O(·): from onset frames; R(·): from middles of release intervals. LPC: linear prediction coefficient; ZC: zero-crossings.

1st and 20.83% for 2nd best ethnic features. Among eth-
nic instruments, the half of all MFCC occurrences belongs
to bowed instruments (dilruba, egyptian fiddle, erhu), and
other two belong to key instruments (melodica and scale
changer harmonium). This leads to a careful suggestion
that the mel spectrum is probably not the best feature do-
main for ethnic stringed and brass instruments, which de-
serves further investigations. Among two most relevant
features for ethnic instruments, particularly LPCs occur
rather frequently (8 times / 16.7% of all entries against 1
time / 3.13% for Western instruments).

With regard to attack/onset/release-envelope, we may
observe, that all three extraction frame categories appear
frequently in Table 3. However, the attack phase seems to
be generally more relevant for all instruments (for Western
instruments, 43.75% of all entries belong to features stored
from middles of attack intervals, for ethnic, 39.58%). On-
set features correspond to 28.13% of Western and 33.33%
of ethnic entries, and release features to 28.13% of Western
and 27.08% of ethnic entries.

4.3 Best Features for Western and Ethnic Instruments

To compare the significance of features for all Western
instruments against all ethnic instruments, we may esti-
mate mean feature ranks across all categories of the same
“world”. Let MW be the number of Western instruments
(MW = 8) and ME of ethnic instruments (ME = 12). Let
qc,k,i be 1, when feature k is selected in i-th non-dominated
solution of the category c, and 0, when it is not selected.
Then, the accumulated rank of feature k for all Western
instruments is calculated as:

r(W,k) =
1

MW
·
MW∑
c=1

(
1

Nc
·

Nc∑
i=1

qc,k,i

)
, (5)

and, similarly, the accumulated rank of feature k for all
ethnic instruments as:

r(E, k) =
1

ME
·
ME∑
c=1

(
1

Nc
·

Nc∑
i=1

qc,k,i

)
, (6)

The accumulated rank corresponds to the relative share
of selections of a feature k among all non-dominated solu-
tions for all categories of the same world.

Table 4 lists top 10 features for Western and ethnic cat-
egories. Additionally to non-dominated fronts from the
optimisation set (columns 1,2,5,6), we analyse the impor-
tance of features for the independent holdout set (columns
3,4,7,8). As we can observe, the best features for the op-
timisation set are often the same as for the holdout set,
which supports the suggestion, that those features are well
suitable for different data sets. Again, we see, that with re-
gard to accumulated ranks, MFCCs appear rather often for
Western categories (8 entries) than for ethnic categories (6
entries), and LPCs rather often for ethnic categories (6 en-
tries vs. no entry). EMO-FS selected often RMS for ERB
bands among top 10 Western features (9 of 20 correspond-
ing entries vs. no entry for ethnic categories).

To measure the statistical difference between impor-
tances of features for both worlds, we validate the fol-
lowing statistical hypothesis H0: given the accumulated
ranks of top 20 features of one world, we assume that the
ranks of the same features but for another world belong to
the same distribution. As Western and ethnic categorisa-
tion tasks are independent, we validate this hypothesis by
means of Wilcoxon rank sum test (RANKSUM function in
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MRMR EMO-FS
Optimisation set r Holdout set r Optimisation set r Holdout set r
TOP 10 FEATURES FOR WESTERN CATEGORIES
A(1st period. ampl. peak) 0.228 R(1st period. ampl. peak) 0.259 R(RMS ERB band 1) 0.182 A(RMS ERB band 2) 0.258
A(MFCC 1) 0.211 A(1st period. ampl. peak) 0.251 A(RMS ERB band 2) 0.177 R(RMS ERB band 1) 0.221
O(Low energy) 0.178 A(MFCC 1) 0.227 A(Max. ampl. chroma) 0.172 A(Max. ampl. chroma) 0.185
R(1st period. ampl. peak) 0.177 O(Low energy) 0.195 A(Phase domain angles) 0.169 R(Var. aver. dist. betw. ZC) 0.176
R(ZC rate ERB band 1) 0.169 A(MFCC 3) 0.191 O(Bark scale magnitude 1) 0.156 R(RMS ERB band 2) 0.173
A(MFCC 3) 0.164 A(Spectral slope) 0.178 A(MFCC 3) 0.152 A(Ampl. 1st spectral peak) 0.167
A(Spectral slope) 0.151 R(MFCC 3) 0.159 A(Sum corr. components) 0.147 O(RMS ERB band 1) 0.157
R(Inharmonicity) 0.135 R(Spectr. centroid ERB 8) 0.150 O(RMS ERB band 1) 0.148 A(Phase domain angles) 0.144
A(ZC rate ERB band 10) 0.135 R(Low energy) 0.144 A(Ampl. 1st spectr. peak) 0.143 O(RMS ERB band 2) 0.143
R(MFCC 1) 0.132 R(MFCC 1) 0.141 R(RMS ERB band 2) 0.141 O(CENS chroma 6) 0.142
ETHNIC
A(Low energy) 0.203 A(Low energy) 0.155 R(Ampl. 1st spectral peak) 0.199 R(Ampl. 1st spectral peak) 0.203
R(LPC 6) 0.158 A(Sub-band energy ratio 4) 0.148 O(Bark scale magnitude 21) 0.195 O(Bark scale magnitude 21) 0.178
A(Sub-band energy ratio 4) 0.146 R(LPC 6) 0.137 O(RMS peak number) 0.170 O(Spectral extent) 0.161
O(LPC 7) 0.130 A(Phase domain angles) 0.137 R(RMS) 0.170 O(LPC 4) 0.157
A(Phase domain angles) 0.129 O(MFCC 3) 0.135 A(Spectral bandwidth) 0.159 R(Bark scale magnitude 3) 0.154
O(Bark scale magnitudes 6) 0.125 O(Bark scale magnitude 6) 0.128 O(Spectral flux)) 0.143 R(RMS) 0.153
O(MFCC 3) 0.121 R(ZC rate for ERB band 2) 0.119 R(RMS peak num. above

mean ampl.)
0.141 A(Strength of 6.major key) 0.145

O(Bark scale magnitude 21) 0.104 O(Bark scale magnitude 21) 0.111 R(MFCC 2) 0.137 A(Inharmonicity) 0.135
A(LPC 3) 0.097 O(Spectr. centroid ERB 10) 0.109 R(MFCC 4) 0.137 A(MFCC 6) 0.130
O(Spectr. centroid ERB 10) 0.095 A(LPC 4) 0.108 A(Bark scale magnitude 17) 0.136 O(MFCC 1) 0.130

Table 4: Accumulated ranks of features for categorisation of Western and ethnic instruments. A(·): features from middles
of attack intervals; O(·): from onset frames; R(·): from middles of release intervals. LPC: linear prediction coefficient; ZC:
zero-crossings.

MATLAB). H0 is rejected in all cases for both feature se-
lection strategies and both sets (optimisation/holdout). Ta-
ble 5 contains p-values. This means that top 20 features
which are particularly good for recognition of Western in-
struments are not similarly good for the recognition of eth-
nic instruments, and vice versa. However, please note that
H0 is rejected only for a limited set of 8 Western and 12
ethnic instruments, even if they were carefully chosen to
represent different instrument categories. Further studies
with a significantly larger number of instruments may sup-
port or weaken this statement.

4.4 Best Features for All Categories

To provide generic recommendations on features which are
particularly useful for the recognition of both Western and
ethnic instruments, Figure 1 plots the accumulated ranks
r(W,k) and r(E, k) of all features. Upper subfigures con-
tain results for MRMR, bottom subfigures for EMO-FS,
left subfigures correspond to optimisation set, and right
subfigures to holdout set. Dashed lines divide the rank
space in three regions. For features in the bottom right
region, r(W,k) is at least twice as large as r(E, k). For
features in the top left region, r(E, k) is at least twice
as large as r(W,k). The ranks of features in the mid-
dle region are comparable for Western and ethnic instru-
ments. As we are interested to identify features which are
best suited for for the classification of all instruments, we
marked the first non-dominated front with large filled cir-
cles and the second non-dominated front with small filled
circles, supported with feature IDs. The mapping of IDs
to feature names is provided in Table 6. For MRMR, the
features belonging to first non-dominated fronts are low
energy, MFCC 1, and 1st periodicity amplitude peak. For

EMO-FS, these features are RMS, Bark scale magnitude
3, RMS for ERB bands 1 and 2, maximal amplitude in the
chromagram, and amplitude of the 1st spectral peak.

It is worth to mention that even if our feature vector
contains almost 800 dimensions, the features can be ex-
tracted from various frame lengths or with varying param-
eters, and further signal descriptors can be added. Fur-
ther work is necessary to identify better features for in-
strument recognition, and our framework provides an au-
tomatic strategy to evaluate the suitability of features or
their extraction parameters to classify instruments of dif-
ferent categories by means of non-dominance relation.

5. CONCLUSIONS

In this paper, we have applied two feature selection meth-
ods for recognition of Western and ethnic instruments in
polyphonic audio mixtures. Both methods lead to a sig-
nificant reduction of the classification error compared to
models trained with all features. To measure the rele-
vance of features for individual categories as well as for
a set of 8 Western and 12 ethnic categories, we proposed a
simple rank measure based on feature occurrence in non-
dominated fronts, with the aim to simultaneously minimise
the number of features and the classification error. Even if
larger feature sets with a smaller error are usually prefer-
able for classification scenarios, also small feature sets
with higher errors give valueful insights into relevance of
individual features. The statistical comparison of features
best suited for recognition of Western instruments against
features best suited for recognition of ethnic instruments
showed that their performance is significantly different.
This empirically supports the suggestion, that many acous-
tic descriptors developed and optimised for music instru-
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MRMR EMO-FS
H0 Optimisation set Holdout set Optimisation set Holdout set
Top 20 Western features are similarly good for ethnic categories 5.69e-08 5.69e-08 2.21e-07 6.70e-08
Top 20 ethnic features are similarly good for Western categories 1.99e-04 1.11e-04 6.67e-06 2.66e-06

Table 5: p-values for comparison of top 20 Western and top 20 ethnic features represented by their accumulated ranks.

Figure 1: Best (large circles) and 2nd best (small circles) non-dominated features for both Western and ethnic categories.
The fronts were estimated for the maximisation of accumulated ranks.

No. Name No. Name No. Name
29 R(LPC 6) 132 A(MFCC 3) 422 A(RMS for ERB band 2)
45 R(Var. of aver. dist. between ZC) 178 A(Phase domain angles) 431 O(RMS for ERB band 1)
48 R(RMS) 186 A(MFCC 3) 432 O(RMS for ERB band 2)
49 A(Low energy) 207 O(MFCC 4) 441 R(RMS for ERB band 1)
50 O(Low energy) 226 R(MFCC 3) 480 R(Spectral centroid ERB band 10)
51 R(Low energy) 227 R(MFCC 4) 568 A(Max. ampl. chroma)
62 O(RMS peak number) 311 O(Bark scale magnitude 6) 682 A(Ampl. 1st spectral peak)
66 R(RMS peak number above mean ampl.) 326 O(Bark scale magnitude 21) 688 R(Ampl. 1st spectral peak)
107 O(Spectral extent) 331 R(Bark scale magnitude 3) 784 A(1st periodicity ampl. peak)
121 A(Sub-band energy ratio 4) 411 R(ZC rate for ERB band 1) 786 R(1st periodicity ampl. peak)
130 A(MFCC 1)

Table 6: Names of features from two best fronts of Figure 1. A(·): features from middles of attack intervals; O(·): from
onset frames; R(·): from middles of release intervals. LPC: linear prediction coefficient; ZC: zero-crossings.

ment recognition in Western music are not best suited for
the recognition of ethnic instruments.

Another focus of our investigation was to identify those
features which are particularly well suited for the recog-
nition of both Western and ethnic instruments. This can
be done by means of non-dominated sorting in the two-
dimensional rank space. Even if the goal of identifying the
best “compromise” features is somewhat contrary to the
identification of the best specific features for Western and
ethnic instruments, both approaches make sense. Keep-

ing a nearly unlimited number of possible combinations
of many world instruments with different effects and play-
ing styles in mind, a good strategy is to start with a suffi-
ciently large set of audio descriptors. In the second time-
consuming optimisation step, more efforts can be spent for
refining the extraction parameters of these features and de-
velopment of further ones, which are particularly relevant
for a concrete instrument class. With the help of our frame-
work, both tasks can be executed and analysed automati-
cally.
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ABSTRACT

A music visualization system called Instrudive is presented
that enables users to interactively browse and listen to mu-
sical pieces by focusing on instrumentation. Instrumenta-
tion is a key factor in determining musical sound charac-
teristics. For example, a musical piece performed with vo-
cals, electric guitar, electric bass, and drums can generally
be associated with pop/rock music but not with classical or
electronic. Therefore, visualizing instrumentation can help
listeners browse music more efficiently. Instrudive visu-
alizes musical pieces by illustrating instrumentation with
multi-colored pie charts and displays them on a map in
accordance with the similarity in instrumentation. Users
can utilize three functions. First, they can browse musical
pieces on a map by referring to the visualized instrumen-
tation. Second, they can interactively edit a playlist that
showing the items to be played later. Finally, they can dis-
cern the temporal changes in instrumentation and skip to a
preferable part of a piece with a multi-colored graph. The
instruments are identified using a deep convolutional neu-
ral network that has four convolutional layers with differ-
ent filter shapes. Evaluation of the proposed model against
conventional and state-of-the-art methods showed that it
has the best performance.

1 INTRODUCTION

Since multiple musical instruments having different tim-
bres are generally used in musical pieces, instrumentation
(combination or selection of musical instruments) is a key
factor in determining musical sound characteristics. For
example, a song consisting of vocals, electric guitar, elec-
tric bass, and drums may sound like pop/rock or metal but
not classical or electronic. Consider, for example, a lis-
tener who appreciates gypsy jazz (featuring violin, acoustic
guitar, clarinet, and double bass). How can he/she discover
similar-sounding music? Searching by instrumentation can
reveal musical pieces played with the same, slightly differ-

c⃝ Takumi Takahashi, Satoru Fukayama, Masataka Goto.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Takumi Takahashi, Satoru Fukayama,
Masataka Goto. “Instrudive: A Music Visualization System Based on
Automatically Recognized Instrumentation”, 19th International Society
for Music Information Retrieval Conference, Paris, France, 2018.

Figure 1: Overview of Instrudive music visualization system.

ent, or completely different instrumentation, correspond-
ing to his/her preferences.

Instrumentation is strongly connected with musical
sound and genres but is not restricted to a specific genre.
For example, pop/rock, funk, and fusion are sometimes
played with similar instrumentation. Therefore, it can be
helpful for listeners to overcome the confinements of a
genre by focusing on sound characteristics when search-
ing for similar-sounding music.

To let users find musical pieces that they prefer, various
methods and interfaces for retrieving and recommending
music have been proposed. They are generally categorized
into three approaches: bibliographic retrieval based on the
metadata of musical pieces, such as artist, album, year of
release, genres, and tags [2], music recommendation based
on collaborative filtering using playlogs [5, 38], and music
recommendation/retrieval based on content-based filtering
using music analysis, such as genre classification [14, 30]
and auto-tagging [4, 14, 20]. Music interfaces leveraging
automatic instrument recognition [22] have received less
attention from researchers.

We have developed a music visualization system called
Instrudive that automatically recognizes the instruments
used in each musical piece of a music collection, visualizes
the instrumentations of the collection, and enables users to
browse for music that they prefer by using the visualized
instrumentation as a guide (Figure 1). Instrudive visual-
izes each musical piece as a pie-chart icon representing the
duration ratio of each instrument that appears. This en-
ables a user to see which instruments are used and their
relative amount of usage before listening. The icons of
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Figure 2: Instrudive interface consists of four parts.

all musical pieces in a collection are arranged in a two-
dimensional space with similar-instrumentation pieces po-
sitioned in close proximity. This helps the user listen to
pieces having similar instrumentation. Furthermore, the
user can create a playlist by entering a pie-chart query to
retrieve pieces having instrumentation similar to the query
and listen to a musical piece while looking at a timeline
interface representing when each instrument appears in the
piece.

In the following section, we describe previous studies
on music visualization and instrument recognition. We
then introduce the usage and functions of Instrudive in Sec-
tion 3 and explain its implementation in Section 4. Since
the main contributions of this work are not only the In-
strudive interface but also a method for automatically rec-
ognizing instruments on the basis of a deep convolutional
neural network (CNN), we explain the recognition method
and experimental results in Section 5. After discussing the
usefulness of the system in Section 6, we summerize the
key points and describe future work in Section 7.

2 RELATED WORK

2.1 Music Visualization

Visualization of music by using audio signal processing
has been studied by many researchers.

Given a large collection of musical pieces, a commonly
used approach is to visualize those pieces to make it easy
to gain an overview of the collection [11, 13, 23, 24, 31, 32,
37, 40]. The collection is usually visualized so that simi-
lar pieces are closely arranged [13, 23, 24, 31, 32, 37]. The
visualization helps listeners to find and listen to musical
pieces they may prefer by browsing the collection. Instru-
mentation is not focused on in this approach, whereas In-
strudive visualizes the instrumentations of the pieces in the
collection by displaying pie-chart icons for the pieces in a
two-dimensional space as shown in Figure 2.

Given a musical piece, a commonly used approach is to
visualize the content of the piece by analyzing the musi-
cal elements [3, 9, 10, 12, 18, 29]. For example, a repetitive
music structure is often visualized [3,9,10,12,29]. This en-
hances the listening experience by making listeners aware
of the visualized musical elements. Our Instrudive inter-
face also takes this approach. After a user selects a musical

Figure 3: Multi-colored pie charts depict instrumentation.

piece, Instrudive displays a timeline interface representing
when each musical instrument appears in the piece. This
helps the listener focus on the instrumentation while listen-
ing to music.

2.2 Instrument Recognition

The difficulty in recognizing instruments depends on the
number of instruments used in the piece. The greater the
number of instruments, the greater the difficulty. When a
single instrument is used in a monophonic recording, many
methods achieve good performance [6, 8, 19, 41, 42].

On the other hand, when many instruments are used in
a polyphonic recording, which is typical in popular music
produced using multitrack recording, it is more difficult to
recognize the instruments. Most previous studies [7, 15,
22,26] used machine learning techniques to overcome this
difficulty. In Section 5, we compare our proposed model of
instrument recognition with one that uses a support vector
machine (SVM).

A more recent approach to recognizing instruments is
to use a deep learning method, especially a CNN [16, 27,
28, 34]. Methods using this approach have outperformed
conventional and other state-of-the-art methods, but their
performances cannot be easily compared due to the use
of different databases and instrument labels. Despite their
high performance, there is room for improvement in their
accuracy. We aim to improve accuracy by proposing and
implementing an improved CNN-based method.

3 INSTRUDIVE

Instrudive enables users to browse musical pieces by fo-
cusing on instrumentation. The key idea of visualizing the
instrumentation is to use a multi-colored pie chart in which
different colors denote the different instruments used in a
musical piece. The ratios of the colors indicate relative
durations in which the corresponding instruments appear.
Figure 3 shows example charts created using ground truth
annotations from the multitrack MedleyDB dataset [1].
The charts representing different genres have different ap-
pearances due to the differences in instrumentation among
genres.

These multi-colored pie charts help a user browsing a
collection of musical pieces to understand the instrumen-
tations before listening to the pieces. Moreover, during
the playing of a musical piece, Instrudive displays a multi-
colored graph that indicates the temporal changes in instru-
mentation.

Instrudive can recognize 11 categories of instruments:
acoustic guitar, clean electric guitar, distorted electric gui-
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Figure 4: Menu appears
after right-clicking chart.

Figure 5: Scattering mode en-
ables playlist to be created by
drawing curve.

Figure 6: Visual player helps listener understanding instrumen-
tation and its temporal changes.

tar, drums, electric bass, fx/processed sound (sound with
effects), piano, synthesizer, violin, voice, and other (instru-
ments not included in the 10 categories). The categories
depend on this dataset and are defined on the basis of [27].

As shown in Figure 2, the interface of Instrudive con-
sists of four parts: an instrumentation map for browsing
musical pieces, a visual player for enhancing the listening
experience, a search function for finding musical pieces
by using the pie-chart icons as queries, and an interactive
playlist for controlling the order of play.

3.1 Instrumentation Map

The instrumentation map visualizes the musical pieces in
a collection. Each piece is represented by a multi-colored
pie chart. Similar pie charts are closely located in a two-
dimensional space. As shown in Figure 9, this map sup-
ports visualization modes, circular and scattering.

When a user right-clicks on a pie chart, a menu appears
as shown in Figure 4. The user can play the piece or use
the piece as a query for the search function. By using the
circular mode, which arranges the pie charts in a circu-
lar path, the user can automatically play the pieces with
similar instrumentation one after another along the path.
By switching to the scattering mode, the user can draw a
curve to create a playlist consisting of pieces on the curve
as shown in Figure 5.

3.2 Visual Player

The visual player (Figure 6) visualizes the temporal
changes in instrumentation in the selected musical piece
as it is played. It shows a graph along the timeline inter-
face consisting of a number of colored rectangular tiles,
each of which denotes activity (i.e., presence) of the corre-
sponding instrument. As the musical piece is played, this
activity graph (covering a 60-s window) is automatically
scrolled to continue showing the current play position.

Figure 7: Interfaces for search
menu and playlist.

Figure 8: Simplified in-
terface for novice users.

The user can interactively change the play position by
left-clicking on another position on the graph. The graph
enables the user to anticipate how the instrumentation will
change. For example, a significant change in instrumenta-
tion can be anticipated, as shown in Figure 6

The pie chart on the right side of Figure 6 represents
the instruments currently being played and changes in syn-
chronization with the playing of the piece. The instrument
icons shown below the chart are consistently shown in the
same color, enabling the user to easily distinguish them.
By hovering the mouse over an icon, the user can see the
name of the instrument.

3.3 Search Function

The search function (left side of Figure 7) enables the
user to retrieve pieces by entering a query. Pressing an
instrument-icon button intensifies its color, so the selected
button is clearly evident. The ratio of instruments in the
query can be adjusted by moving the sliders.

When the search button is pressed, the system retrieves
musical pieces with instrumentation similar to that of the
query by using the search algorithm described in Section
4.3. The retrieved pieces are not only highlighted on the
map as shown in Figure 10 but also instantly added to the
playlist.

3.4 Interactive Playlist

The interactive playlist (right side of Figure 7) shows a list
of the retrieved or selected musical pieces along with their
pie charts, titles, and artist names. The user can change
their order, add or delete a piece, and play a piece.

A musical piece disappears from the playlist after it has
been played. If no piece is in the list, the next piece is se-
lected automatically. In circular mode, the available play
strategies are clockwise (pieces are played in clockwise or-
der), and shuffle (pieces are played randomly). In scat-
tering mode, the available play strategies are shuffle and
nearest (pieces nearby are played). The user can thus play
pieces having similar or different instrumentation.

3.5 Simplified Interface

We also prepared a simplified interface for novice users
who are not familiar with music instrumentation. As
shown in Figure 8, the visual player, the search function,
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Figure 9: Two algorithms are used to create maps. Map on left is
used in circular mode; map on right is used in scattering mode.

and the interactive playlist can be folded to the side to let
the user concentrate on simple interaction using the instru-
mentation map.

4 IMPLEMENTATION OF INSTRUDIVE

The Instrudive interfaces were mainly programmed using
a Python library Tkinter and executed on Mac OS X. After
the instruments were recognized, as described in Section
5, the results were stored and used for the interfaces.

4.1 Iconic Representation

A multi-colored pie chart of a musical piece with length T
s is displayed by computing the absolute appearance ratio
(AAR) and the relative appearance ratio (RAR) for each
instrument i (∈ I: recognized instrument categories).

The result of recognizing an instrument i is converted
into AARi:

AARi =
ti
T
, (1)

where ti (≤ T ) s is the total of all durations in which in-
strument i is played. AAR represents the ratio of this total
time against the length of the musical piece.

RARi =
AARi∑
i AARi

(2)

represents the ratio of this total time against the total time
of the appearances of all instruments. After RARi is com-
puted for all instruments, an |I|-dimensional vector (11-
dimensional vector in the current implementation) summa-
rizing the instrumentation of the piece is obtained. The pie
chart is a visual representation of this vector: RARi is used
as an area ratio in the circle for the corresponding instru-
ment.

4.2 Mapping Algorithms

To visualize musical pieces in circular mode (Figure 9), we
use an |I|-dimensional vector (11-dimensional vector in
the current implementation) of AAR. The AAR vectors for
all the pieces are arranged on a circular path obtained by
solving the traveling salesman problem (TSP) [25] to find
the shortest route for visiting all pieces. After assigning all
the pieces on the path, we scatter them randomly towards
and away from the center of the circle so that the pie charts
are not located too close together.

Figure 10: Top ten search results are highlighted and added to
playlist. Users can check contents of results before listening.

Layer Output size
Magnitude spectrogram 1024× 87× 1

Conv (4× 1) 1024× 87× 32
Pool (5× 3) 204× 29× 32

Conv (16× 1) 204× 29× 64
Pool (4× 3) 51× 9× 64
Conv (1× 4) 51× 9× 64
Pool (3× 3) 17× 3× 64

Conv (1× 16) 17× 3× 128
Pool (2× 2) 8× 1× 128
Dropout (0.5) 1024

Dense 1024
Dense 121
Dense 11

Table 1: Proposed CNN architecture.

To visualize musical pieces in scattering mode, the
11-dimensional AAR vectors are projected onto a two-
dimensional space by using t-distributed stochastic neigh-
bor embedding (t-SNE) [39], which is an algorithm for di-
mensionality reduction frequently used to visualize high-
dimensional data. Since similar pie charts are often located
too close together, we slightly adjust their positions one by
one by randomly moving them until all the charts have a
certain distance from each other.

4.3 Search Algorithms

Since both a query and a musical piece can be represented
as 11-dimensional AAR vectors, we can simply compute
the cosine similarity between the query and each musical
piece in the collection. In Figure 10, for example, given a
query containing acoustic guitar, violin, and others, the re-
trieved pieces ranked higher have similar pie charts. As the
rank gets lower, the charts gradually becomes less similar.

5 INSTRUMENT RECOGNITION

5.1 Pre-processing

Each musical piece was converted into a monaural audio
signal with a sampling rate of 44100 Hz and then divided
into one-second fragments. To obtain a one-second magni-
tude spectrogram, we applied short-time Fourier transform
(STFT) with a window length of 2048 and a hop size of
512. We then standardized each spectrogram to have zero
mean and unit variance. As a result, each one-second spec-
trogram had 1024 frequency bins and 87 time frames.
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5.2 CNN Architecture

We compared several CNN models; the one that showed
the best performance is summerized in Table 1. The model
mainly consists of four convolutional layers with max-
pooling and ReLU activation. A spectrogram represents
the structure of frequencies with one axis and its tempo-
ral changes against the other axis, which is unlike an im-
age that represents spatial information with both axes. We
set the shape of each layer to have length along only one
axis (frequency or time). For convolutions, feature maps
were padded with zeros so that dimensionality reduction
was done only by using max-pooling layers. By doing this,
we could use various shapes of layers and their combina-
tions without modifying the shapes of other layers. After a
50% dropout was applied to prevent overfitting, two dense
layers with ReLU and an output dense layer with a sig-
moid function were used to output an 11-dimensional vec-
tor. Batch normalization [17] was applied to each of the
convolutional and dense layers. In training, we used the
Adam algorithm [21] as the optimizer and binary cross-
entropy as the loss function. The mini-batch size was 128,
and the number of epochs was 1000.

This proposed CNN model outputs 1-s instrument la-
bels as a vector. By gathering the vectors corresponding to
each musical piece, we can represent each musical piece
as a sequence of 11-dimensional vectors (instrument la-
bels/activations), which are used to calculate the instru-
mentation described in Section 4.

5.3 Dataset

To evaluate the proposed CNN model and apply it to In-
strudive, we used the MedleyDB dataset [1]. This dataset
has 122 multitrack recordings of various genres and instru-
ment activations representing the sound energy for each
stem (a group of audio sources mixed together), individu-
ally calculated along with time frames with a hop size of
46.4 ms.

We generated instrument labels and split the data on
the basis of the source code published online [27]. We
used the 11 categories listed in Section 3 based on the
ground truth annotations from the multitrack MedleyDB
dataset [1]. Since our system does not depend on these
categories, it can be generalized to any set of categories
given any dataset.

The 122 musical pieces were divided into five groups
by using the algorithm in [35] so that the instrument labels
were evenly distributed among the five groups. Four of the
groups were used for training, and the fifth was used for
evaluation. All the musical pieces that appear in Instrudive
were included in the data used for evaluation, and their
instrumentations were predicted using cross validation.

5.4 Baseline

For comparison with our model, we used a conventional
bag-of-features method, a state-of-the-art deep learning
method with mel-spectrogram input, and a state-of-the-art
deep learning method with raw wave input.

Layer Output size
Mel-spectrogram 128× 43× 1

Conv (3× 3) 130× 45× 32
Conv (3× 3) 132× 47× 32
Pool (2× 2) 44× 15× 32

Dropout (0.25) 44× 15× 32
Conv (3× 3) 46× 17× 64
Conv (3× 3) 48× 19× 64
Pool (2× 2) 16× 6× 64

Dropout (0.25) 16× 6× 64
Conv (3× 3) 18× 8× 128
Conv (3× 3) 20× 10× 128
Pool (2× 2) 6× 3× 128

Dropout (0.25) 6× 3× 128
Conv (3× 3) 8× 5× 256
Conv (3× 3) 10× 7× 256
Global pool 1× 1× 256

Dense 1024
Dropout (0.5) 1024

Dense 11

Table 2: Han’s architecture.

Layer Output size
Raw wave 44100× 1

Conv (3101) 41000× 256
Pool (40) 2049× 256

Conv (300) 1750× 384
Pool (30) 87× 384
Conv (20) 68× 384
Pool (8) 16× 384

Dropout (0.5) 16× 384
Dense 400
Dense 11

Table 3: Li’s architecture.

5.4.1 Bag-of-features

For the bag-of-features method, we used the features de-
scribed by [15], consisting of 120 features obtained by
computing the mel-frequency cepstral coefficients and 16
spectral features [33]. We trained an SVM with a radial ba-
sis function (RBF) kernel by feeding it these 136 features.

5.4.2 Mel-spectrogram (Han’s CNN model)

For the deep learning method with mel-spectrogram input,
we used Han’s CNN architecture [16] (Table 2). This ar-
chitecture is based on VGGNet [36], a commonly used
model in the image processing field. Each one-second
fragment of the audio signal was resampled into 22050 Hz,
converted into a mel-spectrogram, and standardized. Every
activation function was LReLU (α = 0.33) except the out-
put sigmoid.

In preliminary experiments, training this model failed
in almost 700 epochs due to a gradient loss. Therefore,
we applied batch normalization to each of the convolu-
tional and dense layers, enabling us to successfully com-
plete 1000 epochs of training. We also used 500 epochs,
but the performance was worse than for 1000.

5.4.3 Raw Waveform (Li’s CNN model)

For the deep learning method with raw wave input, we used
Li’s CNN model in [27] (Table 3). This model performs
end-to-end learning using a raw waveform. We standard-
ized each one-second fragment of the monaural audio sig-
nal obtained in pre-processing. Every activation function
was ReLU except the output sigmoid. Batch normalization
was again applied to each layer. We trained the model with
1000 epochs.

5.5 Metrics

We evaluated each model using four metrics: accuracy, F-
micro, F-macro, and AUC.

Accuracy was defined as the ratio of predicted labels
that exactly matched the ground truth. Each label predicted
by the CNN at every one-second fragment in all pieces was
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Figure 11: Proposed model showed best performance for F-
micro, F-macro, and AUC but took five times longer to com-
plete training than Han’s model, which showed second-best per-
formance.

an 11-dimensional vector of likelihoods. Since each likeli-
hood ranged between 0 and 1, we rounded it to an integer
(0 or 1) before matching.

The F-micro was defined as the micro average of the F1
measure for all predicted labels over the 11 categories. The
F1 measure is defined as the harmonic mean of recall and
precision and is widely used in multi-label classification
tasks. Since it is calculated immediately without consider-
ing the categories, if some instruments frequently appear,
their predicted labels considerably affect the F-micro.

The F-macro was defined as the macro average with
each instrument equally considered. For each of the 11
categories, the F1 measure of the predicted labels was first
calculated. Then, the average of the resulting 11 values
was calculated as the F-macro.

The area under the curve (AUC) of the receiver oper-
ating characteristic was first calculated for each category.
Then, the macro average of the resulting 11 values was
used as the AUC in our multi-label task.

5.6 Results

As shown in Figure 11, the proposed model outperformed
the other models in terms of AUC, F-micro, and especially
F-macro, which was about 8% better than the next-best
model (Han’s model). This indicates that our model has
higher generic performance and is more powerful in deal-
ing with various kinds of instruments.

Interestingly, all of the deep learning methods showed
significantly higher accuracy than the bag-of-features
method. Since the accuracy cannot be increased with
predictions made through guesswork, such as predicting
classes that frequently appear, the deep learning methods
are more capable of capturing the sound characteristics of
instruments in sound mixtures.

The proposed model took five times longer to complete
training than Han’s model. This is because Han’s model
took advantage of using a more compact mel-spectrogram
(128 × 87) than the raw spectrogram (1024 × 87) used
for the proposed model.　 Since using a mel-spectrogram
results in losing more information, the performance was
worse.

Figure 12: Maps created using ground truth data.

6 DISCUSSION

6.1 Smoothing Transitions Between Listening States

Our observations during testing showed that the use of
Instrudive helped smooth the transition between listening
states. Although the music was often passively listened to,
the listeners sometimes suddenly became active when the
time came to choose the next piece. In the circular mode
of Instrudive, for example, the clockwise player played a
piece that had instrumentation similar to the previous one.
Since the sound characteristics were changing gradually, a
user was able to listen to various genres in a passive state.
If non-preferred music started playing, the user skipped to
a different type of music by using the shuffle player. In ad-
dition, the user actively used the search function to access
pieces with similar instrumentation and enjoyed looking at
the temporal changes in the activity graph.

6.2 Studies from Ground Truth Data

We compared maps created using the automatically recog-
nized (predicted) data (Figure 9) with maps created using
the ground truth data (Figure 12). Although they are sim-
ilar to some extent, the contrast of the color distributions
is much more vivid for the ground truth data, suggesting
that the performance of our CNN model still has room for
improvement. Since the proposed Instrudive interface is
independent of the method used for instrument recogni-
tion, we can simply incorporate an improved model in the
future.

7 CONCLUSION

Our Instrudive system visualizes the instrumentations of
the musical pieces in a collection for music discovery and
active music listening. The first main contribution of this
work is showing how instrumentation can be effectively
used in browsing musical pieces and in enhancing the lis-
tening experience during playing of a musical piece. The
second main contribution is proposing a CNN model for
recognizing instruments appearing in polyphonic sound
mixtures that achieves better performance than other state-
of-the-art models.

We plan to conduct user studies of Instrudive to analyze
its nature in more detail and to test different shapes of fil-
ters to analyze the reasons for the superior performance of
our CNN model. We are also interested in investigating
the scalability of our approach by increasing the number
of musical pieces and allowing a greater variety of instru-
ments.
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[8] Slim Essid, Gaël Richard, and Bertrand David. Mu-
sical instrument recognition by pairwise classification
strategies. IEEE Transactions on Audio, Speech, and
Language Processing, 14(4):1401–1412, 2006.

[9] Jonathan Foote. Visualizing music and audio using
self-similarity. In Proceedings of the Seventh ACM In-
ternational Conference on Multimedia (ACM Multime-
dia 1999), pages 77–80, 1999.

[10] Masataka Goto. A chorus section detection method for
musical audio signals and its application to a music lis-
tening station. IEEE Transactions on Audio, Speech,
and Language Processing, 14(5):1783–1794, 2006.

[11] Masataka Goto and Takayuki Goto. Musicream: Inte-
grated music-listening interface for active, flexible, and
unexpected encounters with musical pieces. IPSJ Jour-
nal, 50(12):2923–2936, 2009.

[12] Masataka Goto, Kazuyoshi Yoshii, Hiromasa Fujihara,
Matthias Mauch, and Tomoyasu Nakano. Songle: A
web service for active music listening improved by
user contributions. In Proceedings of the 12th Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR 2011), pages 311–316, 2011.

[13] Masahiro Hamasaki and Masataka Goto. Songrium: A
music browsing assistance service based on visualiza-
tion of massive open collaboration within music con-
tent creation community. In Proceedings of the 9th In-
ternational Symposium on Open Collaboration (ACM
WikiSym + OpenSym 2013), pages 1–10, 2013.

[14] Philippe Hamel and Douglas Eck. Learning features
from music audio with deep belief networks. In Pro-
ceedings of the 11th International Society for Music
Information Retrieval Conference (ISMIR 2010), pages
339–344, 2010.

[15] Philippe Hamel, Sean Wood, and Douglas Eck. Auto-
matic identification of instrument classes in polyphonic
and poly-instrument audio. In Proceedings of the 10th
International Society for Music Information Retrieval
Conference (ISMIR 2009), pages 399–404, 2009.

[16] Yoonchang Han, Jaehun Kim, and Kyogu Lee. Deep
convolutional neural networks for predominant instru-
ment recognition in polyphonic music. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 25(1):208–221, 2017.

[17] Sergey Ioffe and Christian Szegedy. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[18] Dasaem Jeong and Juhan Nam. Visualizing music in
its entirety using acoustic features: Music flowgram. In
Proceedings of the International Conference on Tech-
nologies for Music Notation and Representation, pages
25–32, 2016.

[19] Ian Kaminskyj and Tadeusz Czaszejko. Automatic
recognition of isolated monophonic musical instru-
ment sounds using kNNC. Journal of Intelligent Infor-
mation Systems, 24(2):199–221, 2005.

[20] Taejun Kim, Jongpil Lee, and Juhan Nam. Sample-
level cnn architectures for music auto-tagging using
raw waveforms. In Processings of the 14th Sound and
Music Computing Conference (SMC 2017), 2017.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 567



[22] Tetsuro Kitahara, Masataka Goto, Kazunori Komatani,
Tetsuya Ogata, and Hiroshi G. Okuno. Instrogram:
Probabilistic representation of instrument existence for
polyphonic music. IPSJ Journal, 2(1):279–291, 2007.

[23] Peter Knees, Markus Schedl, Tim Pohle, and Ger-
hard Widmer. An innovative three-dimensional user in-
terface for exploring music collections enriched with
meta-information from the web. In Proceedings of the
14th ACM International Conference on Multimedia
(ACM Multimedia 2006), pages 17–24, 2006.

[24] Paul Lamere and Douglas Eck. Using 3D visualiza-
tions to explore and discover music. In Proceedings of
the 8th International Conference on Music Information
Retrieval (ISMIR 2007), pages 173–174, 2007.

[25] Gilbert Laporte. The traveling salesman problem: An
overview of exact and approximate algorithms. Euro-
pean Journal of Operational Research, 59(2):231–247,
1992.

[26] Pierre Leveau, David Sodoyer, and Laurent Daudet.
Automatic instrument recognition in a polyphonic mix-
ture using sparse representations. In Proceedings of
the 8th International Conference on Music Information
Retrieval (ISMIR 2007), pages 233–236, 2007.

[27] Peter Li, Jiyuan Qian, and Tian Wang. Auto-
matic instrument recognition in polyphonic music
using convolutional neural networks. arXiv preprint
arXiv:1511.05520, 2015.

[28] Vincent Lostanlen and Carmine-Emanuele Cella. Deep
convolutional networks on the pitch spiral for music in-
strument recognition. In Proceedings of the 17th Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR 2016), pages 612–618, 2016.

[29] Meinard Müller and Nanzhu Jiang. A scape plot rep-
resentation for visualizing repetitive structures of mu-
sic recordings. In Proceedings of the 13th International
Society for Music Information Retrieval Conference
(ISMIR 2012), pages 97–102, 2012.

[30] Sergio Oramas, Oriol Nieto, Francesco Barbieri, and
Xavier Serra. Multi-label music genre classification
from audio, text and images using deep features. In
Proceedings of the 18th International Society for Mu-
sic Information Retrieval Conference (ISMIR 2017),
pages 23–30, 2017.

[31] Elias Pampalk, Simon Dixon, and Gerhard Widmer.
Exploring music collections by browsing different
views. In Proceedings of the 4th International Con-
ference on Music Information Retrieval (ISMIR 2003),
2003.

[32] Elias Pampalk and Masataka Goto. MusicRainbow: A
new user interface to discover artists using audio-based
similarity and web-based labeling. In Proceedings of
the 7th International Conference on Music Information
Retrieval (ISMIR 2006), pages 367–370, 2006.

[33] Geoffroy Peeters. A large set of audio features for
sound description (similarity and classification) in the
CUIDADO project. Technical report, IRCAM, 2004.

[34] Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia
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ABSTRACT

Although instrument recognition has been thoroughly
research, recognition in polyphonic music still faces chal-
lenges. While most research in polyphonic instrument
recognition focuses on predicting the predominant instru-
ments in a given audio recording, instrument activity detec-
tion represents a generalized problem of detecting the pres-
ence or activity of instruments in a track on a fine-grained
temporal scale. We present an approach for instrument activ-
ity detection in polyphonic music with temporal resolution
ranging from one second to the track level. This system
allows, for instance, to retrieve specific areas of interest
such as guitar solos. Three classes of deep neural networks
are trained to detect up to 18 instruments. The architec-
tures investigated in this paper are: multi-layer perceptrons,
convolutional neural networks, and convolutional-recurrent
neural networks. An in-depth evaluation on publicly avail-
able multi-track datasets using methods such as AUC-ROC
and Label Ranking Average Precision highlights different
aspects of the model performance and indicates the impor-
tance of using multiple evaluation metrics. Furthermore, we
propose a new visualization to discuss instrument confusion
in a multi-label scenario.

1. INTRODUCTION

Music is an acoustic rendition of musical ideas. In most
cases, one or more instruments are used for this acoustic
rendition. As humans, we are easily able to identify the
instruments being played in a song after exposure to their
sound. However, the same cannot be said for computer algo-
rithms. The task of recognizing musical instruments in an
audio signal has been an active area of research in the field
of Music Information Retrieval (MIR). While instrument
recognition in monophonic audio (only one instrument is
present in a signal) is reasonably successful [13], the task
is much harder in a polyphonic setting. The challenges

c© Siddharth Gururani, Cameron Summers, Alexander
Lerch. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Siddharth Gururani, Cameron Sum-
mers, Alexander Lerch. “Instrument Activity Detection in Polyphonic
Music using Deep Neural Networks”, 19th International Society for Music
Information Retrieval Conference, Paris, France, 2018.

include, among others, the large variance in timbre and per-
formance style within an instrument class combined with
perceptual similarity of some instruments and the superpo-
sition of multiple instruments in time and frequency. Last
but not least, the lack of data with relevant annotations for
data-driven approaches is also a problem.

The identification of instruments and their activity in a
song is important for music browsing and discovery, such as
searching for songs with specific instruments or identifying
the position of lead vocals or a saxophone solo. Instrument
recognition can also inform other MIR tasks. For example,
music recommendation systems can benefit from modeling
a user’s affinity towards certain instruments and music genre
recognition systems could improve with genre-dependent
instrument information. It can also be useful for tasks such
as automatic music transcription, playing technique detec-
tion, and source separation in polyphonic music, where
pre-conditioning a model on specific instruments present
could possibly boost its performance.

An Instrument Activity Detection (IAD) system takes
an audio track as input and outputs continuous instrument
activity levels along the entire track. These activities may
be binary (on/off) or on a continuous scale as likelihood.
IAD systems may have varying time-resolutions for the
instrument activity depending on the use case. For example,
a solo detection use case would have a finer time-resolution
that an instrument tagging system which would work on
the track level. This paper proposes a deep neural network-
based IAD system trained using multi-track datasets. We
also address the problem of evaluation of an IAD system.

The following section reviews literature in instrument
recognition and other related tasks. Section 3 describes the
proposed IAD system starting with pre-processing the data,
the model architectures and post-processing steps. Next,
Section 4 describes the dataset used, the various experi-
ments, the evaluation metrics and the proposed method to
visualize confusion. We report the results for the experi-
ments in terms of the evalution metrics and discuss these
results in Section 5. Finally, in Section 6 we conclude
the paper enumerating a few possible future directions for
research on IAD.
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2. RELATED WORK

The task of ‘instrument recognition’ can be divided into two
distinct research problems based on the type of data being
analyzed: (i) instrument recognition in monophonic audio
and (ii) instrument recognition in polyphonic audio. This
section presents an overview of past literature on instrument
recognition as well as related topics such as automatic music
tagging and sound event detection (SED).

2.1 Instrument Recognition in Monophonic Music

In monophonic music, instrument recognition may be per-
formed on sounds at the note-level or on continuous audio
signals of solo instrument performances. An extensive
review of traditional feature extraction and classification
approaches for note-level instrument recognition has been
published by Herrera et al. [15]. For solo phrases, Es-
sid et al. utilize MFCCs as features, Principal Component
Analysis (PCA) for dimensionality reduction, and Gaus-
sian mixture models (GMM) for classifying solo phrases
of 5 instruments [8]. Krishna and Sreenivas propose the
so-called Line Spectral Features (LSF). LSFs are used with
a GMM and evaluated for instrument family classification
and 14-class instrument classification [19].

In addition to extracting established pre-defined features,
learned features have also been applied to this task. Yu et al.
utilize sparse spectral codes and a support vector machine
(SVM) for classifying single-source and multi-source (poly-
phonic) audio [31]. Han et al. propose to use sparse coding
for learning features from mel-spectrograms extracted from
a dataset of single-note audio clips for 24 instruments. A
SVM is trained to classify the instruments using the learned
features achieving a classification accuracy of around 95%
for 24 instrument classes [13].

2.2 Instrument Recognition in Polyphonic Music

Recent work on instrument recognition has focused on poly-
phonic musical signals. Polyphonic audio synthesized from
datasets of individual instrument sounds, such as the RWC
dataset [10], as well as real-world audio recordings have
been used for this task.

Kitahara et al. extract spectral and temporal features
along with PCA and Latent Discriminant Analysis (LDA)
for classification in duo and trio music [17]. Heittola et al.
combine the results of Non-negative Matrix Factorization
(NMF) with excitations of notes obtained from a multi-pitch
tracking algorithm [18] to extract harmonic spectra from
a mixture signal. The separated spectra are represented by
MFCCs and classified with a GMM [14].

Fuhrmann et al. extract a large set of features repre-
senting an audio clip and perform predominant instrument
detection in real-world audio signals using one SVM per
instrument [9]. The ‘predominant’ instrument is defined
as one with continuous presence in a snippet of audio and
is easily audible for a human listener. Bosch et al. extend
the work by utilizing source separation to segregate the
polyphonic audio into streams: ‘bass,’ ‘drums,’ ‘melody,’
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Figure 1. Block Diagram for DNN-based IAD System

and ‘other.’ The segregated audio is subsequently used for
classification using the aforementioned system [2].

Han et al. apply deep CNNs for the task of predominant
instrument recognition and report a significant improvement
of results over previous approaches [12]. The authors also
provide an in-depth discussion of the model parameters and
a qualitative analysis of the CNN models.

2.3 Related Tasks

In music tagging, a track is labeled with a variety of labels
that describe it, such as genre, instruments, and mood. IAD
may be considered a sub-task in music tagging since the
tags often include instrumentation. Choi et al. use CNNs
and CRNNs for the task of automatic tagging [5, 6]. Liu
and Yang further proposed a method to localize the events
in music tagging [20] which may be compared to IAD.

Sound Event Detection (SED) aims at detecting envi-
ronmental sounds in a stream of audio. Some examples of
sound events are gunshots, car horns, baby cries, dog barks,
etc. Cakir et al. explore this task with deep neural networks
on a dataset of environmental sounds [3, 4]. The main dif-
ference between SED and IAD is that in SED the sound
events are uncorrelated and thus easier to discriminate while
musical sources tend to have higher correlation in popular
music. Music instrument sounds might also have a rich
harmonic structure absent in most environmental sounds.

3. METHOD

A high-level block diagram for the presented IAD system
is shown in Fig. 1. The individual processing steps are
described in detail below.

3.1 Pre-processing

All tracks are downsampled to 22.05 kHz, downmixed to
mono and normalized by the root mean square energy. Each
track is the chunked to 1 s long snippets. Each snippet is
transformed into a mel-spectrogram, which is motivated
by the non-linear frequency resolution of the human audi-
tory system [22], and has been proven to be a useful input
representation for multiple MIR tasks such as automatic
tagging [5], onset detection [25], and feature learning [29].

The mel-spectrograms are calculated using Librosa [21]
with 96 mel bands from 0–11.025 kHz. The block size and
hop size are 46.4 ms and 11.6 ms, respectively. Decibel
scaling is applied to the Mel-Spectrogram energies. The
result is a matrix of dimension 96× 86.
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CNN CRNN
Conv2D

k = 3× 3, d = 64
MP (p = 2, 2)

Conv2D
k = 3× 3, d = 128

MP (p = 2, 2)
Conv2D Conv2D

k = 3× 3, d = 256 k = 3× 3, d = 256
MP (p = 3, 3) MP (p = 2, 2)

Conv2D Conv2D
(k = 3× 3, d = 640) (k = 3× 3, d = 256)

MP (p = 3, 3) MP (p = 2, 2)
FC (h = 128) GRU (h = 256)

FC (h = 18)

Table 1. Model Architecture. (Conv2D: 2D Convolutional
Layer, MP: 2D Max-Pooling, k: kernel size, d: filter depth)

3.2 Model Architectures

Deep Neural Networks (DNNs) have consistently outper-
formed traditional MIR approaches in several tasks such
as, music transcription [26, 30], onset detection [25], music
tagging [5]. As this is also true for predominant instrument
classification (compare Sect. 2), we choose to investigate
DNNs for the task of IAD. Our architectural choices are
influenced by the work of both Choi and Cakir [4–6].

The usability of DNNs stems from their ability to ap-
proximate complex non-linear functions mapping an input
feature space to the outputs. This enables researchers to
provide raw or minimally processed data to a DNN so that
it may learn features relevant for the task at hand.

We compare the three broad classes of DNNs: multi-
layer perceptrons, convolutional neural networks, and —
since convolutional networks are useful for acoustic mod-
eling [5]— a convolutional-recurrent network instead of a
traditional RNN. The benefit of CRNN lies in the fact that it
is able to learn both local and temporal features. Note that
the model hyperparameters have been chosen so that the
number of parameters for the three models is comparable.

3.2.1 Multi-Layer Perceptron

The input mel-spectrogram matrix is flattened into a vector
for the MLP model. A fairly simple architecture is chosen:
4 hidden layers with 256 hidden units in each layer and an
output layer of 18 hidden units. Dropout [28] is used with a
keep probability of 0.5 at each layer.

3.2.2 Convolutional Neural Network

The CNN architecture is shown in Table 1 (left). Small
square filters are chosen in order to facilitate hierarchical
feature learning from local patches that grow larger in size
with network depth. In order to preserve spatial dimensions,
stride of 1 and Same zero-padding scheme is used for all
the convolutional layers. Each Conv2D layer is followed by
batch-normalization [16] and the Exponential Linear Unit
(ELU) [7] activation function. The final convolution layer’s
output is flattened before feeding it to a fully connected
layer. Finally, we connect to an output layer of 18 units
with a sigmoid activation function.

Train Test
Instrument Abbr. T # T #
drum set dru 300 720036 79 15957
electric bass bgtr 253 620592 62 13344
male singer ms 200 351384 62 10038
dist. elec. gtr dgtr 171 396204 40 7522
clean elec. gtr cgtr 119 225456 34 5875
synthesizer syn 118 295524 33 5712
acoustic gtr agtr 91 230556 25 5241
piano pf 89 187536 24 4063
vocalists vox 84 154596 12 1895
female singer fs 79 149232 23 3733
string section str 24 39444 10 1278
elec. piano epf 24 52680 14 2075
elect. organ eorg 22 39516 11 2117
double bass db 21 40116 9 1786
cello vc 13 22176 9 1623
violin vn 10 28452 15 2385
tabla tab 9 41640 3 806
flute fl 7 9972 7 1171

Table 2. Dataset distribution: T denotes tracks and # de-
notes 1 s snippets

3.2.3 Convolutional Recurrent Neural Network

The CRNN architecture is shown in Table 1 (right). CRNNs
have been applied to tasks such as music tagging [6] and
sound event detection [4]. We hypothesize that it is a good
choice for IAD since we want the model to learn from the
evolution of spectra over time. The same configuration of
padding and striding, batch-normalization, and non-linear
activation is used for the convolutional modules. Only the
depth and height of the final Conv layer output is flattened,
thus preserving the temporal structure of the high-level
ConvNet features. Finally, the last GRU output is connected
to the output layer consisting of 18 units with a sigmoid
activation function.

3.2.4 Training Procedure

Binary cross-entropy is used as the loss function for all
models. Stochastic gradient descent with a learning rate
of 0.0001 and momentum of 0.9 is used to optimize the
loss function. The models are trained using batches of 32
instances for 20 epochs, which is sufficient for the training
and validation loss to converge for each of the architectures.

3.3 Temporal Aggregation

Since the neural networks are trained using 1 s snippets of
audio, a prediction is made for every 1 s in the test track. For
experiments and evaluation with varying time-resolution,
we max-pool the predictions and the ground truth over
non-overlapping segments according to the desired time-
resolution. For example, in order to have a 5 s resolution,
the maximum across 5 continuous predictions for every
instrument is chosen as the predicted score for the corre-
sponding 5 s snippet in the track.

4. EVALUATION

4.1 Dataset

The dataset used in previous work on predominant instru-
ment detection [2, 9, 12], IRMAS, consists of a training set
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with 3 s audio snippets manually annotated with one of 11
predominant (but non-percussive) instrument labels. These
snippets may contain other instruments. The testing set
contains audio snippets of variable length with 1 or more
predominant instruments. We believe that training using
polyphonic audio labeled with a single instrument may not
be the ideal strategy for IAD. In this paper, we used multi-
track audio to construct a dataset for IAD. The motivation
behind using multi-track datasets is that the annotations for
instrument activity can be generated automatically using
stem energy as opposed to human annotations which may
contain more errors. In addition, each snippet may con-
tain multiple instrument labels, providing the models richer
ground truth.

Two publicly available multi-track datasets are used for
training and testing of the models. MedleyDB [1] and Mix-
ing Secrets [11] were combined for this task in order to
increase the number of tracks. In a pilot study involving
only MedleyDB, we observed a significant improvement in
model performance as the amount of training data increased.
MedleyDB contains 330 multi-tracks and Mixing Secrets
contains 258 multi-tracks. The two datasets combined con-
tain tracks with approximately 100 different instruments.
For this paper we consider 18 most frequently occurring in-
struments. The instruments considered are listed in Table 2.
Note that the tracks may contain other instruments that the
IAD system is not trained to detect.

Each multi-track in the dataset is associated with a mixed
track. Instrument activation confidence is annotated auto-
matically according to the process described in [1]. These
annotations are computed with time-resolution of 0.0464 s.
For our IAD system, however, we defined the minimum
time-resolution to be 1 s. The annotations are aggregated by
picking the maximum value across the time-axis to obtain
one activation value per instrument per snippet. This allows
for instruments to have a large activation value in the snip-
pet even if they were active for a small period of time, as
opposed to a value close to 0 if the mean was chosen for
aggregation. Finally, the activations are binarized with a
fixed threshold θ = 0.5.

The datasets contain tracks where the stems have cross-
talk or bleed. For these tracks, stem activations for a certain
instrument may contain activity from another instrument.
To prevent incorrect annotations, tracks with bleed are not
considered for the IAD dataset, although we make excep-
tions for rare instruments such as tabla. Additionally, tracks
without a single instrument of interest are not considered.

Subsequently, the dataset is split into a training and a
testing set. We generate a random artist-conditional split to
prevent the album or artist effect in the testing phase. The
split is chosen such that there is a reasonable number of
tracks per instrument. Table 2 lists the distribution of the
data for the split. The training set consists of 361 tracks
and the testing set consists of 100 tracks. 1 The training set
is augmented using pitch-shifting: 6 semitones lower to 5
higher than the original with 1 semi-tone increments.

1 The track IDs for the dataset splits used are available at
https://github.com/SiddGururani/ISMIR2018

4.2 Experimental Setup

First, we preprocess both splits of data as described in
Sect. 3.1 resulting in a time-frequency input representation
and ground truth pair for each 1 second snippet. Table 2
lists the distribution of the different instrument classes in
terms of 1 second snippets. Next, we train each of the DNN
architecture as described in Sect. 3.2. Since the models
were observed to converge to a solution in 20 epochs, we
do not perform any form of early-stopping. In addition,
we generate a validation set using a randomly sampled set
of tracks from both the training and testing set due to lack
of data. 50 tracks from the training and testing splits are
picked, resulting in a validation set of 100 tracks. We use
this scheme since we want to validate on unseen data while
not using the entire test set. The validation set is used to
evaluate the models at the end of each epoch. Finally, we
test the best performing model for each class of DNNs.
We test the models for various time-resolutions of activity
detection: 1 s, 5 s, 10 s and track-level aggregation.

4.3 Evaluation Metrics

Evaluation of IAD systems, when looked at in detail, poses
some challenges. Since each snippet has zero or more in-
struments, IAD is a multi-label classification problem. The
sigmoid activation leads to an output between 0 and 1, de-
noting the predicted activity of that instrument. However, as
pointed out by Han et al. [12], binarizing the outputs using a
fixed threshold and evaluating the accuracy depends on the
selected threshold. Additionally, the dataset is not balanced
across the instrument classes, hence stressing the need for
metrics robust against unbalanced class distribution.

Previous work on predominant instrument recognition
uses metrics relevant for multi-class classification systems
such as precision, recall and f-measure [2,12]. Since IAD is
a multi-label classification problem, we use Label Ranking
Average Precision (LRAP) and the Area Under Receiver
Operating Characteristic curve (AUC-ROC).

4.3.1 Label Ranking Average Precision

LRAP was proposed in [24] to evaluate multi-label classifi-
cation systems. Intuitively, the LRAP measures the ability
of a model to assign better ranks to true labels for an in-
stance. For example, if all the true labels for an instance
are ranked higher than other labels in consideration, the
ranking precision for this instance is 1. LRAP measures the
average ranking precision across all the instances. In our
experiments, we compute LRAP using 2 approaches: (i) Mi-
cro: LRAP computed using the concatenated outputs for
all testing tracks. (ii) Macro: computed on the track level
and averaged. This normalizes any effect of track length on
the model performance, which could skew the results, for
instance, if the model performs well for a particular long
song but poorly for shorter songs with fewer snippets.

4.3.2 Area Under ROC Curve

The AUC-ROC or, in short, AUC is computed by first plot-
ting the true positive rate and false positive rate on a plane
for various classification thresholds, which results in a curve.
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Figure 2. LRAP for various time-resolutions

AUC is the area under this curve. It measures the probability
that the model assigns a higher score to a randomly selected
positive instance than a negative instance. The AUC gives
a summary of the model performance without the need to
adjust a threshold for binarization.

Since AUC is usually applied to binary classification,
we compute it per instrument class. Only the micro AUC
is computed as not all tracks contain all instruments. We
report an average AUC by taking the mean of the micro
AUC per class.

The reason for selecting AUC instead of precision, recall
or f-measure is that most literature on instrument classifica-
tion tends to use a common fixed threshold for all classes
which bears the risk of being suboptimal. Han et al. suggest
the use of a different threshold per instrument class [12].
Using the AUC to summarize model performance alleviates
the problem of threshold selection while making it easier to
directly compare model performance.

4.4 Confusion Visualization

In multi-class classification, every data sample has only one
possible prediction and one ground truth label. A confusion
matrix visualizes the frequency of confusion between every
pair of predicted class label vs. ground truth class label.
In a multi-label classification problem such at IAD, every
instance has multiple possible predictions and zero or more
ground truth labels. Hence, a traditional confusion matrix
cannot be computed. However, as a confusion matrix is an
intuitive way to gain insights into the model, we propose an
alternative form of confusion visualization computed from
the binarized predictions and the ground truths.

We hypothesize that an instrument is wrongly detected
due to the activity of some instrument present in the audio.
We are particularly interested in looking at which instru-
ments were incorrectly missed (false negative) when an
instrument was wrongly detected (false positive). For a
particular false positive instrument, this is equivalent to
looking at the probability of observing false negatives for
the other instruments. This probability can be estimated
using a histogram of false negatives. Vertically stacking
these histograms for each instrument results in a matrix of
dimension C × C (C =number of instrument classes). We

1 s

5 s

10 s

Track

Figure 3. AUC per instrument for CRNN model

convert the histograms to probabilities by normalizing each
row of the matrix to a sum of 1.

Note that unlike a traditional confusion matrix, this is
not a symmetric matrix. We only focus on one row at a
time in order to compare probabilities of observing false
negatives for a given false positive instrument.

5. RESULTS AND DISCUSSION

A comparison of model performance is summarized in
Figure 2 and Table 3. It can be observed that CNN and
CRNN outperform MLP in both metrics. This is expected
since the convolutional layers allow the model to learn
hierarchical acoustic features from the time-frequency rep-
resentation more efficiently. However, the CRNN does not
outperform the CNN, which may be attributed to the fact
that only 1 s second snippets are used. The temporal dimen-
sion of the input is reduced to only 5 time steps after the 4
CNN layers. The benefits of using recurrent layers are more
noticeable when longer sequences are involved as in work
by Choi et al. where they use inputs of length 29 s [6]. In ad-
dition, the receptive field of the deeper layers of the CNN is
large enough for learning temporal features. Another obser-
vation is that output aggregation tends to improve models’
label ranking performance and mean AUC.

Figure 3 shows the AUC per instrument of the CRNN
model for the chosen time-resolution aggregation. We ob-
serve that using output aggregation in time leads to better
performance in almost all instrument classes. The model
achieves high AUC not only for majority instruments in
the dataset but also for minority instruments such as flute,
violin and cello, suggesting that it not simply predicting the
majority. We also observe that the model does not seem to
perform well for vocals in general. While it does achieve
high AUC for male singers, the AUC for female singers
and vocalists is low. We investigate this further using the

MLP CNN CRNN
1 s 71.28 77.55 77.5
5 s 70.85 78.35 78.76
10 s 70.82 78.59 79.22
Track 71.1 80.92 80.1

Table 3. Mean AUC for various time-resolutions
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tioned on a true positive of a particular instrument

visualization method described in Sect. 4.4.
To construct the confusion visualization as described in

Sect. 4.4, we pick the CRNN model and use the 1 s time-
resolution outputs for the test set. Picking the threshold
for binarizing the predictions is not straightforward. A
fixed threshold of 0.5, for example, led to 0 detections for
string section and electronic organ. Therefore, we adjusted
the best thresholds for each class. These thresholds are
determined by computing the class-wise f-measure at all
score thresholds and selecting the threshold giving the best
f-measure in the validation set. Figure 4 shows the con-
structed visualization. A high value in a row implies that
the model may be confusing that particular pair of instru-
ments more often than others. The following observations
can be made from the figure:

• (bgtr, db): This confusion is possibly due to similar
frequency range of the electric bass and double bass.

• (dgtr, agtr), (dgtr, cgtr), (cgtr, dgtr), and (agtr, dgtr):
While confusion between acoustic and distorted gui-
tar is unusual, the confusion between clean and dis-
torted guitar is possibly explained by the variety in
tone for both the clean and distorted guitars. A light
crunch or low gain setting may possibly get misclas-
sified. This could also explain the poor performance
for clean electric guitar.

• (dru, tab) and (tab, dru): Both drum set and tabla are
percussive instruments. In addition, one of the test
tracks containing tabla has a ‘drum machine’ label
which possibly causes drum false positives.

• (dgtr, syn) and (syn, dgtr): This is an interesting case
since the variance in sound for both, the distorted
guitar and synthesizers, is very large. Further investi-
gation is needed to understand this case.

Next, we investigate the poor model performance on
vocal classes. Figure 4 shows confusion between male and
female singers implying that the model might be incorrectly
classifying female singers as male. In order to investigate
this phenomenon, the three vocal classes were combined for
a follow-up experiment. We max-pool the predictions and

1 s 5 s 10 s Track
Average AUC
(ms, fs, vox) 0.709 0.725 0.737 0.782

AUC vocals 0.822 0.96 0.975 0.998

Table 4. AUC for different time resolutions comparing
pooled vocals against averaged AUC for vocal classes

the ground truth for these three classes, and recompute the
AUC for this new ‘vocals’ class. Table 4 shows the average
AUC of the three classes and the AUC of the combined ‘vo-
cals’ class. The model performs significantly better for the
combined class confirming our hypothesis that it confuses
the vocal classes.

Another interesting finding is that the best threshold
chosen per instrument for binarization ranges from 0.02
to 0.55 with lower thresholds for minority instruments in
general. We observe a correlation coefficient of 0.9 between
the thresholds and the training data distribution suggesting
that the model has learned biases in the dataset. The impact
of this finding requires further experiments.

6. CONCLUSION

We presented a DNN-based IAD system trained using multi-
track datasets to detect 18 instruments. The CRNN and
CNN outperform MLP architectures for the task and per-
form well for detecting instruments common in popular mu-
sic, such as drums, electric bass, acoustic guitars, distorted
guitars and vocals. It also performs well for instruments in
classical music such as flute, cello, violin even though they
were under-represented in the dataset. We also stress the
need for multiple metrics and visualizations for evaluation
of systems such as IAD which is non-trivial to evaluate.

As future work, a few extensions and research directions
are: (i) pre-training the network using monophonic stems
from the multi-track datasets and subsequently training and
testing for IAD, (ii) designing the convolutional network
for the CRNN as proposed by Jordi et al. [23] instead of the
currently used 3×3 filters as is common in computer vision,
(iii) converting the proposed monolithic model architecture
for IAD to a hierarchical architecture for instrument family
classification first and subsequently instrument classifica-
tion. While this paper treats the model as a black box and
focuses on evaluation and analysis of model outputs, it is
worth studying the model to understand the internal repre-
sentations by means of visualization tools such as t-SNE
and saliency maps [27] as performed by Han et al. [12].

By drawing attention to challenges in IAD with this
paper, we hope to encourage the MIR community to explore
this task. IAD is a rewarding avenue for research due to its
real-world use cases as well as the potential to augment and
improve performance in other tasks in MIR.
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ABSTRACT

Predominant instrument recognition in ensemble record-
ings remains a challenging task, particularly if closely-
related instruments such as alto and tenor saxophone need
to be distinguished. In this paper, we build upon a recently-
proposed instrument recognition algorithm based on a hy-
brid deep neural network: a combination of convolu-
tional and fully connected layers for learning character-
istic spectral-temporal patterns. We systematically eval-
uate harmonic/percussive and solo/accompaniment source
separation algorithms as pre-processing steps to reduce the
overlap among multiple instruments prior to the instrument
recognition step. For the particular use-case of solo in-
strument recognition in jazz ensemble recordings, we fur-
ther apply transfer learning techniques to fine-tune a previ-
ously trained instrument recognition model for classifying
six jazz solo instruments. Our results indicate that both
source separation as pre-processing step as well as trans-
fer learning clearly improve recognition performance, es-
pecially for smaller subsets of highly similar instruments.

1. INTRODUCTION

Automatic Instrument Recognition (AIR) is a fundamental
task in Music Information Retrieval (MIR) which aims at
identifying all participating music instruments in a given
recording. This information is valuable for a variety of
tasks such as automatic music transcription, source separa-
tion, music similarity computation, and music recommen-
dation, among others. In general, musical instruments can
be categorized based on their underlying sound production
mechanisms. However, various aspects of human music
performance such as dynamics, intonation, or vibrato cre-
ate a large timbral variety that complicate the distinction of
closely-related instruments such as a violin and a cello.

As part of the ISAD (Informed Sound Activity Detec-
tion in Music Recordings) research project, we aim at im-
proving existing methods for timbre description and instru-

c© Juan S. Gómez, Jakob Abeßer, Estefanı́a Cano. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Juan S. Gómez, Jakob Abeßer, Estefanı́a
Cano. “Jazz Solo Instrument Classification with Convolutional Neural
Networks, Source Separation, and Transfer Learning”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

ment classification in ensemble music recordings. In par-
ticular, this paper focuses on the identification of predom-
inant solo instruments in multitimbral music recordings,
i. e., the most salient instruments in the audio mixture. This
assumes that the spectral-temporal envelopes that describe
the instrument’s timbre are dominant in the polyphonic
mixture [11]. As a particular use-case, we focus on the
classification of solo instruments in jazz ensemble record-
ings. Here, we study the task of instrument recognition
both on a class and sub-class level, e. g. between soprano,
alto, and tenor saxophone. Besides the high timbral sim-
ilarity between different saxophone types, a second chal-
lenge lies in the large variety of recording conditions that
heavily influence the overall sound of a recording [21, 25].
A system for jazz solo instrument classification could be
used for content-based metadata clean-up and enrichment
of jazz archives.

As the main contributions of this paper, we systemat-
ically evaluate two state-of-the-art source separation al-
gorithms as pre-processing steps to improve instrument
recognition (see Section 3). We extend and improve upon a
recently proposed hybrid neural network architecture (see
Figure 1) that combines convolutional layers for automatic
learning of spectral-temporal timbre features, and fully
connected layers for classification [28]. We further evalu-
ate transfer learning strategies to adapt a given neural net-
work model to more specific classification use-cases such
as jazz solo instrument classification, which require a more
granular level of detail [13].

2. RELATED WORK

The majority of work towards automatic instrument recog-
nition has focused on instrument classification of isolated
note events or monophonic phrases and melodies played
by single instruments. Considering classification scenarios
with more than 10 instrument classes, the best-performing
systems achieve recognition rates above 90%, as shown for
instance in [14, 27].

In polyphonic and multitimbral music recordings, how-
ever, AIR is a more complicated problem. Traditional ap-
proaches rely on hand-crafted audio features designed to
capture the most discriminative aspects of instrument tim-
bres. Such features are based on different signal represen-
tations based on cepstrum [8–10, 29], group delay [5], or
line spectral frequencies [18]. A classifier ensemble focus-
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Figure 1. Reference model proposed by Han et al. [28]. Time-frequency spectrogram patches are processed by successive
pairs of convolutional layers (Conv) with ReLU activation function (R), max pooling (MaxPool), and global max pooling
(GlobMaxPool). Dropout (D) is applied for regularization in the feature extractor and classifier. Conv layers have increasing
number of filters (32, 64, 128, and 256) and output shapes are specified for each layer.

ing on note-wise, frame-wise, and envelope-wise features
was proposed in [14]. We refer the reader to [11] for an
extensive overview of AIR algorithms that include hand-
crafted audio features.

Novel deep learning algorithms, particularly convolu-
tional neural networks (CNN), have been widely used for
various image recognition tasks [13]. As a consequence,
these methods were successfully adopted to MIR tasks
such as chord recognition [17] and music transcription [1],
where they significantly improved upon previous state-of-
the-art results. Similarly, the first successful AIR methods
based on deep learning were recently proposed and de-
signed from the combination of convolutional layers for
feature learning, and fully-connected layers for classifi-
cation [24, 28]. Park et al. use a CNN to recognize in-
struments using single tone recordings [24]. Han et al.
[28] propose a similar architecture and evaluate different
late-fusion results to obtain clip-wise instrument labels.
The authors aim at classifying predominant instruments in
polyphonic and multitimbral recordings, and improve upon
previous state-of-the-art systems by around 0.1 in f-score.
Li et al. [20] propose to use end-to-end learning, consid-
ering a different network architecture. By these means,
they use raw audio data as input without relying on spec-
tral transformations such as mel spectrograms.

A variety of pre-processing strategies have been been
applied MIR tasks such as singing voice detection [19] and
melody line estimation [26]. Regarding the AIR task, sev-
eral algorithms include a preceding source separation step.
In [2], Bosch et al. evaluate two segregation methods for
stereo recordings—a simple LRMS (Left/Right-Mid/Side)
separation and FASST (Flexible Audio Source Separation
Framework) developed by Ozerov et al. [22]. The authors
report improvements of 19% in f-score using a simple pan-
ning separation, and up to 32% when the model was trained
with previously separated audio, taking into account the
typical artifacts produced by source separation techniques.
Heittola et al. [16] propose a system that uses a source-
filter model for source separation in a non-negative matrix
factorization (NMF) scheme. The spectral basis functions
are constrained to have harmonic spectra with smooth fre-
quency responses. Using a Gaussian mixture model, the

authors achieved a 59% recognition rate for six polyphonic
notes randomly chosen from 19 different instruments.

3. PROCESSING STEPS

3.1 Baseline Instrument Recognition Framework

In this section, we briefly summarize the instrument recog-
nition model proposed by Han et al. [28], which we use
as the starting point for our experiments. As a first step,
monaural audio signals are processed at a sampling rate
of 22.05 kHz. A mel spectrogram with a window size of
1024, a hop size of 512, and 128 mel bands is then com-
puted. After applying a logarithmic magnitude compres-
sion, spectral patches one second long are used as input
to the deep neural network. The resulting time-frequency
patches have shape xi ∈ R128×43.

The network architecture is illustrated in Figure 1 and
consists of four pairs of convolutional layers with a filter
size of 3 × 3 and ReLU activation functions. The input
of each convolution layer is zero-padded with 1 × 1, con-
sidered in the output shape of each layer. The number of
filters in the conv layer pairs increases from 32 to 256.
Max pooling over both time and frequency is performed
between successive layer pairs. Dropout of 0.25 is used for
regularization. An intermediate global max pooling layer
and flatten layer (F) connect the feature extractor with the
classifier. Finally, a fully-connected layer (FC), dropout of
0.5, and a final output layer sigmoid activation (S) with 11
classes are used. The model was trained with a learning
rate of 0.001, a batch size of 128, and the Adam optimizer.

In the post-processing stage, Han et al. compare two ag-
gregation strategies to obtain class predictions on a audio
file level: first, they apply thresholds over averaged and
normalized segment-wise class predictions (S1 strategy).
Secondly, a sliding window of 6 segments and hop-size 3
segments is used for local aggregation prior to performing
S1 strategy (S2 strategy). Refer to [28] for the identifica-
tion threshold estimation. Apart from the model ensem-
bling step (which combines different predictors), we were
able to reproduce the evaluation results reported in [28], in
terms of recognition performance, intermediate activation
function (ReLU), and the optimal identification threshold
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Micro Averaging Macro Averaging

Method Model Ensembling Data set Activation
Function Agg. P R F P R F Opt.

θ

Baseline system [28] X IRMAS ReLU S2 0.657 0.603 0.629 0.540 0.547 0.517 0.55
Reproduction - IRMAS ReLU S1 0.591 0.548 0.568 0.530 0.477 0.471 0.40

ReLU S2 0.609 0.544 0.574 0.501 0.507 0.475 0.55
Experiment - MONOTIMBRAL LReLU S1 0.645 0.678 0.661 0.685 0.681 0.657 0.8

LReLU S2 0.619 0.695 0.655 0.657 0.690 0.649 0.7

Table 1. Performance metrics precision (P), recall (R), and F-score (F) from best results reported by [28], its reproduction
with the IRMAS data set, and an experiment with the MONOTIMBRAL data set. The displayed results are the best settings
obtained with respect to ReLU/LReLU activation functions, and S1/S2 aggregation strategies (see Section 3.1).

θ as shown in Table 1. Additionally, an experiment was
conducted using monotimbral audio as input data to train
the neural network. Following [28], we tested different
intermediate activation functions (ReLU and LReLU) and
both aggregation strategies. The monotimbral audio used
for this experiment is further explained in Section 4.2.

3.2 Source Separation

Motivated by the previous experiment, which showed that
recognition performance increases 5-10% by using mono-
timbral data as input, we explore the use of sound source
separation as a pre-processing stage to musical instrument
classification. The idea is to evaluate whether isolating the
desired instrument from the mixture can improve classi-
fication performance. This section briefly describes two
sound separation methods used in our experiments.

3.2.1 Phase-based Harmonic / Percussive Source
Separation

The harmonic-percussive separation described in [3] works
under the assumption that harmonic music instrument will
exhibit stable phase contours as the ones obtained by dif-
ferentiating the phase spectrogram in time. In contrast,
given the broadband and transient-like characteristics of
percussive instruments, this stability in phase cannot be ex-
pected. This system takes advantage of this fundamental
distinction between harmonic and percussive instruments,
and by calculating the expected phase change for a given
frequency bin and hop size, a separation mask is created
to extract harmonic components from the mix. The effects
of the harmonic-percussive separation can be observed in
Figure 2, where the spectrogram of the original audio mix-
ture and of the harmonic and percussive components are
displayed.

3.2.2 Pitch-Informed Solo/Accompaniment Separation

To extract solo instruments from multitimbral music, the
method proposed in [4] was also used in our experiments.
The system performs separation by first extracting pitch in-
formation from the solo instrument, and then closely track-
ing its harmonic components to create a spectral mask.
To extract pitch information, the method proposed in [7]
is used for main melody extraction. Pitch information is
extracted by performing a pair-wise evaluation of spectral
peaks, and by finding partials with well-defined frequency
ratios. The pitch information extracted is then used to
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Figure 2. Mel-spectrograms of the original audio
track, the harmonic/percussive components, and the
solo/accompaniment components for a jazz excerpt of a
saxophone solo played by John Coltrane. The audio mix-
ture contains the solo saxophone, piano, bass and drums.

track the harmonic components in the separation stage, us-
ing common amplitude modulation, inharmonicity, attack
length, and saliency as underlying concepts.

The performance of both the pitch detection and the
separation stage in this system highly depend on the mu-
sical instrument to be separated: for musical instruments
with clear, stable partials the separation performance can
be very good. This is the case of woodwinds and string in-
struments such as the violin. However, for musical instru-
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ments with a less stable spectral behavior such as the xylo-
phone, or instruments with strong distortion effects such as
electric guitars, separation can be noisy. The effects of the
solo/accompaniment separation can be observed in Figure
2, where the spectrogram of the original audio mixture and
of the solo and accompaniment components are displayed.
It can be seen that starting from 1.50 seconds, the solo in-
strument is not detected and hence, no energy is assigned
to the solo track.

3.3 Transfer Learning

For the special use-case of solo instrument recognition in
jazz ensemble recordings, we aim at training a recognition
model despite the small amount of available training data
(see the JAZZ data set in Section 4.3). Here, transfer learn-
ing can be applied to fine-tune an existing classification
model [13]. We assume that initially learnt feature rep-
resentations for predominant AIR are highly relevant and
therefore transferable for our use-case. Transfer learning
has been successfully used in MIR for the task of sound
event tagging in [6]. We refer the reader to [23] for a com-
prehensive overview of transfer learning in classification,
regression, and clustering applications.

4. DATA SETS

4.1 IRMAS

The IRMAS data set (Instrument Recognition in Music
Audio Signals) for predominant instrument recognition
was first introduced by Bosch et al. in [2]. It is partitioned
into separate training and test sets. The training set in-
cludes 6705 stereo audio files with a duration of 3 seconds
each, extracted from more than 2000 recordings. All the
recordings in the training data set are single-labeled and
have a single predominant instrument. The amount of au-
dio files per instrument is unevenly distributed and ranges
from 388 to 778. The test set consists of 2874 stereo audio
files with variable duration ranging from 5 to 20 seconds.
These recordings are multi-labeled and cover 1-5 instru-
ment labels per sample. The test set also shows a highly
uneven instrument distribution with 62 to 1044 audio files
per instrument class. As shown in Table 2, the data set con-
tains 11 musical instruments: cello, clarinet, flute, acoustic
guitar, electric guitar, organ, piano, saxophone, trumpet,
violin, and singing voice. In the experiments described in
Section 5.2.2, we use a subset denoted as IRMAS-Wind,
which includes all recordings of the wind instruments in
the IRMAS data set: flute, clarinet, saxophone, and trum-
pet. The motivation to create this subset is the improved
performance of the solo/accompaniment separation algo-
rithm (see section Section 3.2.1) and its timbral similar-
ity to the JAZZ data set to apply transfer learning strate-
gies (see Section 4.3). Following [28], training data was
randomly split to training (85%) and validation (15%) to
prevent overfitting by implementing early stopping. Test-
ing data was randomly split into development testing data
(50%) for optimum thresholding in post-processing, and

pure testing data (50%) to obtain the final performance
metrics (see Table 3).

Instrument IRMAS MONO. JAZZ

Class Subclass # h # h # h

Cello 499 0.87
Clarinet 567 0.71 26 0.32 31 0.53
Flute 614 1.17 29 0.42
Acoustic Guitar 1172 3.08 30 0.38
Electric Guitar 1702 5.00

Clean 28 0.43
Distorted 30 0.34

Organ 1043 2.25
Hammond Organ 30 0.44
Piano 1716 5.40 27 0.38
Electric Piano 29 0.31
Saxophone 952 2.16 29 0.34

Soprano 30 0.53
Alto 29 0.53
Tenor 32 0.53

Trombone 27 0.53
Trumpet 744 1.29 29 0.35 36 0.53
Violin 791 1.56 27 0.47
Voice 1822 5.38

Female 21 0.26
Male 20 0.26

Double Bass 27 0.28
Synthesizer 30 0.77

TOTAL 11622 28.87 412 5.75 185 3.18

Table 2. Overview of the three data sets IRMAS, MONO-
TIMBRAL, and JAZZ, which includes various instrument
classes and subclasses. Both the number of labels (#) and
the total duration in hours (h) is given for each data set.

4.2 MONOTIMBRAL

The MONOTIMBRAL data set includes monotimbral
(single-labeled) recordings, i. e., monophonic or poly-
phonic recordings without overlap of other instruments,
of 15 musical instrument classes: acoustic guitar, clarinet,
double bass, electric guitar clean, electric guitar distorted,
electric piano, flute, hammond organ, piano, saxophone,
female singing voice, male singing voice, synthesizer,
trumpet, and violin. The data set contains 412 stereo audio
files with variable duration from 10 to 120 seconds, man-
ually selected from various segments of YouTube videos.
The MONOTIMBRAL data set was randomly split equally
into a training and test set based on an equal distribution of
audio files per instrument class (see Table 3).

4.3 JAZZ

As one specific use-case, we aim at classifying among the
six most popular brass and reed instruments in jazz so-
los: trumpet (tp), clarinet (cl), trombone (tb), alto saxo-
phone (as), tenor saxophone (ts), and soprano saxophone
(ss). While the number of instruments is smaller com-
pared to the IRMAS and MONOTIMBRAL data sets, they
have a higher timbral similarity, considering particularly
the three saxophone subclasses. In order to prepare a data
set, we first randomly selected solos from the Weimar Jazz
Database [25] and enriched the data set with additional
jazz solos. While the number of instruments is smaller
compared to the IRMAS and MONOTIMBRAL data sets,
the audio samples were chosen to maximize diversity of
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performing artists. Moreover, examples from each class
were randomly selected to have the same duration (see
Table 2), achieving equal distribution of spectrogram ex-
amples across instrument classes. As with the other data
sets, the JAZZ data set split randomly as the other data sets
(see Table 3). Since jazz recordings cover many decades of
the 20th century, the instrument recognition task is further
complicated by different recording techniques.

For additional information regarding the MONOTIM-
BRAL and JAZZ data sets, refer to the complimentary
website for this paper [12].

Training Data Set (85/15) Testing Data Set (50/50)

Train Validation Development Pure

IRMAS 17094 3021 48064 48055
IRMAS-Wind 5486 970 10447 10446
Monotimbral 8676 1539 10620 10610

JAZZ 7206 1275 1678 1271

Table 3. Number of mel spectrogram examples for each
data set split into Train, Validation, Development, Pure
data sets.

5. EVALUATION

5.1 Metrics

Following [2, 11, 28], precision, recall, and f-scores were
calculated for both micro and macro averages. Micro aver-
aging gives more weight to instrument classes with higher
appearance in the data distribution. Macro averaging is
calculated per label, representing an overall performance
of the system.

5.2 Improving Predominant Instrument Recognition
using Source Separation

5.2.1 Harmonic / Percussive Separation

After processing the audio files with the har-
monic/percussive separation introduced in Section 3.2.1,
we first retrained the baseline model independently on the
harmonic stream and percussive stream. Furthermore, we
created a two-branch model that processes the harmonic
and percussive stream in parallel and fuses the results in
the final fully-connected layers, similar to [15]. As shown
in Figure 3, using the harmonic stream marginally im-
proved recognition results for both aggregation strategies
S1 and S2 by up to 3% in f-score for the multitimbral
IRMAS data set. In contrast, we did not observe an
improvement for the MONOTIMBRAL data set. Using
the two-branch model did not improve the performance on
the IRMAS data set and worsens the performance on the
MONOTIMBRAL data set.

5.2.2 Solo / Accompaniment Separation

The aim of performing this separation is to further im-
prove the quality of the input audio to the classifica-
tion system. All experiments described in this sec-
tion were performed on the IRMAS-Wind and the JAZZ
data sets (see Section 4), given the performance of the
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Figure 3. Comparison of the AIR system trained on the
harmonic stream and the baseline model trained with the
original IRMAS data set. Differences between evaluation
metrics are shown for both aggregation strategies S1 and
S2 (compare Section 3.1) as well as micro and macro av-
eraging (compare Section 5.1).

solo/accompaniment algorithm. Both data sets also have
similar timbral characteristics, which represents our tar-
geted scenario.

We compare AIR models trained on the original au-
dio tracks with models trained on the solo stream ob-
tained from the solo/accompaniment separation. As shown
in Table 4, applying the solo/accompaniment separation
as pre-processing step improves the AIR performance by
3.8% in macro f-score for the IRMAS-Wind data set and
13.4% for the JAZZ data set using the S1 strategy. Ad-
ditionally both micro and macro averages result in similar
values, given the even distribution of examples of the JAZZ
data set. The results might also indicate that error propa-
gation from transcription errors to the source separation
algorithm are not critical, since the instrument recognition
results are averaged over time and the approximate accu-
racy of the pitch detection algorithm is 80% [7].

F-Score

Data set S/A Separation Micro Macro

IRMAS-Wind - 0.684 0.598
IRMAS-Wind X 0.713 0.636

JAZZ - 0.657 0.669
JAZZ X 0.805 0.803

Table 4. Performance metrics obtained by training the
baseline model with the IRMAS-Wind and JAZZ data sets.
Best results were obtained using aggregation strategy S1.

5.3 Combining Source Separation and Transfer
Learning for Jazz Solo Instrument Recognition

For our final use-case of recognizing jazz solo instru-
ments, we aim at combining solo/accompaniment sepa-
ration and transfer learning strategies. We use the mod-
els trained on the IRMAS-Wind data set (with and with-
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out solo/accompaniment separation) as starting point for
the transfer learning approach. All models were trained
from scratch following the original parameters from [28].
The JAZZ data set includes recordings from trombone and
three saxophone subclasses: tenor, alto, and soprano. Ad-
ditionally, the trumpet and the clarinet classes were already
included in the IRMAS-Wind data set. One main challenge
is that while the characteristics of the predominant melody
instruments in the IRMAS and JAZZ data sets are similar,
the background instrumentation and recording conditions
are often very different. We remove the last sigmoid layers
of models pre-trained with the IRMAS-Wind data set and
replace them by a 6-class sigmoid layer, considering the
JAZZ data set. For testing, we compare two approaches:
(1) the one-pass method which re-trains the last classifi-
cation layer using a learning rate of α = 0.01 (10 times
the original learning rate), while all remaining layers re-
main fixed, and (2) the two-pass approach where we further
re-train all layers in a second training step with a smaller
learning rate of α = 0.001. Table 5 shows the classifica-
tion performance on the JAZZ data set for different system
configurations with the one-pass and two-pass strategies,
as well as with and without the solo/accompaniment sepa-
ration. The best performance was achieved by combining
solo/accompaniment separation and the two-pass transfer
learning strategy.

F-score

S/A Separation Transfer Learning Micro Macro

- One-pass 0.605 0.621
X One-pass 0.738 0.748
- Two-pass 0.583 0.610
X Two-pass 0.787 0.780

X - 0.805 0.803

Table 5. Performance metrics obtained by combining
solo/accompaniment separation with transfer learning on
the JAZZ data set. The results obtained by training the
model from scratch (without transfer learning) are also
shown in the bottom row for reference. Best results were
obtained using aggregation strategy S1.

It can also be observed that the transfer learning
model shows a lower macro f-measure of 0.780 than the
model trained from scratch with 0.803 (see bottom row
of Table 5). To further understand this behavior, six ad-
ditional 10 s (unseen) jazz solo excerpts 1 were analyzed.
Figure 4 shows segment- and clip-wise predictions for
these six solo excerpts using solo/accompaniment sepa-
ration. The figure shows the results for the best transfer
learning system and the model trained on the JAZZ data
set from scratch [12]. A total of 20 predictions were gener-
ated per excerpt on 1 s long windows using a 50 % overlap.
These results suggest that transfer learning can improve
generalization of unseen data, but needs further systematic
investigations on a larger testing data set.

1 Ornette Coleman - Ramblin (as), Buddy DeFranco - Autumn Leaves
(cl), John Coltrane - My Favorite Things (ss), Frank Rossolino - Moon-
light in Vermont (tb), Lee Morgan - The Sidewinder (tp), Michael Brecker
- African Skies (ts)
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Figure 4. Mel-spectrogram of 10 second excerpts from
six jazz solos covering all solo instruments (top), segment-
wise and aggregated clip-wise predictions (using strategy
S1) are shown below for a model trained via transfer learn-
ing (two-pass) and a model trained from scratch. Clip-wise
ground truth is plotted in white rectangles [12].

6. CONCLUSION

In this paper, we investigated two methods to improve upon
a system for AIR on multitimbral ensemble recordings. We
first evaluated two state-of-the-art source separation meth-
ods and showed that on multitimbral audio data, analyzing
the harmonic and solo streams can be beneficial compared
to the mixed audio data.

For the specific use-case of jazz solo instrument classi-
fication, which involves classifying six instruments with
high timbral similarity, combining solo/accompaniment
source separation and transfer learning methods seems to
lead to AIR models with better generalization to unseen
data. This must be further investigated by increasing the
size of the JAZZ data set. While source separation al-
lows to narrow the focus on the predominant instrument,
transfer learning allows to exploit useful feature represen-
tations learned from related instruments. In the future,
a deep learning model capable of discriminating highly
similar instruments could potentially be applied in other
timbre-related recognition tasks such as performer identi-
fication [25].
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ABSTRACT

Extending previous structure-based approaches to the song
comparison tasks such as the fingerprint and cover song
tasks, this paper introduces the aligned sub-hierarchies
(AsH) representation. Built by applying a post-processing
technique to the aligned hierarchies of a song, the AsH
representation is the set of unique aligned hierarchies for
repeats (called AHR) encoded in the original aligned hier-
archies of the whole song. Effectively each AHR within
AsH is a section of the aligned hierarchies for the original
song. Like aligned hierarchies, the AsH representation can
be embedded into a classification space with a natural met-
ric that makes inter-song comparisons based on sections of
the songs. Experiments addressing a version of the cover
song task on score-based data using AsH as the basis of
inter-song comparison demonstrate potential of AsH-based
approaches for MIR tasks.

1. INTRODUCTION

A common starting point in music information retrieval
tasks is the creation of visualizations and representations
for music-based data streams. One of the most influential
representations is Foote’s self-similarity matrix (SSM) [4],
which continues to be one of the most recognizable im-
ages in MIR. Much of the work starting with an SSM or
a self-dissimilarity matrix (SDM) like [1, 5, 7, 9–12] cre-
ate post-processing techniques that seek to enhance certain
properties. This paper also offers a new post-processing
technique that can be applied to either the SSM or SDM
and extends the work of [7].

Under the music comparison tasks like the fingerprint
task and the cover song task, structure-based approaches
like [5, 7] seek to compare songs via their whole song rep-
resentations. While this type of approach has varied suc-
cess, there can be obvious issues. For example, with more
rigid comparisons such as [7], whole song comparisons
may only be meaningful if the songs have the same number
of time-steps. Similarly whole song comparisons can fall

c© Katherine M. Kinnaird. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Katherine M. Kinnaird. “Aligned sub-Hierarchies: a structure-based ap-
proach to the cover song task”, 19th International Society for Music In-
formation Retrieval Conference, Paris, France, 2018.

victim to large artistic choices. For example, [5] created a
smoothed image of the thresholded and resampled SDM,
which was then compared using the Euclidean distance.
While effective, this approach stumbled comparing record-
ings of Mazurka Op. 68 No. 4 where Chopin neglected to
include a fine marking, causing some pianists to play the
piece twice, while others played the piece once [5].

The contrast to the whole song approach is using sec-
tions of a song. In [2, 3], audio shingles representing sec-
tions of recordings are compared to address the fingerprint,
cover song, and remix tasks. In [17], the fingerprint task is
tackled by comparing sections of recordings’ constellation
maps marking their spectrogram peaks. Both approaches
require access to the original audio signal.

This work introduces the aligned sub-hierarchies
(AsH), a structure-based representation that can be used
to compare songs based on sections of the songs. This
AsH representation exists between the section-based com-
parison approaches like [2, 3, 17] and the structure-based
approaches in [5, 7]. Furthermore, this representation em-
beds into a classification space with a natural metric that
observes the triangle inequality.

The paper is organized as follows. Section 2 motivates
the necessity of the extension of aligned hierarchies into
AsH representation in context of MIR tasks. In Section 3,
we formalize the definition of the AsH representation, de-
tail the construction of AsH, and describe embedding AsH
into a classification space with a natural metric. In Sec-
tion 4, we use AsH representations to perform experiments
for a version of the cover song task on a set of Mazurka
scores. We offer future directions for research in Section 5.

2. MOTIVATION AND BACKGROUND

The aligned sub-hierarchies (AsH) representation is an ex-
tension of the aligned hierarchies from [7] that is moti-
vated and inspired by making comparisons based on sec-
tions of songs or musical scores like those of [2,3,17]. This
new representation seeks to combine the strengths of [5,7]
while addressing their limitations. Like their predecessor,
AsH embeds into a classification space with a natural met-
ric, but unlike in [7], the metric for AsH allows comparison
between songs of differing lengths. Inspired particularly
by the work in [5] stumbling on comparisons where some
artists chose to repeat a song in its entirety, AsH seeks to
note whether two songs share sections of unique structural
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decompositions at the original scale of those sections. In
other words, in contrast to [5], there is no resampling in the
formulation nor in the comparison of AsH.

Before detailing the AsH representation, we will
present a summary of the aligned hierarchies introduced
in [7]. This structure-based visualization catalogues all
meaningful repeats present in music-based data streams,
showing all possible structural hierarchies aligned on one
common time axis. Each aligned hierarchies represen-
tation H comprises of three components: an onset ma-
trix BH , a length vector wH , and an annotation vector
αH . There are as many rows in these three components
as there are kinds of repetitions present in a music-based
data stream, with each row being tied to a particularly type
of repeat. The binary matrix BH encodes when each re-
peat begins with a entry of 1 at each starting time step.
The vectors wH and αH together act as a key for BH ,
while the former encodes the lengths of each type of re-
peat, and where the latter assigns annotations for the types
of repeats so that types of the same length have different
annotations. We can visualize the information contained
in H = (BH , wH , αH) as shown in Figures 1 and 3.1(b).

(a) Aligned hierarchies visualization
for the version of the score observing
Chopin’s repeat signs. One segmen-
tation of this version is AABABACA.

(b) Aligned hierarchies vi-
sualization for the version
of the score ignoring the
repeat signs as if Chopin
never wrote them. One seg-
mentation of this version is
ABACA.

Figure 1. Aligned hierarchies for versions of Chopin’s
Mazurka Op. 6, No. 1 score, under threshold T = 0.02,
with shingle size 12. Grey blocks denote repeats and rows
denote types of repeats. Vertical labels are a subset of re-
peat lengths, while the horizontal ones mark the time steps.

The aligned hierarchies also provide an approach to the
fingerprint task as they can be embedded into a classifi-
cation space. However, nuanced comparisons can only
be made between two aligned hierarchies with the ex-
act same number of time steps [7]. This rigidity makes
aligned hierarchies-based comparisons for the cover song
task inappropriate since two cover songs are unlikely to
be the same length. For certain MIR tasks, like the cover
song task, we instead would like to compare parts of the
songs’ aligned hierarchies to each other, making compar-
isons based on these smaller aligned hierarchies a more
suitable choice. This is the motivation and the inspiration
for AsH. Take for example Figure 1 showing two versions
of Chopin’s Mazurka Op. 6, No. 1 score: Figure 1(a) shows

the aligned hierarchies for the score as Chopin intended
and Figure 1(b) shows the aligned hierarchies for the score
with Chopin’s repeat signs ignored. Under one version of
the cover song task, we would like to identify these two
versions as being based off the same score, and just com-
paring these two aligned hierarchies, we notice similarities
between the sections of the shown structural hierarchies.

3. ALIGNED SUB-HIERARCHIES

This section introduces both the aligned sub-hierarchies
(AsH) representation and the classification space that AsH
representations embed into. Starting with the aligned hi-
erarchies for a song or a musical score, we isolate differ-
ent repeated patterns and find the individual aligned hierar-
chies for each isolated pattern. The collection of the unique
aligned hierarchies for sections of music-based data stream
is called the aligned sub-hierarchies, abbreviated to AsH.

AsH is the result of a post-processing technique on
aligned hierarchies that is similar to the result of treating
sections of a song as songs in their own right and then find-
ing each section’s aligned hierarchies. Like other compar-
ison methods like [2, 3, 17] that compare sections of songs
to each other, the AsH finds all possible structural hierar-
chies for sections of each song. By leveraging structural
information already encoded in aligned hierarchies for the
whole song, we have already found all the repeated sec-
tions with smaller repeats within them and potentially keep
additional structure information that would have been hid-
den had we build an aligned hierarchies directly from the
song’s section.

3.1 Defining AsH

In this section, we will formally define the AsH represen-
tation and consider a motivating example. The below def-
inition for the aligned hierarchies of a given repeat Rki ,
particularly the third condition, ensures that we capture all
possible song sections with their own aligned hierarchies.

Definition 3.1. Consider a song and let H be the aligned
hierarchies for the song. Let Rki be a repeat of length k
beginning at time step i, encoded in H . Then the set of
repeats meeting the following three conditions form the
aligned hierarchies of Rki or AHR

k
i :

1. Encoded in H that are of length less than k,
2. Contained in the set of time steps [i, (i+k−1)]∩N,

3. Have at least one corresponding repeat that is also
contained within the time steps [i, (i+ k − 1)] ∩ N.

We encode AHR
k
i as hRk

i
=
(
BH |Rk

i
, wH |Rk

i
, αH |Rk

i

)
,

where each component of hRk
i

is defined similarly to those
inH = (BH , wH , αH). Here, the onset matrixBH |Rk

i
has

k columns, encoding repeats in hRk
i

by by their relative
position to the start of Rki . For a general repeat (without a
specified start or length), we say aligned hierarchies of a
repeat and shorten to AHR.

Example 3.1. Consider a song with the thresholded dis-
tance matrix T shown in Figure 3.1(a). This song has three
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kinds of structure: A (which occurs four times), B (which
occurs five times), and C (which occurs only once). The
aligned hierarchies for the song is shown in Figure 3.1(b).

We can build AHR
30
1 from the aligned hierarchies by

considering the blocks contained within the beats 1-30. In
this case, those structures are the (ABA) structure on beats
1-25; the (BAB) structure on beats 11-30; the (AB) struc-
ture on beats 1-15 and 16-30; the (BA) structure on beats
11-25; the B structure on beats 11-15 and 26-30; and the
two A structures on beats 1-10 and 16-25. Given that the
A, B, and (AB) structures each repeat within beats 1-30,
then by Definition 3.1, AHR

30
1 , encoded into hR30

1
, con-

tains these structures. A visualization for hR30
1

is shown in
Figure 3.1(c).

Since the notion of time for AHR
k
i is relative to beat i,

then for the Example 3.1, we have that AHR
30
36 will encode

the same information as AHR
30
1 . So hR30

1
= hR30

36
.

Definition 3.2. LetH be the aligned hierarchies for a song.
The unordered set of unique AHR representations denoted
{h} = {h1, h2, . . . , hm} where each hi ∈ {h} is the AHR

for at least one repeat encoded in H is the aligned sub-
hierarchies (or AsH) of the song.

Example 3.2. Consider Example 3.1 shown in Figure 3.1.
The repeats (BAB), (ABA), (ABAB) each have an
AHR. Although each of these occur twice, the AsH rep-
resentation is comprised of only unique AHR representa-
tions. So {h} =

{
h(BAB), h(ABA), h(ABAB)

}
.

3.2 Building AsH from Aligned Hierarchies

In this section, we explain crafting {h}, the AsH represen-
tation of a song, from aligned hierarchies. First we detail
constructing AHR

k
i for each repeat encoded in H and then

explain when AHR
k
i is added to the AsH representation.

For each repeat in H , we note the starting time step i
and the length of the repeat k, and then form AHR

k
i as fol-

lows. We first isolate the rows of BH ∈ H that correspond
to repeats smaller than width k (that is the rows of BH as-
sociated to the entries of wH < k), and we further restrict
this matrix to only the columns i through (i+ k − 1). We
call the resulting sub-matrix BH |Rk

i
. We also form the as-

sociated vectors wH |Rk
i

and αH |Rk
i

as the entries of wH
and αH that correspond to the rows of BH |Rk

i
.

To satisfy Definition 3.1 as we build AHR
k
i , we remove

the rows of BH |Rk
i

that contain fewer than two repeats and
then remove the corresponding entries in both wH |Rk

i
and

αH |Rk
i
. Removing entries in αH |Rk

i
may require adjusting

the resulting values in αH |Rk
i

so that for each repeat length
k, the clusters of repeats of length k stored in BH |Rk

i
are

identified with integers 1 through κ (that is, the number of
clusters of repeats of length k stored in BH |Rk

i
).

The resulting triple hRk
i
=
(
BH |Rk

i
, wH |Rk

i
, αH |Rk

i

)
is the AHR

k
i representation. We next check if hRk

i
is

already in {h}, the unordered list of unique AHR
k
i . If

hRk
i
6∈ {h}, then hRk

i
is added to {h}.

A A A AB B B B BC
t = 1

t = 1
10 15 25 30 36 45 50 60 65 70

10
15

25
30
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(a) T for the toy song with sections marked.

t = 1 10 15 25 30 36 45 50 60 65 70

B

A

(AB)

(BA)

(ABA)

(BAB)

(ABAB)

(b) Visualization for H of the toy song.

t = 1 10 15 25 30

B

A

(AB)

(c) Visualization for h(ABAB), which can be either denoted as hR30
1

or hR30
36

, as they are equivalent.

Figure 2. Visualizations for toy song example with seg-
mentation ABABCABABB.

By construction, a song’s AsH can have AHR of differ-
ing widths. If hi ∈ {h} is the AHR for repeat Rki , then hi
is of width k.

3.3 Method for Comparing AsH

Comparing two AsH representations to each other requires
finding the best alignments between collections of AHR.
This comparison must also respect that the AsH is an un-
ordered set of AHR representations and thus needs to be
invariant to shifts in the ordering of the AHRs. The AsH
representation can be embedded into a space with a natural
notion of distance, and this embedding leverages the em-
bedding of the aligned hierarchies from Section 3 of [7].

3.3.1 Embedding AsH

As each AHR is an aligned hierarchies representation, we
start by embedding each AHR into (S∗)n, the classification
space for aligned hierarchies. To do this, a sequence of
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binary matrices is created, where the kth matrix is the rows
of the aligned hierarchies associated to repeats of length k.
The space S∗ is defined as S/ ∼, where S is the space of
(m × t)−binary matrices and where ∼ is the equivalence
relationship encoding that two matrices are equivalent if
they are row permutations of each other.

In the case of AsH, we have a collection of AHRs each
of which can be represented as an element of (S∗)n. By
treating each hi ∈ {h} as a column of information, we
consider p copies of (S∗)n. In this sense, we have a prod-
uct space comprised of (n× p)-copies of the space S∗, ar-
ranged into n rows and p columns, exactly like the entries
of a (n × p)-matrix, with each element of AsH occupying
a column of this matrix-like layout.

Since AsH is an unordered collection of AHRs, we need
to define a space that is invariant to the ordering of the ele-
ments of AsH. We define the relationship∼∗ on (S∗)(n×p)
such that two AsH representations are equivalent under∼∗
if they are different orderings of the same set of AHR repre-
sentations. We can show that∼∗ is an equivalence relation
on (S∗)(n×p), which allows us to define the following:

Definition 3.3. Let P be the quotient space
(S∗)(n×p)/ ∼∗. For {A} ∈ P , the i-th column is
Ai. We write Ai ∈ {A} and call Ai a column of {A}.

The AsH representation {h} of a song can be repre-
sented as an element of P where hi ∈ {h}, the i-th AHR,
gets placed in the i-th column and so {h} ∈ P . This space
P encodes the invariance of the ordering of the AHRs in
an AsH representation, due to the equivalence relation ∼∗,
meaning that the AHR (for a given AsH representation) can
be placed into P in any order.

3.3.2 Metric on P

To compare two songs via AsH, we find the pairs of the
AHR from the first song with those from the second song
that minimize the sum of the distances between the pairs.
We first consider the AHRs within the AsH representations
that are of a fixed length k. Then we add all the distances
from the identified matchings across the possible values of
k. The resulting sum encodes the total dissimilarity be-
tween the repeated patterns of all sizes present in all of
AHRs contained within the two AsH representations.1

To first compare AHRs of the same length, consider
two AsH representations {A} = {A1, A2, . . . , Aq} and
{B} = {B1, B2, . . . , Br}, with all AHRs of length k.
Assuming that q, r ∈ Z≥0 and that q ≥ r, and ensuring
that we are comparing lists of the same lengths, we append
(q− r) empty AHRs to {B}, each of which is a row-vector
of k zeros. We recall that dH : (S∗)n × (S∗)n → R is the
distance between two aligned hierarchies encoding the to-
tal dissimilarity between them.

Below, we define fL that permutes the elements of {B}
to find the optimal matching of AHRs in {B} to those in
{A}. This sum of the distances between the pairs of AHRs
is the minimum across all possible matchings.

1 The proofs for the material in this section can be found in the author’s
doctoral thesis [6].

Proposition 3.1. Let {A} , {B} ∈ P . Let Sp be the sym-
metric group of degree p. Define fL : P × P → R as

fL ({A} , {B}) = min
σ∈Sp

p∑
i=1

dH
(
Ai, Bσ(i)

)
Then the function fL : P × P → R is a distance function.

Proof Sketch: Leveraging properties of the symmetric
group and the fact that dH is a distance function, it is a
straight forward check of the four requirements of a dis-
tance function: non-negativity, observance that the dis-
tance between two objects is zero if they are equivalent,
reflectivity, and obeying the triangle inequality. 2

While fL is a notion of total dissimilarity between two
sets of AHRs all of the same fixed length, a song’s AsH
representation likely contains AHRs of differing lengths.
To find the total dissimilarity across all possible lengths of
AHRs within AsH representations we add up the fL dis-
tances found across all values of k. For clarity, we use the
following definitions and notation:

Definition 3.4. Let {A} ∈ P such that the AHRs of {A}
are not necessarily the same width. Define {Ak} to be the
AHRs of {A} that are of width k.

Corollary 1. Let {A} , {B} ∈ P . Let M be the largest
width of the AHRs in {A} or {B}. Let dP : P × P → R
be given by:

dP ({A} , {B}) =
M∑
i=1

fL
(
{Ai}, {Bi}

)
.

Then dP is also a distance function.

Proof Sketch: Using that fL is a distance function, check
that dP satisfies the definition of a distance function.

We note that the comparison of two songs using AsH
requires that both songs have AsH representations. Due to
the fact that we require each AHR to be the aligned hierar-
chies for a section of the song, it is possible that there ex-
ists aligned hierarchies for a song, but not one AHR. This
would happen when all sections within a song do not have
smaller repeated structures that repeat within that section.
In this case, the song has an empty AsH representation and
note that no comparisons can be made between a song with
an empty AsH representation and any other song.

4. COVER SONG EXPERIMENTS

To test the validity of the using AsH representation and
its associated metric to approach MIR tasks, we apply the
AsH-based comparison method to address a version of the
cover song task for a score-based data set.3 Each experi-
ment follows the below procedure:

2 We can further prove that if we first find and remove exact matches
for the AHRs in the two AsHs, then the distance between the remain-
ing AHRs in {A} and {B} is the same as the distance between the full
AsHs {A} and {B}. This fact adds efficiency to the computation of
fL({A} , {B}). This proof proceeds by induction on the number of un-
matched exact matches between {A} and {B}.

3 The code used for these experiments as well as those in [7] can be
found at https://github.com/kmkinnaird/ThesisCode/
releases/tag/vT.final2
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1. Pre-process the songs by building audio shingles us-
ing s concatenated beat synchronous Chroma feature
vectors, and then creating and thresholding an SDM
using a global threshold T

2. Construct the aligned hierarchies as in [7]

3. Extract AsH representations from each aligned hier-
archies representation

4. Compute pairwise distances between pairs of AsH
representations under the dP metric

5. Match two songs if they are mutual nearest neigh-
bors of each other

6. Evaluate the resulting matchings compared to the
ground truth using precision and recall scores

4.1 Score-Based Data Set

For the experiments in this work, we use a score-based data
set comprised of 52 Mazurka musical scores by Chopin.
For each score, we download two **kern files posted on the
KernScore online database 4 (see [13]). The first file ob-
serves the repeated signs as marked by Chopin in the score,
while the second ignores these repeat signs as if they are
not written at all. If a score has no marked repeat signs, we
download the single **kern file twice, marking one copy
as observing the repeat signs and the second copy as hav-
ing the repeat signs ignored. We refer to the versions of the
scores as songs.

In this data set, each time step is in terms of beats with
one time step being equivalent to one beat. We use the
music21 Python library 5 to extract the Chroma feature
vectors for each beat in the song. For each time step, we
encode local information by creating the audio shingles
(like those in [2, 3]) that are s concatenated Chroma fea-
ture vectors, for a fixed integer s. As most Mazurkas have 3
beats per measure, in these experiments (like those in [7]),
we set s = 6 or s = 12. This means that we encode two or
four (three beats) bars into each audio shingle.

We then create D, the SDM for each song, by comput-
ing cosine dissimilarity measure between all pairs of audio
shingles. So for audio shingles ai, aj associated to time
steps i and j respectively, we define

Di,j =
(
1− 〈ai, aj〉
||ai||2||aj ||2

)
.

Then each SDM is thresholded based on the chosen global
threshold T , which denotes how similar two audio shingles
must be to be considered repetitions of each other. In these
experiments, we choose global thresholds that are associ-
ated to very small differences between collections of 3 to
5 notes. To make this choice, we used the framework pre-
sented in [8] to connect our choice of T to the number of
additions to the C-maj chord one can make and still be con-
sidered a repeat of the C-maj chord under the threshold T .
This thresholding method differs from those in the litera-
ture that choose a threshold based on a fixed percentage of

4 http://kern.humdrum.org/search?s=t&keyword=Chopin
5 http://web.mit.edu/music21/

pairwise measures to be selected such as [1,5,11] or based
on a fixed number of nearest neighbors as in [14–16].

We complete the processing of each song by extract-
ing the associated aligned hierarchies from the thresholded
SDM as done in [7]. To find the AsH representation for
each song, we apply the post-processing steps outlined in
subsection 3.2. The AsH is the basis for our inter-song
comparison in the following experiments.

4.2 Experimental Setup

For this work, we define the cover song task as matching
the score’s **kern file with the repeat signs observed to
the score’s **kern file that ignore the repeat signs. After
finding the AsH for each song, we compute the pairwise
distances between the songs’ representations using dP , and
store the results in a pairwise distance matrix D. We then
perform a mutual nearest neighbor matching, by treating
each song as a query track. Therefore each experiment
has a maximum of 104 possible matches as each song as
another version of its score to match with.

For these experiments, the ground truth is the song list
with their cover as given by the meta data of each **kern
file. We compute precision and recall by comparing the
experiment’s resulting matches to the ground truth.

4.3 Results

Table 1 reports experimental results for s ∈ {6, 12} and
T ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. The 10 experiments
have high precision rates but more modest recall rates.
Since not all songs have an AsH representation for each
value of s and T , the number of possible matches varies.

For each experiment, we note the number of feature
vectors per audio shingle, s, and the threshold value T
that determines when two time steps are said to be repeats
of each other. The choice of s and T affects the number
of non-zero entries in the thresholded SDM, which deter-
mines whether or not a song has an AsH representation.
If a song does not have an AsH associated to it, then we
remove the row and column in D associated to that song
from consideration as well as remove that song from the
ground truth listing. Our computations for precision and
recall are based the adjusted ground truth list. In addition
to reporting the precision and recall values for each exper-
iment, we also report the number of possible matches that
could be made based on the choices of s and T .

4.4 Discussion

The above results demonstrate the usability of the AsH rep-
resentation in approaching MIR tasks. What is more, these
results expose both strengths and weaknesses of using AsH
as the basis for inter-song comparisons.

In considering the above results, we note that this ver-
sion of the cover song task differs from the typical presen-
tation of the cover song task. Most cover songs follow the
original composer’s intended structure fairly closely. In
these experiments, half of our data set closely follows the
composer’s intentions while the other half blatantly makes
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s T
Possible Precision Recall Empty
Matches Rate Rate AsHs

6

0.01 62 1 0.774 35
0.02 66 0.962 0.757 33
0.03 74 0.931 0.730 26
0.04 78 1 0.692 24
0.05 88 1 0.727 15

12

0.01 34 1 0.882 68
0.02 44 1 0.818 57
0.03 46 0.85 0.739 54
0.04 56 0.84 0.75 45
0.05 62 0.929 0.839 39

Table 1. Results for AsH for score data set on 10 exper-
iments varying s, the width of the audio shingles, and T ,
the threshold used on the SDM for each song

large changes to the structure of the pieces. It is uncom-
mon (though not unheard of as discussed in [5]) to see
such large structural changes between two recordings of
the same piece, which is what makes this version of the
cover song task more challenging. Under this version of
the cover song task, the AsH-based method was able to
achieve strong experimental results.

The data in these experiments differs from the typical
data set for the cover song task. For this score data, there
are only two natural versions of each score: one with the
repeat signs observed and the second with the repeat signs
ignored. This means that every song has exactly one cover
song to match with, contrasting from the typical data set
for cover song retrieval that has an unknown number of
covers for each query song. While a mutual nearest neigh-
bors matching condition makes sense for this score-based
data set (and other similar collections), it does mean that
the choice of what each query track matches to is not inde-
pendent from each other. An adjustment to the matching
condition would need to be made for a data set of audio
tracks with varying numbers of cover songs.

We also note that for the experiments in [7] nearly every
song could be represented by aligned hierarchies, regard-
less of the shingle size s or threshold value T . In contrast,
for the same data set under the same values for s and T , we
find several songs without an AsH representationdata set,
meaning that those songs cannot be represented by an AsH
representation or compared to other songs’ AsH represen-
tations. Songs will lack an AsH representation if none of
the repeats in the aligned hierarchies have smaller repeated
structures within them. We can add flexibility to our defi-
nition of what it means for two sections to be repetitions of
each other by increasing the value of T . Understandably,
as the value of T rises, so do the number of songs with AsH
representations, meaning that an appropriate choice of T is
crucial to comparison methods based on AsH representa-
tions. Even with this caveat, the results from the above ex-
periments provide evidence in favor of the usability of AsH
as a low-dimensional representation for high-dimensional
sequential data with lots of repeated structure.

Finally, the AsH comparison method is based on an ac-
cumulation of structure-based comparisons between struc-
ture decompositions of sections of the query song (rep-
resented by the collection AHR for the query) and the
structure decompositions of sections in every other song
in the data set (also via their collections of AHR). As
with the aligned hierarchies, the AsH-based comparisons
are based on hierarchical structure decompositions of sec-
tions of songs and are more than just one level or one size
of structure. What is more, each AHR, like the aligned
hierarchies, encode not one possible structure hierarchy,
but all structure hierarchies that exist within that section
of the song. Matchings via AsH will occur when two
songs have several sections that share hierarchical struc-
ture decompositions. This is a far more nuanced matching
than just matching based on one segmentation. This AsH-
based comparison method is a starkly different approach
than [17] which compares just one section of the query
track to the other songs in the data set. This approach is
reminiscent of the work in [3] that takes a truncated sum
of the distances between pairs of audio shingles. The cru-
cial difference between [3] and this work is that the former
is based directly on the audio frequencies within a section
of a song, while the latter is based on the lengths and posi-
tioning of repeats within sections of the song.

5. CONCLUSION

In this paper, we introduce the aligned sub-hierarchies
(AsH) representation, an extension of the aligned hierar-
chies in [7] that allows for structure-based comparisons
between sections of songs. This representation seeks to
address limitations of the approach in [5] to the cover song
task by creating a collection of unique structure represen-
tations for sections of each song within a data set. There is
a mathematical framework underpinning AsH as shown by
embedding AsH representation into a classification space
with a natural metric. Finally, we address a version of the
cover song task using AsH-based pairwise song compar-
isons on a score-based data set. These experiments pro-
vide a proof of concept for using the AsH representation
for highly repetitive, sequential data and offer new insights
into structure-based approaches to comparison tasks based
on sections of songs.

By existing between music comparisons based on
whole song representations like [5, 7] and those based on
partial song representations like [17], the AsH representa-
tion opens several new avenues of research. In future work,
we plan to explore the impact of relaxing the third condi-
tion in Definition 3.1, both from the theory angle of cre-
ating an appropriate metric, like the one in subsection 3.3
and from the practical angle of being able to efficiently ad-
dress MIR tasks on large data sets. Further exploration of
the impact of T and s on AsH is also needed. As the ex-
periments presented here were limited to score-based data,
we also plan to apply AsH-based comparisons to the cover
song task on collections of audio recordings.
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ABSTRACT

Audio-to-score alignment is an important pre-processing
step for in-depth analysis of classical music. In this pa-
per, we apply novel transposition-invariant audio features
to this task. These low-dimensional features represent lo-
cal pitch intervals and are learned in an unsupervised fash-
ion by a gated autoencoder. Our results show that the
proposed features are indeed fully transposition-invariant
and enable accurate alignments between transposed scores
and performances. Furthermore, they can even outperform
widely used features for audio-to-score alignment on ‘un-
transposed data’, and thus are a viable and more flexible al-
ternative to well-established features for music alignment
and matching.

1. INTRODUCTION

The task of synchronising an audio recording of a music
performance and its score has already been studied exten-
sively in the area of intelligent music processing. It forms
the basis for multi-modal inter- and intra-document nav-
igation applications [6, 10, 35] as well as for the analysis
of music performances, where e.g. aligned pairs of scores
and performances are used to extract tempo curves or learn
predictive performance models [12, 39].

Typically, this synchronisation task, known as audio-to-
score alignment, is based on a symbolic score representa-
tion, e.g. in the form of MIDI or MusicXML. In this paper,
we follow the common approach of converting this score
representation into a sound file using a software synthe-
sizer. The result is a low-quality rendition of the piece, in
which the time of every event is known. Then, for both
sequences the same kinds of features are computed, and a
sequence alignment algorithm is used to align the audio of
the performance to the audio representation of the score,
i.e. the problem of audio-to-score alignment is treated as
an audio-to-audio alignment task. The output is a map-
ping, relating all events in the score to time points in the

c© Andreas Arzt, Stefan Lattner. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Andreas Arzt, Stefan Lattner. “Audio-to-Score Alignment
using Transposition-invariant Features”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

performance audio. Common features for this task include
a variety of chroma-based features [8, 14, 15, 25], features
based on the semitone scale [4,6], and mel-frequency cep-
stral coefficients (MFCCs) [13].

In this paper, we apply novel low-dimensional features
to the task of music alignment. The features represent local
pitch intervals and are learned in an unsupervised fashion
by a gated autoencoder [23]. We will demonstrate how
these features can be used to synchronise a recording of a
performance to a transposed version of its score. Further-
more, as they are only based on a local context, the features
can even cope with multiple transpositions within a piece
with only minimal additional alignment error, which is not
possible at all with common pitch-based feature represen-
tations.

The main contributions of this paper are (1) the intro-
duction of novel transposition-invariant features to the task
of music synchronisation, (2) an in-depth analysis of their
properties in the context of this task, and (3) a direct com-
parison to chroma features, which are the quasi-standard
for this task. A cleaned-up implementation of the code
for the gated autoencoder used in this paper is publicly
available 1 . The paper is structured as follows. In Sec-
tion 2, the features are introduced. Section 3 briefly de-
scribes the alignment algorithm we are using throughout
the paper. Then, in Section 4 we present detailed experi-
ments on piano music, including a comparison of different
feature configurations, results on transposed scores, and a
comparison with chroma features. In Section 5 we discuss
the application of the features in the domain of complex
orchestral music. Finally, Section 6 gives an outlook on
future research directions.

2. TRANSPOSITION-INVARIANT FEATURES
FOR MUSIC SYNCHRONISATION

Transposition-invariant methods have been studied exten-
sively in music information retrieval (MIR), for example
in the context of music identification [2], structure analysis
[26], and content-based music retrieval [19, 21, 36]. How-
ever, so far there has been limited success in transposition-
invariant audio-to-score alignment. Currently, a typical ap-
proach is to first try to identify the transposition, transform
the inputs accordingly, and then apply common alignment

1 see https://github.com/SonyCSLParis/cgae-invar
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techniques (see e.g. [33]). Another option is to perform
the alignment multiple times, with different transpositions
(e.g. the twelve possible transposition options when us-
ing chroma-based features) and then select the alignment
which produced the least alignment costs (see e.g. [34]).

These are cumbersome and error-prone methods. In this
paper, we demonstrate how to employ novel transposition-
invariant features for the task of score-to-audio alignment,
i.e. the features themselves are transposition-invariant.
These features have been proposed recently in [17] and
their usefulness has been demonstrated for tasks like the
detection of repeated (but possibly transposed) motifs,
themes and sections in classical music.

The features are learned automatically from audio data
in an unsupervised way by a gated autoencoder. The main
idea is to try to learn a relative representation of the current
audio frame, based on a small local context (i.e., n-gram,
the previous n frames). During the training process, the
gated autoencoder is forced to represent this target frame
via its preceding frames in a relative way (i.e. via interval
differences between the local context and the target frame).

In the following, we give a more detailed description of
how these features are learned. Specifics about the train-
ing data we are using in this paper can be found in the re-
spective sections on applying this approach to piano music
(Section 4) and orchestral music (Section 5).

2.1 Model

Let xt ∈ RM be a vector representing the energy dis-
tributed over M frequency bands at time t. Given a tem-
poral context xtt−n = xt−n . . .xt (i.e. the input) and the
next time slice xt+1 (i.e. the target), the goal is to learn a
mapping mt (i.e. the transposition-invariant feature vector
at time t) which does not change when shifting xt+1

t−n up-
or downwards in the pitch dimension.

Gated autoencoders (GAEs, see Figure 1) are funda-
mentally different to standard sparse coding models, like
denoising autoencoders. GAEs are explicitly designed to
learn relations (i.e., covariances) between data pairs by em-
ploying an element-wise product in the first layer of the
architecture. In musical sequences, using a GAE for learn-
ing relations between pitches in the input and pitches in the
target naturally results in representations of musical inter-
vals. The intervals are encoded in the latent variables of
the GAE as mapping codes mt (refer to [17] for more de-
tails on interval representations in a GAE). The goal of the
training is to find a mapping for any input/target pair which
transforms the input into the given target by applying the
represented intervals. The mapping at time t is calculated
as

mt = σh(W1σh(W0(Uxtt−n ·Vxt+1))), (1)

where U,V and Wk are weight matrices, and σh is the hy-
perbolic tangent non-linearity. The operator · (depicted as
a triangle in Figure 1) denotes the Hadamard (or element-
wise) product of the filter responses Uxtt−n and Vxt+1,

Figure 1. Schematic illustration of the gated autoencoder
architecture used for feature learning. Double arrows de-
note weights used for both, inference of the mapping mt

and the reconstruction of xt+1.

denoted as factors. The target of the GAE can be recon-
structed as a function of the input xtt−n and a mapping
mt:

x̃t+1 = V>(W>
0 W

>
1 mt ·Uxtt−n). (2)

As cost function we use the mean-squared error be-
tween the target xt+1 and the target’s reconstruction x̃t+1

as

MSE =
1

M
‖xt+1 − x̃t+1‖2 . (3)

2.2 Training Data Preprocessing

Models are learned directly from audio data, without the
need for any annotations. The empirically found prepro-
cessing parameters are as follows. The audio files are re-
sampled to 22.05 kHz. We choose a constant-Q trans-
formed spectrogram using a hop size of 448 (∼ 20ms),
and Hann windows with different sizes depending on the
frequency bin. The range comprises 120 frequency bins
(24 per octave), starting from a minimal frequency of 65.4
Hz. Each time slice is contrast-normalized to zero mean
and unit variance.

2.3 Training

The model is trained with stochastic gradient descent in
order to minimize the cost function (cf. Equation 3) using
the training data as described in Section 2.2. In an altered
training procedure introduced below, we randomly trans-
pose the data during training and explicitly aim at transpo-
sition invariance of the mapping codes.

2.3.1 Enforcing Transposition-Invariance

As described in Section 2.1 the classical GAE training pro-
cedure derives a mapping code from an input/target pair,
and subsequently penalizes the reconstruction error of the
target given the input and the derived mapping code. Al-
though this procedure naturally tends to lead to similar
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mapping codes for input target pairs that have the same in-
terval relationships, the training does not explicitly enforce
such similarities and consequently the mappings may not
be maximally transposition invariant.

Under ideal transposition invariance, by definition the
mappings would be identical across different pitch trans-
positions of an input/target pair. Suppose that a pair
(xtt−n,xt+1) leads to a mapping m (by Equation (1)).
Transposition invariance implies that reconstructing a tar-
get x′t+1 from the pair (x′tt−n,m) should be as success-
ful as reconstructing xt+1 from the pair (xtt−n,m) when
(x′

t
t−n,x

′
t+1) can be obtained from (xtt−n,xt+1) by a sin-

gle pitch transposition.
Our altered training procedure explicitly aims to

achieve this characteristic of the mapping codes by pe-
nalizing the reconstruction error using mappings obtained
from transposed input/target pairs. More formally, we de-
fine a transposition function shift(x, δ), shifting the values
(CQT frequency bins) of a vector x of lengthM by δ steps:

shift(x, δ) = (x(0+δ) mod M , . . . , x(M−1+δ) mod M )>,
(4)

and shift(xtt−n, δ) denotes the transposition of each single
time step vector before concatenation and linearization.

The training procedure is then as follows: First, the
mapping code mt+1 of an input/target pair is inferred as
shown in Equation 1. Then, mt+1 is used to reconstruct
a transposed version of the target, from an equally trans-
posed input (modifying Equation 2) as

x̃′t+1 = σg(V
>(W>

0 W
>
1 mt ·Ushift(xtt−n, δ))), (5)

with δ ∈ [−60, 60] randomly chosen for each training
batch. Finally, we penalize the error between the recon-
struction of the transposed target and the actual transposed
target (i.e., employing Equation 3) as

MSE =
1

M

∥∥shift(xt+1, δ)− x̃′t+1

∥∥2 . (6)

This method amounts to both, a form of guided training
and data augmentation.

2.3.2 Training Details

The architecture and training details of the GAE are as fol-
lows. In this paper, we use two models with differing n-
gram lengths. The factor layer has 512 units for n-gram
length n = 16, and 256 units for n = 8. Furthermore, for
all models, there are 128 neurons in the first mapping layer
and 64 neurons in the second mapping layer, i.e. the fea-
tures we will be using throughout this paper for the align-
ment task are 64-dimensional.

L2 weight regularization for weights U and V is ap-
plied, as well as sparsity regularization [18] on the top-
most mapping layer. The deviation of the norms of the
columns of both weight matrices U and V from their av-
erage norm is penalized. Furthermore, we restrict these
norms to a maximum value. We apply 50% dropout on
the input and no dropout on the target, as proposed in [23].
The learning rate (1e-3) is gradually decremented to zero
over 300 epochs of training.

3. ALIGNMENT ALGORITHM

The goal of this paper is to give the reader a good intuition
about the novel transposition-invariant features for audio
alignment and focus on their properties, without being dis-
tracted by a complicated alignment algorithm. Thus, we
use a simple multi-scale variant of the dynamic time warp-
ing (DTW) algorithm (see [25] for a detailed description of
DTW) for the experiments throughout the paper, namely
FastDTW [32] with the radius parameter set to 50. We
performed all experiments presented in this paper using
the cityblock, Euclidean and cosine distance measures to
compute distances between feature vectors. Because the
choice of distance measure did not have a sizeable impact,
we only report the results using the Euclidean distance. As
FastDTW is a well-known and widely used algorithm, we
refrain from describing the algorithm here in detail and re-
fer the reader to the referenced works.

Obviously, a large number of more sophisticated alter-
natives to FastDTW exists. This includes methods based
on hidden Markov and semi-Markov models [27–29],
conditional random fields [16], general graphical models
[5, 20, 30, 31], Monte Carlo sampling [7, 24], and exten-
sions to DTW, e.g. multiple sequence alignment [37] and
integrated tempo models [3]. We are confident that the
presented features can also be employed successfully with
these more sophisticated alignment schemes.

4. EXPERIMENTS ON PIANO MUSIC

In this section we present a number of experiments, show-
casing the strengths of the proposed features as well as
their weaknesses. We will do this on piano music first, be-
fore moving on to more complex orchestral music in Sec-
tion 5. For learning the features, a dataset consisting of
100 random piano pieces of the MAPS dataset [9] (subset
MUS) was used. As discussed in Section 2, no annota-
tions are needed, thus actually any available audio record-
ing of piano music could be used. For the experiments, we
trained two models, differing in the size of their local con-
text: an 8-gram model and a 16-gram model (referred to as
8G Piano and 16G Piano in the remainder of the paper).

For the evaluation of audio-to-score alignment, a col-
lection of annotated test data (pairs of scores and exactly
aligned performances) is needed. We performed experi-
ments on four datasets (see Table 1). CB and CE consist of
22 recordings of the Ballade Op. 38 No. 1 and the Etude
Op. 10 No. 3 by Chopin [11], MS contains performances
of the first movements of the piano sonatas KV279-284,
KV330-333, KV457, KV475 and KV533 by Mozart [38],
and RP consists of three performances of the Prelude Op.
23 No. 5 by Rachmaninoff [1]. The scores are provided in
the MIDI format. Their global tempo is set such that the
score audio roughly matches the mean length of the given
performances. The scores are then synthesised with the
help of timidity 2 and a publicly available sound font. The
resulting audio files are used as score representations for
the alignment experiments.

2 https://sourceforge.net/projects/timidity/
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ID Dataset Files Duration

CE Chopin Etude 22 ∼ 30 min.
CB Chopin Ballade 22 ∼ 48 min.
MS Mozart Sonatas 13 ∼ 85 min.
RP Rachmaninoff Prelude 3 ∼ 12 min.

Table 1. The evaluation data set for the experiments on
piano music (see text).

In the experiments, we use two types of evaluation mea-
sures. For each experiment, the 1st quartile, the median,
and the 3rd quartile of the absolute errors at aligned refer-
ence points is given. We also report the percentage of refer-
ence points which have been aligned with errors smaller or
equal 50 ms, and smaller or equal 250 ms (similar to [6]).

4.1 Experiment 1: Feature Configurations

The first experiment compares the performance of the two
feature configurations 8G Piano and 16G Piano on the pi-
ano evaluation set (see Table 2). The differences between
the two configurations are relatively small, although the
8-gram feature consistently works slightly better than the
16-gram features. The danger of using a larger local con-
text is that different tempi can lead to very different con-
texts (e.g. faster tempi result in more notes contained in
the local context), which in turn leads to different features,
which is a problem for the matching process. We will re-
turn to this problem in a later experiment (see Section 4.4).
Because of space constraints, in the upcoming sections, we
will only report the results for 8G Piano.

4.2 Experiment 2: Transposition-invariance

Next, we demonstrate that the learned features are actu-
ally invariant to transpositions. To do so, we transposed
the score representations by -3, -2, -1, 0, +1, +2 and +3
semitones and tried to align the untransposed performances
to these scores. The results for the 8G Piano features are
shown in Table 3. The results for all transpositions, includ-
ing the untransposed scores, are very similar. Only minor
fluctuations occur randomly.

In addition, we prepared a second, more challenging
experiment. We manipulated the scores such that af-
ter every 30 seconds another transposition from the set
{−3,−2,−1,+1,+2,+3} is randomly applied. From
each score, we created five such randomly changing score
representations and tried to align the performances to these
scores. The results are shown in the rightmost column
of Table 3. Again, there is no difference to the other re-
sults. Basically, the transpositions only lead to at most
eight noisy feature vectors every time a new transposition
is applied, which is not a problem for the alignment algo-
rithm. We would also like to note that very few algorithms
or features would be capable of solving this task (see [26]
for another option). Other methods that first try to globally
identify the transposition and then use traditional methods
for the alignment are clearly not applicable here.

Dataset Measure 8G Piano 16G Piano

CB

1st Quartile 10 ms 11 ms
Median 22 ms 24 ms
3rd Quartile 39 ms 45 ms
Error ≤ 50 ms 83% 79%
Error ≤ 250 ms 94% 95%

CE

1st Quartile 10 ms 12 ms
Median 21 ms 25 ms
3rd Quartile 36 ms 45 ms
Error ≤ 50 ms 87% 79%
Error ≤ 250 ms 96% 95%

MS

1st Quartile 6 ms 6 ms
Median 13 ms 14 ms
3rd Quartile 25 ms 26 ms
Error ≤ 50 ms 90% 91%
Error ≤ 250 ms 100% 100%

RP

1st Quartile 14 ms 16 ms
Median 34 ms 40 ms
3rd Quartile 90 ms 92 ms
Error ≤ 50 ms 63% 57%
Error ≤ 250 ms 90% 93%

Table 2. Comparison of the 8-gram and the 16-gram fea-
ture models.

4.3 Experiment 3: Comparison to Chroma Features

It is now time to compare the 8G Piano features to well-
established features for the task of music alignment in
the normal, un-transposed alignment setting. To this end,
we computed the chroma cqt features 3 (henceforth re-
ferred to as Chroma) as provided by librosa 4 [22] (with
standard parameters except for the normalisation param-
eter, which we set to 1; the hop size is roughly 20 ms),
and aligned the performances to the scores. The results
are shown in Table 4. On this dataset, the proposed
transposition-invariant features consistently outperform
the well-established Chroma features, which are based
on absolute pitches. To summarise, so far the proposed
features show state-of-the-art performance on the stan-
dard alignment task, while additionally being able to align
transposed sequences to each other with no additional er-
ror.

4.4 Experiment 4: Robustness to Tempo Variations

Next, we have a closer look at the influence of different
tempi on our features. As they are based on a fixed lo-
cal context (a fixed number of frames), the tempo plays an
important role in their computation. For example, if the
tempo doubles, this means that musically speaking the lo-
cal context is twice as large as at the normal tempo and
additional notes might be included in this context, which
would not be part of the local context in the case of the

3 We also tried the CENS features, which are a variation of chroma fea-
tures, but as they consistently performed worse than the Chroma features,
we are not reporting the results here.

4 Version 0.6, DOI:10.5281/zenodo.1174893
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Transposition in Semitones

Dataset Measure -3 -2 -1 0 1 2 3 Rand. Transp.

CB

1st Quartile 10 ms 10 ms 11 ms 10 ms 10 ms 11 ms 10 ms 10 ms
Median 22 ms 22 ms 23 ms 22 ms 22 ms 23 ms 22 ms 22 ms
3rd Quartile 39 ms 39 ms 41 ms 39 ms 40 ms 40 ms 38 ms 39 ms
Error ≤ 50 ms 84% 83% 81% 83% 82% 83% 84% 83%
Error ≤ 250 ms 95% 94% 94% 94% 93% 95% 95% 95%

CE

1st Quartile 10 ms 10 ms 8 ms 10 ms 9 ms 9 ms 10 ms 9 ms
Median 21 ms 20 ms 18 ms 21 ms 19 ms 18 ms 20 ms 19 ms
3rd Quartile 37 ms 32 ms 30 ms 36 ms 33 ms 32 ms 33 ms 32 ms
Error ≤ 50 ms 83% 90% 91% 87% 89% 88% 90% 90%
Error ≤ 250 ms 93% 97% 98% 96% 97% 98% 97% 97%

MS

1st Quartile 6 ms 6 ms 6 ms 6 ms 6 ms 6 ms 6 ms 6 ms
Median 13 ms 13 ms 13 ms 13 ms 13 ms 14 ms 13 ms 13 ms
3rd Quartile 24 ms 24 ms 24 ms 25 ms 25 ms 26 ms 25 ms 25 ms
Error ≤ 50 ms 91% 91% 92% 90% 91% 90% 90% 91%
Error ≤ 250 ms 100% 100% 100% 100% 100% 100% 100% 100%

RP

1st Quartile 17 ms 16 ms 15 ms 14 ms 13 ms 12 ms 15 ms 14 ms
Median 45 ms 44 ms 36 ms 34 ms 35 ms 31 ms 34 ms 37 ms
3rd Quartile 136 ms 151 ms 106 ms 90 ms 130 ms 90 ms 103 ms 122 ms
Error ≤ 50 ms 53% 53% 60% 63% 59% 64% 60% 58%
Error ≤ 250 ms 84% 83% 88% 90% 85% 90% 89% 86%

Table 3. Results for 8-gram piano features on transposed versions of the scores (from -3 to +3 semitones). The rightmost
column gives the results on scores with randomly changing transpositions after every 30 seconds (see Section 4.2).

DS Measure Chroma 8G Piano

CB

1st Quartile 15 ms 10 ms
Median 34 ms 22 ms
3rd Quartile 80 ms 39 ms
Error ≤ 50 ms 64% 83%
Error ≤ 250 ms 85% 94%

CE

1st Quartile 13 ms 10 ms
Median 29 ms 21 ms
3rd Quartile 56 ms 36 ms
Error ≤ 50 ms 71% 87%
Error ≤ 250 ms 94% 96%

MS

1st Quartile 7 ms 6 ms
Median 16 ms 13 ms
3rd Quartile 31 ms 25 ms
Error ≤ 50 ms 85% 90%
Error ≤ 250 ms 98% 100%

RP

1st Quartile 17 ms 14 ms
Median 43 ms 34 ms
3rd Quartile 113 ms 90 ms
Error ≤ 50 ms 55% 63%
Error ≤ 250 ms 91% 90%

Table 4. Comparison of the transposition-invariant 8G
Piano features to the Chroma features on untransposed
scores.

normal tempo. To test the influence of tempo differences,
we created score representations using different tempi and
aligned the unchanged performances to them. Table 5 sum-
marises the results for the Chroma and the 8G Piano fea-
tures on scores synthesised with the base tempo, as well as
with 2

3 -times and 4
3 -times the base tempo. Unsurprisingly,

tempo in general influences the alignment results. How-
ever, while the Chroma features are much more robust to
differences in tempo between the sequences to be aligned,
the 8G Piano features struggle in this experiment. We re-
peated the experiment with more extreme tempo changes,
which confirmed this trend. While with the Chroma fea-
tures it is possible to more or less align sequences with
tempo differences of a factor of three, the transposition-
invariant features fail in these cases.

5. FIRST EXPERIMENTS ON ORCHESTRAL
MUSIC

In addition to the promising results on piano music, we
also present first experiments on orchestral music. To this
end, we trained an additional model on recordings of sym-
phonic music (seven full commercial recordings of sym-
phonies by Beethoven, Brahms, Bruckner, Berlioz and
Strauss), which will be referred to in the following as 8G
Orch. For comparison, we also evaluated the model from
the previous section (8G Piano) and the Chroma features
on the evaluation data. The evaluation data consists of two
recordings of classical symphonies: the 3rd symphony by
Beethoven (B3) and the 4th symphony by Mahler (M4).
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Chroma 8G Piano

DS Measure 2
3 Tempo Base Tempo 4

3 Tempo 2
3 Tempo Base Tempo 4

3 Tempo

CB

1st Quartile 19 ms 15 ms 13 ms 24 ms 10 ms 32 ms
Median 43 ms 34 ms 29 ms 63 ms 22 ms 120 ms
3rd Quartile 137 ms 80 ms 66 ms 116 ms 39 ms 205 ms
Error ≤ 50 ms 54% 64% 67% 47% 83% 33%
Error ≤ 250 ms 82% 85% 85% 87% 94% 84%

CE

1st Quartile 14 ms 13 ms 12 ms 27 ms 10 ms 26 ms
Median 30 ms 29 ms 25 ms 70 ms 21 ms 83 ms
3rd Quartile 65 ms 56 ms 53 ms 116 ms 36 ms 176 ms
Error ≤ 50 ms 69% 71% 73% 40% 87% 38%
Error ≤ 250 ms 90% 94% 94% 93% 96% 80%

MS

1st Quartile 8 ms 7 ms 9 ms 7 ms 6 ms 9 ms
Median 18 ms 16 ms 20 ms 16 ms 13 ms 21 ms
3rd Quartile 42 ms 31 ms 49 ms 33 ms 25 ms 52 ms
Error ≤ 50 ms 79% 85% 75% 84% 90% 74%
Error ≤ 250 ms 98% 98% 97% 99% 100% 98%

RP

1st Quartile 18 ms 17 ms 20 ms 22 ms 14 ms 30 ms
Median 44 ms 43 ms 58 ms 69 ms 34 ms 86 ms
3rd Quartile 116 ms 113 ms 141 ms 184 ms 90 ms 202 ms
Error ≤ 50 ms 53% 55% 56% 43% 63% 37%
Error ≤ 250 ms 92% 91% 87% 82% 90% 85%

Table 5. Comparison of Chroma and 8G Piano features for alignments to scores in different tempi (see Section 4.4).

DS Measure Chroma 8G Piano 8G Orch

B3

1st Quartile 20 ms 25 ms 22 ms
Median 48 ms 54 ms 49 ms
3rd Quartile 108 ms 104 ms 111 ms
Err. ≤ 50 ms 52% 47% 51%
Err. ≤ 250 ms 88% 90% 89%

M4

1st Quartile 46 ms 50 ms 57 ms
Median 110 ms 129 ms 142 ms
3rd Quartile 278 ms 477 ms 535 ms
Err. ≤ 50 ms 27% 25% 23%
Err. ≤ 250 ms 73% 66% 62%

Table 6. Comparison of the transposition-invariant and
chroma features on orchestral music (see Section 5).

Both have been manually annotated at the downbeat level.
In this alignment experiment, the Chroma features out-

perform both the 8G Piano and the 8G Orch features, es-
pecially on the symphony by Mahler (see Table 6). We
mainly contribute this to the fact that these rather long
recordings contain a number of sections with different
tempi, which is not reflected in the score representations.
As has been established in Section 4.4, the transposition-
invariant features struggle in these cases. Still, we will
have to further investigate the use of these features for or-
chestral music.

It is interesting to note that 8G Piano gives slightly bet-
ter results than 8G Orch, even though this dataset solely
consists of orchestral music. It turns out that the learned

features are very general and can be readily applied to dif-
ferent instruments. We also tried to overfit on the test data,
i.e., we trained a feature model using the audio files we
would later use for the alignment experiments. Even this
approach only led to fractionally better results.

6. CONCLUSIONS

In this paper, we reported on audio-to-score alignment ex-
periments with novel transposition-invariant features. We
have shown that the features are indeed fully invariant to
transpositions and in many settings can outperform the
quasi-standard features for this task, namely chroma-based
features. On the other hand, we also demonstrated the
weaknesses of the transposition-invariant features, espe-
cially their fragility regarding different tempi, which is a
serious limitation in the context of alignment tasks.

In the future, we will study this weakness in depth and
will try to alleviate this problem. Ideas include further ex-
periments with different n-gram lengths, the adoption of
alignment schemes including tempo models which itera-
tively adapt the local tempi of the representations, and to
try to include tempo-invariance as an additional goal in the
learning process of the features.
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ABSTRACT

We propose a semi-supervised algorithm to align lyrics to
the corresponding singing vocals. The proposed method
transcribes and aligns lyrics to solo-singing vocals using
the imperfect transcripts from an automatic speech recog-
nition (ASR) system and the published lyrics. The ASR
provides time alignment between vocals and hypothesized
lyrical content, while the non-aligned published lyrics cor-
rect the hypothesized lyrical content. The effectiveness
of the proposed method is validated through three exper-
iments. First, a human listening test shows that 73.32% of
our automatically aligned sentence-level transcriptions are
correct. Second, the automatically aligned sung segments
are used for singing acoustic model adaptation, which re-
duces the word error rate (WER) of automatic transcrip-
tion of sung lyrics from 72.08% to 37.15% in an open
test. Third, another iteration of decoding and model adap-
tation increases the amount of reliably decoded segments
from 44.40% to 91.96% and further reduces the WER to
36.32%. The proposed framework offers an automatic way
to generate reliable alignments between lyrics and solo-
singing. A large-scale solo-singing and lyrics aligned cor-
pus can be derived with the proposed method, which will
be beneficial for music and singing voice related research.

1. INTRODUCTION
Lyrics serve as an important component of music, that of-
ten defines the mood of the song [2, 4], affects the opin-
ion of a listener about the song [3], and even improves
the vocabulary and pronunciation of a foreign language
learner [14, 30]. Research in Music Information Retrieval
(MIR) in the past has explored tasks involving lyrics such
as automatic lyrics recognition [15, 19, 26, 28] and auto-
matic lyrics alignment [5, 11, 27] for various applications
such as karaoke singing, song subtitling, query-by-singing
as well as acoustic modeling for singing voice. In spite of

c© Chitralekha Gupta, Rong Tong, Haizhou, Ye Wang. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Chitralekha Gupta, Rong Tong, Haizhou,
Ye Wang. “Semi-supervised lyrics and solo-singing alignment”, 19th In-
ternational Society for Music Information Retrieval Conference, Paris,
France, 2018.

huge advances in speech technology, automatic lyrics tran-
scription and alignment in singing face challenges due to
the differences between sung and spoken voices [11, 26],
and a lack of transcribed singing data to train phonetic
models for singing [11, 15, 26–28].

As singing and speech differ in many ways such as pitch
dynamics, duration of phonemes, and vibrato [11, 26], the
direct use of ASR systems for lyrics alignment or transcrip-
tion of singing voice will result in erroneous output. There-
fore, speech acoustic models need to be adapted to singing
voice [27]. For training singing-adapted acoustic models,
lyrics-aligned singing dataset is necessary. Lack of anno-
tated singing datasets has been a bottleneck for research
in this field. Duan et al. [8] published a small singing
dataset (1.92 hours) with phone-level annotations, which
were done manually that requires a lot of time and effort,
and is not scalable. One way of getting data for training
is to force-align the lyrics with singing using speech mod-
els, and use this aligned singing data for model training
and adaptation. But due to the differences in speech and
singing acoustic characteristics, alignment of lyrics with
speech acoustic models will be prone to errors, that will
result in badly adapted singing acoustic models.

With the increase in popularity of mobile phone karaoke
applications, singing data collected from such apps are be-
ing made available for research. Smule’s Sing! karaoke
dataset, called Digital Archive of Mobile Performances
(DAMP) [33], is one such dataset that contains more than
34K a capella (solo) singing recordings of 301 songs. But
it does not have time-aligned lyrics, although the textual
lyrics are available on Smule’s website. The data also
contains inconsistencies in recording conditions, out-of-
vocabulary words, and incorrectly pronounced words be-
cause of unfamiliar lyrics or non-native language speakers.
Although the presence of such datasets is a huge boon to
MIR research, we need tools to further clean up such data
to make them more usable. There is a need for aligned
lyrics transcriptions for singing vocals while also eliminat-
ing inconsistent or noisy recordings. To address this need,
we propose a simple yet effective solution to produce clean
audio segments with aligned transcriptions.

In this work, we study a strategy to obtain time-aligned
sung-lyrics dataset with the help of the state-of-the-art
ASR as well as an external resource, i.e. published lyrics.
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We use the speech acoustic models to transcribe solo-
singing audio segments, and then align this imperfect tran-
scription with the published lyrics of the song to obtain
a better transcription of the sung segments. We hypoth-
esize that this strategy will help in correcting the imper-
fect transcriptions from the ASR module and in cleaning
up bad audio recordings. We validate our hypothesis by
a human listening experiment. Moreover we show that
a semi-supervised adaptation of speech acoustic models
with this cleaned-up annotated dataset results in further
improvement in alignment as well as transcription, itera-
tively. Hence, such an algorithm will potentially automate
the labor-intensive process of time aligning lyrics such as
in karaoke or MTV. Furthermore, it will enable large-scale
singing transcription generation, thus increasing the scope
of research in music information retrieval. We have ap-
plied our algorithm on a subset of the DAMP dataset, and
have published the resulting dataset and code 1 .

2. RELATED WORK
One of the traditional methods of aligning lyrics to music
is with the help of the timing information from the musical
structure such as chords [17, 24, 25, 35], and chorus [21],
but such methods are more suitable for singing in the pres-
ence of background accompaniments. Another study uses
musical score to align lyrics [13], but such methods would
be applicable for professional singing where the notes are
correctly sung. In karaoke applications, as addressed in
this work, correctness of notes is less likely.

One of the pioneering studies of applying speech recog-
nition for lyric alignment was by Mesaros and Virtanen
[27], who used 49 fragments of songs, 20-30 seconds long,
along with their manually acquired transcriptions to adapt
Gaussian Mixture Model-Hidden Markov Model (GMM-
HMM) speech models for singing in the same way as
speaker adaptation is done. They then used these singing-
adapted speech models to align vocal sections of songs
with their manually paired lyrics lines using the Viterbi
algorithm. In [28], the authors used the same align-
ment method to automatically obtain the singing-to-lyrics
aligned lines, and then explored multiple model adaptation
techniques, to report the best phoneme error rate (PER)
of 80%. This work has provided a direction for solving the
problem of lyrics alignment and recognition in singing, but
it suffers from manual post-processing and the models are
based on a small number of annotated singing samples.

Recently, with the availability of more singing data, a
subset of the DAMP solo-singing dataset was used for the
task of sung phoneme recognition by Kruspe [19, 20]. In
this work, the author builds new phonetic models trained
only on singing data (DAMP data subset) and compares
it with a pitch-shifted, time-stretched, and vibrato-applied
version of a speech dataset called songified speech data
TimitM [18]. Their best reported PER was 80%, and
weighted PER (that gives 0.5 weights to deletions and in-

1 Dataset: https://drive.google.com/open?
id=1hGuE0Drv3tbN-YNRDzJJMHfzKH6e4O2A;
Code: https://github.com/chitralekha18/
AutomaticSungLyricsAnnotation_ISMIR2018.git

Figure 1: The diagram of lyrics to singing vocal alignment
algorithm.

sertions) was 56%, using the DAMP data subset, which
outperformed the songified dataset. This work shows an
effective use of the available (unannotated) singing data to
build improved singing phonetic models. But there is still
room for improvement.

The first step in Kruspe’s work was to obtain aligned
lyrics annotations of every song, for which the whole lyrics
of a song was force-aligned with the audio using speech-
trained models. These force-aligned sung phonemes were
then used to build the new acoustic phonetic models for
singing. This approach of forced-alignment of singing
using speech acoustic models has also been applied in
the earlier attempts of automatic lyrics alignment in a
capella singing as well as in singing with background mu-
sic [11, 16, 17, 35]. But, as noted by Kruspe [19], forced-
alignment of singing with speech models causes unavoid-
able errors, because of the mismatch between speech and
singing acoustic characteristics [10,23], as well as the mis-
match between the actual lyrics and what the singer sings.
Thus, the lack of appropriate lyrics-aligned song dataset
and the eventual use of forced-alignment with speech mod-
els to obtain this annotation is a source of errors.

3. SEMI-SUPERVISED LYRICS AND SINGING
VOCALS ALIGNMENT ALGORITHM

We propose an algorithm to align lyrics to singing vocals,
that consists of two main steps: dividing the singing vo-
cals into shorter segments (Segmentation), and obtaining
the aligned lyrics for each segment (Lyrics Matching). Fig-
ure 1 shows the overview of our algorithm.

3.1 Segmentation
One way to automatically align the published lyrics with
a solo-singing audio is to force-align the lyrics with the
full rendition audio (2 to 4 minutes long) using speech
trained acoustic models, as discussed in [19]. However,
the Viterbi alignment algorithm used in forced-alignment,
fails to scale well for long audio segments leading to accu-
mulated alignment errors [29]. In our singing-lyrics tran-
scription and alignment algorithm, we propose to first di-
vide the audio into shorter segments such that the ASR is
less prone to the alignment errors. We find silent regions
in the rendition by imposing constraints on the magnitude
of the short time energy and the silence duration (Algo-
rithm 1). The center of these silent regions are marked
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as boundaries of non-silent sub-segments. Such non-silent
sub-segments are of varying lengths. So we stitch con-
secutive sub-segments together to make segments of ∼10
seconds duration. We also add silence samples before and
after every such segment so that the ASR has some time to
adapt to the utterance and start recognition in the beginning
of the utterance, and to avoid abrupt termination at the end
of the utterance.

Algorithm 1 Segmentation algorithm
1: Calculate short time energy E for 32 ms window with 16 ms

hop
2: if E > 0.1×mean(E) is true then
3: non-silent region
4: else
5: silent region
6: end if
7: if silent region duration>=200 ms then
8: valid silence region
9: center of this region marks the boundary

10: else
11: invalid silent region
12: end if
13: sub-segment = boundary-to-boundary region
14: segment = stitch together such sub-segments for ∼10s dura-

tion
15: add 2s silence before and after every segment, to improve

ASR performance

3.2 Lyrics Matching
We would like to obtain the best possible lyrics transcrip-
tion for these short singing segments. Moreover, to obtain
a clean transcribed dataset of singing vocals, we would also
like to reject the noisy audio segments that contain out-
of-vocabulary, incorrectly pronounced words, and back-
ground noise. We use ASR to decode these segments be-
cause such ASR transcription ideally suggests words that
are actually sung and different from the published lyrics.
The ASR transcription also help detect erroneous pronun-
ciations, reject noise segments. We understand that the
the state-of-the-art ASR is not perfect, and for singing it
is even more unreliable, as the ASR is trained on speech
while singing is acoustically different from speech. So we
designed an algorithm to overcome these imperfections of
the ASR. This algorithm produces time-aligned transcrip-
tions of clean audio segments with the help of the pub-
lished lyrics.

Algorithm 2 Lyrics Matching algorithm
1: XN×5 s.t. xi,j = e

where, X = error matrix,
N = number of words in published lyrics,
e = ratio of number of errors obtained from Levenshtein dis-
tance between ASR output and published lyrics window, to
the total number of words in the lyrics window

2: imin, jmin = argminX
where imin = minimum distance transcription start index in
lyrics,
where jmin = minimum distance transcription slack window
size

3: transcription = lyrics[imin : imin +M + jmin]
where, M is the number of words in ASR transcription

3.2.1 ASR Transcription of Lyrics

To obtain the transcription of each of the audio segments,
we use the Google speech-to-text API package in python
[36] that transcribes a given audio segment into a string of
words, and gives a set of best possible transcriptions. We
compare the top five of these transcriptions with the pub-
lished lyrics of the song, and select the one that matches
the most, as described in Algorithm 2. The idea is that the
ASR provides a hypothesis of the aligned lyrics although
imperfect, and the published lyrics helps in checking these
hypothesized lyrics, and retrieving the correct lyrics. Also,
we use the Google ASR to bootstrap, with a plan to im-
prove our own ASR (as discussed further in Section 4.2).
Different ASR systems have different error patterns, there-
fore we expect that the Google ASR would boost the per-
formance of our ASR. We use the Google ASR only for
bootstrapping, the rest of the experiments use our own
ASR. Below is the description of the lyrics-matching al-
gorithm.

For an ASR output of length M words, we took a lyrics
window of size M, and also empirically decided to provide
a slack of 0 to 4 words, i.e. the lyrics window size could
be of length M to M+4. This slack provides room for ac-
commodating insertions and deletions in the ASR output,
thus allowing improvement in the alignment. So, starting
from the first word of the published lyrics, we calculate the
Levenshtein distance [22] between the ASR output and the
lyrics window of different slack sizes, iterated through the
entire lyrics by one word shifts. This distance represents
the number of errors (substitutions, deletions, insertions)
occurred in ASR output with respect to the actual lyrics.

For the lyrics of a song containing a total of N words,
we obtain an error matrix X of dimensions Nx5, where 5 is
the number of slack lyric window sizes ranging from M to
M+4. Each element e of the matrix is the ratio of the num-
ber of errors obtained from Levenshtein distance between
the ASR output and the lyrics window, to the total num-
ber of words in that lyrics window. If (imin, jmin) is the
coordinate of the minimum error element of this matrix,
then imin is the starting index of the minimum distance
lyrics transcription, jmin is the slack lyric window size.
Amongst the top five ASR outputs, we choose the one that
gives minimum error e, and select the corresponding lyrics
window from the error matrix to obtain the best lyrics tran-
scription for that audio segment. We illustrate this with the
help of the following example.

Let’s assume that the ASR transcription of an audio seg-
ment is “the snow glows on the mountain”, therefore M=6.
The slack window size will range from 6 to 10 words. The
lyrics of this song contains a total of N words, where a
word sub-sequence is “the snow glows white on the moun-
tain tonight not a footprint to be seen...”. The correspond-
ing error matrix X is shown in Figure 2. The error element
e1,2 is the distance between the ASR transcription and the
slack lyric window “the snow glows white on the moun-
tain” which is 1. The error element e2,1 is the distance
between the ASR transcription and the slack lyric window
“snow glows white on the mountain” which is 2, and so on.
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Figure 2: Example of an error matrix X where the ASR
transcript is “the snow glows on the mountain”, and the
published lyrics of this song has N words where a word
sub-sequence is “the snow glows white on the mountain
tonight not a footprint to be seen...”.

ANCHOR SEGMENT ANCHOR SEGMENT NON-ANCHOR SEGMENT 
Published lyrics 

ASR output 

Figure 3: Anchor and non-anchor segments of a song
based on sung-lyrics alignment algorithm. Anchor seg-
ments: ASR output and lyrics reliably match; Non-Anchor
segments: ASR output and lyrics do not match.

So in this example, (imin, jmin) is (1,2), i.e. the best lyrics
transcription is “the snow glows white on the mountain”.

3.2.2 Anchor and Non-Anchor Segments
From our preliminary study, we found that many of the
ASR transcriptions had missing words because either the
audio contained background noise or there were incor-
rectly pronounced words or deviation of singing acoustics
from speech. For example, a 10 seconds long non-silent
segment from a popular English song would rarely ever
have as few as four or five words. In order to retrieve more
reliable transcripts, we added a constraint on the number
of words, as described below.

To check the reliability of the lyrics transcriptions, we
marked the best lyrics transcriptions of a small subset of
360 singing segments as correct or incorrect, depending
on whether the transcription matched with the audio. We
found that all those segments for which the best lyrics tran-
scription had less than 10 words were more likely to be in-
correct matches, as shown in Figure 4. The segment tran-

Figure 4: The number of audio segments with correct tran-
scription (blue) or incorrect transcription (cyan) according
to human judgment on y-axis versus the number of words
in the transcription of an audio segment on x-axis. We set
10 words as the minimum threshold for a transcription to
be valid for an approximately 10-seconds long segment.

scriptions were 94.0% times incorrect (235 incorrect out
of 250 total number of segments) when they contained less
than 10 words, while they were 57.3% times incorrect (63
out of 110) when they contained more than or equal to 10
words. So we empirically set 10 words as the threshold for
selecting reliable audio segments and transcriptions. By
applying this constraint, we reject those audio segments
that are noisy, or have wrongly pronounced words, or cause
errors in transcription because of model mismatch, thus de-
riving a clean transcribed singing dataset.

The audio segments with reliable transcription are la-
beled as Anchor segments, and the audio segment(s) be-
tween two anchor segments that have unreliable transcrip-
tion, are strung together and labeled as Non-Anchor seg-
ments, as illustrated in Figure 3.

One may argue that we could have used the error score
e to evaluate the reliability of a segment. However, if the
ASR output itself is wrong, then this lyrics-matching error
score will be misleading. For example, if only 4 words get
detected by the ASR, out of 12 words in the audio segment,
and all the 4 words are correct according to the published
lyrics, then e will be zero for this transcription, which is
incorrect, and also undetectable. Thus we set a threshold
on the number of detected words (i.e. 10 words) as a way to
measure the reliability of the segment and its transcription.

4. EXPERIMENTS AND RESULTS
In order to validate our hypothesis that our algorithm can
retrieve good quality aligned transcriptions, we conducted
three experiments: A) Human verification of the quality of
the aligned transcriptions through a listening test, B) Semi-
supervised adaptation of speech models to singing using
our aligned sung-lyrics transcriptions for assessing the per-
formance of automatic lyrics recognition, and C) Second
iteration of alignment, and re-training of acoustic models,
to check for further improvement in lyrics recognition.

Our experiments are conducted on 6,000 audio record-
ings from the DAMP dataset that was used by Kruspe [19].
The list of recordings used by Kruspe is here [1], how-
ever the training and test subsets are not clearly marked.
Therefore we have defined our training and test datasets,
and they are subsets of Kruspe’s dataset, as discussed in
the following subsections. This data set contains record-
ings of amateur singing of English language pop songs
with no background music but different recording condi-
tions, which were obtained from the Smule Sing! karaoke
app. Each performance is labeled with metadata such as
the gender of the singer, the region of origin, the song title,
etc. We obtained the textual lyrics of the songs from Smule
Sing! website [34]. Since the songs in DAMP dataset were
sung on Smule Sing! Karaoke app that uses these lyrics, it
is safe to assume that these were the intended lyrics.

4.1 Experiment 1: Human Verification of the Quality
of the Aligned-Transcriptions
In this experiment, we evaluate the quality of our aligned
transcriptions (segment transcriptions), by asking partici-
pants to listen to the audio segments and verify if the given
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transcription for the segment is correct or not. As opposed
to word intelligibility evaluation tasks [6] where partici-
pants are asked to transcribe after listening to the stimuli
once, in this task the participants were provided with the
transcription and were free to listen to the audio as many
times as they needed. Also the songs were popular English
songs, that are less prone to perception errors [7].

4.1.1 Dataset
By applying our lyrics transcription and alignment algo-
rithm (see Section 3), we obtained 19,873 of anchor seg-
ments (∼58 hours) each ∼10 seconds long, out of which
we asked humans to validate 5,400 (15 hours) anchor seg-
ment transcriptions through a listening test. The only crite-
rion to qualify for the listening test was to be proficient in
English language. 15 university graduate students were the
human listeners. Every listener was given one hour of au-
dio segments containing 360 anchor segments along with
the obtained lyrics transcription. The task was to listen to
each of the audio segments and compare the given tran-
scription with the audio. If at least 90% of the words in the
transcription match with that in the audio, then the audio
segment was marked as correctly transcribed. If not, then
it was marked as incorrectly transcribed.

Similarly, we also tested the quality of the non-anchor
segments. Non-anchor segments could be of varying dura-
tions, greater than or equal to 10 seconds. We conducted
the same human validation task for 2 hours (1,262 seg-
ments) of the non-anchor segments of different durations.

4.1.2 Results and Discussion
There were two types of successful segment transcriptions,
one was verified by humans as correct and also matched
perfectly with the ASR output, and was labeled as correct
transcriptions fully matching ASR. Another was verified as
correct by humans but did not match with the ASR output
due to ASR errors, but our algorithm could successfully re-
trieve the correct transcriptions, that we call correct tran-
scriptions partially matching ASR. And the ones that were
verified as wrong by humans are labeled as error transcrip-
tions due to imperfect ASR or incorrect singing.
Anchor Segments: Table 1 shows the validation results
for the anchor segments. We found that a total of 73.32%
of the segments were transcribed correctly, where 57.80%
of the segments were partially matching ASR. This means
that our algorithm could successfully retrieve many incor-
rect ASR transcriptions, which validates our hypothesis
that the extra information provided by the published lyrics
coupled with ASR decoding produces good aligned tran-
scriptions. We also found that incorrect singing of lyrics
and imperfect ASR output resulted in 26.68% erroneous
transcriptions. A common error reported by the listeners
was many missing words at the trailing end of the incor-
rectly aligned transcriptions, although the correct words
were clearly audible, which is possibly a result of model
mismatch between singing and speech.
Non-Anchor Segments: From the human validation of the
non-anchor segments, we find that 62.07% of the total of
1,262 non-anchor segments transcriptions are correct. This

Segment Transcriptions # % Total %
Correct transcriptions
fully matching ASR 838 15.52 73.32

Correct transcriptions
partially matching ASR 3,121 57.80

Error transcriptions due to
imperfect ASR or incorrect singing 1,441 26.68 26.68

Table 1: A summary of correct and error transcriptions by
the proposed algorithm. Google ASR is used for singing
transcription. Total # anchor segments = 5,400 (15 hours).

suggests that these segments are relatively less reliable.
Moreover, these audio segments could be long in duration
(even more than a minute) that would cause errors in the
Viterbi alignments. Thus in the subsequent experiments,
we only use the anchor segments.

4.2 Experiment 2: Lyrics Transcription with
Singing-Adapted Acoustic Models
In this experiment, we use our automatically generated
aligned-transcriptions of sung audio segments in a semi-
supervised adaptation of the speech models for singing.
We use these singing-adapted models in an open test to
validate our hypothesis that better aligned transcriptions
for training singing acoustic models will result in improve-
ment in automatic lyrics recognition compared to the best
known baseline from the literature.

Adaptation of speech models for singing was previ-
ously attempted by Mesaros et al. [27, 28] who applied
the speaker adaptation techniques to transform speech rec-
ognizer to singing voice. To reduce the mismatch be-
tween singing and speech, they used constrained maxi-
mum likelihood linear regression (CMLLR) to compute a
set of transformations to shift the GMM means and vari-
ances of the speech models so that the resulting models
are more likely to generate the adaptation singing data. In
our work, we use CMLLR (also known as feature-space
maximum likelihood linear regression (fMLLR)) [32] and
our lyrics-aligned anchor segments to compute transforma-
tions for a semi-supervised adaptation of the speech mod-
els to singing. Adaptation can be done with the test dataset
only, or the adaptation transformations can be applied at
the time of training, called speaker adaptive training (SAT).
Literature shows that the use of SAT with fMLLR trans-
form requires minimum alteration to the standard code for
training [12], and thus is a popular tool for speaker adapta-
tion that we have used for singing adaptation here.

4.2.1 Dataset
The singing train set consists of 18,176 singing anchor seg-
ments from 2,395 singers while the singing test set con-
sists of 1,697 singing anchor segments of 331 singers.
The training set consists of both human verified and non-
verified anchor segments, while the test set consists of only
those anchor segment transcriptions that are verified as cor-
rect by humans. All of these anchor segments (training
and test) are of ∼10 seconds duration. There is no speaker
overlap between the acoustic model training and test sets.
A language model is obtained by interpolating a speech
language model trained from Librispeech [31] text and a
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Models Adapted by Singing Data %WER %PER
(1) Baseline (speech acoustic models) 72.08 57.52

(2) Adapted with test data 47.42 39.34
(3) Adapted (SAT) with training data 40.25 33.18

(4) Adapted (SAT+DNN) with training data 37.15 31.20
(5) Repeat (3) and (4) for 2nd round 36.32 28.49

Table 2: The sung word and phone error rate (WER and
PER) in the lyrics recognition experiments with the speech
acoustic models (baseline) and the singing-adapted acous-
tic models, on 1,697 correctly transcribed test singing an-
chor segments.

lyric language model trained from lyrics of the 301 songs
of the DAMP dataset. The same language model is used in
all the recognition experiments.

4.2.2 Results and Discussion
Table 2 reports the automatic lyrics recognition results on
the singing test set using different acoustic models to ob-
serve the effect of adapting speech models for singing us-
ing our sung segments with aligned transcriptions.

The baseline speech acoustic model is a tri-phone HMM
model trained on Librispeech corpus using MFCC fea-
tures. Due to the mismatch between speech and singing
acoustic characteristics, the WER and PER are high (Ta-
ble 2 (1)). Adapting the baseline model with the singing
test data results in a significant improvement in the error
rates (Table 2 (2)). Speaker adaptive training (SAT) fur-
ther improves the recognition accuracy (Table 2 (3)). A
DNN model [9] is trained on top of the SAT model with
the same set of training data. During DNN training, tem-
poral splicing is applied on each frame with left and right
context window of 4. The SAT+DNN model has 3 hidden
layers and 2,976 output targets. With DNN training, the
WER is reduced by about 7.7% relative to the SAT model
(Table 2 (4)) and PER is 31.20%.

Mesaros et al. [27] reported the best PER to be 80%
with speech models adapted to singing, while Kruspe [19]
reported the best PER to be 80% and weighted PER to be
56% with pure singing phonetic models trained on a subset
of the DAMP dataset. Compared to [19] and [27], our re-
sults show a significant improvement, which is attributed
to three factors. One is that leveraging on ASR along
with the published lyrics as an external resource to validate
and clean-up the transcriptions has led to better aligned
transcriptions for training. Two, our automatic method
for generating aligned transcriptions for singing provides
us with a much larger training dataset. And three, the
segment-wise alignment is more accurate than the whole-
song forced-aligned with the speech acoustic models.

4.3 Experiment 3: Alignment with Singing-Adapted
Acoustic Models and Re-training
We would like to test if the singing-adapted acoustic mod-
els can provide more number of reliably aligned transcrip-
tions in a second round of alignment. Moreover whether
re-training the models with this second round of transcrip-
tions lead to better lyrics recognition.

Model # anchor total # segments % anchor
Google ASR 5,400 12,162 44.40

Adapted (DNN) with
training data 11,184 12,162 91.96

Table 3: Comparing the number of anchor segments ob-
tained from the proposed transcription and alignment algo-
rithm using Google ASR and the singing-adapted models.

4.3.1 Dataset

We used the singing-adapted models obtained in Experi-
ment 2 to decode 12,162 segments, and then applied our
lyrics-alignment algorithm to obtain new anchor and non-
anchor segments. For comparison, we obtained the same
from the Google ASR on the same dataset.

4.3.2 Results and Discussion

Table 3 shows that the number of anchor segments with
the new models have increased from 44.40% with Google
ASR to 91.96% with the singing-adapted models, which
means that the number of reliable segment transcriptions
have increased significantly. With the new anchor seg-
ments, we re-train our singing-adapted acoustic models.
Table 2 (5) shows the free-decoding results after this sec-
ond round of training. The WER and PER have dropped
further to 36.32% and 28.49% respectively .

The results of this experiment are promising as they
show iterative improvement in the quality of our alignment
and transcription. This means that we can apply the fol-
lowing strategy: use only the reliably aligned segments
from the Google ASR to adapt acoustic models for singing,
and use these models to improve the quality of alignment
and transcription, and then again use the reliable segments
from the improved alignments for further adaptations.

5. CONCLUSIONS

We propose an algorithm to automatically obtain time-
aligned transcriptions for singing by using the imperfect
transcriptions from the state-of-the-art ASR along with the
non-aligned published lyrics. Through a human listen-
ing test, we showed that the extra information provided
by the published lyrics helps to correct many incorrect
ASR transcriptions. Furthermore, using the time-aligned
lyrics transcriptions for iterative semi-supervised adapta-
tion of speech acoustic models for singing shows signifi-
cant improvement in automatic lyrics transcription perfor-
mance. Thus our strategy to obtain time-aligned transcrip-
tions for large-scale singing dataset is useful to train im-
proved acoustic models for singing.

Our contribution provides an automatic way to obtain
reliable lyrics transcription for singing, that results in an
annotated singing dataset. Lack of such datasets has been
a bottleneck in the field of singing voice research in MIR.
This will not only generate lyrics transcription and align-
ment for karaoke and subtitling applications, but also pro-
vide reliable data to improve acoustic models for singing,
thus widening the scope of research in MIR.
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ABSTRACT

The number of audience recordings of concerts on the in-
ternet has exploded with the advent of smartphones. This
paper proposes a method to organize and align these record-
ings in order to create one or more complete renderings
of the concert. The process comprises two steps: first,
using audio fingerprints to represent the recordings, iden-
tify overlapping segments, and compute an approximate
alignment using a modified Dynamic Time Warping (DTW)
algorithm and second, applying a cross-correlation around
the approximate alignment points in order to improve the
accuracy of the alignment. The proposed method is com-
pared to two baseline systems using approaches previously
proposed for similar tasks. One baseline cross-correlates
the audio fingerprints directly without DTW. The second
baseline replaces the audio fingerprints with pitch chroma
in the DTW algorithm. A new dataset annotating real-world
data obtained from the Live Music Archive is presented and
used for evaluation of the three systems.

1. INTRODUCTION

Crowd-sourcing is the concept of presenting a problem to
a large group of people and utilizing the best combination
of the solutions received [12]. Although a large group of
people can be used to obtain data, the data needs to be
organized and labeled in a logical way to be useful. For
instance, there has been an explosion in the number of
audio and video recordings available online in the last few
years. For large events such as concerts, speeches, and
sports events, there are many recordings of (parts of) the
same event. These recordings, however, are not annotated
in a way that would allow a reconstruction of the complete
timeline of the event. The focus of this research is, therefore,
on the automatic organization and synchronization of the
multiple recordings available of the same event.

Marshall and Shipman [16] analyze the people’s reasons
for recording events and report personal memorabilia, shar-
ing on social platforms, creation of remixes, and online

c© Vinod Subramanian, Alexander Lerch. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Vinod Subramanian, Alexander Lerch. “Concert Stitch:
Organization and Synchronization of Crowd-Sourced Recordings”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

republishing as the main reasons. This indicates that there
is value attached to these recordings. Vihavainen et al. [24]
showed in their work that a human-computer collaborative
approach to remixing concerts is of interest to a concert au-
dience. Although the subjects favored the manually edited
concerts in this instance, it still emphasizes the value of
recombining audience recordings

While recombining audience recordings creates a better
audience experience beyond the concert, a tool for auto-
matic concert “stitching”, faces several challenges. For
example, each recording will have different audio quality
due to different recording devices, distance from the stage,
local disturbances etc.

After meeting these challenges, the application of this
research enables (a) improved audience experience through
personalized, collaborative, or theme-driven reconstruction
of the event thus creating a platform for derivative work,
(b) analysis and improvement of stage setups by venues and
performers through audience videos from a large variety of
recording angles, and, more generally, (c) audio forensics
to reconstruct a scene by synchronizing multiple recordings
for surveillance and investigation.

The goal of this study is to present a method that can
(a) reliably identify if multiple recordings from an event
have common audio content and (b) provide a precise align-
ment between all pairs of recordings. In the hope of en-
couraging more research on this task, we also present a new
dataset for training and evaluation.

2. RELATED WORK

The task of aligning multiple recordings of an event can
be divided into two steps: first, using a representation the
recordings to identify overlapping segments, and compute
an approximate alignment and second, applying a cross-
correlation around the approximate alignment points in
order to improve the accuracy of the alignment.

In tasks such as speech recognition [6,11] and music sim-
ilarity [1,8], Mel-Frequency Cepstral Coefficients (MFCCs)
are widely used to measure similarity between audio files.
The Mel-Cepstrum captures timbral information and the
spectral shape of the audio file [3]. However, MFCCs do not
contain musically meaningful information such as melody
or rhythm which could be argued to be crucial for comput-
ing music similarity.

Music Information Retrieval tasks such as cover song
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Figure 1: Proposed method block diagram

detection [19], audio thumbnailing [2], and genre classifi-
cation [23] use pitch-based features such as a pitch chroma
to compute a measure of similarity. The pitch chroma [15]
is an octave-invariant representation of the tonal content of
an audio file and is usually computed in intervals of approx.
10 ms. A useful property of the pitch chroma is its robust-
ness to timbre variations, allowing it to compare the pitch
content of two different versions of the same song without
being strongly influenced by timbre variations.

Determining the similarity of two recordings is closely
related to audio fingerprinting, which aims at identifying a
recording from a large database of recordings. An audio fin-
gerprint is a highly compressed and unique representation
of a (part of a) song [10, 25]. Wang [25] introduced an au-
dio fingerprinting technique based on so-called landmarks.
A landmark is identified as the spatial relationship of the
salient spectral peaks. This representation is also used for
the task of audio alignment of concert recordings [4, 13].
Most audio fingerprinting methods are temporally sensitive,
meaning that they are not designed to handle variations in
playback speed — a scenario that is likely in the case of
analog recordings of concerts. The audio fingerprinting
method introduced by Haitsma and Kalker calculates a 32
bit sub-fingerprint for every block of audio by looking at
the energy differences along the frequency and time axes.
This fingerprint method is used by Shrestha et al. [21] in
their work on alignment of concert recordings. Alternately,
Wilmering et al. [26] use high-level audio features such
as tempo and chords in combination with low-level audio
features such as MFCCs and pitch chroma to detect au-
dio similarity for audio alignment of different versions of
concerts.

Identifying and aligning overlapping segments requires
the computation of a similarity or distance measure across
a sequence of signal descriptors. One way of doing this
is cross-correlation. Most of the research in aligning con-
cert recordings apply this approach [4, 5, 13, 21, 22]. One
constraint of cross-correlation is that the two sequences are
assumed to be at the same speed. It is apparent that cross-
correlation cannot be easily applied to the task of aligning

analog recordings because there may be tempo variations
and temporal fluctuations in the data. Another issue with
cross-correlation is that a threshold needs to be set for what
constitutes an alignment. To set the threshold some publica-
tions use heuristic methods based on their data [4, 5, 13,22],
while others [21] use a threshold determined by Haitsma
and Kalker [10]. Using fixed thresholds bears the risk of
errors when applying the system to unseen data.

Another method for computing overlaps is the use of
Dynamic Time Warping (DTW), as it is able to handle tem-
poral fluctuations between the signals [14]. Wilmering et
al. apply DTW twice, the first time for aligning a recording
to a reference audio file in order to identify the different
playback speeds. Based on the result, the audio files are
processed to mirror the playback speed of the reference.
The second alignment is then applied to improve the accu-
racy of the first alignment. DTW is also used in the related
task of sample detection, where it can help to identify the
location of a sample in a song [9].

3. ALGORITHM DESCRIPTION

The first part of the algorithm, as shown in Figure 1a, com-
putes audio fingerprints for each recording and uses these
fingerprints to compute pairwise distance matrices. For
each distance matrix, a DTW algorithm determines mul-
tiple possible path candidates representing the potentially
overlapping region between that pair of recordings. For
each of these candidates, features are extracted and an SVM
classifier determines which path is the most likely. In the
case that the pair is not overlapping, no path should be
selected from the candidates. The second part of the algo-
rithm as shown in Figure 1b takes the most likely path and
computes a cross-correlation of the overlapping regions to
determine the exact alignment of the pairs and to improve
accuracy.

3.1 Audio Fingerprint Computation

The motivation for using audio fingerprints is that it is
a representation of audio robust to noise and timbre [10,
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Figure 2: The top row shows the fingerprints from two
recordings of the same 5 second snippet. The second row
shows the fingerprints from two recordings of different 5
second snippets. For the Bit Error, the black regions indicate
the fingerprints match and the white regions indicate the
fingerprints are different.

25]. The audio fingerprinting technique utilized here is the
Haitsma and Kalker algorithm [10]. The audio fingerprints
are computed at a sampling rate of 5 kHz with a block size
2048 and a hop size of 512.

Figure 2 visualizes the robustness of audio fingerprints
to noise distortion with an example. The upper row shows
the bit error (in white) between the fingerprints of two
matching but distorted recordings, the lower row shows the
same for two different recordings. We can clearly see how
the fingerprints retain the essential information even in the
case of heavy distortion.

3.2 Modified Dynamic Time Warping

Dynamic Time Warping (DTW) is designed to align se-
quences with similar content but are temporally different.
In the case of aligning concert recordings, the temporal fluc-
tuations might occur due to inaccuracies in the sampling
rate; in the case of analog recordings, the temporal fluctua-
tions might be caused due to varying playback speeds.

The classical DTW algorithm introduced by Sakoe and
Chiba works under the assumption that the start and end
points of the two sequences are aligned [20]. A modification
of the standard approach allows the algorithm to detect sub-
sequences [18]; however, in the case of real life recordings,
the most likely scenario is that a pair of recordings might
have overlapping regions. Therefore, a pair of recordings
will neither have the same start and end points, nor will
one recording necessarily be a subsequence of the other.
To address this issue, the subsequence DTW algorithm
is modified to look for overlapping regions by doing the
traceback from all possible end points.

The distance matrix is computed as the pairwise dis-
tance of two audio fingerprint matrices corresponding to
two recordings. The dimension of one fingerprint matrix is
32×M and of the second is 32×N where M and N corre-
spond to the number of blocks of audio that each recording
was divided into. Using the Hamming distance, the result is

Figure 3: Distance matrix examples. The dark line indi-
cates high similarity. For Distance matrix 4, there is no
overlap, so there is no high similarity region

Figure 4: Different candidate path examples. The straight-
est line in the image represents the correct path.

a distance matrix D with the dimensions M ×N . Figure 3
shows examples of the distance matrix for different pairs of
recordings; the top left matrix shows a standard DTW case
with start and end points of both sequences aligned, the top
right and bottom left are computed from pairs of record-
ings with overlapping regions and the bottom right matrix
corresponds to a pair of recordings without overlapping
regions.

A cost matrix is computed from the distance matrix as is
done for the subsequence DTW algorithm [18]. In short, the
initialization of the cost matrix computation is modified– as
opposed to accumulating the distance across both the first
row and first column, only the first column is accumulated.

We use the standard DTW technique to traceback the
path; however, instead of doing this on just the minimum
cost point, the traceback is performed on all possible path
end points from the last row and last column. This results
in multiple paths. Figure 4 illustrates a few paths that are
computed for an example cost matrix.

3.3 Feature Extraction

To identify the most likely candidate path, we extract fea-
tures from each path. Each possible path has three features:
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(a) the DTW cost normalized by path length, (b) the slope
of the line connecting the starting and ending points, and
(c) the deviation of the path from the line connecting the
start and end points. These paths are then clustered such that
each cluster contains paths that share a start point; the end
point for each cluster is the path with the lowest normalized
cost. From each cluster, the minimum, mean, and standard
deviation of the three path features are taken along with the
number of paths in the cluster. These cluster features are
similar to the ones proposed by Gururani and Lerch in the
context of sample detection [9]. The extracted features per
cluster have a dimensionality of 1× 10 per cluster and are
the input of a classifier estimating whether a path candidate
represents a true overlap or not.

3.4 Classifier

A binary classifier is trained to determine which of the
candidate paths is the most likely path for the alignment.
A Support Vector Machine algorithm (SVM) with a linear
kernel is used as this classifier. In the event that the classifier
doesn’t identify any of the candidate paths as a path for
alignment, it is assumed that that pair of recordings do not
have overlapping content. In the case of two or more paths
being classified as true overlapping paths, the classifier’s
output probability is used to choose the most probable path.

3.5 Sample-Accurate Alignment

The audio fingerprinting technique used [10] downsamples
the audio to 5000 Hz and blocks the audio by 1024 samples
so the DTW alignment has a low resolution. As a more ac-
curate result is desirable to reconstruct the timeline artifact-
free (without ’jumps’) when splicing two recordings to-
gether, a post-processing step is applied. One audio file
is resampled based on the approximate alignment; then,
the cross-correlation of overlapping regions of the pair of
recordings is computed for 5 seconds around the detected
start point. The result should then provide a synchronization
point with improved accuracy.

3.6 Baseline

We compare the results of the proposed method to two
baseline systems– one looking at the audio features and the
other looking at the alignment stage.

3.6.1 Pitch chroma baseline

In order to investigate the effect of audio descriptors on
the alignment accuracy, the pitch chroma is used as the
audio representation instead of audio fingerprints. For the
pitch chroma, a euclidean distance is used instead of the
Hamming distance for calculating the distance matrix. Pitch
chroma is a feature of interest as it is a typical feature used
for audio similarity [2, 19, 23]. It has also been used in
previous work on aligning concert recordings [26]. The
pitch chroma is computed at a sampling rate of 11 kHz with
a block size of 4096 and a hop size of 1024.

3.6.2 Cross-correlation baseline

The cross-correlation on audio fingerprints is the most estab-
lished approach in the field of aligning noisy concert record-
ings [4, 13, 21]. For this process, the Hamming distance is
computed at different levels of overlap and a threshold of
0.35 Bit Error Rate (BER) is set according to the recom-
mendation by Haitsma and Kalker [10]. If the distance falls
below the threshold then the pair of recordings are aligned
at that overlap.

4. EXPERIMENTS

We run several experiments to investigate our algorithm.
We evaluate the audio (feature) representation, approaches
to alignment, and alignment accuracy.

4.1 Dataset

Two datasets are used in this study– a synthetic dataset
and a real world dataset. The synthetic dataset created for
simulating a real world scenario; the advantage is a sample-
accurate ground truth. The synthetic dataset will be used as
the training and validation set, as well as to provide some
preliminary results with high accuracy. The real-world
dataset is manually annotated from existing recordings and
is used to test the overall performance of the algorithm.

4.1.1 Synthetic Dataset

The synthetic dataset is a collection of audio recordings
downloaded from YouTube 1 consisting of live recordings
of concerts. There are a 100 songs available in this dataset.

In order to create training data for the classifier, each
song of the dataset is divided into 17 (can be varied) record-
ings with the constraint that each recording is longer than
20 s and the entire song is covered. Each recording is
modified by (a) resampling randomly between 42.9 kHz
to 45.2 kHz, (b) either low pass filtering with a cutoff be-
tween 5000 Hz to 11600 Hz or high pass filtering with a
cutoff between 200 Hz to 5000 Hz, (c) adding crowd sounds
obtained from freesound.org [7], and (d) adding distortion
using the ’live recording’ and ’smart phone recording’ sim-
ulations in the audio degradation toolbox [17]. The code
for generating the synthetic dataset is available online 2 .

4.1.2 Real World Dataset

The real world dataset consists of 5 audience recordings of a
Grateful Dead concert performed on 1977-05-08. The audio
data was obtained from the Live Music Archive 3 . The first
5 songs from the concert were selected and each of the 5
versions of the 5 songs were annotated. The annotations
indicate the start and end points of the song. In case a
part of the song is missing, the duration and location of the
missing location is indicated. Since these recordings were
made on analog devices, the data is prone to tempo and
playback speed variation in addition to the usual filtering
and distortion heard in audience recordings. The real world

1 https://www.youtube.com/ accessed March 1st 2018
2 https://github.com/VinodS7/ConcertStitch-dataset
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precision recall f-measure
Fingerprints 0.9697 0.6732 0.8145
Pitch Chroma 0.6753 0.3191 0.4335

Table 1: Experiment 1: Overlap detection for audio finger-
prints vs. pitch chroma on real world data

dataset is augmented by splitting each version of a song into
10 recordings, resulting in 50 simulated audience recordings
per song. The songs are split in the same way as for the
synthetic dataset.

4.2 Metrics

There are two metrics used for the evaluation of this task.
The first metric is using the precision, recall, and f-measure
to provide an understanding of whether an alignment is cor-
rectly detected for a pair of recordings. The second metric
is the statistical analysis of the alignment accuracy in sec-
onds where the median, standard deviation, and maximum
values are used to measure how accurate the alignment is.

4.3 Experiment 1: Audio fingerprints vs. pitch chroma

The aim of this experiment is to compare the audio repre-
sentation on which the distance computation is based. We
investigate audio fingerprints and pitch chroma for the task
of aligning noisy recordings.

To train the SVM classifier for the algorithm, the above-
mentioned cluster features are extracted from the synthetic
dataset for 25 songs. To extract the features for each pair of
recordings, the DTW algorithm computes multiple possible
paths corresponding to all unique starting points. All paths
are labeled incorrect except the path that is closest to the
ground truth in the case of overlapping recordings. The
extracted feature matrix thus consists of the cluster features
along with a label of whether those features correspond to
an overlap or not. This process is applied to both audio
fingerprints and pitch chromas.

Once the feature matrix is available, it is divided into
an 80-20 split for training and validation, respectively. As
each pair of recordings has multiple candidate paths with
a maximum of only one being correct, there are far more
negative observations in the feature matrix than positive
observations. To counteract the high number of negative
observations, the training data is sampled to reduce the
number of negative observations. The ratio of negative
to positive observations is 50:1 for the audio fingerprints
classifier and 30:1 for the pitch chroma classifier.

The evaluation is performed on the real world dataset.
Only the start points of the alignment are taken into account
because the audio files are not modified or resampled based
on the end points.

4.3.1 Results

Table 1 reports the precision, recall, and f-measure of the
audio fingerprints and the pitch chroma. The fingerprint out-
performs the pitch chroma considerably for all metrics. This

3 https://archive.org/details/GratefulDead accessed January 15th 2018

Real World precision recall f-measure
DTW 0.9697 0.6732 0.8145
cross-correlation 0.4132 0.2534 0.3141

Synthetic precision recall f-measure
DTW 0.9570 0.9319 0.9443
cross-correlation 0.6936 0.8956 0.7818

Table 2: Experiment 2: DTW vs. cross-correlation using
audio fingerprints for real world and synthetic data

result is expected as the fingerprint is specifically designed
to work in conditions with severe quality impairments. The
poor performance of the pitch chroma can be traced back to
computing the candidate paths in the DTW algorithm. Due
to the noise, the candidate paths frequently do not contain
the correct path for the pitch chroma. This adversely affects
the training process for the SVM classifier and subsequently
the performance on the real world data.

4.4 Experiment 2: DTW vs. cross-correlation

The aim of this experiment is to compare the performance of
the DTW and the cross-correlation techniques when audio
fingerprints are used as the audio representation. The audio
fingerprints for the cross-correlation method are almost the
same as for the DTW algorithm, the only difference is that
the hop size is now 64 instead of 512.

The classifier for the DTW algorithm is set up the same
way as in Experiment 1. The evaluation is performed on
both the synthetic dataset with no temporal fluctuations and
the real world dataset.

4.4.1 Results

Table 2 reports the precision, recall, and f-measure of the
DTW method and the cross-correlation method on the two
datasets. We observe that the DTW method clearly outper-
forms the cross-correlation method. This is especially true
for the real-world data because the DTW is designed to han-
dle temporal fluctuations while cross-correlation is not. On
the synthetic dataset containing no temporal fluctuations,
the cross-correlation method performs much better; how-
ever, it still does not perform as well as the DTW method.
One possible reason might be that the cross-correlation
method uses a strict threshold to identify alignment so the
cross-correlation method does not scale well to different
types of noise.

4.5 Experiment 3: DTW performance analysis

The goal of this experiment is to understand the strengths
and weaknesses of the proposed algorithm.

For the first part of the experiment, the precision, recall,
and f-measure are reported for difference tolerance thresh-
olds on the real world dataset. The tolerance threshold gives
maximum allowable deviation of the alignment provided
by the algorithm from the ground truth. If the alignment
exceeds the threshold then it means the algorithm predicted
the alignment incorrectly.

612 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



precision
recall
f-measure

Figure 5: Experiment 3: Analyzing the performance of the
proposed method

The second part of the experiment tests how robust to
time stretching and pitch shifting the algorithm is. First,
the sample rates for each of the recordings are identified
using the same technique as Wilmering et al. [26]. Then,
the alignment is calculated between each pair of recordings.
Finally, the f-measure of the alignment is compared to the
ratio of sample rates( or version lengths).

4.5.1 Results

The first part of Figure 5 shows the precision, recall, and
f-measure at different tolerance thresholds. The plot shows
that the performance decreases drastically for tolerances be-
low 2 s. These results indicate a need to refine the alignment
in order to provide a more accurate measure of alignment.

For the second part of Figure 5, we expect the algorithm
to perform better if the ratio of lengths is closer to 1 and
the performance to get worse the further away from 1. The
reason is that if the ratio of sample rates is further away
from one the pitch shifting becomes more significant which
this algorithm is not designed to handle. However, the plot
does not reflect this hypothesis because the pitch shifts in
certain audio files is greater than expected. In addition to
resampling there is more pitch shifting which causes the al-
gorithm to fail since both the pitch chroma and fingerprints
are sensitive to pitch shifting.

4.6 Experiment 4: Analysis of improved alignment
accuracy

For a pair of recordings using the alignment, a resam-
pling factor is calculated using a ratio of the length of
the two paths. One recording is resampled so it has the
same length as the other. We investigate and compare the
spectral flux, spectral centroid, and time-domain raw audio
for their ability to improve the alignment accuracy when
cross-correlating a small segment around the previously es-
timated alignment points. For reference, the same features
are computed without resampling the audio. The spectral
flux and spectral centroid are calculated at a block size of
128 with a hop size of 32. The alignment accuracy for the
raw audio, spectral flux, and spectral centroid for the origi-
nal and resampled audio are compared against the original

median std max
DTW alignment 5240 11503 125221
Raw audio 9043 49091 823906
Spectral Flux 7073 12554 108950
Spectral Centroid 7161 9919 54695
Res. Raw Audio 5801 23185 227631
Res. Spec. Flux 5078 13092 125846
Res. Spec. Centroid 5006 11128 100165

Table 3: Raw Audio vs Spectral Flux to improve alignment
accuracy. The results are reported as deviation in samples
at 44.1 kHz

DTW algorithm to evaluate the accuracy improvement. The
evaluation for this task is done on the synthetic dataset be-
cause the annotations are more accurate than for the real
world data.

4.6.1 Results

The results of Experiment 4 are reported in Table 3. The
numbers indicate how close to the ground truth alignment
the algorithm performs in samples at a sample rate of
44100 Hz None of the finer alignment algorithms are able to
significantly improve the alignment of the algorithm. How-
ever, it is important to note that by using the approximate
alignment to resample the audio files, the results are much
better than without resampling. One explanation for the
limited improvement in performance is that the spectral
centroid and spectral flux might not be too susceptible to
noise.

5. CONCLUSION

This paper presented a method for accurately aligning
recordings of a concert event given that these recordings are
noisy snippets. The results show that audio fingerprints are
better suited than pitch chroma for the task of representing
noisy audio and that dynamic time warping performs bet-
ter than cross-correlation for the alignment. Using a finer
alignment on the resampled audio shows promise; however,
the results are still unsatisfactory. The real world data has
been made publicly available, and the used modifications
of the data is published online 4 .

The biggest drawback of the algorithm is its inability to
handle pitch shifts in audio recordings very well– a known
issue with many fingerprinting systems. If the current audio
fingerprinting algorithm is replaced with an algorithm that
is robust to noise as well as to pitch shifts, we expect the
performance of the system would improve considerably on
our real world dataset.

Future work on this task will focus on the actual rendi-
tion of the complete event once the alignment is known and
possibly combine audio with video. Selecting the segments,
determining fade points, durations, and type in the overlap-
ping regions, are all interesting and challenging tasks that
have not been researched in depth yet.

4 https://github.com/VinodS7/ConcertStitch-dataset
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ABSTRACT

Musical features and descriptors could be coarsely di-
vided into three levels of complexity. The bottom level
contains the basic building blocks of music, e.g., chords,
beats and timbre. The middle level contains concepts
that emerge from combining the basic blocks: tonal and
rhythmic stability, harmonic and rhythmic complexity, etc.
High-level descriptors (genre, mood, expressive style) are
usually modeled using the lower level ones. The features
belonging to the middle level can both improve automatic
recognition of high-level descriptors, and provide new mu-
sic retrieval possibilities. Mid-level features are subjective
and usually lack clear definitions. However, they are very
important for human perception of music, and on some of
them people can reach high agreement, even though defin-
ing them and therefore, designing a hand-crafted feature
extractor for them can be difficult. In this paper, we de-
rive the mid-level descriptors from data. We collect and
release a dataset 1 of 5000 songs annotated by musicians
with seven mid-level descriptors, namely, melodiousness,
tonal and rhythmic stability, modality, rhythmic complex-
ity, dissonance and articulation. We then compare several
approaches to predicting these descriptors from spectro-
grams using deep-learning. We also demonstrate the use-
fulness of these mid-level features using music emotion
recognition as an application.

1. INTRODUCTION

In music information retrieval, features extracted from au-
dio or a symbolic representation are often categorized as
low or high-level [5], [17]. There is no clear boundary
between these concepts and the terms are not used consis-
tently. Usually, features that were extracted using a small
analysis window that does not contain temporal informa-
tion are called low-level (e.g., spectral features, MFCCs,
loudness). Features that are defined within a longer con-

1 https://osf.io/5aupt/

c© Anna Aljanaki, , Mohammad Soleymani. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Anna Aljanaki, , Mohammad Soleymani. “A data-
driven approach to mid-level perceptual musical feature modeling”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

text (and often related to music theoretical concepts) are
called high-level (key, tempo, melody). In this paper, we
will look at these levels from the point of view of human
perception, and define what constitutes low, middle and
high levels depending on complexity and subjectivity of
a concept. Unambiguously defined and objectively veri-
fiable concepts (beats, onsets, instrument timbres) will be
called low-level. Subjective, complex concepts that can
only be defined by considering every aspect of music will
be called high-level (mood, genre, similarity). Everything
in between we will call mid-level.

Musical concepts can best be viewed and defined
through the lens of human perception. It is often not
enough to approximate them through a simpler concept or
feature. For instance, music speed (whether music is per-
ceived as fast or slow) is not explained by or equivalent to
tempo (beats per minute). In fact, perceptual speed is bet-
ter approximated (but not completely explained) by onset
rate [8]. There are many examples of mid-level concepts:
harmonic complexity, rhythmic stability, melodiousness,
tonal stability, structural regularity [10], [24]. Such meta
language could be used to improve search and retrieval, to
add interpretability to the models of high-level concepts,
and may be even break the glass ceiling in the accuracy of
their recognition.

In this paper we collect a dataset and model these con-
cepts directly from data using transfer learning.

2. RELATED WORK

Many algorithms have been developed to model features
describing such aspects of music as articulation, melodi-
ousness, rhythmic and dynamic patterns. MIRToolbox and
Essentia frameworks offer many algorithms that can ex-
tract features related to harmony, rhythm, articulation and
timbre [13], [3]. These features are usually extracted using
some hand-crafted algorithm and have a differing amount
of psychoacoustic and perceptual basis.

For example, Salamon et al. developed a set of melodic
features which extract pitch contours from a melody ob-
tained with a melody extraction algorithm [22]. There
were proposed measures like percussiveness [17], pulse
clarity [12], danceability [23]. Panda et al. proposed a
set of algorithms to extract descriptors related to melody,
rhythm and texture from MIDI and audio [19]. It is out
of our scope to review all existing algorithms for detecting
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Perceptual Feature Criteria when comparing two excerpts Cronbach’s α

Melodiousness To which excerpt do you feel like singing along? 0.72

Articulation Which has more sounds with staccato articulation? 0.8

Rhythmic stability
Imagine marching along with music.
Which is easier to march along with?

0.69

Rhythmic complexity
Is it difficult to repeat by tapping?

Is it difficult to find the meter?
Does the rhythm have many layers?

0.27 (0.47)

Dissonance
Which excerpt has noisier timbre?

Has more dissonant intervals (tritones, seconds, etc.)?
0.74

Tonal stability
Where is it easier to determine the tonic and key?

In which excerpt are there more modulations?
0.44

Modality
Imagine accompanying this song with chords.
Which song would have more minor chords?

0.69

Table 1. Perceptual mid-level features and the questions that were provided to raters to help them compare two excerpts.

what we call mid-level perceptual music concepts.
All the algorithms listed so far were designed with some

hypothesis about music perception in mind. For instance,
Essentia offers an algorithm to compute sensory disso-
nance, which sums up the dissonance values for each pair
of spectral peaks, based on dissonance curves obtained
from perceptual measurements [20]. Such an algorithm
measures a specific aspect of music in a transparent way,
but it is hard to say, whether it captures all the aspect of a
perceptual feature.

Friberg et al. collected perceptual ratings for nine fea-
tures (rhythmic complexity and clarity, dynamics, har-
monic complexity, pitch, etc.) for a set of 100 songs and
modeled them using available automatic feature extractors,
which showed that algorithms can cope with some con-
cepts and fail with some others [8]. For instance, for such
an important feature like modality (majorness) there is no
adequate solution yet. It was also shown that with just sev-
eral perceptual features it is possible to model emotion in
music with a higher accuracy than it is possible using fea-
tures, extracted with MIR software [1], [8], [9].

In this paper we propose an approach to mid-level fea-
ture modeling that is more similar to automatic tagging [6].
We try to approximate the perceptual concepts by model-
ing them straight from the ratings of listeners.

3. DATA COLLECTION

From the literature ( [10], [24], [8]) we composed a list of
perceptual musical concepts and picked 7 recurring items.
Table 1 shows the selected terms. The concepts that we are
interested in stem from musicological vocabulary. Identi-
fying and naming them is a complicated task that requires
musical training. This doesn’t mean that these concepts
are meaningless and are not perceived by an average mu-
sic listener, but we can not trust an average listener to apply
the terms in a consistent way. We used Toloka 2 crowd-

2 toloka.yandex.ru

sourcing platform to find people with musical training to
do the annotation. We invited anyone who has music edu-
cation to take a musical test, which contained questions on
harmony (tonality, identifying mode of chords), expressive
terms (rubato, dynamics, articulation), pitch and timbre.
Also, we asked the crowd-sourcing workers to shortly de-
scribe their music education. From 2236 people who took
the test slightly less than 7% (155 crowd sourcing workers)
passed it and were invited to participate in the annotation.

3.0.1 Definitions

The terminology (articulation, mode, etc.) that we use is
coming from musicology, but it was not designed to be
used in a way that we use it. For instance, the concept
of articulation is defined for a single note (or can also be
extended to a group of notes). Applying it to a real-life
recording with possibly several instruments and voices is
not an easy task. To ensure common understanding, we of-
fer the annotators a set of definitions as shown in Table 1.
The general principle is to consider the recording as a
whole.

3.1 Pairwise comparisons

It is easier for annotators to compare two items using a
certain criterion, then to give a rating on an absolute scale,
and especially so for subjective and vaguely defined con-
cepts [14]. Then, a ranking can be formed from pairwise
comparisons. However, annotating a sufficient amount of
songs using pairwise comparisons is too labor intensive.
Collecting a full pairwise comparison matrix (not counting
repetitions and self-similarity) requires (n2 − n)/2 com-
parisons. For our desired target of 5000 songs, that would
mean ≈ 12.5 million comparisons. It is possible to con-
struct a ranking with less than a full pairwise comparison
matrix, but still for a big dataset it is not a feasible ap-
proach. We combine the two approaches. In order to do
that, we first collected pairwise comparisons for a small
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Figure 1. Distribution of discrete ratings per perceptual feature.

Feature Articulation R. comlexity R. Stability Dissonance Tonal stability Mode

Melodiousness −0.13 −0.22 0.27 −0.59 0.58 −0.22
Articulation 0.39 0.60 0.45 −0.05 −0.14
R. complexity −0.009 0.48 −0.30 0.06
R. stability 0.06 0.36 −0.17
Dissonance −0.55 0.23
Tonal stability −0.16

Table 2. Correlations between the perceptual mid-level features.

amount of songs, obtained a ranking, and then created an
absolute scale that we used to collect the rankings.

In this way, we also implicitly define our concepts
through examples without a need to explicitly describe all
their aspects.

3.1.1 Music selection

For pairwise comparisons, we selected 100 songs. This
music needed to be diverse, because it was going to be
used as examples and needed to be able to represent the
extremes. We used 2 criteria to achieve that - genre and
emotion. From each of the 5 music preference clusters of
Rentfrow et al. [21] we selected a list of genres belong-
ing to these clusters and picked songs from the DEAM
dataset [2] belonging to these genres (pop, rock, hip-
hop, rap, jazz, classical, electronic), taking 20 songs from
each of the preference clusters. Also, using the anno-
tations from DEAM, we assured that the selected songs
are uniformly distributed over the four quadrants of va-
lence/arousal plane. From each of the songs we cut a seg-
ment of 15 seconds.

For a set of 100 songs we collected 2950 comparisons.
Next, we created a ranking by counting the percentage of
comparisons won by a song relative to an overall number
of comparisons per song. By sampling from that ranking
we created seven scales with song examples from 1 to 9
for each of the mid-level perceptual features (for instance,
from the least melodious (1) to the most melodious (9)).
Some of the musical examples appeared in several scales.

3.2 Ratings on 7 perceptual mid-level features

The ratings were again collected on Toloka platform, and
the workers were selected using the same musical test. The
rating procedure was as follows. First, a worker listened to
a 15-second excerpt. Next, for a certain scale (for instance,
articulation), a worker compared an excerpt with examples
arranged from ”legato” to ”staccato” and found a proper
rating. Finally, this was repeated for each of the 7 percep-
tual features.

3.2.1 Music selection

Most of the dataset music consists of Creative Commons
licensed music from jamendo.com and magnatune.
com. For annotation, we cut 15 seconds from the middle
of the song. In the dataset, we provide the segments and the
links to a full song. There is a restriction of no more than
5 songs from the same artist. The songs from jamendo.
comwere also filtered by popularity, in a hope to get music
of a better recording quality. We also reused the music
from datasets annotated with emotion [7], [18], [15] which
we are going to use to indirectly test the validity of the
annotations.

3.2.2 Data

Figure 1 shows the distributions of the ratings for every
feature. The music in the dataset leans slightly towards be-
ing rhythmically stable, tonally stable and consonant. The
scales could be also readjusted to have more examples in
the regions of the most density. That might not necessar-
ily help, because the observed distributions could also be
the artifacts of people prefering to avoid the extremes. Ta-
ble 2 shows the correlation between different perceptual
features. There is a strong negative correlation between
melodiousness and dissonance, a positive relationship be-
tween articulation and rhythmic stability. Tonal stability is
negatively correlated with dissonance and positively with
melodiousness.

3.3 Consistency

Any crowd-sourcing worker could stop annotating at any
point, so the amount of annotated songs per person var-
ied. An average amount of songs per worker was 187.01±
500.68. On average, it took ≈ 2 minutes to answer all the
seven questions for one song. Our goal was to collect 5
annotations per song, which amounts to ≈ 833 man-hours.
In order to ensure quality, a set of songs with high qual-
ity annotations (high agreement by well-performing work-
ers) was interlaced with new songs, and the annotations of
every crowd-sourcing worker were compared against that
golden standard. The workers that gave answers very far
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Emotional dimension
or category

Pearson’s ρ
(prediction)

Important features

Valence 0.88 Mode (major), melodiousness (pos.), dissonance (neg.)

Energy 0.79 Articulation (staccato), dissonance (pos.)

Tension 0.84 Dissonance (pos.), melodiousness (neg.)

Anger 0.65 Dissonance (pos.), mode (minor), articulation (staccato)

Fear 0.82 Rhythm stability (neg.), melodiousness (neg.)

Happy 0.81 Mode (major), tonal stability (pos.)

Sad 0.73 Mode (minor), melodiousness (pos.)

Tender 0.72 Articulation (legato), mode (minor), dissonance (neg.)

Table 3. Modeling emotional categories in Soundtracks dataset using seven mid-level features.

from the standard were banned. Also, the answers were
compared to the average answer per song, and workers
whose standard deviation was close to one one resulting
from random guessing were also banned and their answers
discarded. The final annotations contain answers of 115
workers out of a pool of 155, who passed the musical test.

Table 1 shows a measure of agreement (Cronbach’s α)
for each of the mid-level features. The annotators reach
good agreement for most of the features, except rhyth-
mic complexity and tonal stability. We created a differ-
ent musical test, containing only questions about rhythm,
and collected more annotations. Also, we provided more
examples on the rhythm complexity scale. It helped a lit-
tle (Cronbach’s α improved from 0.27 to 0.47), but still
rhythmic complexity has much worse agreement than other
properties. In a study of Friberg and Hedblad [8], where
similar perceptual features were annotated for a small set
of songs, the situation was similar. The least consistent
properties were harmonic complexity and rhythmic com-
plexity.

We average the ratings for every mid-level feature per
song. The annotations and the corresponding excerpts
(or links to external reused datasets) are available online
(osf.io/5aupt). All the experiments below are performed
on averaged ratings.

3.4 Emotion dimensions and categories

Soundtracks dataset contains 15 second excerpts from film
music, annotated with valence, arousal, tension, and 5 ba-
sic emotions [7].

We show that our annotations are meaningful by using
them to model musical emotion in Soundtracks dataset.
The averaged ratings per song for each of the seven mid-
level concepts are used as features in a linear regression
model (10-fold cross-validation).

Table 3 shows the correlation coefficient and the most
important features for each dimension, which are consis-
tent with the findings in the literature [10]. We can model
most dimensions well, despite not having any information
about loudness and tempo.

Cluster AUC F-measure

Cluster 1
passionate, confident

0.62 0.38

Cluster 2
cheerful, fun

0.7 0.5

Cluster 3
bittersweet

0.8 0.67

Cluster 4
humorous

0.65 0.45

Cluster 5
aggressive

0.78 0.64

Table 4. Modeling MIREX clusters with perceptual fea-
tures.

3.5 MIREX clusters

Multimodal dataset contains 903 songs annotated with 5
clusters used in MIREX Mood recognition competition
3 [18]. Table 4 shows results of predicting the five clusters
using the seven mid-level features and an SVM classifier.
The average weighted F1 measure on all the clusters on
this dataset is 0.54. In [18], with an SVM classifier trained
on 253 audio features, extracted with various toolboxes, F1
measure was 44.9, and 52.3 with 98 melodic features. By
combining these feature sets and doing feature selection
by using feature ranking, the F1 measure was increased
to 64.0. Panda et al. hypothesize that Multimodal dataset
is more difficult than MIREX dataset (their method per-
formed better (0.67) in MIREX competition than on their
own dataset). In MIREX data, the songs went through an
additional annotation step to ensure agreement on cluster
assignment, and only songs that 2 out of 3 experts agreed
on were kept.

3 www.music-ir.org/mirex
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Figure 2. AUC per tag on the test set.

4. EXPERIMENTS

We left out 8% of the data as a test set. We split the train
set and test set by performer (no performer from the test
set appears in the training set). Also, all the performers in
the test set are unique. For pretraining, we used songs from
jamendo.com, making sure that the songs used for pre-
training do not reappear in the test set. The rest of the data
was used for training and validation (whenever we needed
to validate any hyperparameters, we used 2% of the train
set for that).

From each of the 15-second excerpts we computed
a mel-spectrogram with 299 mel-filters and a frequency
range of 18000Hz, extracted with 2048 sample window
(44100 sampling rate) and a hop of 1536. In order to use it
as an input to a neural network, it was cut to a rectangular
shape (299 by 299) which corresponds to about 11 seconds
of music. Because the original mel-spectrogram is a bit
larger, we can randomly shift the rectangular window and
select a different set. For some of the songs, full-length
songs are also available, and it was possible to extract the
mel-spectrogram from any place in a song, but in practice
this worked worse than selecting a precise spot.

We also tried other data representations: spectrograms
and custom data representations (time-varying chroma for
tonal features and time-varying bark-bands for rhythmic
features). Custom representations were trained with a two-
layer recurrent network. These representations worked
worse than mel-spectrograms with a deep network.

4.1 Training a deep network

We chose Inception v3 architecture [4]. First five layers are
convolutional layers with 3 by 3 filters. Twice max-pooling
is applied. The last layers of the network are the so-called
”inception layers”, which apply filters of different size in
parallel and merge the feature maps later. We begin by
training this network without any pretraining.

4.1.1 Transfer learning

With a dataset of only 5000 excerpts, it is hard to prevent
overfitting when learning features from the very basic mu-
sic representation (mel-spectrogram), as it was done in [6]
on a much larger dataset. In this case, transfer learning can
help.

4.1.2 Data for pretraining

We crawl data and tags from Jamendo, using the API pro-
vided by this music platform. We select all the tags, which
were applied to at least 3000 songs. That leaves us with
65 tags and 184002 songs. For training, we extract a mel-
spectrogram from a random place in a song. We leave 5%
of the data as a test set. After training on mini-batches
of 32 examples with Adam optimizer for 29 epochs, we
achieve an average area under receiver-operator curve of
0.8 on the test set. The AUC on the test set grouped by
tag are shown on Figure 2 (only 15 best and 15 worst per-
forming tags). Some of the songs in the mid-level feature
dataset also were chosen from Jamendo.

4.1.3 Transfer learning on mid-level features

The last layer of Inception, before the 65 neurons that pre-
dict classes (tags), contains 2048 neurons. We pass through
the mel-spectrograms of the mid-level feature dataset and
extract the activations of this layer. We normalize these ex-
tracted features using mean and standard deviation of the
training set. On the training set, we fit a PCA with 30
principle components (the number was chosen based on
decline of eigenvalues of the components) and then apply
the learned transformation on a validation and test set. On
a validation set, we tune parameters of a SVR with a ra-
dial basis function kernel and finally, we predict the seven
mid-level features on the test set.

4.2 Fine-tuning trained model for mid-level features

On top of the last Inception layer we add two fully-
connected layers with 150 and 30 neurons, both with ReLU
activation, and an output layer with 7 nodes with no activa-
tion (we train on all the features at the same time). First, we
freeze the pre-trained weights of the Inception and train the
last layer weights until there’s no improvement on the val-
idation set anymore. At this point, the network reaches the
same performance on the test set as it reached using trans-
fer learning and PCA (which is what we would expect).
Now, we unfreeze the weights and with a small learning
rate continue training the whole network until it stops im-
proving on validation set.

4.3 Existing algorithms

There are many feature extraction frameworks for MIR.
Some of those (jAudio, Aubio, Marsyas) only offer tim-
bral and spectral features, others (Essentia, MIRToolbox,
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Figure 3. Performance of different methods on mid-level feature prediction.

VAMP Plugins for Sonic Annotator) offer features, which
are similar to the mid-level features of this paper. Figure
3 shows the correlation of some of these features with our
perceptual ratings:

1. Articulation. MIRToolbox offers features describing
characteristics of onsets (attack time, attack slope,
leap (duration of attack), decay time, slope and
leap. Out of this features leap was chosen (it had
the strongest correlation with perceptual articulation
feature).

2. Rhythmic stability. Pulse clarity (MIRToolbox) [16].

3. Dissonance. Both Essentia and MIRToolbox offer a
feature describing sensory dissonance (in MIRTool-
box, it is called roughness), which is based on the
same research of dissonance perception [20]. We ex-
tract this feature and inharmonicity. Inharmonicity
only had a weak (0.22) correlation with perceptual
dissonance. Figure 3 shows a result for the disso-
nance measure.

4. Tonal stability. HCDF (harmonic change detection
function) in MIRToolbox is a feature measuring the
flux of a tonal centroid [11]. This feature was not
correlated with our tonal stability feature.

5. Modality. MIRToolbox offers a feature called mode,
which is based on an uncertainty in determining the
key using pitch-class profiles.

We could not find features corresponding to melodious-
ness and rhythmic complexity. Perceptual concepts lack
clear definitions, so it is impossible to say that the feature
extractor algorithms are supposed to directly measure the
same concepts that we had annotated. However, from Fig-
ure 3 we can see that the chosen descriptors do indeed cap-
ture some part of variance in the perceptual features.

4.4 Results

Figure 3 shows the results for every mid-feature. For all
the mid-features, the best result was achieved by pretrain-
ing and fine-tuning the network. Melodiousness, articula-
tion and dissonance could be predicted with a much bet-

ter accuracy than rhythmic complexity, tonal and rhythmic
stability, and mode.

5. FUTURE WORK

In this paper, we only investigated seven perceptual fea-
tures. Other interesting features include tempo, timbre,
structural regularity. Rhythmic complexity and tonal sta-
bility features had low agreement. It is probable that con-
tributing factors need to be explicitly specified and studied
separately. The accuracy could be improved for modality
and rhythmic stability. It is not clear whether strong cor-
relations between some features are an artifact of the data
selection or music perception.

6. CONCLUSION

Mid-level perceptual music features could be used for mu-
sic search and categorization and improve music emotion
recognition methods. However, there are multiple chal-
lenges in extracting such features: first, such concepts lack
clear definitions, and we do not quite understand the under-
lying perceptual mechanisms yet. In this paper, we collect
annotations for seven perceptual features and model them
by relying on listener ratings. We provide the listeners
with scales with examples instead of definitions and crite-
ria. Listeners achieved good agreement on all the features
but two (rhythmic complexity and tonal stability). Using
deep learning, we model the features from data. Such
an approach has its advantages as compared to specific
algorithm-design by being able to pick appropriate pat-
terns from the data and achieve better performance than
an algorithm based on a single aspect. However, it is also
less interpretable. We release the mid-level feature dataset,
which can be used to further improve both algorithmic and
data-driven methods of mid-level feature recognition.
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ABSTRACT

We address the problem of disambiguating large scale
catalogs through the definition of an unknown artist clus-
tering task. We explore the use of metric learning tech-
niques to learn artist embeddings directly from audio, and
using a dedicated homonym artists dataset, we compare
our method with a recent approach that learn similar em-
beddings using artist classifiers. While both systems have
the ability to disambiguate unknown artists relying exclu-
sively on audio, we show that our system is more suitable
in the case when enough audio data is available for each
artist in the train dataset. We also propose a new negative
sampling method for metric learning that takes advantage
of side information such as music genre during the learning
phase and shows promising results for the artist clustering
task.

1. INTRODUCTION

1.1 Motivation

With contemporary on-line music catalogs typically
proposing dozens of millions of recordings, a major prob-
lem is the lack of an universal and reliable mean to identify
music artists. Contrarily to albums’ and tracks’ ISRC 1 ,
and despite some initiative such as ISNI 2 , there exist no
unique standardized identifier for artists in the industry. As
a direct consequence, the name of an artist remains its de-
facto identifier in practice although it results in common
ambiguity issues. For example, name artist collisions (e.g.
Bill Evans is the name of a jazz pianist but also the name
of a jazz saxophonist and the name of a blackgrass banjo
player) or artist aliases (e.g. Youssou N’Dour vs. Youssou
Ndour, Simon & Garfunkel vs Paul Simon and Art Gar-
funkel, Cat Stevens vs Yusuf Islam) are usual. Relying on
human resources to clean or verify all artists in the database
is practically impossible, although a major issue resulting
from these ambiguities is the difficulty to correctly credit

1 http://isrc.ifpi.org
2 http://www.isni.org

c© First author, Second author, Third author, Fourth author.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: First author, Second author, Third
author, Fourth author. “Disambiguating Music Artists at Scale with Au-
dio Metric Learning”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

artists for their work and the confusion that may arise for
end users while exploring catalogs.

Automatically distinguishing between artists is a com-
plicated task, even for human specialists, since there is no
one to one relation between a track and an artist. Tracks
can be performed by several artists (e.g. duets and featur-
ings). Albums may contain tracks from different artists
(e.g. in compilations). Even artist denominations may
drastically evolve during their careers. In this work, our
goal is, given a set of recordings, to find a partition of this
set for which all tracks from a given subset are associated
to the same artist.

In the MIR literature, problems dealing with artist assig-
nation from a recording are most of the time addressed as a
classification problem [3, 9, 10], where a set of predefined
artists is known. This is not a real case scenario for evolv-
ing large music catalogs, since the number of artists can
be huge (several millions) and new artists are added ev-
ery day. In this paper, we propose a new task of unknown
artists clustering from audio, without having any ground
truth data about the identities of the artist nor a prior in-
formation about the number of different artists present in
a cluster. To the best of our knowledge, there are no prior
work addressing this. Disambiguating homonym artists is
a practical application of this task, where a set of tracks
must be split into an unknown number of clusters, each
corresponding to a different artist entity. We believe that
accurately solving this task could results in a major im-
provement in the quality of large sized catalogs.

To tackle this new task, we propose to use metric learn-
ing methods to train a system that outputs artist embed-
dings from audio. Indeed, as we will explain later, metric
learning objective function is primarily designed to ensure
that embeddings of samples from the same entity are clus-
tered together. Metric learning also offers the interesting
possibility of controlling what an embedding system learns
by means of the sampling necessary to feed its loss. Here
we also suggest to leverage musical relationships among
audio tracks as source of information to strengthen the rep-
resentation learning, allowing to incorporate music side
information -such as genre, mood or release date- to the
training process.

1.2 Overview

The paper is organized as follows. In Section 2 we expose
how this paper relates to prior work. In Section 3, we detail
the metric learning system used to learn artist embeddings
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from audio. In Section 4, we introduce the newly proposed
artist disambiguation task and the datasets used for exper-
iments. In Section 5, we show our results and compare
to the previous systems. Finally, we draw conclusions in
Section 6.

2. PREVIOUS WORKS

In this paper we propose a method to learn artist embed-
dings from audio. This approach falls in a general cate-
gory of methods in identity disambiguation problems that
try to learn a parametric map from content samples (for in-
stance face pictures [18] or speaker speech recordings [5])
to a metric space, so that same identity samples are closely
located and different identity samples are far away. The
same idea has been exploited to address item retrieval in
large image datasets (cars, birds, on-line products) [21,25]
and to learn audio representations for sound event classifi-
cation [12].

For music artist, the embedding approach has been ad-
dressed previously in [3], where a representation space is
constructed using the output probabilities of a multi-class
classification system with Mel-Frequency Cepstral Coeffi-
cients (MFCC) as input. The space is only used to address
the classification of known artists, but would also be suit-
able to unknown ones. Convolutional deep belief networks
were used to learn features that were afterwards used for
artist classification [14]: while the evaluation is done on
only four artists, the approach learns a representation from
unlabeled data which can generalize to unknown artists.
In [28] the authors train a linear system that attempts to
capture the semantic similarities between items in a large
database by modeling audio, artist names and tags in a sin-
gle space. The system is trained with multi-task ranking
losses, which highly resembles metric learning methods:
each ranking loss takes as input triplets of samples from
possibly different kind of sources. Although this approach
is very promising, both for the objective function and the
use of side information, the same artists are used for train
and evaluation. Unfortunately, direct comparison is hard
since little details are given about how datasets are ob-
tained. In [16], artist embeddings are learned using 1d con-
volutional neural networks trained as mono-label classifier
used afterwards as general features extractors. Their ap-
proach is able to deal with artists not seen during the train-
ing phase. Information is given on how train databases are
obtained from the Million Song Dataset (MSD) [4] using
the artist7 3 labels.

Several other works address directly the artist classifi-
cation problem. The current state of the art is inspired by
speaker recognition system and makes use of I-vectors to
separate artists [9–11]. In [20], an artist fingerprint based
on MFCC is proposed to tackle the problem of retrieving
an artist from an audio track at scale. In [13], multivariate
similarity kernel methods are proposed to tackle (among
other tasks) artist classification. In [22], the authors fo-
cus on the main vocalist, and then vocal separation is used

3 http://developer.7digital.com

as a preprocessing for artist classification. In [2], a multi-
modal approach taking advantage of both lyrics and audio
is proposed to perform artist classification. In [7], the au-
thors use a convolutional neural network to perform artist
recognition on a 50 artists dataset. While the techniques
employed in these works are of interest for their potential
use in extracting representations of unknown artists, they
usually only consider at the classification of known artists
and give no results on the generalization to new artist not
seen during training phase, nor address the extraction of
representations useful for unknown artists.

3. PROPOSED METHOD

3.1 Metric learning

The main idea in metric learning is to learn a metric pre-
serving map f from one metric space into another. Using
a discrete metric in the first space, this can be exploited to
learn embedding spaces where distances correspond with
membership to some category. Here we use the discrete
metric defined by artist membership in the space of musi-
cal audio recordings.

In this membership context, the learning of f can be
achieved using the triplet loss mechanism [27]. This relies
on using triplets X = (xa, x+, x−), where (xa, x+) is a
positive pair (samples with same artist membership) and
(xa, x−) is a negative pair (samples with different artist
membership). The triplet loss ` contains a term that tries
to bring closer the images by f of samples in a positive
pairs, and another term that tries to separate the images by
f of samples in a negative pair. It writes

`(X) =
∣∣‖f(xa)− f(x+)‖22 − ‖f(xa)− f(x−)‖22 + α

∣∣
+

(1)
where |s|+ = max (0, s). The parameter α here before is
a positive constant used to ensure a margin between dis-
tances of points from positive and negative pairs. In order
to prevent the system to tend to unsuitable states, where all
points are mapped to 0, or where the map f takes arbitrary
large values, we constraint the embedding to lie in the unit
sphere by imposing ‖f(x)‖2 = 1.

3.2 Training and sampling strategies

We train our system using Stochastic Gradient Descent
over batches of triplets. Since optimizing over triplets that
are already well separated by the system (i.e. `(X) = 0) is
unnecessary and costly, the system is fed only with triplets
that are not yet separated. These are called hard triplets if
the value of

‖f(xa)− f(x+)‖22 − ‖f(xa)− f(x−)‖22

is negative, and semi-hard triplets if this value is in [0, α].
We set α = 0.2 as in [5,18]. Notice that during triplets se-
lection process the i-th state of the system is used to com-
pute embeddings to filter data for the (i+1)-th parameters
update.
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At each iteration, n samples are chosen from N differ-
ent artists to form positive pairs. For each positive pair one
negative sample from the N −1 left artists is taken to form
a triplet. This leave us with Nn(n− 1)/2 triplets per iter-
ation that are given to the system for optimization only if
they are labeled as hard or semi-hard.

Notice from the expression (1) that the gradients of `
are close to zero when the system maps all entries to very
close points in the space, so in practice learning can fail
with the system being stuck in a “collapsed” state where
f(x) = f̂ for every x. We observe in experiments that
correct triplet sampling strategies are crucial to avoid this
phenomenon: taking large batches and enforcing the pres-
ence of as many different artists as possible in each batch
prevents the system from collapsing.

In order to strengthen the artist representations learned
we propose to make use of side information related to mu-
sic artists. Suppose that we are given tags for artists of the
training database. The fact that two artists have a same tag
t, indicates that these artists share some characteristic. If
we want our system to distinguish between similar but not
equal artists, an interesting possibility is to train the sys-
tem to not rely on these characteristics. To implement this
idea, we define a probability p to prefer a negative sample
x− with the same tag as the anchor sample xa when creat-
ing a triplet X . This is done at each iteration after the first
sampling of the Nn(n − 1)/2 triplets. If for some anchor
xa there is no negative sample x− with a different tag, or
if we do not dispose of tags for the anchor sample, then we
fallback to the previous triplet method creation, that is, we
choose as negative any sample from another artist. This al-
lows us to make use of side information even if some may
be missing in the database, setting thus a flexible sampling
framework.

4. EXPERIMENTS AND EVALUATION

In this section, we first present our main artist clustering
task, the two auxiliary tasks that we use to compare to pre-
vious works and validate our metric learning approach, and
the datasets used for evaluation. Then, we describe the ar-
chitecture of the neural network that we use to learn artist
representations. Finally, we detail the datasets used during
the training of the systems.

4.1 Tasks and Evaluations

The systems studied in this paper output vector embed-
dings from audio excerpts. In order to perform evalua-
tions, we create track-level embeddings by simply aver-
aging embeddings over 10 linearly spaced segments of the
same track. For the metric learning based system, we also
project back the mean embeddings on the unit sphere.

4.1.1 Artist classification and verification

Dataset: evaluation is made over a dataset of 467
artists not seen during training of the embedding systems.
These artists are taken from the MSD as explained in Sec-
tion 4.3.1. For each artist we extract 20 tracks, 15 tracks

are used as ground truth to build artist models and we re-
port the results for 5 tracks as test cases.

Classification task: we attribute to each test case the
artist identity of its nearest neighbor for the euclidean dis-
tance among all the ground truth artist models in the em-
bedding space, and we report the classification accuracy
obtained with this procedure.

Verification task: this is a binary classification task were
given any two track-level embeddings (ei, ej) of a test case
i and artist model j, we decide whether they have the same
artist membership. This is achieved by thresholding the
euclidean distance between the two embeddings. We may
do two types of errors in this task: a false positive error
when two embeddings from two different artists are incor-
rectly classified as sharing the same membership, and a
false negative error when two embeddings from the same
artist are classified as having different memberships. The
higher the decision threshold is, the higher the false neg-
ative rate (FNR). Respectively, lowering the threshold re-
sults in an increase of the false positive rate (FPR). We
report the Equal Error Rate (EER), i.e.: the value of FPR
and FNR for the threshold at which they are equal.

4.1.2 Homonym artist clustering

Dataset: we built an homonym artists database gather-
ing artists which share exactly the same name with manual
cleaning. This results in a database of 122 groups of 2 to
4 homonym artists (102 groups of 2 artists, 17 groups of 3
artists and 3 groups of 4). Each artist has a total number of
2 to 14 albums and 8 to 168 tracks.

Task: the problem to solve is to discriminate between
artists that share the same name. From a set of tracks by
different artists (with the same name), the task is to retrieve
the actual clusters of tracks having the same artist member-
ship. It is worth noting that this task may be used in a real
life scenario since there is no need of previous knowledge
of the identities nor the number of artists present in a group
of same named artists.

We use the Adjusted Rand Index (ARI) [17] and the
Adjusted Mutual Information (AMI) [24] to measure the
similarity of the obtained clusters with the ground truth
clusters given by the artist memberships. We choose these
corrected for chance information theoretic measures since
the data size is relatively small compared to the number of
clusters present therein [24].

We present the results on a 5-fold cross-validation of
the homonym artists datasets. We used an agglomerative
hierarchical clustering algorithm [15] to group tracks from
the same named artists. During the linkage phase we use
ward method [26] with euclidean metric for calculating the
distance between newly formed clusters, and we apply dis-
tance criterion to get the flat clusters. We select the optimal
parameters based only on the AMI performance on the de-
velopment set, given that we observe a strong correlation
with the ARI performance. Finally we report the ARI and
the AMI, averaged over the test dataset.
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layer size-out kernel activation
dyn. comp. 1x388x128 - log(1 + 104·)

conv 16x388x128 3x3x16,1 relu
maxpool 16x194x64 3x3x16,2 -

conv 32x194x64 3x3x32,1 relu
maxpool 32x64x21 3x3x32,2 -

conv 64x64x21 3x3x64,1 relu
maxpool 64x21x7 3x3x64,2 -

flatten 1x64x147 - -
average pool 1x1x147 - -

g dropout 1x1x147 - -
dense 1x1xd - tanh
`2 const. 1x1xd - · × ‖ · ‖−1

2

Table 1: Neural network map details for 9s long audio
segments. The output size is described in stacks x rows x
columns. The kernel is specified as rows x columns x nb.
filters, stride. The parameter d is the size of the embedding.

4.2 Embedding systems

Our embedding map f consists in a convolutional deep
neural network that takes features computed from either
3s or 9s long audio samples as input x and outputs points
in S1 ⊂ Rd. The audio is down-sampled to 22050 kH and
we use a mel-spectrogram as features, with 128 mel-filters
and 46 ms long Hann window with 50% of overlapping.
We apply dynamic compression at the first layer of the net-
work. Temporal pooling is performed inside the network
after the convolution and maxpooling layers, by flattening
together the stack and features tensor dimensions and then
performing a global average pooling in the time dimen-
sion. The output of the network is a d-dimensional vector
with d = 32 or d = 256. Further details of the structure
of the network are described in Table 1. We use the RM-
SProp optimizer [23] with a learning rate of 10−3, ρ = 0.9,
ε = 10−8 and no decay. We compare our metric learn-
ing based system to the system in [16] since it is the only
previous work that deals with unknown artists. This sys-
tem computes artist embeddings of dimension 256 using
the last hidden layer of a 1D convolutional neural network
trained as an artist classifier. We refer to [16] for further
details. Both systems were implemented using Keras [6]
framework with Tensorflow [1] as back-end.

4.3 Datasets for training embedding systems

For each of the datasets described in this section, audio was
provided by Deezer music streaming company. At the web
address 4 are provided the files containing the ids for the
tracks as well as the artists names.

We build 3 datasets with different characteristics in
terms of available audio data per artist and statistical dis-
tribution of tracks per artist. Our main goal is to test on
the homonym artists clustering task the embedding sys-
tems obtained in different scenarios. One of the datasets
is created to match real life catalog conditions.

4 https://github.com/deezer/Disambiguating-Music-Artists-at-Scale-
with-Audio-Metric-Learning

4.3.1 MSD small dataset.

The first dataset is a sub-sampling of the MSD. The inter-
est of this dataset is to compare the two studied systems
when a small amount of audio data is available for each
artist. Following [16] for the dataset construction, we use
the 7digitalid artist labels delivered with the MSD, but in
addition we take care of cleaning the dataset from poten-
tial duplicate artists: we drop MSD artist labels associated
with more than one 7digitalid artist labels and viceversa
(6.3% and 5.8% of artist labels). From this cleaned dataset
we use the 7digitalid labels to choose a number of artists
between 100 and 2000, and then select 17 tracks for each
artist. These are respectively split into 15 for training and 2
to perform early stopping. We extract a 30s-long excerpts
for each track (the position of the excerpts were sampled at
random between the beginning and the end of each track)
that are further subdivided in 3s long segments with no
overlapping used to feed the system. This results in 7.5
minutes of audio per artist in the training sets.

4.3.2 Balanced dataset.

The interest of this second dataset is to compare the two
studied systems when access is granted to larger amounts
of audio. We choose artists among the 1000 most pop-
ular in the music streaming service that provided the au-
dio. We keep artist that have at least 4 albums with more
than 3 tracks. From the remaining artists, we first choose
a number of them between 25 and 600, and then select
1000 9s long samples for each artist linearly spaced in
each track. From these samples we pick 1/3 for training
and 1/6 to perform early stopping. The split is done at
the album level, meaning that two tracks from the same al-
bum cannot appear in the same split. This results in 100
minutes of audio per artist for the training set. We remark
that this dataset is balanced in terms of number of sam-
ples per artist, a common approach to prevent bias towards
common classes in classifier systems. Also, the samples
are taken from any region of the track, resulting in dataset
with more variability than the MSD small dataset.

4.3.3 Unbalanced dataset.

In this third dataset we reproduce the statistical distribution
of large music catalogs. We use a match from the Discogs
[8] dataset onto the music streaming company artist dataset
and we keep the genre tags. We drop artists with less than
4 tracks. We do not perform any further cleaning, so the
resulting dataset is heavily unbalanced and presents typical
long tail behavior. Distributions of samples by artist for
this dataset are shown in Figure 1: the unbalanced dataset
exhibit a long-tailed distribution.

From this dataset we select 10 9s long samples for each
track, which are respectively split into train, evaluation and
test. The split is done at the artist level, meaning that two
tracks from the same artist cannot appear in the same split.
There are 1749 different artists in the training set, each of
one has between 1.5 and 45 minutes of audio.

The interest of this dataset is to study the abilities of
each system to make use of all the available audio. Classifi-

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 625



Figure 1: Count distribution of samples by artist in the un-
balanced side information negative sampling and unbal-
anced datasets for metric learning, and the balanced ver-
sions for classifier systems of the unbalanced dataset.

cation systems are usually trained with a balanced dataset.
If we have access to a dataset that is not already balanced
in terms of classes, we have two options in other to balance
it: (A) either cut down samples from the most represented
classes or (B) repeat samples of the less represented ones.
The former option implies losing data that could have po-
tentially improved the training of the system, while in the
second option there is a risk that the classification system
over-fit the repeated samples. On the contrary, the triplet
sampling of a metric learning system permits to make use
of all accessible training data, since the system has the abil-
ity of dynamically choosing which data is more relevant for
training. To study this, we train the metric learning system
with the unbalanced dataset and the classifier system with
two balanced versions of it as explained in here before. As
we see in Figure 1, the (A) dataset contains 1002 artists
and the (B) dataset contains 1749 artists, each with 2000
samples.

Finally, we study the influence of the new proposed neg-
ative sampling method using genre tags with a last unbal-
anced side information negative sampling dataset: from
the raw match Discogs we retain 3023 artists, we keep the
genre tags and we take only one 9s long sample for each
track.

5. RESULTS

We first present in Figures 2 and 3 the results of the ver-
ification and classification tasks on the MSD small and
balanced datasets. We observe that the classifier sys-
tem performs better than the metric learning based sys-
tem (d = 256) when few audio samples are available for
each artist (MSD small), and that inversely, our system out-
performs the classifier system when we are provided with
larger amounts for each artist (balanced). Indeed, metric
learning system are generally difficult to optimize, so large
quantities of data are needed to make them learn correctly.
When this data is accessible for each artist in train datasets,
the metric learning system seems to learn better, which val-
idates our approach.

In Figure 4 we present the results of the homonym
artists clustering task. We first remark that both ARI and

Figure 2: Equal Error Rate results of metric learning (ml
- # artists) and classification (cl - # artists) embedding sys-
tems on the artist verification task for different training
datasets and number of artists in the dataset. Lower is bet-
ter.

Figure 3: Accuracy results of metric learning (ml - #
artists) and classification (cl - # artists) embedding systems
on the artist verification task for different training datasets
and number of artists in the dataset. Higher is better.

AMI measures take values between−1 and 1, with 0 as ex-
pected value for a random clustering. The obtained results
are thus satisfactory, showing the feasibility of the task
and making it a compelling candidate to disambiguate un-
known artists relying exclusively on audio, for large sized
catalogs.

As we observed for the verification and classification
tasks on the MSD small and balanced datasets, the metric
learning system generally takes better advantage of larger
training datasets. Moreover, the experiments with the un-
balanced dataset and its balanced versions (A) and (B) in-
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Figure 4: Mean AMI and mean ARI performances of the
metric learning (ml - # artists) and classification (cl - #
artists) embedding systems on the artist clustering task (5-
fold cross-validation) for the different training datasets and
number of artists in the dataset. Higher is better.

dicate that the metric learning system (d = 32) takes full ad-
vantage of all available data, at least when considering the
balancing strategies that we proposed. This is of great in-
terest since being able to use all the data in train databases
could be beneficial in many other settings.

Finally, we study the results obtained with the side neg-
ative sampling strategy that use the genre tags in the un-

balanced side information negative sampling dataset. We
experiment with setting the probability p as explained in
Section 3.2 to different values. Although a linear hierarchy
between different values of p is not completely observed,
we remark that the best result is obtained with the proba-
bility p = 0.5. These promising results show the potential
of using music side information to strengthen the learned
artist representations.

6. CONCLUSION AND FUTURE WORK

6.1 Synthesis

We present a new task of unknown artists clustering to help
disambiguating large scale catalogs, show the interest of it
regarding the current problems of artists identification in
the music industry, and demonstrate its feasibility with two
different artist embeddings methods. Regarding different
training datasets conditions (size, amount of audio avail-
able, distribution of tracks per artist) one or another could
be of better help. We showed that the characteristics of
artists learned by the system can generalize to other artists
not seen during the learning phase. We prove that metric
learning based method is an interesting choice for learning
artist representations, in particular by the flexibility of the
triplet loss mechanism that allows to better exploit avail-
able audio data or to incorporate music side information
during training. To this extend, we proposed a new neg-
ative sampling method that takes advantage of side infor-
mation during learning phase and show its relevance when
using artist genre tags.

6.2 Future work

An interesting question for subsequent work is to under-
stand the differences between the classification based artist
representation and the metric learning based one, and if
they learned similar high level characteristics of audio. To
this extent a simple concatenation followed by a dimension
reduction could be a first solution. More interestingly, we
could try to train an embedding system with a linear com-
bination of both losses. Since metric learning loss is dif-
ficult to optimize, for instance due to the collapsing prob-
lems, classification loss could act as a regularization term.

Another interesting research direction will be to explore
other artist embeddings methods that also can incorporate
side information, such as multi-task ranking losses from
[28] or task driven non negative matrix factorization with
group constraints as in [19].

Finally, we plan to further investigate the use of side in-
formation in negative sampling, and to explore the use of
other kinds of sources such as mood or release date. In-
versely, an interesting idea would be to investigate how to
ameliorate genre representations learning by using artists
labels as side information.
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ABSTRACT

Recordings of a cappella music often exhibit significant
pitch drift. This drift may accumulate over time to a to-
tal transposition of several semitones, which renders the
canonical 2-dimensional Dynamic Time Warping (DTW)
useless. We propose Transposition-Aware Dynamic Time
Warping (TA-DTW), an approach that introduces a 3rd
dimension to DTW. Steps in this dimension represent
changes in transposition. Paired with suitable input fea-
tures, TA-DTW computes an optimal alignment path be-
tween a symbolic score and a corresponding audio record-
ing in the presence of pitch drift or arbitrary transpositions.

1. INTRODUCTION

Existing audio-to-score alignment systems based on DTW
are not yet able to handle performances appropriately if
they exhibit significant pitch drift. However, pitch drift
is rather common in a cappella singing and choir per-
formances due to accumulation of intonation inaccuracies
over time.

Absolute pitch, which is the ability to recognize and
produce a given pitch without an external reference, is a
rare ability of about 0.01% of the population [23]. There-
fore, most singers have to rely on a combination of ref-
erencing with previous and simultaneous pitches together
with muscle memory to intonate appropriately. In solo
singing, the accuracy of a good singer has been reported
to range from about 13 cents (standard deviation) [24] to
about 22 cents [27] for very short melodies and intervals.
Expert listeners judge a deviation of 20-25 cents to be
still in tune [27]. The accuracy of note production can
however be influenced adversely by various factors, e.g.
by an unbalanced ratio of the sound pressure level of the
reference sound in relation to the feedback sound of the
singer’s own voice [25]. Also the presence of vibrato, the
absence of common partials between the voices and the
absence of high partials make it more difficult to intonate
correctly [24].

Due to the lack of an absolute reference, these minor de-

c© Simon Waloschek, Aristotelis Hadjakos. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Simon Waloschek, Aristotelis Hadjakos. “Driftin’
down the scale: Dynamic time warping in the presence of pitch drift
and transpositions”, 19th International Society for Music Information Re-
trieval Conference, Paris, France, 2018.

viations can lead to relatively large pitch deviations in the
long run. It is widely reported that choirs have significant
pitch drift, see [1]. Seaton et al. [20] surveyed amateur and
professional choir singers and conductors regarding their
experiences with pitch drift. Nearly half of the participants
report that pitch drift occurs regularly while only 14% re-
port that drift happens rarely or not at all. Nearly 80% of
the participants say that the direction of the drift is usually
downward while almost all other participants say that drift
occurs in either direction similarly often.

However, pitch drift is not just an addition of small in-
accuracies: Howard argues that pitch drift is almost in-
evitable when singing unaccompanied music that modu-
lates from one key to another [12]. This arises mathemat-
ically from the observation that singers use non-tempered
intonation based on the ratios of small integer numbers.
Howard’s measurements provide evidence that singers in
fact use non-tempered intonation and that they consequen-
tially shift their intonation as hypothesized. He even argues
“that conductors who have a desire to correct overall into-
nation drift for its own sake in an a cappella performance
[...] may be misguided” [12] if the piece contains consid-
erable modulation.

This paper contributes a novel method called
Transposition-Aware Dynamic Time Warping (TA-DTW)
aiming at making an alignment between a symbolic score
and a corresponding audio recording. TA-DTW is able to
handle pitch drift (in contrast to a constant transposition),
which makes it particularly useful to synchronize choir
and singing recordings. Furthermore, it may be used as a
drop-in replacement for existing solutions that can handle
“only” fixed transpositions, which are commonly encoun-
tered in transcriptions of a piece for another instrument
and historically informed performance practice.

The structure of this paper as follows: Section 2 de-
scribes the feature design, derived from Harmonic Pitch
Class Profiles. Section 3 introduces TA-DTW as a 3-
dimensional DTW based on the aforementioned features,
followed by an evaluation, conclusions and future work in
Sections 4 and 5. Related work is discussed in comparison
to our approach within the individual sections.

2. ROBUST PITCH CLASS FEATURES IN THE
PRESENCE OF PITCH DRIFT

Audio-to-Score Alignment algorithms that are based on
DTW generally use pitch features such as chroma fea-
tures [13,15] as an intermediate data representation format
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Figure 1. Chromagrams showing logarithmic sine sweeps
from C4 to B4. Left: Canonical CQT chromas. Right:
HPCPs with frame-wise tuning frequency estimation as
used in this paper.

between the symbolic score and corresponding audio data.
Chroma features are 12-dimensional vectors that describe,
to a certain extent, tonality of a specific and usually very
short sequence of music. They are obtained by measur-
ing the relative intensity of each of the 12 pitch classes (C,
C], D, ..., B) of the equal-tempered scale within an anal-
ysis frame. While this undoubtedly reduces the informa-
tional content in relation to tonal characteristics, this very
reduction makes chroma features robust to changes in in-
strumentation and timbre. They still capture melodic and
harmonic characteristics of music and thus provide a useful
abstraction for various tasks within the music information
retrieval research area.

For symbolic scores chroma features can be computed
directly by mapping the pitch of the individual notes to
their corresponding element in the chroma vector [13]. In
case of audio data they are mostly computed using the Fast
Fourier Transform (FFT) or the specialized Constant Q
Transform (CQT) [3]. The latter is especially useful for
western music since it allows for 1-to-1 mapping of filter
bins to MIDI pitches. CQT can be expressed as a filter
bank with fixed center frequencies for all filters, defined
by a given reference pitch. In the presence of pitch drift,
however, this reference pitch and thus the filter center fre-
quencies have to be dynamically adapted to get high selec-
tivity between adjacent semitones. Figure 1 (left) shows
the effect of fixed center frequencies for a continuous sine
sweep: The resulting chromagram appears to be “fuzzy”
with leakage between semitones. For music that is more
complex inaccurate center frequencies can lead to practi-
cally unusable chroma features.

2.1 Tuning Frequency Estimation

One way of dealing with these inaccuracies is the usage
of multiple filter banks with slightly diverging reference
pitch [18] and picking the best fit for each frame. A more
general solution, however, is the use of tuning frequency
estimation. Gnann et al. [8] proposed a real-time estima-
tion algorithm, specifically addressing pitch drift in choir
music. While their method of reducing the quadratic tun-
ing deviation serves the purpose of having an active “pitch
drift warning system” for rehearsals quite well, it does not
allow for a time resolution down to a single analysis frame.

The same problem arises in an approach by Dressler [7]
based on circular statistics: These methods calculate the
tuning frequency iteratively resulting in an initial delay.
Such behavior is unfavorable for DTW algorithms that rely
on greatest feature accuracy possible in each frame. Both
tuning estimation approaches were evaluated by Degani et
al. [6] together with a third option that utilizes Harmonic
Pitch Class Profiles (HPCP) [9, 29] and allows for the cal-
culation of the deviation from reference pitch within a sin-
gle analysis frame [11]. As all three tuning estimation
methods demonstrated similar performance, we will focus
on HPCPs and their superior time resolution.

HPCPs are closely related to chroma features but differ
in one important aspect: They are tuning independent by
definition, so that the reference frequency is not explicitly
defined. The result of HPCP computation is an octave-
independent histogram with 12, 24, 36, or even more bins,
depending on the needed frequency resolution as shown in
Figure 2. For a constant quality spectrum C with N bins
in total and 36 per octave, the value of the k-th bin of a
36-bin HPCP H is calculated by

Hk =

N/36∑
n=0

|Ck+36n| ∀k ∈ [1 : 36]. (1)

In order to estimate the tuning deviation, each HPCP
frame is processed with a peak detection algorithm. Mul-
tiple peaks might be found in such a frame and the global
deviation from an assumed reference pitch can be averaged
over the individual deviations of the peaks.

In this paper we decided to use quadratic interpolation
as described by Smith in [22] with 36-bin HPCPs. How-
ever, we do not look for the peaks explicitly but rather ac-
cumulate the magnitudes of each semitone’s 3 correspond-
ing bins:

mk =
11∑

n=0

H3n+k ∀k ∈ {1, 2, 3}. (2)

We assume thatm2 is the highest of these values, otherwise
we would have shifted the values ofm cyclically by a value
s ∈ {−1, 0, 1}. To be consistent with [22] and increase
readability, we define α = m1, β = m2, and γ = m3.
Next, we fit a parabola to these magnitudes, i.e. through
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Figure 2. Harmonic Pitch Class Profile with 36 bins per
octave for a single analysis frame.
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Figure 3. Parabola that is fitted to the bins’ magnitudes α,
β, and γ.

(−1, α), (0, β), and (1, γ) as shown in Figure 3. (The bins
have been arbitrarily renumbered about the estimated peak
that is represented by the parabola’s vertex.)

Looking at the general formula for a parabola

y(x) = a(x− p)2 + b (3)

we can directly tell the location of the vertex: The center
point p gives us the error offset of our actual pitch in bins,
while the amplitude y(p) = b equals the peak amplitude.
All three magnitudes can be calculated as follows:

α = ap2 + 2ap+ a+ b,

β = ap2 + b,

γ = ap2 − 2ap+ a+ b

(4)

The peak location in (fractional) bins is given by

p =
1

2

α− γ
α− 2β + γ

∈
[
−1

2
,

1

2

]
(5)

and the estimated peak magnitude gets calculated by:

y(p) = β − 1

4
(α− γ)p. (6)

2.2 Feature Computation

Knowing the global tuning deviation p, we can calculate
the estimated peak magnitude for every pitch class (from
its 3 bins) of our HPCP H via Equation 6 with s being the
potential cyclic shifting done after Equation 2 and

α = H3k−2−s

β = H3k−1−s

γ = H3k−s

∀k ∈ [1 : 12]. (7)

This step effectively reduces the 36 bins per octave to 12
bins per octave, which makes the resulting HPCPs compa-
rable to standard chroma features. To decrease differences
in dynamics between the features, each HPCP vector is
normalized to have length 1. We obtain a chromagram as
exemplary shown in Figure 1 (right) by repeating this for
the entire audio recording.

If the estimated tuning is off by approximately −0.5 or
+0.5 bins and the actual tuning of the recording fluctuates,
the resulting features can be off by 1 semitone in either di-
rection. This can be considered a local “unintended trans-
position” and will be handled in the next section.

3. TRANSPOSITION-AWARE DYNAMIC TIME
WARPING

Support for changing transpositions over time is very lim-
ited in current alignment systems. In this context the
term transposition covers intended alterations in pitch, e.g.
“baroque pitch” or simply singing in a different key, as
wells as unintended pitch drift that exceeds the scope of a
semitone. Most alignment systems, such as Antescofo [4]
pass the problem of unknown transpositions on to the user
and force them to adapt their symbolic score accordingly
by themselves. Niedermayer [19] solves this step by com-
puting all possible transpositions and picking the best fit.
This is similar to a work by Müller [16] that determines
the best transpositions for each individual pitch feature,
though the results are not used for audio-to-score align-
ment. All these systems assume that the global tuning does
not change over time and has to be estimated only once at
the beginning, except Arzt [2]: He uses fingerprinting to
determine a musical piece, the current position within that
piece, and its transposition before the actual alignment.
Hence, the system is theoretically able to “recover” from
unforeseen pitch changes after some time but is (for now)
restricted to piano music and does not allow for continuous
alignment in such cases.

We propose an extended version of DTW called
Transposition-Aware Dynamic Time Warping (TA-DTW)
that allows for continuous changes in transposition during
alignment. It shares conceptual ideas with the multidimen-
sional DTW presented in [28] but focuses on special prop-
erties of chroma features and the nature of musical trans-
positions. The remainder of this section presupposes basic
knowledge of the original DTW algorithm. A comprehen-
sive overview can be found in [15].

3.1 Distance Calculation & Transpositions

In order to compute the alignment we need the distances
between the vectors from the score and the audio HPCP
vectors as computed in Section 2. Various metrics have
been used to calculate these distances such as the Eu-
clidean distance (2-norm distance) [13, 15] and Manhat-
tan distance (1-norm distance) [2, 15]. For computational
complexity reasons, however, we opted for the Cosine Dis-
tance 1 which is defined for two nonzero vectors a and b
as

c(a,b) = 1− cos(θ) = 1− a · b
‖a‖2 · ‖b‖2

(8)

and represents the angular distance ranging from 0 (equal
orientation) to 2 (diametrically opposed). Taking into ac-
count that our HPCP features already have the length 1, the
denominator can be reduced to 1 and leaves us with

c(a,b) = 1− a · b = 1−
n∑

i=1

ai · bi. (9)

This operation can be extended to two matrices with the
same number of rows and unit length columns. It results in

1 As the cosine distance does not obey the triangle inequality it is
strictly speaking not a proper distance metric, see [21]. Nevertheless,
it can be used as such in this particular context.
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a matrix that contains distances between all combinations
of column vectors of these matrices (1 denotes the N ×M
matrix of ones):

c(A,B) = 1−ATB (10)

To make use of this in our context we will represent our
sequence of HPCP vectors a1,a2, . . . ,aN from the score
as a matrix 2 :

A =


a1,1 a1,2 . . . a1,N
a2,1 a2,2 . . . a2,N

...
...

. . .
...

a12,1 a12,2 . . . a12,N

 (11)

The same applies to the sequence of HPCP vectors B =
[b1,b2, . . . ,bM ] from the audio recording.

Cyclically shifting the elements of a pitch class vector
by a value t equals transposing by t semitones as pointed
out by Goto [10]. We make use of this property and com-
pute all 11 possible transpositions t ∈ [1 : 11] for the
score HPCP matrix A. Shifting the rows of A can be done
by multiplying the cyclic permutation matrix P ∈ R12×12

with A:

At = (Pt)A ,P =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 (12)

Finally, we calculate all distances for all transpositions by

c(A,B, t) = 1− (At)
TB. (13)

3.2 Accumulated Multidimensional Cost Matrix

Throughout this section we will express the results of
Equation 13 as the cost matrix C ∈ RN×M×12.

With C we can compute the accumulated cost matrix
D ∈ RN×M×12 by means of dynamic programming. Ad-
ditionally to steps in the n×m plane, as performed in
the canonical DTW, steps in the transposition dimension
t need to be considered. Moving a semitone cyclically
downwards and upwards along the t ∈ [0 : 11] axis will
be defined as

t− = (t− 1) mod 12

t+ = (t+ 1) mod 12
(14)

which allows arbitrary transposition changes that may even
exceed one octave. We will restrict the possible transpo-
sition changes between two adjacent analysis windows to
one semitone in order to keep the underlying math concise
in this paper. While this seems reasonable in practice, too,
it is not an inherent restriction of the algorithm. Figure 4
visualizes the resulting valid steps inside the accumulated
cost matrix D for a possible alignment path.

2 Music analysis frameworks such as librosa or madmom already use
such a representation anyway.

t
n

m

Figure 4. Valid steps inside the accumulated multidimen-
sional cost matrix D.

The accumulated multidimensional cost matrix will be
calculated as follows:

Dn,m,t =



∑m
k=1 C1,k,t if n = 1∑n
k=1 Ck,1,t if m = 1

min(steps)+

w(∆t)Cn,m,t

otherwise

(15)

The (recursive) steps for computing D are defined as

steps =



Dn, m−1, t

Dn−1, m, t

Dn−1, m−1, t

Dn, m−1, t−

Dn−1, m, t−

Dn−1, m−1, t−

Dn, m−1, t+

Dn−1, m, t+

Dn−1, m−1, t+



. (16)

Steps along the t-axis alone are not allowed since it is im-
possible to calculate D under these conditions. The factor
w(∆t) is a weighting factor for penalizing relative move-
ments along the t axis. An increased weight has shown
to stabilize the algorithm by reducing accidental transposi-
tion changes for special cases, e.g. monophonic passages,
where regular pitch changes might look equivalent to trans-
positions.

3.3 Backtracking

In order to compute the warping path p we use a backtrack-
ing algorithm. The starting point pL for the recursive com-
putation is the point along the (N,M, t)-axis in D with the
least costs:

T = arg mint (DN,M,t)

pL = (N,M, T ) .
(17)
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Feature Algorithm Drift
Percentage of events with absolute misalignment error

≤0.15s ≤0.20s ≤0.25s ≤0.30s ≤0.40s ≤0.50s ≤1.00s
Chroma DTW 83.46% 87.75% 89.72% 90.87% 92.04% 92.67% 93.99%
HPCP DTW 86.28% 91.09% 93.23% 94.39% 95.75% 96.36% 97.64%
HPCP TA-DTW 86.52% 91.69% 93.96% 95.18% 96.40% 96.92% 97.89%

Chroma DTW X 20.51% 23.00% 24.61% 25.98% 28.35% 30.23% 36.53%
HPCP TA-DTW X 79.89% 88.35% 92.09% 93.97% 95.56% 96.28% 97.31%

Table 1. Results of the audio-to-score alignment evaluation. Best results are emphasized.

Now we move recursively through the accumulated cost
matrix:

p`−1 =



arg min

D1,m−1,t

D1,m−1,t−

D1,m−1,t+

 if n = 1 and m ≥ 2

arg min

Dn−1,1,t

Dn−1,1,t−

Dn−1,1,t+

 if m = 1 and n ≥ 2

arg min(steps) if n,m ≥ 2
(18)

The resulting 3-dimensional warping path can be orthogo-
nally projected onto different planes as shown in Figure 5:

n×m corresponds to the final alignment between the in-
put feature matrices A and B.

m× t gives information about the location of transposi-
tion changes in the audio data in relation to the score.
The “local unintended transpositions” as outlined in
Section 2.2 are clearly visible.

n× t shows accordingly these transposition change posi-
tions in the score.

The transposition changes in the planes n × t and m × t
can be refined by adding the center frequency offsets p as
calculated in Section 2 for each audio HPCP vector. This
allows for computing continuous pitch drift data.

n

n

t

t

m

m

Figure 5. Orthogonal projections of the 3-dimensional
warping path onto the n× t, m× t, and n×m plane.

4. EVALUATION

We evaluated the alignment accuracy of our TA-DTW with
HPCPs in comparison with the canonical DTW and plain
CQT-based chroma features. Due to the lack of datasets
with choral music and corresponding beat-level annota-
tions, we generated the evaluation data from the complete
MusicNet dataset [26]. It consists of almost 1.3 million
note events (that were manually verified by expert anno-
tators) for approximately 34 hours of chamber music per-
formances with various instrumentations. All material is
available in 44.1 kHz sampling rate. Although a cappella
music is not part of the dataset, we considered it meaning-
ful for evaluation due to its substantial scope. Since the
pieces of the dataset present no significant pitch drift, we
extracted all recordings to raw PCM files and introduced
continuously changing random artificial pitch drift.

This was done by loading each of the 330 pieces
into a Digital Audio Workstation (DAW) and generating
100 equidistantly distributed random pitch change mark-
ers along the time axis for each piece. The amount of in-
troduced pitch drift was kept within the range of ±4 semi-
tones and followed brownian motion to introduce corre-
lation with previous markers. Between the markers, the
pitch deviation was linearly interpolated. A randomization
as such is a reasonably realistic simulation according to
the pitch drift model for a cappella music of Mauch et al.
in [14].

Based on the evaluation methodology of Cont et al. in
[5] for audio-to-score alignment, the absolute alignment
errors in seconds for note onsets were calculated. 1024
samples per window and no overlap for the audio data were
used. This equals a feature rate of∼ 43 vectors per second
or a window length of approximately 23ms. The results
are shown in Table 1. We found w(∆t) = 6.5 to be a
suitable penalty factor for changes along the t-axis in D,
see Equation 15.

In the absence of any pitch drift, we found that using
HPCPs showed superior performance in contrast to plain
chroma features, regardless of whether the calculation of
the alignment was done using DTW or our proposed TA-
DTW. This can be explained by slight deviations in tun-
ing frequency of the recordings that are compensated in
the computation of HPCPs. Using them as calculated in
this paper introduces occasional errors in the form of “lo-
cal transpositions” as explained in Section 2.2. Such errors
can be minimized by switching from DTW to TA-DTW,
which further improves the alignment.
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For music with drifting pitch our proposed method
shows comparable results while the “classic” approach
failed for the majority of note onsets. We assumed that the
remaining∼ 30% are based on the limited maximum pitch
drift in our test data, resulting in this amount of data effec-
tively being not or only marginally pitched. This hypoth-
esis was validated by exemplarily computing the align-
ment with plain DTW using audio files that exhibit con-
stant pitch drift >1 semitone. These cases showed results
<1% for all shown time intervals.

The drawbacks of this approach are the increased mem-
ory and computation requirements. TA-DTW requires a
cost matrix of dimension N ×M × 12, which is 12 times
larger compared to the 2-dimensional cost matrix for DTW.
Computing the warping path with TA-DTW involves com-
putingN×M×12×9 path scores. This is 36 times greater
in contrast to M × N × 3 in DTW. We have empirically
verified these numbers. For music recordings with a length
that exceeds several minutes, the algorithm demands well-
equipped hardware in terms of memory.

5. CONCLUSIONS & FUTURE WORK

In this paper we presented a DTW-based method to com-
pute audio-to-score alignment for audio data that suffers
from drift in global pitch throughout the recording. To this
end we explained the computation of suitable pitch fea-
tures that allow for “sharper” distinction between adjacent
notes on the pitch scale. We used these features in con-
junction with a DTW algorithm that we extended to sup-
port static and dynamically changing transpositions. A fi-
nal evaluation proved the robustness and effectiveness of
our approach.

Apart from normalizing our pitch features to have
length 1, we did not process them any further. This en-
sures that they can be used as basis for additional feature
enhancements [17]. Similarly, this applies to our DTW ex-
tension: Since the Transposition-Aware DTW is conceptu-
ally very close to the original DTW algorithm, many vari-
ations and improvements such as varying step size con-
ditions, local weights, or global constraints [15] can be
adapted easily.

Potential on-line variants of TA-DTW could greatly re-
duce the computational complexity by only calculating
cost values for t± 1 for the current audio window.
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ABSTRACT

The lack of data tends to limit the outcomes of deep learn-
ing research, particularly when dealing with end-to-end
learning stacks processing raw data such as waveforms.
In this study, 1.2M tracks annotated with musical la-
bels are available to train our end-to-end models. This
large amount of data allows us to unrestrictedly explore
two different design paradigms for music auto-tagging:
assumption-free models – using waveforms as input with
very small convolutional filters; and models that rely on
domain knowledge – log-mel spectrograms with a convo-
lutional neural network designed to learn timbral and tem-
poral features. Our work focuses on studying how these
two types of deep architectures perform when datasets
of variable size are available for training: the MagnaTa-
gATune (25k songs), the Million Song Dataset (240k
songs), and a private dataset of 1.2M songs. Our experi-
ments suggest that music domain assumptions are relevant
when not enough training data are available, thus show-
ing how waveform-based models outperform spectrogram-
based ones in large-scale data scenarios.

1. INTRODUCTION

One fundamental goal in music informatics research is to
automatically structure large music collections. The music
audio tagging task consists of automatically estimating the
musical attributes of a song – including: moods, language
of the lyrics, year of composition, genres, instruments, har-
mony, or rhythmic traits. Thus, tag estimates may be use-
ful to define a semantic space that can be advantageous for
automatically organizing musical libraries.

Many approaches have been considered for this task
(mostly based on feature extraction + model [1, 22, 26]),
with recent publications showing promising results using
deep architectures [5, 9, 14, 21]. In this work we confirm
this trend by studying how two deep architectures con-
ceived considering opposite design strategies (using do-
main knowledge or not) perform for several datasets – with
one of the datasets being of an unprecedented size: 1.2M
songs. Provided that a sizable amount of data is avail-
able for that study, we investigate the learning capabili-

c© Jordi Pons, Oriol Nieto, Matthew Prockup, Erik
Schmidt, Andreas Ehmann, Xavier Serra. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Jordi Pons, Oriol Nieto, Matthew Prockup, Erik Schmidt, Andreas
Ehmann, Xavier Serra. “END-TO-END LEARNING FOR MUSIC AU-
DIO TAGGING AT SCALE”, 19th International Society for Music Infor-
mation Retrieval Conference, Paris, France, 2018.

ties of these two architectures. Specifically, we investi-
gate whether the architectures based on domain knowledge
overly constrain the solution space for cases where large
training data are available – in essence, we study if certain
architectural choices (e.g., using log-mel spectrograms as
input) can limit the model’s capabilities to learn from data.
The main contribution of this work is to show that little to
no model assumptions are required for music auto-tagging
when operating with large amounts of data.

Section 2 discusses the main deep architectures we
identified in the audio literature, section 3 describes the
datasets used for this work, section 4 presents the architec-
tures we study, and section 5 provides discussion about the
results with conclusions drawn in section 6.

2. CURRENT DEEP ARCHITECTURES

In order to facilitate the discussion around the current au-
dio architectures, we divide deep learning models into two
parts: front-end and back-end – see Figure 1. The front-
end is the part of the model that interacts with the input
signal in order to map it into a latent-space, and the back-
end predicts the output given the representation obtained
by the front-end. In the following, we present the main
front- and back-ends we identified in the literature.

Figure 1. Deep learning pipeline.

Front-ends. These are generally comprised of con-
volutional neural networks (CNNs) [5, 9, 20, 21, 27],
since these can learn efficient representations by sharing
weights 1 along the signal. Front-ends can be divided into
two groups depending on the used input signal: wave-
forms [9, 14, 27] or spectrograms [5, 20, 21]. Further, the
design of the filters can be either based on domain knowl-
edge or not. For example, one leverages domain knowl-
edge when a front-end for waveforms is designed so that
the length of the filter is set to be as the window length of a
STFT [9]. Or for a spectrogram front-end, it is used verti-
cal filters to learn timbral representations [12] or horizontal
filters to learn longer temporal cues [25]. Generally, a sin-
gle filter shape is used in the first CNN layer [5, 9, 12, 25],
but some recent works report performance gains when us-
ing several filter shapes in the first layer [4, 18–21, 27].
Using many filters promotes a richer feature extraction in
the first layer, and facilitates leveraging domain knowl-
edge for designing the filters’ shape. For example: a

1 Which determine the learned feature representations.
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waveform front-end using many long filters (of different
lengths) can be motivated from the perspective of a multi-
resolution time-frequency transform 2 [27]; or since it is
known that some patterns in spectrograms are occurring
at different time-frequency scales, one can intuitively in-
corporate many (different) vertical and/or horizontal filters
in a spectrogram front-end [18–21]. To summarize, using
domain knowledge when designing models allows us to
naturally connect the deep learning literature with previ-
ous signal processing work. On the other hand, when do-
main knowledge is not used, it is common to employ a deep
stack of small filters, e.g.: 3×1 as in the sample-level front-
end used for waveforms [14], or 3×3 filters used for spec-
trograms [5]. These models based on small filters make
minimal assumptions over the local stationarities of the
signal, so that any structure can be learned via hierarchi-
cally combining small-context representations. These ar-
chitectures with small filters are flexible models able to po-
tentially learn any structure given enough depth and data.

Back-ends. Among the different back-ends used in the
audio literature, we identified two main groups: (i) fixed-
length input back-end, and (ii) variable-length input back-
end. The generally convolutional nature of the front-end
allows it to process different input lengths. Therefore, the
back-end unit can adapt a variable-length feature map to a
fix-sized output. The former group of models (i) assume
that the input will be kept constant – examples of those
are front-ends based on feed-forward neural-networks or
fully-convolutional stacks [5,9]. The second group (ii) can
deal with different input-lengths since the model is flexi-
ble in at least one of its input dimensions – examples of
those are back-ends using temporal-aggregation strategies
such as max-pooling, average-pooling, attention models or
recurrent neural networks [23]. Given that songs are gen-
erally of different lengths, these types of back-ends are
ideal candidates for music processing. However, despite
the different-length nature of music, many works employ
fixed-length input back-ends (group i) since these architec-
tures tend to be simpler and perform well [5, 9, 21].

3. DATASETS
We study how different deep architectures for music auto-
tagging perform for 3 music collections of different sizes:

1) The MagnaTagATune (MTT) dataset is of≈ 26k mu-
sic audio clips of 30s [11]. Predicting the top-50 tags of
this dataset is a popular benchmark for auto-tagging.

2) Although the Million Song Dataset (MSD) name in-
dicates that 1M songs are available [2], audio files with
proper tag annotations (top-50 tags) are only available
for ≈ 240k previews of 30s. This dataset constitutes the
biggest public dataset available for music auto-tagging,
making these data highly appropriate for benchmarking.

3) A private dataset consisting of 1M songs for training,
100k for validation, and 100k for test 3 is available for this
study. The 1.2M-songs dataset has 139 track-level human-
expert annotations that can be summarized as follows:

2 The Constant-Q Transform [3] is an example of such transform.
3 Test & validation sets are kept the same throughout the experiments

for a fair evaluation. All used partitions are stratified and artist-filtered.

· Meter tags denote different sorts of musical meters
(e.g., triple-meter, cut-time, compound-duple, odd).
· Rhythmic feel tags denote rhythmic interpretation

(e.g., swing, shuffle, back-beat strength) and elements of
rhythmic perception (e.g., syncopation, danceability).
· Harmonic tags: major, minor, chromatic, etc.
·Mood tags express the sentiment of a music audio clip

(e.g., if the music is angry, sad, joyful).
· Vocal tags denote the presence of vocals and timbral

characteristics of it (e.g., male, female, vocal grittiness).
· Instrumentation tags denote the presence of instru-

ments (e.g., piano) and their timbre (e.g., guitar distortion).
· Sonority tags detail production techniques (e.g., stu-

dio, live) and overall sound (e.g., acoustic, synthesized).
· Basic genre tags: jazz, rock, rap, latin, disco, etc.
· Subgenre tags: jazz (e.g., cool, fusion, hard bop),

rock (e.g., light, hard, punk), rap (e.g., east coast, old
school), world music (e.g., cajun, indian), classical music
(e.g., baroque period, classical period), etc.

Other large (music) audio datasets exist: the Free Music
Archive (FMA: ≈106k songs) [8] and Audioset (≈2.1M
audios) [10]. Since previous works mainly used the MTT
and MSD [5, 14], we employ these datasets to assess the
studied models with public data. Despite our interest in
using FMA, for brevity, we restrict our study to 3 datasets
that already cover a wide range of different sizes. Finally,
Audioset is not used since most of its content is not music.

4. THE ARCHITECTURES UNDER STUDY
After an initial exploration of the different architectures in-
troduced in section 2, we select two models based on op-
posite design paradigms: one for processing waveforms,
with a design that does minimal assumptions over the task
at hand; and another for spectrograms, with a design that
heavily relies on musical domain knowledge. Our goal
is to compare these two models for providing insights in
whether domain knowledge is required (or not) for design-
ing deep learning models. This section provides discussion
around our architectural choices and introduces the basic
configuration setup – which is also accessible online. 4

The waveform model was selected after observing that
the sample-level front-end (using a deep stack of 3×1 fil-
ters) was remarkably superior to the other waveform-based
front ends – as shown in the original paper [14]. This re-
sult is particularly compelling because this front-end does
not rely on domain-knowledge for its design. Note that
raw waveforms are fed to the model without any pre-
processing, and the small filters considered for its design
make no strong assumptions over the most informative lo-
cal stationarities in waveforms. Therefore, the sample-
level can be seen as a problem agnostic front-end that has
the potential to learn any audio task provided that enough
depth and data are available. Given that a large amount
data is available for this study, the sample-level front-end
is of particular interest due to its strong learning potential:
its solution space is not constrained by severe architectural
choices relying on domain knowledge.

4 https://github.com/jordipons/music-audio-tagging-at-scale-models
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Figure 2. Bottom-left – back-end. Top-left – waveform front-end. Right – spectrogram front-end. Definitions – M’ stands
for the feature map’s vertical axis, BN for batch norm, and MP for max-pool.

On the other hand, when experimenting with spectro-
gram front-ends, we found domain knowledge intuitions
to be valid guides for designing deep architectures. For
example, front-ends based on (i) many vertical and hori-
zontal filters in the first layer were consistently superior to
front-ends based on (ii) a single vertical filter – as shown in
recent publications [4, 18–20]. Note that the former front-
ends (i) can learn spectral and (long) temporal represen-
tations already in the first layer – which are known to be
important musical cues; while the latter (ii) can only learn
spectral representations. Moreover, we observed that front-
ends based on a deep stack of 3×3 filters were achieving
equivalent performances to the former front-end (i) when
input segments were shorter than 10s – as noted in the lit-
erature [21]. But when considering longer inputs (which
yielded better performance), the computational price of
this deeper model increases: longer inputs implies hav-
ing larger feature maps in every layer and therefore, more
GPU memory consumption. For that reason, we refrained
from using a deep stack of 3×3 filters as a front-end – be-
cause our 12GBs of VRAM were not enough to input 15s
of audio when using a back-end. Hence, making use of
domain knowledge also provides guidance for minimizing
the computational cost of the model – since by using a sin-
gle layer with many vertical and horizontal filters, one can
efficiently capture the same receptive field without paying
the cost of going deep. Finally, note that front-ends using
many vertical and horizontal filters in the first layer are an
example of deep architectures relying on (musical) domain
knowledge for their design.

After considering the previous discussion, we select the
sample-level front-end as main part of our assumption-free
model for waveforms; and we use a spectrogram front-end
with many vertical and horizontal (first-layer) filters for the
model designed considering domain knowledge. Experi-
ments below share the same back-end, which enables a fair
comparison among the previously selected front-ends. Un-
less otherwise stated, the following specifications are the
ones used for the experiments – throughout the document,
we refer to these specifications as the basic configuration:

Shared back-end. It consists of three CNN layers (with
512 filters each and two residual connections), two pooling
layers and a dense layer – see Figure 2 (Bottom-left). We
introduced residual connections in our model to explore
very deep architectures, such that we can take advantage

of the large data available. Although adding more residual
layers did not drastically improve our results, we observed
that adding these residual connections stabilized learning
while slightly improving performance [16]. The used 1D-
CNN filters [9] are computationally efficient and shaped
such that all extracted features are considered across a rea-
sonable amount of temporal context (note the 7×M’ filter
shapes, representing time×all features). We also make a
drastic use of temporal pooling: firstly, down-sampling x2
the temporal dimensionality of the feature maps; and sec-
ondly, by making use of global pooling with mean and max
statistics. The global pooling strategy allows for variable
length inputs to the network and therefore, such a model
can be classified as a “variable-length input” back-end. Fi-
nally, a dense layer with 500 units connects the pooled fea-
tures to a sigmoidal output.

Waveform front-end. It is based on a sample-level
front-end [14] composed of seven: 1D-CNN (3×1 filters),
batch norm, and max pool layers – see Figure 2 (Top-left).
Each layer has 64, 64, 64, 128, 128, 128 and 256 filters.
For the 1.2M-songs dataset, we use a model with more ca-
pacity having nine layers with 64, 64, 64, 128, 128, 128,
128, 128, 256 filters. By hierarchically combining small-
context representations and making use of max pooling,
the sample-level front-end yields a feature map for an au-
dio segment of 15s (down-sampled to 16kHz) which is fur-
ther processed by the previously described back-end.

Spectrogram front-end. Firstly, audio segments are
converted to log-mel magnitude spectrograms (15 seconds
and 96 mel bins [17]) and normalized to have zero-mean
and unit-var. Secondly, we use vertical and horizontal fil-
ters explicitly designed to facilitate learning the timbral
and temporal patterns present in spectrograms [19–21].
Note in Figure 2 (Right) that the spectrogram front-end
is a single-layer CNN with many filter shapes that are
grouped into two branches [19]: (i) top branch – tim-
bral features [21]; and (ii) lower branch – temporal fea-
tures [20]. The top branch is designed to capture pitch-
invariant timbral features that are occurring at different
time-frequency scales in the spectrogram. Pitch invariance
is enforced via enabling CNN filters to convolve through
the frequency domain, and via max-pooling the feature
map across its vertical axis [21]. Note that several fil-
ter shapes are used to efficiently capture many different
time-frequency patterns: 7×86, 3×86, 1×86, 7×38, 3×38
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1.2M-songs train ROC PR
Models size AUC AUC

√
MSE

Baseline 1.2M 91.61% 54.27% 0.1569
Waveform 1M 92.50% 61.20% 0.1465
Spectrogram 1M 92.17% 59.92% 0.1473
Waveform 500k 91.16% 56.42% 0.1504
Spectrogram 500k 91.61% 58.18% 0.1493
Waveform 100k 90.27% 52.76% 0.1554
Spectrogram 100k 90.14% 52.67% 0.1542

Table 1. 1.2M-songs average results (3 runs) when using
different training-set sizes. Baseline: GBTs+features [22].

and 1×38 5 – to facilitate learning, e.g.: kick-drums (with
small-rectangular filters of 7×38 capturing sub-band in-
formation for a short period of time), or string ensemble
instruments (with long vertical filters of 1×86 which are
capturing timbral patterns spread in the frequency axis).
The lower branch is meant to learn temporal features, and
is designed to efficiently capture different time-scale repre-
sentations by using several long filter shapes [20]: 165×1,
128×1, 64×1 and 32×1. 6 These filters operate over an en-
ergy envelope (not directly over the spectrogram) obtained
via mean-pooling the frequency-axis of the spectrogram.
By computing the energy envelope in that way, we are
considering high and low frequencies together while min-
imizing the computations of the model – note that no fre-
quency/vertical convolutions are performed, but 1D (tem-
poral) convolutions. Thus, domain knowledge is also pro-
viding guidance to minimize the computational cost of the
model. The output of these two branches is merged, and
the previously described back-end is used for going deeper.
For further details, see its online implementation.4

Parameters. 50% dropout before every dense layer,
ReLUs as non-linearities, and our models are trained
with SGD employing Adam (with an initial learning rate
of 0.001) as optimizer. We minimize the MSE for the
1.2M-songs dataset, but we minimize the cross entropy for
the other datasets. During training our data are converted
to audio patches of 15s, but during prediction one aims to
consider the whole song. To this end, several predictions
are computed for a song (by a moving window of 15s) and
then averaged. Although our models are capable of pre-
dicting tags for variable-length inputs, we use fixed length
patches since in preliminary experiments we observed that
predicting the whole song at once yielded worse results
than averaging several patch predictions. In future work
we aim to further study this behavior, to find ways to ex-
ploit the fact that the whole song is generally available.

5. EXPERIMENTAL RESULTS
5.1 1.2M-songs dataset

Experimental setup. As a baseline, we use a system
consisting of a music feature extractor (in essence: tim-
bre, rhythm, and harmony descriptors) and a model based
on gradient boosted trees (GBT) for predicting each of the
tags [22]. By predicting each tag individually, one aims

5 Each filter shape has 16, 32, 64, 16, 32 and 64 filters, respectively.
6 Each filter shape has 16, 32, 64 and 128 filters, respectively.

Figure 3. Linear regression fit on the 1.2M-songs results.

to turn a hard problem into multiple (hopefully simpler)
problems. A careful inspection of the dataset reveals that,
among tags, two different data distributions dominate the
annotations: (i) tags with bi-modal distributions, where
most of the annotations are zero, which can be classified;
and (ii) tags with pseudo-uniform distributions that can be
regressed. 7 A regression tag example is acoustic, which in-
dicates how acoustic a song is – from zero to one, zero
being an electronic music song and one a string quartet.
And a classification tag example can be any genre – for
example, most songs will not be cataloged as rap since
the dataset is large and its taxonomy contains dozens of
genres. We use two sets of performance measurements:
ROC-AUC 8 and PR-AUC 8 for the classification tags, and
error (

√
MSE 8 ) for the regression tags. ROC-AUC can

lead to over-optimistic scores in cases where data are un-
balanced [7]; given that classification tags are highly un-
balanced, we also consider the PR-AUC metric since it is
more indicative than ROC-AUC in these cases [7]. For
ROC-AUC and PR-AUC, the higher the score the better –
but for

√
MSE, the lower the better. Studied spectrogram

and waveform models are set following the basic configu-
ration – and are composed of 5.9M and 5.5M parameters,
respectively. Given the unprecedented size of the dataset,
we focus on how these models scale when trained with dif-
ferent amounts of data: 100k, 500k, or 1M songs. Average
results (across 3 runs) are shown in Table 1 and Figure 3.

Quantitative results. Training the models with 100k
songs took a few days, with 500k songs one week, and
with 1M songs less than two weeks. The deep learning
models trained with 1M tracks achieve better results than
the baseline in every metric. However, the deep learning
models trained with 100k tracks perform worse than the
baseline. This result confirms that deep learning models
require large datasets to clearly outperform strong methods
based on feature-design – although note that large datasets
are generally not available for most audio tasks. Moreover,
the biggest performance improvement w.r.t. the baseline is
seen for PR-AUC, which provides a more informative pic-
ture of the performance when the dataset is unbalanced [7].
In addition, the best performing model is based on the
waveform front-end – being capable of outperforming the
spectrogram model in every metric when trained with 1M
songs. This result confirms that waveform sample-level
front-ends have a great potential to learn from large data,
since their solution space is not constrained by any se-

7 Note that all output nodes are sigmoidal – i.e., we treat classification
tags as regression tags for simplicity’s sake.

8 ROC: Receiver Operating Characteristic. PR: Precision Recall.
AUC: Area Under the Curve. MSE: Mean Squared Error.
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vere architectural choice. On the other hand, the architec-
tural choices defining the spectrogram front-end might be
constraining the solution space. While these architectural
constraints are not harmful when training data are scarce
(as for the 100k/500k songs results or in prior works [24]),
such a strong regularization of the solution space may limit
the learning capacity of the model in scenarios where large
training data are available – as for the 1M songs results.
One can observe this in Figure 3, where we fit linear mod-
els to the obtained results to further study this behavior.
When 100k training songs are available: trend lines show
that spectrogram models tend to perform better. However,
when 1M training songs are available: the lines show that
waveform models outperform the spectrogram ones. It is
worth mentioning that the observed trends are consistent
throughout metrics: ROC-AUC, PR-AUC, and

√
MSE.

Finally, note that there is room for improving the models
under study – e.g.: one could address the data imbalance
problem during training, or improve the back-end via ex-
ploring alternative temporal aggregation strategies.

Qualitative results. Since it is the first report of a deep
music tagging model trained with such a large dataset, we
also perceptually assess the quality of the estimates. To this
end, we compared the predictions of one of our best per-
forming models to the predictions of the baseline, and to
the human-annotated ground-truth tags. Some interesting
examples identified during this qualitative experiment are
available online. 9 First, we observed that the deep learning
model is biased towards predicting the popular tags (such
as lead vocals, English or male vocals). Note that this is
expected since we are not addressing the data unbalanc-
ing issue during training. And second, we observe that the
baseline model (which predicts the probability of each tag
with an independent GBT model) predicts mutually exclu-
sive tags with high confidence – e.g., it predicted with high
scores: East Coast and West Coast for an East Cost rap
song, or baroque period and classic period for a Bach aria.
However, the deep learning model (predicting the proba-
bility of all tags together) was able to better differentiate
these similar but mutually exclusive tags. This suggests
that deep learning has an advantage when compared to tra-
ditional approaches, since these mutually exclusive rela-
tions can be jointly encoded within the model.
5.2 MagnaTagATune (MTT) dataset

Experimental setup. State-of-the-art models are set
as baselines, and we use the same (classification) per-
formance metrics as for the 1.2M-songs dataset: ROC-
AUC and PR-AUC – note that the MTT labels are binary.
One of the baseline results (the SampleCNN [14] with
90.55 ROC-AUC) was computed using a slightly different
version of the MTT dataset – which only includes songs
having more than 1 tag and lasting more than 29.1 sec-
onds. As a result, this cleaner version of the MTT dataset
is of ≈21k songs instead of ≈26k. Although this dataset
cleans out potential noisy annotations, we decided to use
the original dataset to easily compare our results with for-
mer works. Thus, to fairly compare our models with

9 http://www.jordipons.me/apps/music-audio-tagging-at-scale-demo

the SampleCNN, we reproduce their work considering the
original dataset – achieving a score of 88.56 ROC-AUC.
Given that less noise is present in the SampleCNN dataset,
it seems reasonable that their performance is higher than
the one obtained by our implementation.

The MTT experiments can be divided in two parts:
waveform and spectrogram models – see Tables 2 and 3.
Due to the amenable size of the dataset (every MTT ex-
periment lasts < 5h), it is feasible to run a comprehen-
sive study investigating different architectural configura-
tions. Specifically, we study how waveform and spectro-
gram architectures behave when modifying the capacity of
their front- and back-ends. For example, the experiment
“# filters ×1/2” in Table 2 consists of dividing the num-
ber of filters available in the waveform front-end by two.
This means having 32, 32, 32, 64, 64, 64 and 128 filters,
instead of the 64, 64, 64, 128, 128, 128 and 256 filters
in the basic configuration. We also apply this method-
ology to the spectrogram front-ends, and we add/remove
capacity to them by increasing/decreasing the number of
available filters. After running the front-end experiments
with a fixed back-end (following the basic configuration:
512 CNN filters, 500 output units), we select the most
promising ones to proceed with the back-end study –
for waveforms: “# filters ×2”, 10 and for spectrograms:
“# filters ×1/2”. Having now a fixed front-end for every
experiment, we modify the capacity of the back-end via
changing the number of filters in every CNN layer (512,
256, 128, 64) and changing the number of output units
(500, 200). Since the basic configuration leads to relatively
big models for the size of the dataset, these experiments ex-
plore smaller back-ends. The inputs for the MTT are set to
be of 3s, since longer inputs yield worse results [15, 21].

Quantitative results. The waveform and spectrogram
models we study outperform the proposed baselines –
which represent the current state-of-the-art. Further, per-
formance is quite robust to the number of parameters of
the model. Although the best results are achieved by mod-
els having higher capacity, the performance difference be-
tween small and large models is minor – what means that
relatively small models (which are easier to deploy) can do
a reasonable job when tagging the MTT music. Finally:
spectrogram models perform better than waveform models
for this small public dataset – which aligns with previous
works using datasets of similar size [20,21]. Consequently,
these results confirm that domain knowledge intuitions are
valid guides for designing deep architectures in scenarios
where training data are scarce.

5.3 Million Song Dataset (MSD)
Experimental setup. State-of-the-art models are set

as baselines, and we use the same (classification) perfor-
mance metrics as for the 1.2M-songs dataset: ROC-AUC
and PR-AUC – note that the MSD labels are binary. These
experiments aim to validate the studied models with the
biggest public dataset available. Models are set following
the basic configuration, and results are shown in Table 4.

10 “# filters ×2” front-end was selected instead of “# filters ×4”, be-
cause it performs similarly with less parameters.
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MTT dataset ROC PR #
Waveform models AUC AUC param

State-of-the-art results – with our own implementations
SampleCNN [14] 13 90.55 - 2.4M
SampleCNN (reproduced) 88.56 34.38 2.4M
Dieleman et al. [9] 84.87 - -
Dieleman et al. (reproduced) 85.58 29.59 194k

How much capacity is required for the front-end?
# filters ×4 89.05 34.92 11.8M
# filters ×2 (selected) 88.96 34.74 7M
# filters ×1 88.9 34.18 5.3M
# filters ×1/2 88.69 33.97 4.7M
# filters ×1/4 88.47 33.89 4.4M

How much capacity is required for the back-end?
# filters in every CNN layer - # units in dense layer

64 CNN filters - 500 units 88.57 33.99 1.3M
- 200 units 88.94 34.47 1.3M

128 CNN filters - 500 units 88.82 34.62 1.8M
- 200 units 88.81 34.6 1.7M

256 CNN filters - 500 units 88.95 34.27 3.1 M
- 200 units 88.59 34.39 2.9M

512 CNN filters - 500 units 88.96 34.74 7M
- 200 units 88.3 34.05 6.7M

Table 2. MTT results: waveform models.

Quantitative results. The spectrogram model outper-
forms the waveform model for this public dataset – hav-
ing ≈ 200k training songs. Furthermore, the spectro-
gram model performs equivalently to ‘Multi-level & multi-
scale’ [13], which is the best performing method in the lit-
erature – denoting that musical knowledge can be of utility
to design models for the MSD. Additionally, the waveform
model performs worse than other waveform-based mod-
els that also employ sample-level front-ends. Such perfor-
mance decrease could be caused because (i) SampleCNN
methods [14,15] average ten 11 estimates for the same song
to compensate for possible faults in song-level predictions,
while our method only averages two – predicting con-
secutive patches of 15s; or (ii) because the major differ-
ence between SampleCNN and the waveform model is that
the latter employs a global pooling strategy that could re-
move potentially useful information for the model. Be-
sides, the best performing waveform-based model (‘Sam-
pleCNN multi-level & multi-scale’ [15]) also achieves
lower scores than the best performing spectrogram-based
ones. Considering the outstanding results we report when
the waveform model is trained with 1M songs, one could
argue that the lack of larger public datasets is limiting
the outcomes of deep learning research for music auto-
tagging – particularly when dealing with end-to-end learn-
ing stacks processing raw data such as waveforms.

11 Since MSD audios are of 30s, ten tag estimates per song can be
obtained via running the model with consecutive patches of 3s.

13 Result computed with a different MTT version, see section 5.2.
14 Reproduced using 96 mel bands instead of 128 as in [21].

MTT dataset ROC PR #
Spectrogram models AUC AUC param

State-of-the-art results – with our own implementations
VGG - Choi et al. [5] 89.40 - 22M
VGG (reproduced) 89.99 37.56 450k
Timbre CNN [21] 89.30 - 191k
Timbre CNN (reproduced) 14 89.07 34.92 220k

How much capacity is required for the front-end?
# filters ×1/8 90.08 37.18 4.4M
# filters ×1/4 90.12 37.69 4.6M
# filters ×1/2 (selected) 90.40 38.11 5M
# filters ×1 90.31 37.79 5.9
# filters ×2 90.07 37.29 7.6M

How much capacity is required for the back-end?
# filters in every CNN layer - # units in dense layer

64 CNN filters - 500 units 90.03 36.98 277k
- 200 units 90.28 37.55 222k

128 CNN filters - 500 units 90.16 37.61 617k
- 200 units 90.28 37.69 524k

256 CNN filters - 500 units 90.18 37.98 1.6M
- 200 units 90.06 37.16 1.4M

512 CNN filters - 500 units 90.40 38.11 5M
- 200 units 89.98 37.05 4.7M

Table 3. MTT results: spectrogram models.

6. CONCLUSIONS

This study presents the first work describing how different
deep music auto-tagging architectures perform depending
on the amount of available training data. We also present
two architectures that yield results on par with the state-
of-the-art. These architectures are based on two concep-
tually different design principles: one is based on a wave-
form front-end, and no domain knowledge inspired its de-
sign; and the other, with a spectrogram front-end, makes
use of (musical) domain knowledge to justify its architec-
tural choices. While our results suggest that models rely-
ing on domain knowledge play a relevant role in scenar-
ios where no sizable datasets are available, we have shown
that, given enough data, assumption-free models process-
ing waveforms outperform those that rely on musical do-
main knowledge.

MSD ROC PR #
Models AUC AUC param
Waveform (ours) 87.41 28.53 5.3M
SampleCNN [14] 88.12 - 2.4M
SampleCNN multi-level 88.42 - -
& multi-scale [15]
Spectrogram (ours) 88.75 31.24 5.9M
VGG + RNN [6] 86.2 - 3M
Multi-level & 88.78 - -
multi-scale [13]

Table 4. MSD results. Top – waveform-based models.
Bottom – spectrogram-based models.
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ABSTRACT

In this paper, we propose to infer music genre embeddings
from audio datasets carrying semantic information about
genres. We show that such embeddings can be used for dis-
ambiguating genre tags (identification of different labels
for the same genre, tag translation from a tag system to an-
other, inference of hierarchical taxonomies on these genre
tags). These embeddings are built by training a deep con-
volutional neural network genre classifier with large audio
datasets annotated with a flat tag system. We show em-
pirically that they makes it possible to retrieve the original
taxonomy of a tag system, spot duplicates tags and trans-
late tags from a tag system to another.

1. INTRODUCTION

Large genre annotated databases have been made avail-
able lately: the Google Audio Set (GAS) [12], the MuMu
dataset [20], Discogs [1] or the Free Music Archive (FMA)
dataset [6] all contain hundreds of genre tags and hundreds
of thousands multi-label genre track annotations.

Every dataset with genre annotations has its own genre
representation: usually it is a tag set which is sometimes
organized with a basic taxonomy (Discogs, MuMu, FMA)
or a basic ontology (GAS).

However these representations usually suffer from am-
biguity issues. First, tag definition may not be explicit:
for the same tag name, definition may not be coherent
from a dataset to another which prevents from doing cor-
rect translation from one tag set to another with a simple
string matching. Second, there may be duplicated tags i.e.
tag with different names but referring to the exact same
genre such as Bossa Nova and Bossanova (without space)
in Discogs. Thirdly, there may be polysemy issues for
some tags: it happens that a single tag refers to different
concepts. In Discogs, the tag hardcore may refer to hard-
core punk or to hardcore electronic music which are quite
different genres. Finally, while a tag set may be structured
in a taxonomy or an ontology, those have limitation for
expressing all relations between tags: for instance the tag
Blues Rock in the MuMu taxonomy is a subgenre of Rock
and is not related to Blues, which makes it as close to Elec-

c© Romain Hennequin, Jimena Royo-Letelier, Manuel
Moussallam. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Romain Hennequin, Ji-
mena Royo-Letelier, Manuel Moussallam. “Audio based disambiguation
of music genre tags ”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

tric Blues as to Drum & Bass according to the taxonomy.
Moreover taxonomy and ontology are generally designed
with a particular purpose in mind [21], possibly clarity for
the customer for the MuMu taxonomy (which is the Ama-
zon taxonomy), while it may be musicologic precision for
DBpedia 1 , which may result in different meaning for tags
and different relationship between them.

Building a genre representation from these tag systems
in order to deal with these ambiguity issues can be done
using a top-down approach, using an expert-level ontol-
ogy such as the DBpedia ontology and trying to project the
tag system into this ontology [7]. Mapping tags to an ex-
ternal expert ontology is not trivial, as a genre can have
several different name and some tags may have several
meanings: the tag funk for instance may refer to a genre
born in the 60s derived from soul and jazz, or, in Brazil,
to Funk carioca which is a totally different style inspired
by gangsta rap music. It also can be done using a bottom
up approach, inferring relations between entities from data.
The latter was mainly done using the genre tag distribution
of a dataset with Latent Semantic Analysis (LSA) [28] or
with a straight use of cooccurrences [26,27] which all rely
on the distributional hypothesis (similar tags are tags that
cooccur a lot with same other tags). However, it is some-
times not possible to rely only on tag distributions: the
MuMu dataset has no overlap with the GAS, which pre-
vents from using tags cooccurrences to infer relationship
between MuMu genre tags and GAS ones.

So far, the literature has been mainly focusing on mu-
sic genre classification on flat tag systems from audio
[4, 8, 9, 23, 24, 30], text such as reviews [13, 19] or lyrics
[3, 17], album covers [16] or combinations of the previous
modalities [18, 20, 25], while rarely addressing the actual
semantic relationships that exist between genres. In [29],
the authors pointed out that focusing on classification met-
rics was not sufficient and suggested a deeper results anal-
ysis such as explanation of the confusion of the classifiers
in term of musicological aspects. In this paper, we suggest
going deeper in this direction and seeing how the confu-
sion of the classifier is able to generate a structured genre
representation: if the classifier is good enough, the con-
fusion it makes should be able to encode the relation of
proximity between genres. Showing this property has two
implications: it shows in a qualitative way that the clas-
sifier performs well and allows generation of a structured
representation of a tag system using audio.

In this paper, we thus aim to disambiguate genre tags

1 wiki.dbpedia.org
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and relations between them using audio as an alternative
to the distributional hypothesis: we propose a method able
to spot inconsistencies, help reducing them and relate tags
between themselves, possibly across different non overlap-
ping datasets with different tag systems. We enforce that
the representation is based on audio only information and
not on tag distribution using a monolabel learning scheme.
While extracting a semantic representation from audio an-
notated with a flat tag representation was already sparsely
addressed (in [14], basic ontological relations between a
few instruments are learnt back from isolated music instru-
ments sounds and in [15] a simple music genre taxonomy
is learnt with a few genre concepts), in this paper, we pro-
pose to learn representations at a large scale for tag sys-
tems with several hundreds of genre tags and with datasets
of several hundreds of thousands of songs.

In Section 2, we explain how we compute genre tag
embeddings using an audio-based genre classifier and use
them to define an audio-based similarity between genre
tags. In Section 3, we validate the learnt similarity by
showing that it performs fairly on two artificial tasks
(Discogs taxonomy learning and artificial deduplication).
In Section 4, we show how we can use the learnt similar-
ity to translate tags from a dataset tag system to another.
Finally, we draw conclusions in Section 5.

2. LEARNING A GENRE REPRESENTATION

In this section, we explain how we build embeddings of
genre tags using a genre classifier with audio input. We
associate to each genre tag ti in the genre tag set T =
{t1, ..., tNc

} an embedding vector f(ti) = vti ∈ Rn, such
that d(vt1 ,vt2) should correspond to an audio similarity
between genre tag t1 and genre tag t2.

2.1 Datasets

We use two large-scale genre annotated datasets for our
experiments: The MuMu dataset [20], and the genre pro-
vided by the Discogs website 2 . We matched both datasets
to Deezer track IDs using song metadata (album and artist
names, and track titles). We extracted a 30s-long excerpt
for each track (the position of the excerpt was sampled at
random between the beginning and the end of the track).
For tags with too few occurrences, we extracted several ex-
cerpts for balancing (as explained in Section 2.2). To avoid
overlap between datasets we removed the 7260 tracks that
belong to both datasets (in order to not affect the transla-
tion experiment of Section 4).

While each dataset provides a simple genre taxonomy,
we do not rely on it in the classification stage and consider
the genre annotations as flat tag systems with no links be-
tween tags. The provided taxonomies are used afterwards
for evaluation of the built genre representation.

2.1.1 Discogs

Discogs is referred as the “largest open database contain-
ing explicit crowd-sourced genre annotations” in [1]. It

2 https://discogs.com

contains genre annotations at the album level for hundreds
of thousands of albums. Genre tags in Discogs are or-
ganized in a two-level hierarchy: the first level, referred
as genre, includes generic genre categories (genre:Rock 3 ,
genre:Jazz, etc. . . ) and the second level, referred as style,
corresponds to subgenres (Psychedelic Rock, Cool Jazz,
etc. . . ). It contains a total of more than 500 genre/style
tags. Only the 250 most common tags were kept in our
experiments (235 style tags and 15 genre tags).

After cleaning, balancing (see Section 2.2) and match-
ing, the Discogs dataset we used contained 418184 tracks.

2.1.2 MuMu dataset

The MuMu dataset [20] has genre annotation based on the
Amazon 4-level genre taxonomy. It contains genre anno-
tations at the album level for 31471 albums which contain
a total of 147295 tracks. It contains a total of 446 different
genres. Only the top 211 tags (those with less than 300
annotated tracks are discarded) are kept. After cleaning,
balancing (see Section 2.2) and matching, the final MuMu
dataset we used contained 122014 tracks.

2.1.3 Dataset split

When training the system described in Section 2.3, we
split the datasets into a training dataset (70%), a vali-
dation dataset (10%) used for early stopping, and a test
dataset (20%) used for building genre representations (Sec-
tion 2.4). The split was done at the artist level meaning two
tracks by the same artist are in the same part of the split in
order to avoid overfitting on variables such as album or
artist as advised in [11, 22].

2.2 Monolabel learning

The annotations in a multilabel dataset carry information
of popularity (through number of occurrences of a tag) and
of similarity (through cooccurrences of tags). This infor-
mation was already used in several papers to build genre
taxonomies from a flat tag system [26–28] or to build a
target representation to improve classification results [20].

The goal of the paper is to learn a genre representation
only through audio and to avoid using non-audio informa-
tion such as the one provided by the tag distribution. As
this distribution can be easily learnt as a side information
in the last layer of a neural network, where bias can en-
code popularity (higher bias for more popular genre) while
weights can encode similarity between genres (important
value of dot product between weights corresponding to
similar genres and vice versa), simply training a multilabel
audio classifier based on a neural net will result in taking
advantage of this information, and it may be difficult to as-
sess at what point the actual audio information is relevant
in building the representation from this classifier.

In order to avoid influence of these non-audio informa-
tion in the built genre representation, we propose to turn
the multilabel classification problem into a monolabel one
using the following learning scheme:

3 We prefix Discogs genre by ”genre:” to distinguish them from style
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• To remove cooccurrences information, we transform the
multilabel dataset into a monolabel one by sampling a
tag among the multilabel tag annotation of every track.

• To remove the popularity information, we balance
equally all classes using a sampling probability inversely
proportional to the global popularity of a tag (note, that
it does not enforce perfect balancing).

For instance, if Rock appears 1000 times in the dataset and
Punk appears 100 times, a song with (multi-)labels {Rock,
Punk} will get as monolabel Rock with probability 1/11
and Punk with probability 10/11. This ensures that rare
genre tags have a high probability of being drawn, and that
we keep the maximum of available information for rare
tags while discarding somewhat redundant information for
very common tags.

To enforce balancing, tags with too many occurrences
are downsampled to keep a maximum of 2000 occurrences
per tag. Genre with not enough occurrences are upsampled
to 2000 occurrences by duplicating tracks (different 30s
excerpts are chosen for each track).

In order to avoid fitting independent variables, the sam-
pling is done at the album level, which means that every
track from the same album gets the same label. It also
ensures that different excerpts of the same track have the
same label. Using this learning scheme, the confusion be-
tween genres should result only from similarities in audio.

2.3 Classification system

We use a convolutional neural network with a recurrent
layer on top of it as a monolabel classifier. We feed it
with Mel-spectrograms computed with 1024 samples long
Hann windows without overlap, with 96 Mel filters. Au-
dio is first downsampled to 22050Hz and stereo channels
are summed up. Mel-spectrogams were log compressed
using the function f(x) = log(1 + Cx) where we chose
C = 10000. It results in 646× 96 input matrices.

The architecture of the neural network is quite similar to
the one used in [4] for automatic tagging, but with half as
many filters in the convolutional layers (we noticed that it
resulted in less overfitting) and a Gated Recurrent Unit [2]
on top of the conv layer (which improved overall classifica-
tion accuracy). The gated linear unit was used for temporal
pooling (only last temporal output is forwarded to the last
layer which removes the time dimension) and was used in
conjunction with dropout to reduce overfitting. The archi-
tecture is summed up in Table 1.

The network was trained with a categorical cross-
entropy loss with mini-batch stochastic gradient descent
using Adadelta [32] and early stopping on the validation
loss. The system was implemented with Keras [5] using
the Tensorflow [10] backend.

As the main goal of the paper is not to perform in terms
of classification results, we did not try to optimize thor-
oughly the architecture and we just checked that our pro-
posed system had similar classification results as in [20].

Layer output shape N param.
Log-comp Mel-spec 646×96×1 0
Conv 3×3×64 - MP 2×2 323×48×64 640
Conv 3×3×128 - MP 3×4 107×12×128 1280
Conv 3×3×256 - MP 2×3 53×4×256 2560
Conv 3×3×512 - MP 3×4 17×1×512 5120
GRU 512 512 1574400
Dense Softmax Nc 512×Nc

Table 1. Architecture of the Neural Network. MP stands
for Max Pooling.

2.4 Genre embeddings from classification

There are several ways of extracting an embedding from
a neural net based classification system. We describe the
three kinds of genre embeddings we generated from the
audio classifier in the following subsections. Whereas the
first embedding only uses parameters of the classifiers, the
other two make use of the test set.

2.4.1 Last hidden layer weights

The weights of the last hidden layer W are a 512 × Nc

matrix. The i-th column of this matrix is then chosen as
the embedding of genre tag ti:

fw(ti) = vti = W:,i. (1)

This is a straightforward representation of a genre tag in
the network: the output of the last hidden layer for a track
annotated with some genre should be similar (in terms of
dot product) to the weight vector of this genre. However, it
necessitates retraining to incorporate new genre tags in the
embedding.

2.4.2 Columns of output

We can also build an embedding using the test dataset:
for every track s in the test dataset, we denote Ts the set
of tags associated to s. We note the test dataset S =
{s1, s2 . . . sNs

} where sk are the track excerpts. The out-
put of the network when fed with track excerpt si is a vec-
tor pk ∈ [0, 1]Nc (with

∑Nc

j=1[pk]j = 1). We note P the
matrix in RNs×Nc with pk as k-th row. The embedding of
tag ti is then defined as the i-th column of matrix P:

fc(ti) = vti = P:,i. (2)

This embedding does not require annotation information
about the tracks of the test set and the cosine similarity
matrix between embeddings of all pairs of genre can be
understood as a normalized confusion matrix and is the au-
dio counterpart of the occurrence based representation de-
fined in (4). However it has very large dimension (that may
be reduced using dimension reduction techniques such as
LSA) and it is quite difficult to add extra genres without
retraining the whole system.

2.4.3 Mean of output

This third embedding type also uses the test dataset and
takes advantage of the annotations. We note Sti =
{sk1

, sk2
. . . skNt

} the set of tracks annotated with genre
tag ti. We then associate to each ti the set of outputs of the
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classifier {pk|sk ∈ Sti}. Ideally each genre tag ti would
be represented by the distribution of all possible outputs
for this genre. In practice, we compute statistics on these
distributions. We then define the third type of genre tag
embeddings as the mean of the output:

fm(ti) = vti =
1

|Sti |
∑

sk∈Sti

pk. (3)

As pk is a categorical probability distribution, fm(ti) is
too. Embedding fm makes it possible to incorporate new
tags without retraining the whole system, by simply adding
tracks annotated with the new genre tag in the dataset (the
only constraints would be that the classifier was trained
with similar genres): this is an important property of the
embedding since it makes it much easier to incorporate
new knowledge from another tag system.

2.4.4 Occurrence based representation

In order to compare the audio-based representation we
also define the following representation which is not based
on audio but on tag distribution only. We note M ∈
{0,1}Ns×Nc the multilabel tag occurrence matrix with co-
efficient Mij = 1 iff track si is annotated with tag tj . The
coocurrence embedding of tag ti is then defined as the i-th
column of matrix M:

fdist(ti) = M:,i. (4)

This definition then shares similarity with the audio-based
representation fc.

2.4.5 Similarity measure

To compare tags, we use the cosine similarity applied to the
four types of genre tag embeddings defined in Equations
(1), (2), (3) and (4).

3. MODEL VALIDATION

In this section, we validate that the audio-based similarities
learnt in Section 2 have a semantic meaning by showing
that the original Discogs taxonomical relations can be in-
ferred from the similarities and that they make it possible
to spot duplicate tags in a dataset. In order to reproduce the
results, we make available the embeddings, the similarity
matrices we obtained for the different representation 4 as
well as dataset files (as lists of Deezer song IDs).

3.1 Taxonomy Learning

In this section, we use similarity obtained from the genre
embeddings described in Section 2, to infer hierarchical
links between genres. We trained the classification system
with the Discogs dataset and the purpose of the experiment
is to infer the genre/style links of the two-level Discogs
taxonomy from audio.

The cosine similarity computed between genre tag em-
beddings provides a measure of similarity between genre

4 github.com/deezer/audio_based_disambiguation_
of_music_genre_tags.git

fw fc fm fdist
HR@1 85.1±4.6 89.4±3.9 87.7±5.2 96.2±2.5
HR@2 91.9±3.5 98.3±1.7 96.2±3.2 100.0±0
MAP 90.6±2.9 94.2±2.2 93.1±3.0 98.1±1.2

Table 2. Average ranking metrics (in %) for the Discogs
taxonomy learning task with 95% confidence intervals.

tags. This can be used to rank for each style the similarity
with each of the 15 genres. The ground truth is the ac-
tual genre associated to the style in the Discogs taxonomy
(note that some rare style are associated to 2 music genres,
such as hardcore and noise which are associated to both
rock and electronic). We measure the quality of this rank-
ing with classic ranking metrics: Hit Rate (HR)@k which
is the percentage of style for which the associated genre is
in the top-k according to the similiarity score.(HR@1 can
be considered as a classification accuracy) and Mean Av-
erage Precision (MAP) as defined in [33]. MAP takes into
account the rank of the related genre in the similarity list.

Results are presented in Table 2. As a reference, we re-
port results for the occurrence based embedding fdist. As
style tags are always present together with their parent
genre tag in the annotations, the performance of the oc-
currence based representation should be interpreted as an
upper-bound for the results of the other representations, the
errors being likely due to incoherences in the Discogs tax-
onomy (which is confirmed by the perfect HR@2 score of
fdist). Among the audio-based representations, fc performs
better than the two others. Despite being smaller than the
occurrence based representation, we can see that the met-
rics for the audio representations are quite high, notably
for fc which has a near perfect HR@2. This is noteworthy,
since only audio information is used to infer the relations.

A qualitative analysis of the error shows that most of
the “errors” (in the sense that the most similar genre to
a style is not is related genre) actually make sense: for
instance blues rock which is a subgenre of genre:rock
in Discogs taxonomy has the greatest similarity (for fc)
with genre:blues which makes as much sense as the
other (the same phenomena with hybrid subgenre ap-
pears with jazz-funk and genre:funk / soul instead of
genre:jazz, pop rock and genre:rock instead of genre:pop
and soul-jazz and genre:funk / soul instead of genre:jazz).
Other noteworthy examples are bossa nova (subgenre of
genre:jazz) associated with genre:latin, musique concrète
(subgenre of genre:electronic) associated to genre:non-
music or rnb/swing (subgenre of genre:hip hop) associated
to genre:funk / soul. These qualitative results confirms that
most of the “errors” are actually due to limitations of the
original taxonomy and that HR@2 may be the most re-
vealing metric. In Figure 1, we plot a 2D t-distributed
stochastic neighbor embedding (t-SNE) [31] of the learnt
audio representation fw in order to get visual insights about
it: most music style tags are gathered in coherent clusters
and are most of the time close to their related genre tag.
A noteworthy exception is the style tags related to folk,
world, & country that form several clusters, one of which
being next to latin, another one being next to blues and an-
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Figure 1. 2D t-SNE of fw for the Discogs tags. Each style
is colored with the same color as its related genre. Main
genres are depicted with bigger circle and black edges.

other one next to pop. This is pretty coherent since the tag
folk, world, & country is supposed to gather several very
different styles that may be closely related to other genres.

3.2 Tag deduplication

In this section, we show how the audio-based similarities
learnt in Section 2 can be used to spot duplicates in a tag
system. To do that we rely on the ability of a classifier
based on audio data to discriminate between two genre
tags. If two genre tags cannot be discriminated, they prob-
ably have some strong relation (even if they have very dis-
similar names). There may be several reasons for two tags
having high confusion similarity: First, they may represent
the exact same genre. Second, genre related audio charac-
teristics may be very similar (the genre may be very similar
with respect to audio). Thirdly, there may be differences of
distribution in the datasets: datasets are usually an imper-
fect sample of the set of all music. Some genre may be
biased toward a subgenre in a dataset while not in another
one, which may result in strong differences in the meaning
of some genres. Last, the classifier may not be able to dis-
tinguish them while there exists difference in some audio
characteristics (that the classifier is not able to handle).

As it is very difficult to assess a ground truth for such a
deduplication experiment, we propose the following artifi-
cial tag duplication: we use the Discogs genre dataset. We
artificially duplicate every genre tag by creating two dupli-
cate tags: for instance, Rock is duplicated into Rock1 and
Rock2, which means that half of the tracks originally an-
notated with Rock get the annotation Rock1 instead while
the other half get the annotation Rock2. To avoid learning
the similarity through artist specific characteristics, we per-
form the split at the artist level, meaning that tracks of the
same artist annotated with Rock will get all the same sub-
tag (either Rock1 or Rock2). Note that a subtag of group 1
cannot cooccur with a subtag of group 2, which results in
two separate tag systems (that we will refer as system 1 and
system 2), with no overlap. While all tags from system 1
having a semantically equivalent counterpart in system 2 is
quite artificial, the total separation between the tag systems
in term of cooccurrences is realistic. There is, for instance,
no overlap between the GAS and the MuMu dataset which
means we can only rely on audio for linking them.

In a similar way as in the experiment of Section 3.1,

fw fc fm
HR@1 92.0± 2.4 92.8± 2.3 74.8± 3.8
HR@2 95.8±1.8 97.0±1.5 83.0±3.3
MAP 98.1± 0.6 98.4± 0.5 93.3± 1.1

Table 3. Average ranking metrics (in %) for the Discogs
deduplication task with 95% confidence intervals.

we use the similarity between genre tags embeddings as a
duplication score. The task is then for each genre tag, to
retrieve its duplicated tag. Once again, we present quan-
titative results in terms of HR@k and MAP in Table 3.
As opposed to the taxonomy learning task, it does not
make sense to compare the audio based representations
to the occurrence-based representation since the sampling
scheme we use avoid a tag of group 1 cooccurring with a
tag of group 2 which means that the cosine similarity be-
tween any tag of group 1 with any tag of group 2 is 0.
fw and fc performs similarly, both performing significantly
better than fm. Once again the score seems reasonably high
for a representation based on audio information only.

It is interesting to look at the “errors” (when the most
similar tag is not the actual duplicate) done by the system
using fc. Some errors were actual duplicates in Discogs:
bossa nova was associated to bossanova (without a space)
which is clearly a duplicate issue in Discogs. Other ex-
ample are style:reggae and genre:reggae (where a style tag
as the same name as its related genre tag) or thug rap and
gangsta (considered as the same genre in Wikipedia). This
shows that the genre similarity computed from the embed-
dings is able to spot actual duplicates and that HR@2 may
be again the most revealing metric. Some errors are match-
ing between quite different concepts but with very sim-
ilar audio, such as field recording/musique concrète, po-
etry/spoken word, spoken word/genre:non-music and con-
scious/genre:hip hop. Other errors are with very similar
genres: bop/hard bop, honky tonk/country blues, space
rock/post rock A few errors are more difficult to explain
such as ragtime/tango which may have some audio simi-
larities (the use of piano is quite common in both genres,
and both are intended for dancing). These errors may come
from the classification system we use or from a strong bias
or annotation noise in the Discogs annotations.

4. TAGS TRANSLATION

In this section, we perform another experiment that aims
at translating tags from MuMu dataset to Discogs dataset.
For sack of clarity Discogs tags are prefixed with “D:” and
MuMu tags with “M:”. When there are no or few overlaps
between two datasets, we cannot rely on cooccurrences of
tags to model relation between the tag systems. The only
media we can rely on is then audio.

To train the classifier (see Section 2.3), we used the
concatenation of the tags from the MuMu dataset and
the Discogs dataset. Tags of each dataset were consid-
ered different even if they had the exact same name: e.g.,
there were a M:jazz tag that was considered different from
the D:jazz tag. The experiment of translation is then
very similar to the deduplication task presented in 3.2:
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Audio-based translation fc Cooccurrence-based translation fdist
Mumu tag Discogs tag Mumu tag Discogs tag
bebop bop irish folk celtic
movie scores score contemporary big band big band
indie & lo-fi lo-fi latin music genre:latin
electric blues modern elec. blues rap & hip-hop genre:hip hop
electronica leftfield vocal blues ragtime
punk-pop pop punk dance & electronic genre:electronic
modern postbebop genre:jazz today’s country country
special interest avantgarde electric blues genre:blues
singer-songwriters folk rock children’s music genre:children’s
r&b rnb/swing comedy & spoken word comedy

Table 4. Top 10 most similar tags between MuMu and
Discogs according to fc (left columns) and fdist (right
columns), removing string matched tags.

the translation task consists of deduplicating the whole
MuMu/Discogs tag set, focusing on pairs of duplicates for
which the first element is a MuMu tag and the second ele-
ment is a Discogs tag.

This allows to translate tags from one tag system to an-
other, but also to spot possible genre definition differences
between datasets: if two genre tags from two different
datasets, with the exact same name can be discriminated
with audio, this is probably because they do not carry the
exact same meaning (provided we can move appart overfit-
ting of the audio classifier used to build the representation).

We only consider here simple one-to-one tag map-
pings between MuMu and Discogs although it is restrictive
since there may exist one-to-many mapping (e.g. between
M:avant garde & free jazz and D:avant-garde jazz/D:free
jazz) or even more complex relationships.

As the Discogs and MuMu datasets have some common
tracks, we can compare the audio-based similarities with
the cooccurrence-based one derived from fdist.

There are two aspects that may be qualitatively as-
sessed: why would two tags with different names be as-
sociated? and why would two tags with same name have a
very low audio similarity.

In the two first columns of Table 4, we present the 10
Discogs tags that are most similar (according to fc) to
MuMu tags while not having the same normalized name.
As can be seen, when the names are different, it can be due
to the following reasons:

• Two different names are used for the exact same
concept: M:bebop/D:bop, M:punk-pop/D:pop punk,
M:movie scores/D:score.

• Some genres were considered sufficiently similar to be
grouped under the same tag name in one of the tag sys-
tem while they were not in the other one e.g. M:indie &
lo-fi/D:lo-fi, M:r&bD:rnb/swing.

• One genre is a subgenre of the other: M:electric
blues/D:modern electric blues, M:modern postbe-
bop/D:genre:jazz

The association between M:singer-songwriters (a sub-
genre of M:rock) with D:folk rock (a subgenre of
D:genre:rock) seems to link quite similar concepts (which
seems to be confirmed by the cooccurrence based similar-
ity that is quite high). M:electronica and D:leftfield seem
to be quite broad electronic genres: the span of the for-
mer and the lack of precise definition of the latter while
both seem not intended for dancing could explain the asso-

ciation. The association M:special interest/D:avantgarde
remains quite unclear, while the tags are quite vague.

In the two last columns of Table 4 are presented top
10 most similar tags between MuMu and Discogs accord-
ing to the cooccurrence based similarity (excluding string
matched pairs with basic normalization as in [26]). It can
be seen that the top 10 for cooccurrences and the top 10
for audio similarity contains mostly different tags, with
the exception of M:electric blues which is not mapped
to the same Discogs tag: this tends to show that cooc-
currence similarity is complementary to the audio-based
similarity, and when cooccurrence information is available
(overlap between dataset), using both similarities should
provide the best analysis. This is confirmed with some
MuMu/Discogs pairs such as M:bebop/D:bop and M:post
hardcore/D:post-hardcore which seems to be perfect map-
ping and have very high audio similarity but very low (less
than 0.1) cooccurrence similarity. The low cooccurrence
similarity may be explained by a lack of data for these tags.

On the other hand, it is also interesting to check tags
with the exact same name in both datasets, but with quite
low similarity score: the tags electronic, instrumental have
very low similarity (according to both fc and fdist) from
one database to another. D:electronic refers to a generic
term for describing all electronic music while this exact
same concept seemed to be carried by M:dance & elec-
tronic in MuMu. M:electronic is actually a subgenre of
M:progressive which is a subgenre of M:rock and then
has a very different meaning than the one in Discogs. in-
strumental (which is not a genre by itself) is considered
a subgenre of M:new age and M:country in the MuMu
taxonomy and a subgenre of D:hip hop in Discogs (while
a large number of non-hip-hop songs seems to have the
D:instrumental tag).

Thus, audio made it possible to spot significantly differ-
ent genres that were represented by the exact same string.
This highlights that the meaning of some genre may vary
significantly from a database to another and that string
matching can result in wrongly matched concepts.

5. CONCLUSION

In this paper we presented a way of learning genre embed-
dings from audio and showed that they are able to encode
semantic similarities between genre tags: we showed that
these embeddings were able to build genre taxonomies, to
spot duplicates in a dataset or to translate genre from one
tag set to another one. In future works, we plan to ex-
plore extraction of structured representation of other tag
types than genre (mood, instruments, country...) from au-
dio and to exploit other datasets such as the FMA dataset
or GAS to learn a more global representation. We also plan
to explore in more details how we can use several sources
(audio, expert based ontology, string matching, cooccur-
rences) to build richer representation from flat tag systems.
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ABSTRACT

In this paper, we tackle the problem of domain-adaptive
representation learning for music processing. Domain
adaptation is an approach aiming to eliminate the distri-
butional discrepancy of the modeling data, so as to transfer
learnable knowledge from one domain to another. With
its great success in the fields of computer vision and nat-
ural language processing, domain adaptation also shows
great potential in music processing, for music is essen-
tially a highly-structured semantic system having domain-
dependent information. Our proposed model contains a
Variational Autoencoder (VAE) that encodes the training
data into a latent space, and the resulting latent represen-
tations along with its model parameters are then reused to
regularize the representation learning of the downstream
task where the data are in the other domain. The experi-
ments on cross-domain music alignment, namely an audio-
to-MIDI alignment, and a monophonic-to-polyphonic mu-
sic alignment of singing voice show that the learned rep-
resentations lead to better higher alignment accuracy than
that using conventional features. Furthermore, a prelimi-
nary experiment on singing voice source separation, by re-
garding the mixture and the voice as two distinct domains,
also demonstrates the capability to solve music processing
problems from the perspective of domain-adaptive repre-
sentation learning.

1. INTRODUCTION

Music is composed, arranged, and performed in various
forms residing in different data modalities and domains,
yet sharing some common underlying information with
each other. Almost all of the music processing tasks es-
sentially extract such commonality as a protocol that en-
ables the transferring or communication among various do-
mains. For example, a piece of music can be either writ-
ten as a musical score, or rendered as an audio recording;
though the later encompasses much more information such
as intonation, articulation, emotion, and others not found
in the former, they still share common information such

c© Yin-Jyun Luo and Li Su. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Yin-Jyun Luo and Li Su. “Learning Domain-adaptive Latent
Representations of Music Signals Using Variational Autoencoders”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

as note, pitch, and meter with each other. In light of this
property, we devise a framework that aims at eliminating
domain-dependent information, to achieve a feature repre-
sentation that is semantically shared across domains.

In this paper, we study learning representations that em-
bed shared semantic information across different domains,
specifically in applications of music signal processing. In
order to achieve domain-invariant feature representations,
we are essentially considering a domain adaptation prob-
lem [28]. Take audio-to-MIDI alignment [30] as an exam-
ple, while audio and MIDI data are drawn from distinct
domains of representation, they share pitch information in
common. We explore the transfer learning technique [25]
to tackle the problem. Specifically, in addition to transfer-
ring model parameters, we also transfer latent representa-
tions from one domain to the other.

With its success in computer vision [24,28,34] and nat-
ural language processing [16, 19, 32], transfer learning has
also shown great potential in music information retrieval
(MIR). In [6], a linear transformation is learned to project
data into a shared latent representation that captures se-
mantic similarity of music. Choi et al. uses feature maps
of multiple layers derived from a pre-trained convolutional
neural network (CNN) for music classification and regres-
sion tasks [2], and Park et al. exploits the deep model
trained for artist recognition as a general feature extractor
used for various tasks [26].

Our proposed framework 1 is different from the above-
mentioned works. With pairwise training data 2 from two
distinct domains, our framework first utilizes a VAE [12],
a state-of-the-art unsupervised generative model shown to
be effective in representation learning [9,14], to embed in-
formation of data from one domain (the source domain)
which contains mostly shared semantics into latent rep-
resentations. Data from the other domain (i.e., the tar-
get domain) is then mapped to the learned embeddings
through a separate neural network, in order to eliminate
domain-dependent information. Therefore, the novelty of
this paper is an unified framework that combines repre-
sentation learning and transfer learning altogether, which
learns domain-adaptive representations with VAEs that are
then transfered from source to target domain. In particu-
lar, we empirically validate the framework through three

1 https://github.com/yjlolo/Domain-Adaptive-VAE
2 Pairwise data in the context means parallel music events in different

domains, e.g., a piece of music written as a score or rendered as an audio,
and a recording of singing voice with or without accompaniment.
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Figure 1. The general architecture of the proposed training
framework.

well-known tasks in music signal processing that have not
been considered from the perspective of domain adap-
tation: audio-to-MIDI alignment [1, 13], audio-to-audio
alignment [17, 22], and singing voice separation [5, 10].

The rest of the paper is organized as follows. In
Section 2, we describe our proposed architecture. The
experiments and results are detailed in Section 3 and
Section 4, respectively. Conclusions and future work are
presented in Section 5.

2. ARCHITECTURE

2.1 Overview

Figure 1 shows our proposed framework in the training
phase, which is divided into two modules: the first is a
VAE which models the data in source domain, and the sec-
ond, which can be either an autoencoder (AE) or simply
an encoder depending on tasks, models the data in target
domain. To facilitate the discussion, we refer Encoder
(or Decoder) and Encoder* (or Decoder*) to the source-
domain encoder (or source-domain decoder) and target-
domain encoder (or target-domain decoder), respectively.

The two models are trained sequentially in two steps.
First, we train the VAE, using the source-domain data as
inputs, and obtain the source-domain latent representations
z := z(µ,σ). More specifically, given the observation
data x in the source domain, and z ∼ p (z) the latent rep-
resentation, the posterior distribution p (z|x) is modeled
as a Gaussian distribution parameterized by the estimated
mean and standard deviation of the posterior distribution,
namely µ and σ, respectively. In other words, we have
p (z) = N

(
z;µ,σ2I

)
in practice.

Second, after the source-domain model is trained, we
train the target-domain model, with the following two
transfer learning schemes: 1) the source-domain model pa-
rameters are used to initialize the target-domain model pa-
rameters, and 2) the source-domain latent representation
z is used to regularize the target-domain latent represen-
tation z∗ with an regularization term L(z, z∗). The intu-
ition behind this is to leverage knowledge learned by the
source-domain VAE to reduce the distributional discrep-
ancy between the source and target domain.

The target-domain decoder, colored in gray in Figure 1,
is optional. For example, in the task of music alignment,

Conv1 Conv2 Conv3 Fc1 Gauss
#filters/units 64 128 256 512 L
filter size 1× F 3× 1 2× 1 - -
stride (1,1) (2,1) (2,1) - -

Table 1. Encoder network architecture. Conv refers to con-
volutional layers, Fc refers to fully connected layers, and
Gauss refers to the Gaussian parametric layer modeling z.

our purpose is to learn the domain-adaptive features by
mapping the data in target domain into the feature distri-
bution of data in source domain, without the need to re-
construct the input data from the latent representation.

It should be noticed that in the inference phase, shown
in the left-hand side of Figure 2, the parameter µ is re-
garded as z. That is, when encoding the source-domain
data, µ, the center of a Gaussian distribution, is the repre-
sentative of z. Therefore,µ is the true latent representation
that is transferred to the target domain. More details about
the models and experiments are in Section 3.

2.2 Source-domain Model: Variational Autoencoder

Since the source-domain VAE is task-independent, we in-
troduce its detailed architecture first in this subsection, and
the task-dependent target-domain model will be introduced
later in Section 3. We adopt the VAE architecture proposed
in [9], which learns the latent representations and models
the generative process of speech segments for voice con-
version. In our work, the source-domain input represen-
tation is either a segment of singing voice in the tasks of
singing voice alignment and separation, or a piano roll for
audio-to-MIDI alignment.

The input x of the source-domain VAE is a two-
dimensional image of size T × F , where T is the num-
ber of time steps and F is the number of frequency bands.
The encoder network of this VAE is a CNN with 3 con-
volution (Conv) layers and 1 fully-connected (Fc) layer
that outputs the latent representation z with dimension L
at the Gauss layer. The parameters of this CNN are sum-
marized in Table 1. The decoder network is symmetric to
the encoder network; it takes z as the input to reconstruct
x. Batch normalization followed by the activation function
tanh are used for every layer except for the Gauss and the
output layers. The objective function for training the VAE
is expressed as (1):

Lvae = Lrec + LKL , (1)

where the total loss function of the VAE, Lvae,
contains two terms: the reconstruction loss function
Lrec = −Eq(z|x)[log p (x|z)], the negative expected log-
likelihood of x, and the KL-Divergence loss LKL =
KL[q (z|x) ||p (z)], which regularizes the distance be-
tween the posterior and the Gaussian distribution. In varia-
tional inference, the true posterior p (z|x) is approximated
by q (z|x). For more implementation details of the VAE,
we refer the readers to [3, 12].
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3. EXPERIMENTS

We discuss the following three tasks: 1) audio-to-MIDI
alignment, 2) audio-to-audio alignment, and 3) singing
voice separation. In this section, we elaborate the goals,
the datasets, the task-dependent target-domain models, the
input data representations, and the evaluation processes for
each of these three tasks. Experiment results will be dis-
cussed in Section 4.

All of the models discussed in the following are imple-
mented with PyTorch [27], and are trained using stochas-
tic gradient descent with the Adam optimizer [11]. The
optimizer is parametrized by: learning rate = 10−3, β1 =
0.9, β2 = 0.999, and ε = 10−8. The mini-batch size is set
to 128 instances of input segments.

3.1 Task 1: Audio-to-MIDI Alignment

The first experiment we consider is to align an audio
recording of piano to its corresponding MIDI file. Al-
though this is a rather well-studied task [13,23,30], we re-
investigate this task from the perspective of domain adapta-
tion: using the learned latent representations for the feature
on which dynamic time warping (DTW) is performed.

3.1.1 Dataset

We use a subset of the MAPS dataset [4], ENSTD-
kCI, which contains 30 piano recordings performed by a
Yamaha Disklavier auto-piano together with MIDI files
that generate the recordings. We use 24 and 6 pieces of
the subset for training and validation, respectively.

3.1.2 Model

The goal of our framework is to map a frame of audio
feature and piano roll into the same representation if they
are of the same music event. To do this, we first define
the MIDI pieces as the source domain data, and the au-
dio pieces as the target-domain data. Then, we train the
source-domain VAE and obtain the learned source-domain
latent representation z. We then use this representation z
as the learning target to train the target-domain model, a
single encoder taking audio data as input, with its architec-
ture the same as the source-domain encoder. To be more
specific: given a pair of MIDI-audio input data that are of
the same event in the music, the source-domain VAE maps
the MIDI into a representation in a low-dimensional Gaus-
sian distribution, and the target-domain encoder is then
trained to map the audio input data to that distribution.

The learning task in the target domain is essentially a
regression task. The training objective function for source
domain is the same as (1), while the objective function for
the target domain Lencoder is

Lencoder = LMSE (z, z∗) , (2)

which is the mean squared error between the encoded la-
tent representations of the source-domain encoder z and
the ones of the target-domain encoder z∗. Notice that (2) is
only applicable when we have parallel source-target pairs.

Instead of audio, MIDI is regarded as the source-
domain data because the latent representation we obtain
should be more related to MIDI which contains mostly the
shared semantics with audio, i.e., pitch; we let the target-
domain encoder eliminate the information residing in au-
dio while unrelated to MIDI (e.g., spectral-related informa-
tion) in order to get succinct representations for alignment.

3.1.3 Data Representation

MIDI files are represented as piano-roll representation with
128 pitch classes, while its associated audio recordings are
represented using Mel-scaled spectrogram with 128 filter
banks, derived from power magnitude spectrum of 1024-
point short-time Fourier transform (STFT). To compute the
STFT, we use Hanning window with window size of 64 ms
and hop size of 20 ms. An input data for the source-domain
VAE (or the target-domain encoder) is a segment of a
piano-roll (or Mel-scaled spectrogram) with 21 frames, or
equivalently, 400 ms, leading to the input dimensions of
T = 21 and F = 128. To reduce the memory load, we only
collect segments every 10 frames of each clip for training.

3.1.4 Evaluation

To evaluate our proposed feature representation for audio-
to-MIDI alignment, we apply non-linear time-stretching to
the audio recordings so as to see if the features are robust
against the distortion and can still be aligned to the original
MIDI well. We follow the methodology in [17] for non-
linear time-stretch.

The proposed feature representation of MIDI can be
derived as follows: we express MIDI as piano roll and
use it as the input to the source-domain encoder to obtain
the encoded latent representation as our proposed feature;
the process is illustrated in Figure 3 with the solid blue
line. On the other hand, in the target domain, we firstly
apply time-stretching distortion to the audio recordings,
represent the audio stream with Mel-scaled spectrogram
described in Section 3.1.3, and utilize the outputs of the
target-domain encoder as our final feature representation;
the green solid line in Figure 3 describes the process. Over-
all, the derivation of the proposed feature representation
during inference is illustrated in the left panel of Figure 2.

For comparison, we consider chroma as a baseline
to represent both domains, illustrated in Figure 3 with
the loose dash lines colored in blue and green, respec-
tively. Regarding the implementation of chroma, we use
chroma stft in the librosa library [18] for audio
and get chroma in the pretty midi library [29] for
MIDI. The other baseline is to use the piano roll for
MIDI and Mel-scaled spectrogram for audio, illustrated
in Figure 3 with the dense dash lines colored in blue and
green, respectively.

We utilize DTW to align the feature representations and
compute the alignment accuracy. The accuracy is calcu-
lated by an error measure e whichp compares the discrep-
ancy between the estimated warping path and the ground-
truth one [36] instead of the conventional note-level align-
ment accuracy, because the error measure e allows more
subtle comparison on frame-level evaluation.
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Figure 2. Left: the derivation of the proposed feature representation in task 1 and task 2. Right: the training scheme of the
target-domain DAE in task 3.

Figure 3. Extraction pipelines of feature representations
for the two alignment tasks, i.e., task 1 and task 2.

3.2 Task 2: Audio-to-Audio Alignment

In this experiment, we consider singing voice alignment,
in particular the alignment of song recordings performed
by singers with their artificially-distorted versions. Specif-
ically, two subtasks are considered: 1) aligning the dis-
torted monophonic singing recordings to the original ver-
sion, denoted as mono-to-mono, and 2) the distorted mono-
phonic singing recordings to the original singing record-
ings mixed with the corresponding background music, de-
noted as mono-to-poly. The goal is to demonstrate the ro-
bustness of our proposed feature representation against the
artificial distortion effects, i.e, pitch-shift and time-stretch,
as well as interference of the background music.

3.2.1 Dataset

We adopt the MIR-1k dataset [8] which contains the 1,000
Chinese karaoke excerpts with separated voice and accom-
paniment tracks, clipped from 110 songs. We then divided
the 110 songs into two subsets, one containing 88 songs for
training, and the other containing 22 songs for validation.

3.2.2 Model

The training procedure resembles the one mentioned in
Section 3.1.2. The difference is that the source domain
refers to monophonic singing, and the target domain refers
to its polyphonic version; the shared information is the
singing voice. Notice that, similar to Section 3.1, the syn-
thetic dataset with artificial distortion is not used for train-
ing. The target-domain encoder for modeling polyphonic
music learns not only to output features that are compara-
ble to monophonic singing voice, but also features that are
more robust to artificial distortion.

3.2.3 Data Representation

The inputs are represented the same way as the audio data
described in Section 3.1.1. As suggested by the prelim-
inary experiments, the number of filter banks is set to
F = 256 instead of 128.

3.2.4 Evaluation

We evaluate our proposed feature representation under
both time-stretching and pitch-shifting distortion. The set-
tings of the distortion follow the one in [17].

As shown in Figure 3, for the subtask mono-to-mono,
we first apply the artificial distortion to the monophonic
singing, followed by a Z-score normalization. The Mel-
scaled spectrogram is then extracted as the input to the
source-domain encoder, which gives the proposed feature
representation of monophonic singing after a post Z-score
normalization. We align the distorted monophonic singing
to the intact version. For the subtask mono-to-poly, we
adopt the identical process to the monophonic singing.
While for polyphonic singing, the target-domain encoder
takes the input as the Mel-spectrogram to output the pro-
posed feature representation. We align the distorted mono-
phonic to the original polyphonic version. The overview of
derivation of the proposed feature representation and align-
ment are illustrated in the left panel of Figure 2.

We compare our proposed feature representation with
the 24-ordered Mel-cepstral coefficients (MCEPs) [33], a
widely used features regarding speech alignment for voice
conversion [20], in terms of the error measure e, as in
Section 3.1.4. We use the spectral envelope which is ex-
tracted by WORLD [21] to derive MCEPs. DTW in this
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task searches for the optimal alignment path according to
squared Euclidean distance, as suggested by preliminary
experimental results.

3.3 Task 3: Singing Voice Separation

Singing voice separation is an essential yet notoriously
challenging problem in music signal processing; the goal
is to separate singing voice from music mixture. We inves-
tigate the potential of domain adaptation on this problem.

3.3.1 Dataset

We again adopt the MIR-1k dataset for experiment, and
split the dataset in a way identical to that in Section 3.2.1.

3.3.2 Model

The basic idea is a follow-up of the mono-to-poly
scheme in Section 3.2: given the fact that we have
obtained domain-adaptive latent representations shared
across monophonic singing and its polyphonic version
with accompaniment, one step further is to consider de-
coding the outputs of the target-domain encoder in order
to reconstruct the monophonic singing voice in the target
domain. Therefore, we adopt a Denoising Autoencoder
(DAE) [35] in the target domain.

The training scheme of the target domain is illustrated
in the right panel of Figure 2. It is important to note that,
different from the vanilla DAE for source separation [5],
we regularize the bottleneck layer with the learned latent
representation encoded by the VAE along with the model
parameters for weight initialization. The training objective
function for the target domain therefore becomes:

LDAE = Ll1(x, x̃) + αLMSE (z, z∗) , (3)

where the reconstruction loss Ll1 denotes the l1-norm; x
and x̃ are the clean source of singing voice and estimated
one, respectively. α is the weight of the regularization term
which is set to 1 without further investigation in this pre-
liminary work.

3.3.3 Data Representation

For audio representation, the magnitude spectrogram in-
stead of the Mel-scaled spectrogram is used as the input;
the parameters for computation of STFT remain the same
as in Section 3.1.3.

3.3.4 Evaluation

The music mixture which contains the ground-truth source
of singing voice x and background music is firstly normal-
ized with a Z-score normalization, and is represented as
the magnitude spectrogram. The trained DAE then takes
as the input the magnitude spectrogram, and outputs the
estimated source of signing voice x̃.

For evaluation, we use mir eval [31] to calculate
and report source-to-distortion ratio (SDR), source-to-
inference ratio (SIR), and source-to-artifact (SAR) ratio
together with normalized SDR (NSDR). All scores are
weighted by number of frames of each song. We com-
pare the performance among vanilla DAE with or without

error measure
Proposed (L = 128) 2.48
Proposed (L = 12) 4.08
Chroma 6.71
Spec 39.24

Table 2. The error measure e of audio-to-MIDI alignment
using different feature representations.

our proposed regularization term and weight initialization
during training phase.

4. RESULTS

In this section, we report the performance evaluated on the
validation sets for each experiment.

4.1 Task 1: Audio-to-MIDI Alignment

Table 2 lists the median value of e, the alignment error
measure, over the 6 audio-MIDI pairs in the validation set
using four different feature representations: two of them
are the proposed latent representations with dimensions
L = 128 and 12 (Proposed), one is the 12-dimensional
chroma (Chroma), and the other uses Mel-scaled spec-
trogram for audio and piano-roll representation for MIDI,
both are 128-dimension (Spec). One can see our proposed
domain-adaptive features outperform with both L = 128
and 12. This implies that the plane pitch information of
MIDI domain is properly modeled in the latent represen-
tations by the source-domain encoder, and is efficiently
transferred to audio domain by treating the latent represen-
tations as learning targets for the target-domain encoder.

4.2 Task 2: Audio-to-Audio Alignment

We evaluate on the validation set of 22 songs and report
the alignment error measure e of different feature repre-
sentations under the mono-to-mono and mono-to-poly sub-
tasks, along with the artificial distortion in pitch-shift and
linear/non-linear time-stretch. Figure 4 shows the median
of the error measure e using different feature representa-
tions; the baseline feature and proposed one are denoted
as MCEP and Proposed, respectively. Each individual plot
shows the error measure along pitch-shift steps of -2, -1, 0,
1, and 2. The top panel and bottom panel refer to mono-to-
mono and mono-to-poly, respectively. The leftmost to the
fifth column correspond to linear time-stretching rates of
0.8, 0.9, 1.0, 1.1 and 1.2, respectively, while the rightmost
column corresponds to the non-linear time-stretch.

The results of momo-to-mono in the top panel suggest
that our proposed feature representation encoded by the
source-domain encoder is more robust to the artificial dis-
tortion than the baseline feature. The bottom panel, which
corresponds to mono-to-poly, shows that by transferring
the latent representations from source to target domain, the
target-domain encoder indeed learns to output features that
are robust against both the artificial distortion and the in-
terference of background music.
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Figure 4. The error measure e of singing voice alignment using our proposed features or MCEPs. Top panel: mono-to-
mono; bottom panel: mono-to-poly. The leftmost column to the fifth column refer to time-stretch rate r = 0.8, 0.9, 1.0, 1.1,
and 1.2, respectively; the rightmost column refers to non-linear time-stretch.

SDR SIR SAR NSDR
DAE 4.73 16.13 5.35 3.16
DAE + wt 6.50 20.40 6.85 4.93
rDAE 4.97 14.96 5.74 3.40
rDAE + wt 7.20 18.98 7.74 5.63

Table 3. The source-to-distortion ratio (SDR), source-to-
inference ratio (SIR), and source-to-artifact ratio (SAR)
and normalized SDR (NSDR) of different models.

4.3 Task 3: Singing Voice Separation

Table 3 demonstrates the SDR, SIR, and SAR together
with NSDR of different models in the task of singing voice
separation. Four models are compared: 1) DAE referring
to the vanilla DAE, the baseline model, 2) DAE + wt de-
noting the DAE trained with weight initialization using the
source-domain model parameters, 3) rDAE referring to
the DAE trained with the objective function whose weight
of the regularization term α = 1 in (3), and 4) rDAE+wt,
the DAE trained with both the weight initialization and reg-
ularization term.

From the SDR in Table 3, one can observe that DAE+
wt outperforms DAE by 1.77 dB, while rDAE outper-
forms DAE by only 0.24 dB. However, by combining
weight initialization and regularization together, rDAE +
wt achieves an improvement of 2.47 dB over DAE. This
implies that the effect of transferring the latent represen-
tation from the source to target domain as a regularization
term can be optimized by the transfer of the source-domain
model parameters.

Notice that though the reported performance is not on
par with the state-of-the-art method [10], our model still
show potentials in solving the singing voice separation
problem from the perspective of domain adaptation. Mean-
while, as a preliminary work, we evaluate the framework
on a relatively small dataset without data augmentation and
fine-tuning parameters.

5. CONCLUSION AND FUTURE WORK

In this paper, we re-investigate three well-known tasks of
music signal processing from the perspective of domain
adaptation, namely task 1: audio-to-MIDI alignment, task
2: audio-to-audio alignment and task 3: singing voice sep-
aration. To this end, we devise an unified framework that
achieve both representation learning and transfer learning
at once. Specifically, we use a VAE to learn latent repre-
sentation of source-domain data, which is then transfered
to train a separate model that maps target-domain data to
the representation.

We empirically validate our idea by demonstrating the
superiority of our proposed feature representations over
baseline ones across all the tasks. In both task 1 and 2, the
proposed features are shown to properly model the source-
domain data and are efficiently transfered to the target do-
main; they are more robust against various settings of ar-
tificial distortion compared to baseline features. In task 3,
it is shown that transferring of both model parameters and
latent representations, used for weight initialization and as
a regularization term, respectively, can benefit the perfor-
mance of singing voice separation, which indicates the po-
tential of the framework for such a challenging problem.

As a preliminary work, though we share most of the pa-
rameters and model architectures across all the tasks with-
out tailoring for each individual task, the proposed frame-
work consistently outperforms the baselines. For future
work, we would like to include larger datasets and opti-
mize the system architectures and their parameters. More-
over, expanding the framework for classification is of par-
ticular interest. For example, it is possible to transfer the
latent representation from source to target domain by di-
rectly leveraging it as the classifying feature [15] or inter-
mediate condition to models in target domain [7].
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ABSTRACT

Many music theoretical constructs (such as scale types,
modes, cadences, and chord types) are defined in terms of
pitch intervals—relative distances between pitches. There-
fore, when computer models are employed in music tasks,
it can be useful to operate on interval representations rather
than on the raw musical surface. Moreover, interval rep-
resentations are transposition-invariant, valuable for tasks
like audio alignment, cover song detection and music struc-
ture analysis. We employ a gated autoencoder to learn
fixed-length, invertible and transposition-invariant interval
representations from polyphonic music in the symbolic do-
main and in audio. An unsupervised training method is
proposed yielding an organization of intervals in the repre-
sentation space which is musically plausible. Based on the
representations, a transposition-invariant self-similarity ma-
trix is constructed and used to determine repeated sections
in symbolic music and in audio, yielding competitive re-
sults in the MIREX task ”Discovery of Repeated Themes
and Sections”.

1. INTRODUCTION

The notion of relative pitch is important in music under-
standing. Many music theoretical concepts, such as scale
types, modes, chord types and cadences, are defined in
terms of relations between pitches or pitch classes. But
relative pitch is not only a music theoretical construct. It
is common for people to perceive and memorize melodies
in terms of pitch intervals (or in terms of contours, the
upward or downward direction of pitch intervals) rather
than sequences of absolute pitches. This characteristic of
music perception also has ramifications for the perception
of form in musical works, since it implies that transposi-
tion of some musical fragment along the pitch dimension
(such that the relative distances between pitches remain the
same) does not alter the perceived identity of the musical
material, or at least establishes a sense of similarity be-
tween the original and the transposed material. As such,
adequate detection of musical form in terms of (approxi-

c© Stefan Lattner, Maarten Grachten, Gerhard Widmer. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Stefan Lattner, Maarten Grachten, Gerhard
Widmer. “Learning transposition-invariant interval features from sym-
bolic music and audio”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

mately) repeated structures presupposes the ability to ac-
count for pitch transposition—one of the most common
types of transformations found in music.

Relative pitch perception in humans is currently not well-
understood [13]. For example there are no established the-
ories on how the human brain derives a relative representa-
tion of pitch from the tonotopic representations formed in
the cochlea, neither is it clear whether there is a connection
between the perception of pitch relations in simultaneous
versus consecutive pitches.

Computational approaches to address tasks of music un-
derstanding (such as detecting patterns and form in music)
often circumvent this issue by representing musical stim-
uli as sequences of monophonic pitches, after which sim-
ply differencing consecutive pitches yields a relative pitch
representation. This approach also works for polyphonic
music, to the extent that the music can be meaningfully
segregated into monophonic pitch streams. A drawback
of this approach is that it presupposes the ability to segre-
gate musical streams, which is often far from trivial due to
the ambiguity of musical contexts. To take an analogous
approach on acoustical representations of musical stimuli
is even more challenging, since it further depends on the
ability to detect pitches and onsets in sound.

In this paper we take a different approach altogether.
We train a neural network model to learn representations
that represent the relation between the music at some time
point t and the preceding musical context. During train-
ing, these representations are adapted to minimize the re-
construction error of the music at t given the preceding
context and the representation itself.

A crucial aspect of the model is its bilinear architec-
ture (more specifically, a gated autoencoder, or GAE ar-
chitecture) involving multiplicative connections, which fa-
cilitates the formation of relative pitch representations. We
stimulate such representations more explicitly using an al-
tered training procedure in which we transpose the training
data using arbitrary transpositions.

The result are two models (for symbolic music and au-
dio) that can map both monophonic and polyphonic music
to a sequence of points in a vector space—the mapping
space—in a way that is invariant to pitch transpositions.
This means that a musical fragment will be projected to
the same mapping space trajectory independently of how
it is transposed.

We validate our approach experimentally in several ways.
First we show that musical fragments that are nearest neigh-
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bors in the mapping space have many pitch intervals in
common (as opposed to nearest neighbors in the input space).
Then we show that the topology of the learned mapping
space reflects musically meaningful relations between in-
tervals (such as the tritone being dissimilar to other in-
tervals). Lastly we use mapping space representations to
detect musical form both for symbolic and audio repre-
sentations of music, showing that it yields competitive re-
sults, and in the case of audio even improves the state of
the art. A re-implementation of the transposition-invariant
GAE for audio is publicly available 1 .

The paper is structured as follows. Section 2 provides
an overview of relation learning using GAEs, and reviews
work on creating interval representations from music. In
Section 3, the used architecture is described and in Sec-
tion 4, data is introduced on which the GAE is trained.
The training procedure, including the novel method to sup-
port the emergence of transposition-invariance, is proposed
in Section 5. The experiments conducted to examine the
properties of learned mappings are described in Section 6,
and results are presented and discussed in Section 7. Sec-
tion 8 wraps the paper up with conclusions and prospects
of future work.

2. RELATED WORK

GAEs utilize multiplicative interactions to learn correla-
tions between or within data instances. The method was
inspired by the correlation theory of the brain [32], where it
was pointed out that some cognitive phenomena cannot be
explained with the conventional brain theory and an exten-
sion was proposed which involves the correlation of neural
patterns.

In machine learning, this principle was deployed in bi-
linear models, for example to separate person and pose
in face images [30]. Bi-linear models, like the GAE, are
two-factor models whose outputs are linear in either fac-
tor when the other is held constant. [26] proposed another
variant of a bi-linear model in order to learn objects and
their optical flow. Due to its similar architecture, the gated
Boltzmann machine (GBM) [17,18] can be seen as a direct
predecessor of the GAE. The GAE was introduced by [14]
as a derivative of the GBM, as standard learning criteria
became applicable through the development of denoising
autoencoders [31].

GAEs have been further used to learn transformation-
invariant representations for classification tasks [15], for
parent-offspring resemblance [5], for learning to negate
adjectives in linguistics [27], for activity recognition with
the Kinekt sensor [22], in robotics to learn to write num-
bers [6], and for learning multi-modal mappings between
action, sound, and visual stimuli [7].

In music, bi-linear models have been applied to learn
co-variances within spectrogram data for music similarity
estimation [28], and for learning musical transformations
in the symbolic domain [9]. In sequence modeling, the
GAE has been utilized to learn co-variances between sub-

1 see https://github.com/SonyCSLParis/cgae-invar

sequent frames in movies of rotated 3D objects [16] and
to predict accelerated motion by stacking more layers in
order to learn higher-order derivatives [21], which uses a
method similar to the one proposed here.

Transposition-invariance in music is achieved in [20]
by transforming symbolic pitch–time representations into
point-sets, in which translatable patterns are identified. An-
other method in the symbolic domain is that in [2], where
a general interval representation for polyphonic music is
put forward, in [24], where specific pitch-class intervals in
polyphonic music are used for characterizing music styles
and in [23] where transposition-invariant self-similarity ma-
trices are computed. In [12], an approach to calculating
transposition-invariant mid-level representations from au-
dio is introduced, based on the 2-D power spectrum of
melodic fragments. Similarly, a method to calculate inter-
pretable interval representations from audio is proposed in
[33], where chromagrams that are close in time are cross-
correlated to obtain local pitch-invariance.

3. MODEL

Let xj be a vector representing pitches of currently sound-
ing notes (in the symbolic domain) or the energy distributed
over frequency bands (in the audio domain), in a fixed-
length time interval. Given a temporal context xtt−n =
xt−n . . .xt as the input and the next time step xt+1 as the
target, the goal is to learn a mapping mt which does not
change when shifting xt+1

t−n up- or downwards in the pitch
dimension. A gated autoencoder (GAE, depicted in Fig-
ure 1) is well-suited for this task, modeling the intervals
between reference pitches in the input and pitches in the
target, encoded in the latent variables of the GAE as map-
ping codes mj . Unlike in common prediction tasks, the
targets are known when training a GAE. The goal of the
training is to find a mapping mj for any input/target pair
which transforms the input into the given target. The map-
ping at time t is calculated as

mt = σh(W1σh(W0(Uxtt−n ·Vxt+1))), (1)

where U,V and Wk are weight matrices, σh is the hyper-
bolic tangent non-linearity, and we will refer to the learnt
mappings mj as the mapping space of the input/target pairs.
The operator · (depicted as a triangle in Figure 1) depicts
the Hadamard (or element-wise) product of the filter re-
sponses Uxtt−n and Vxt+1, denoted as factors. This op-
eration allows the model to relate its inputs, making it pos-
sible to learn interval representations.

The target of the GAE can be reconstructed as a func-
tion of the input xtt−n and a mapping mt:

x̃t+1 = σg(V
>(W>

0 W
>
1 mt ·Uxtt−n)), (2)

where σg is the sigmoid non-linearity for binary input and
the identity function for real-valued input.

The cost function is defined to penalize the error of re-
constructing the target xt+1 given the input xtt−n and the
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Figure 1: Schematic illustration of the gated autoencoder
architecture used in the experiments.

mapping mt as

Lc = c(xt+1, x̃t+1), (3)

where c(·) is the mean-square error for real-valued sequen-
ces and the cross-entropy loss for binary sequences.

4. DATA

We train the model both on symbolic music representations
and on audio spectrograms. For the symbolic data, the
Mozart/Batik data set [35] is used, consisting of 13 piano
sonatas containing more than 106,000 notes. The dataset is
encoded as successive 60 dimensional binary vectors (en-
coding MIDI note number 36 to 96), each representing a
single time step of 1/16th note duration. The pitch of an
active note is encoded as a corresponding on-bit, and as
multiple voices are encoded simultaneously, a vector may
have multiple active bits. The result is a pianoroll-like rep-
resentation.

The audio dataset consists of 100 random piano pieces
of the MAPS dataset [8] (subset MUS), at a sampling rate
of 22.05 kHz. We choose a constant-Q transformed spec-
trogram using a hop size of 1984, and Hann windows with
different sizes depending on the frequency bin. The range
comprises 120 frequency bins (24 per octave), starting from
a minimal frequency of 65.4 Hz. Each time step is contrast-
normalized to zero mean and unit variance.

5. TRAINING

The model is trained with stochastic gradient descent in
order to minimize the cost function (cf. Equation 3) us-
ing the data described in Section 4. However, rather than
using the data as is, we use data-augmentation in combina-
tion with an altered training procedure to explicitly aim at
transposition invariance of the mapping codes.

5.1 Enforcing Transposition-Invariance

As described in Section 3 the classical GAE training pro-
cedure derives a mapping code from an input/target pair,

and subsequently penalizes the reconstruction error of the
target given the input and the derived mapping code. Al-
though this procedure naturally tends to lead to similar
mapping codes for input target pairs that have the same in-
terval relationships, the training does not explicitly enforce
such similarities and consequently the mappings may not
be maximally transposition invariant.

Under ideal transposition invariance, by definition the
mappings would be identical across different pitch
transpositions of an input/target pair. Suppose that a pair
(xtt−n,xt+1) leads to a mapping m (by Equation 1). Trans-
position invariance implies that reconstructing a target x′t+1

from the pair (x′tt−n,m) should be as successful as recon-
structing xt+1 from the pair (xtt−n,m) when (x′

t
t−n,x

′
t+1)

can be obtained from (xtt−n,xt+1) by a single pitch trans-
position.

Our altered training procedure explicitly aims to achieve
this characteristic of the mapping codes by penalizing the
reconstruction error using mappings obtained from trans-
posed input/target pairs. More formally, we define a trans-
position function shift(x, δ), shifting the values of a vector
x of length M by δ steps (MIDI note numbers and CQT
frequency bins for symbolic and audio data, respectively):

shift(x, δ) = (x(0+δ) mod M , . . . , x(M−1+δ) mod M )>,
(4)

and shift(xtt−n, δ) denotes the transposition of each single
time step vector before concatenation and linearization.

The training procedure is then as follows. First, the
mapping code mt of an input/target pair is inferred as shown
in Equation 1. Then, mt is used to reconstruct a trans-
posed version of the target, from an equally transposed in-
put (modifying Equation 2) as

x̃′t+1 = σg(V
>(W>

0 W
>
1 mt ·Ushift(xtt−n, δ))), (5)

with δ ∈ [−30, 30] for the symbolic, and δ ∈ [−60, 60]
for the audio data. Finally, we penalize the error between
the reconstruction of the transposed target and the actual
transposed target (i.e., employing Equation 3) as

L(shift(xt+1, δ), x̃
′
t+1). (6)

The transposition distance δ is randomly chosen for each
training batch. This method amounts to both, a form of
guided training and data augmentation. Some weights (i.e.,
filters) in U and V resulting from that training are depicted
in Figure 2.

5.2 Architecture and Training Details

The architecture and training details of the GAE are as fol-
lows: A temporal context length of n = 8 is used (the
choice of n > 1 leads to higher robustness of the mapping
codes to diatonic transposition). The factor layer has 1024
units for the symbolic data, and 512 units for the spec-
trogram data. Furthermore, for all datasets, there are 128
neurons in the first mapping layer and 64 neurons in the
second mapping layer (resulting in mt ∈ R64).
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Figure 2: Some filter pairs ∈ {U,V} of a GAE trained on
polyphonic Mozart piano pieces.

L2 weight regularization for weights U and V is ap-
plied, as well as sparsity regularization [11] on the top-
most mapping layer. The deviation of the norms of the
columns of both weight matrices U and V from their av-
erage norm is penalized. Furthermore, we restrict these
norms to a maximum value. We apply 50% dropout on
the input and no dropout on the target, as proposed in [14].
The learning rate (1e-3) is gradually decremented to zero
over the course of training.

6. EXPERIMENTS

In this Section we describe several experimental analyses
to validate the proposed approach. They are intended to
test the degree of transposition-invariance of the learned
mappings, as well as assess their musical relevance (Sec-
tions 6.1 and 6.3). Finally, we put the learned represen-
tations to practice in a repeated section discovery task for
symbolic music and audio (Section 6.2).

6.1 Classification and Cluster Analysis

Our hypothesis is that the model learns relative pitch rep-
resentations (i.e. intervals) from polyphonic absolute pitch
sequences. In order to test this hypothesis, we conduct two
experiments using the symbolic data.

In the first experiment a ten-fold k-nn classification of
intervals is performed (where k = 10), where the task is to
identify all pitch intervals between notes in the input and
the target of an input/target pair. If the learned mappings
actually represent intervals, the classifier will perform sub-
stantially better on the mappings than on the input space.
As intervals in music are transposition-invariant, the inter-
val labels do not change when performing transposition in
the input space. Thus, we perform the classification on
the mappings of the original data and of randomly trans-
posed data, to test if the mappings are indeed transposition-
invariant.

We label the symbolic train data input/target pairs ac-
cording to all intervals which occur between them, inde-
pendent of the temporal distance of the notes exhibiting
the intervals. Thus, each pair can have multiple labels. For
each pair in the test set the k-nn classifier predicts the set
of interval labels that are present in the k neighbors of that
pair. The classification is performed in the input space (us-
ing concatenated pairs) and in the mapping space. Using
these predictions we determine the precision, recall, and

Data Precision Recall F1

Original input
Mapping space 91.27 70.25 76.66
Input space 65.58 46.05 50.59

Transposed input
Mapping space 90.78 71.44 77.31
Input space 51.81 32.99 37.43

All 26.40 100.0 40.05
None 0.0 0.0 0.0

Table 1: Results of the k-nn classification in the map-
ping space and in the input space for the original symbolic
data and data randomly transposed by [−24, 24] semi-
tones. “All” is a lower bound (always predict all intervals),
“None” returns the empty set.

F-score over the test set (cf. Table 1). For example, when a
pair contains 6 intervals and the classifier estimate yield 4
true-positive and 4 false-positive interval occurrences, that
pair is assigned a precision of 0.5 and a recall of 0.67.

In the second part of the experiment, the cluster cen-
ters of all intervals in the mapping space are determined.
Again, each pair projected into the mapping space accounts
for all intervals it exhibits and can therefore participate in
more than one cluster. The mutual Euclidean distances be-
tween all cluster centers are displayed as a matrix (cf. Fig-
ure 3). An interpretation of the results follows in Section 7.

6.2 Discovery of Repeated Themes and Sections

The MIREX Task for Discovery of Repeated Themes and
Sections for Symbolic Music and Audio 2 tests algorithms
for their ability to identify repeated patterns in music. The
commonly used JKUPDD dataset [3] contains 26 motifs,
themes, and repeated sections annotated in 5 pieces by J.
S. Bach, L. v. Beethoven, F. Chopin, O. Gibbons and W.
A. Mozart. We use the MIDI and the audio versions of the
dataset and preprocess them as described in Section 4.

We calculate the reciprocal of the Euclidean distances
between all representations mt of a song, resulting in a
transposition-invariant similarity matrix X . Then, the val-
ues of the main diagonal are set to the minimal value of the
matrix. Subsequently, the matrix is normalized and con-
volved with an identity matrix of size 15 × 15 to empha-
size and smooth diagonals (Figure 4 shows a resulting ma-
trix). The method used to determine repeated parts based
on diagonals of high values in the self-similarity matrix is
adopted from [25], with a different method to identify di-
agonals, as described below.

The function

s(i, j,N) =
N∑

k=N−m

X(i+ k, j + k)wk
m

(7)

returns the score for a diagonal starting at X(i, j) with

2 http://www.music-ir.org/mirex/wiki/2017:
Discovery_of_Repeated_Themes_&_Sections
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Figure 3: Distance matrix of cluster centers of intervals
represented in mapping space. Darker cells indicate higher
distances between respective clusters, brighter cells indi-
cate closeness.

length N , and diagonals with high score are considered to
be repeated sections. For each i, j, we iteratively evaluate
the score with N increasing from 1 in integer steps, until
the score undercuts a threshold γ. Only the last m values,
m = min(10, N), of the diagonal are taken into account,
because those values indicate when to stop tracing. The
factor

wk =
1 + k +m−N

m
(8)

linearly weights the last m values of the diagonal so that
later values have more impact on the overall score.

Three empirically determined parameters influence the
functioning of the method: (1) from the diagonals found,
we only keep those spanning more than 2 whole notes,
(2) all sections whose common boundaries start and end
within the length of a half note are considered to be repe-
titions of each other, (3) the thresholds γ determining if a
diagonal should be considered a repetition in the symbolic
and the audio data are set to 0.9 and 0.81, respectively. The
results are shown in Table 2 and are discussed in Section 7.

6.3 Sensitivity Analysis

The sensitivity of the model to specific context informa-
tion provides important insights into the functioning of the
model. A common way of determining a networks sen-
sitivity is by calculating the absolute value of the gradi-
ents of the networks predictions with respect to the input,
holding the network parameters fixed [29]. Figure 5 shows
the sensitivity of the model with respect to the temporal
context. The model is particularly sensitive to note oc-
currences at t ∈ {0,−3,−7}. This shows that the most
informative notes for a prediction are direct predecessors
(t = 0), and notes which occur a quarter (t = −3) and a

Figure 4: Symbolic music and corresponding self-
similarity matrix calculated from transposition-invariant
mapping codes. Warmer colors indicate similarity, colder
colors indicate dissimilarity.

half note (t = −7, i.e., eight sixteenth notes) before the
prediction.

7. RESULTS AND DISCUSSION

The results of the k-nn classification on the raw data and on
representations learnt by the model are shown in Table 1.
Classification in the mapping space appreciably outper-
forms classification in the input space, and obtains similar
values for mappings of the original data and the randomly
transposed data. In contrast, when performing classifica-
tion in the input space the results deteriorate for the ran-
domly transposed input and do not exceed the theoretical
lower bound (i.e, always predict all intervals). As the reg-
ister and keys of the original data are limited, correlations
between absolute and relative pitch exist. When transpos-
ing the input, the classifier cannot make use of these abso-
lute cues for relative pitch any more and performs weakly
in the input space.

Figure 3 indicates which intervals are close to each other
in the mapping space. An obvious regularity are the slightly
brighter k-diagonals (i.e. parallels to the main diagonal)
with k ∈ {−24,−12, 12, 24}, showing that two pitch in-
tervals lead to similar mapping codes when they result in
the same pitch class, such as the intervals +8 and -4 semi-
tones, or -7 and -19 semitones. This is an indication that
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Algorithm Fest Pest Rest Fo(.5) Po(.5) Ro(.5) Fo(.75) Po(.75) Ro(.75) F3 P3 R3 Time (s)

Symbolic
GAE intervals (ours) 59.07 77.60 58.30 68.92 80.24 67.46 77.51 91.38 73.29 50.44 60.36 53.23 127
VMO symbolic [34] 60.79 74.57 56.94 71.92 79.54 68.78 75.98 75.98 75.99 56.68 68.98 53.56 4333
SIARCT-CFP [4] 33.70 21.50 78.00 76.50 78.30 74.70 - - - - - - -
COSIATEC [19] 50.20 43.60 63.80 63.20 57.00 71.60 68.40 65.40 76.40 44.20 40.40 54.40 7297

Audio
GAE intervals (ours) 57.67 67.46 59.52 58.85 61.89 56.54 68.44 72.62 64.86 51.61 59.60 55.13 194
VMO deadpan [34] 56.15 66.80 57.83 67.78 72.93 64.30 70.58 72.81 68.66 50.60 61.36 52.25 96
SIARCT-CFP [4] 23.94 14.90 60.90 56.87 62.90 51.90 - - - - - - -
Nieto [25] 49.80 54.96 51.73 38.73 34.98 45.17 31.79 37.58 27.61 32.01 35.12 35.28 454

Table 2: Different precision, recall and f-scores (adopted from [34], details on the measures are given in [3]) of different
methods in the Discovery of Repeated Themes and Sections MIREX task, for symbolic music and audio. The F3 score
constitutes a summarization of all measures.

, sixteenth notes

Figure 5: Absolute sensitivity of the model when look-
ing backwards on the temporal context, averaged over the
whole dataset.

the model learns the phenomenon of octave equivalence,
even if the input to the model represents only absolute
pitch. Another distinct feature is the stripe which is orthog-
onal to the main diagonal (i.e. where y = −x). This indi-
cates that the model develops some notion of relative dis-
tances, by positioning intervals of the same distance (but
different signs) close to each other.

Note also that the mappings of certain intervals, notably
6 and −6, are distant to those of most other intervals (dark
horizontal and vertical lines). This likely reflects the fact
that tritone intervals are rare in diatonic music, and is fur-
ther evidence of the musical significance of the learned
mappings.

Table 2 shows results of the repeated themes and sec-
tion discovery task, where the F3 score is a good indi-
cator for the overall performance of the models (see [3]
for a thorough explanation on the respective measures).
For the audio data, the current state-of-the-art F3 score
was raised from 50.60 to 51.61 by our proposed method.
The method performs slightly worse on the symbolic data,
which is counterintuitive at first sight, given that results
of other models suggest that this task is easier. Our hy-
pothesis is that for discovery of repeated sections, approx-

imate matching leads to better results than exact compar-
ison, simply because musical variation goes beyond chro-
matic transposition (towards which our model is invariant).
For approximate matching, a spectrogram representation
is better suited than symbolic vectors, as notes are blurred
over more than one frequency bin, and harmonics may pro-
vide additional cues for a similarity estimation. The pro-
posed approach is computationally efficient, because the
diagonal detector (cf. Equations 7 and 8) is rather sim-
ple and the transposition-invariance of the representations
does not require explicit comparison of mutually trans-
posed musical textures.

8. CONCLUSION AND FUTURE WORK

In this paper we have presented a computational approach
to deriving (pitch) transposition-invariant vector space rep-
resentations of music both in the symbolic and the audio
domain. The representations encode pitch intervals that
occur in the music in a musically meaningful way, with tri-
tone intervals—a rare interval in diatonic music—leading
to more distinct representations, and octaves leading to
more similar representations. Furthermore, the temporal
sensitivity of the model reveals a beat pattern that shows in-
creased sensitivity to pitch intervals occurring at beat mul-
tiples of each other.

The transposition-invariance of the representations
makes it possible to detect transposed repetitions of mu-
sical sections in the symbolic and in the spectral domain of
audio. We have demonstrated that this is beneficial in tasks
such as the MIREX task Discovery of Repeated Themes
and Sections. A simple diagonal finding approach on a
transposition-invariant self-similarity matrix produced by
our model is sufficient to outperform the state of the art in
the audio version of the task.

We believe it is worthwhile to further explore the utility
of transposition-invariant music representations for other
applications, including speech recognition, music summa-
rization, music classification, transposition-invariant mu-
sic alignment (including a cappella voices with pitch drift),
query by humming, fast melody-based retrieval in large au-
dio collections, and music generation. First results show
that the proposed representations are useful for audio-to-
score alignment [1] and for music prediction tasks [10].
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ABSTRACT

Music can play an important role in social experiences
and interactions. Technologies in-use affect these expe-
riences and interactions and as they continue to evolve, so-
cial behaviors and norms surrounding them also evolve.
In this paper, we explore the social aspects of commer-
cial music services through focus group observation and
interview data. We seek to better understand how exist-
ing services are used for social music practices and can
be improved. We identified 9 social practices and 24 in-
fluences surrounding commercial music services. Based
on the user data, we created a model of these practices
and influences that provides a lens through which social
experiences surrounding commercial music services can
be understood. An understanding of these social prac-
tices within their contextual ecosystem help inform what
influences should be considered when designing new tech-
nologies. Our findings include the identification of: the
underlying relationships between practices and their influ-
ences; practices and influences that inform the weight of
relationships in social networks; social norms to be con-
sidered when designing social features; influences that add
additional insight to previously observed behaviors; and a
detailed explanation of how music selection and listening
practices can be supported by commercial music services.

1. INTRODUCTION

Music plays a role in social experience and social cohesion
[3, 18]. It can function as an icebreaker, to facilitate infor-
mal interactions, to initiate friendships, and to strengthen
relationships [18]. Different music media and technology
such as tapes, CDs, and digital files offer different affor-
dances that influence the activities surrounding music [4].
These music-related activities are also influenced by the
physical and social context of the technology [5]. In this
paper, we investigate music-related “social practices,” de-
fined as activities a person carries out on a regular basis
involving others or in the presence of other people. Social

c© Louis Spinelli, Josephine Lau, Liz Pritchard, Jin Ha Lee.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Louis Spinelli, Josephine Lau, Liz
Pritchard, Jin Ha Lee. “Influences on the Social Practices Surrounding
Commercial Music Services: A Model for Rich Interactions”, 19th In-
ternational Society for Music Information Retrieval Conference, Paris,
France, 2018.

practices surrounding music previously studied include lis-
tening, discovering [12], sharing [4, 12], exploring and
peeping [20].

In 2006, O’Hara and Brown’s work [20] on social and
collaborative aspects of music consumption technologies
provided an up-to-date and comprehensive foundation for
research into the social practices surrounding music at that
time. Since then, Komulainen et al. [16] explored mu-
sic sharing of youth in the context of new social media
and mobile devices. Leong and Wright [18] explored so-
cial practices surrounding music in households. Cunning-
ham et al. also explored social music practices in specific
places and situations like parties [8] and cars [9]. Hagen
and Luders [12] explored sharing and following behav-
iors with commercial music services. However, existing
research on social practices surrounding music provides
only a glimpse of the social behaviors surrounding music
respective of that time and then-current technology.

Technological aspects related music practices have also
been explored. For instance, Chamberlain and Crabtree [6]
explored the workflows and technologies involved in the
discovery, identification, acquisition, and organization of
music in domestic settings. Goto [11] has also explored
the influence of new “intelligent” interfaces on music prac-
tices. Several researchers including Barrington et al. [1],
Zhu et al. [23], and Kamehkhosh et al. [15] also explored
different factors, dimensionality of music, or automated
recommendations that affect playlist generation/evaluation
and music search. Although their research did not specif-
ically focus on social practices surrounding commercial
music services, our research adds new depth and context
to their findings.

Streaming music technologies have grown in preva-
lence [19] and new features such as app integrations,
and auto generated playlists as well as new interactive
mechanisms like voice control have become more ubiqui-
tous. The majority of music listeners in America are now
streaming music [19]. Because of the role music plays in
society and the influence of technology on social activities,
it is important to gain an updated understanding of the in-
fluences on social practices surrounding commercial music
services.

Building upon earlier research, our work looks specif-
ically at commercial music services such as Spotify, Pan-
dora, and Google Play, which have become pervasive in
recent years. As social practices surrounding music have
co-evolved with commercial music services, it is important
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to understand the implications these new technologies have
on social practices, both positive and negative. However,
updated literature on social practices surrounding commer-
cial music services — as well as influencers on social prac-
tices — is lacking. To address this gap in knowledge we
conducted six focus groups on two university campuses.
We found that social practices surrounding commercial
music services exist within a rich ecosystem of influences.
We contribute a codebook defining 24 influences identi-
fied from user data as well as a model that provides a lens
through which these experiences can be viewed and under-
stood. This codebook provides insight into what influences
need to be taken into consideration when designing tech-
nologies that are used socially. Notable findings based on
our codebook and model include the identification of: the
underlying relationships between practices and their influ-
ences; practices and influences that inform the weight of
relationships in social networks; social norms to be con-
sidered when designing social features; influences that add
additional insight to previously observed behaviors; and a
detailed explanation of how music selection and listening
practices can be supported by commercial music services.

2. RELATED WORK

Social practices were previously observed and described
in context of the technologies of the day. When O’Hara
and Brown published their book in 2006, MP3 sharing
platforms like Gnutella, Kazzaa, and Soulseek had just
replaced Napster, and iTunes was a new legal addition
to the market. In 2013, Leong and Wright observed
changes in social behaviors around the exploration, dis-
covery, and sharing of music in relation to changes in tech-
nologies including streaming internet and bluetooth on mo-
bile phones. They noted “an emergence of new sociality
and new forms of social practices around music” as well as
new social tensions emerging around music selection and
listening in shared settings [18].

Previous research in social practices surrounding music
highlights the important role evolving technologies play in
understanding the social practices surrounding music. A
body of related work focuses on technology in shared en-
vironments. Brush and Inkpen [5] examine the use and
sharing of technology in domestic environments. They
found two common models for sharing devices: the ap-
pliance model and the profile model. Sharing of devices
using the appliance model is mediated through social pro-
tocols. In contrast, sharing of devices using the profile
model is mediated by allowing users to have individual
profiles. Brush and Inkpen [5] also looked at the ownership
models of devices - individual ownership versus shared
ownership - within domestic environments. The physical
locations of technology, privacy, and capability for per-
sonalization of technologies all influenced social behav-
iors [5]. They found that video game systems exemplified
devices with shared ownership whereas mobile music play-
ers exemplified devices with individual ownership [5]. Ja-
cobs, Cramer, and Barkhuus found four types of behaviors
when studying the sharing practices of personal devices

between cohabiting couples: “intentional sharing, explic-
itly not sharing, unintentional access and unintentionally
inhibiting access” [14]. They also observed that couples
support sharing behaviors by “hacking” the intended use
of the technologies [14].

These studies highlight that practices surrounding tech-
nology are influenced by the relationships of the individ-
uals involved as well as the environment. Not only are
social practices influenced by individual relationships, pre-
vious research also has shown social music practices also
influence relationships and individual behavior. Boer and
Abubakar [3] described the benefits of music listening in
families and peer groups in which they found “benefits for
young people’s social cohesion and emotional well-being”.
Yang, Wang, and Mourali describe the influence of peers
on unauthorized music downloading and sharing [22]. The
physical context (environment) of previous research into
social music practices also includes cars, public locations,
workspaces, and dance clubs [20].

Research has also focused on individuals and their prac-
tices surrounding music and commercial music services.
In 2013, Belcher and Haridakis [2] explored the motives
people have for listening to music. Their results included
the identification of social motivations influencing music
listening and selection behaviors. Lee and Price [17] devel-
oped seven personas based on empirical music user data.
These personas provide greater insight into design impli-
cations for users than user groups based on demograph-
ics. Our work further expands understanding of commer-
cial music service users and their behaviors in social situa-
tions. Finally, while Hagen and Lüders [12] have looked at
the sharing and following behaviors of commercial music
service users, we take a broader look at the social prac-
tices surrounding commercial music services and their in-
fluences.

3. STUDY DESIGN AND METHODS

Six focus groups were held at Eckerd College and at the
University of Washington, Seattle (UW). Participants were
commercial music service users who were aged eighteen
to thirty-four and lived with roommates. Results were ana-
lyzed by qualitative content analysis using a constant com-
parative method. Focus groups were selected to enable
rich conversations where participants could prompt and re-
mind one another of social situations they may have en-
countered. Participants were often prompted by situations
similar to what they had encountered but described han-
dling them in different ways. Participants often contrasted
their social behaviors with individual behaviors.

3.1 Participants

Recruitment activities for the focus groups consisted of
displaying flyers, posting to listservs, and posting on so-
cial media. Physical flyers were placed on boards around
the Eckerd College Campus, the UW Campus, and in busi-
nesses surrounding each campus. Posts were also made
to additional listservs and social media outlets known to
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the researchers that included student affiliated groups and
groups of people not affiliated with either university. Par-
ticipants were compensated with an Amazon gift card for
being part of two additional activities for subsequent re-
search not discussed in this paper. All recruiting activities
directed potential participants to a screener survey.

The screener survey was used to ensure all participants
were between the ages of 18 and 34, currently living with
a roommate or roommates, and using at least one commer-
cial music service. Of the 80 potential participants who
filled out the survey, 61 were eligible and available to at-
tend the focus group on one of the preselected dates. Focus
groups were filled on a first come first serve basis.

In total, 6 participants from the screener for Eckerd Col-
lege and 20 participants from the screener for UW took
part in six focus sessions - 2 held at Eckerd College and 4
held at UW. Of the 25 participants who reported a gender
identity, 16 were female and 9 were male. 24 participants
were between the ages 18 to 24, and 2 others were ages 25
to 34. Participants reported using a diverse array of com-
mercial music services currently on the market including
Spotify, Pandora, Google Play Music, YouTube, Sound-
cloud, Apple Music, Online radio services (e.g. NPR mu-
sic, iHeartRadio, etc.), Indieshuffle, Tidal, and Amazon
Music.

3.2 Procedures

Each of the six focus group sessions were approximately
an hour long, with 3 to 6 participants per session. Each
session had a facilitator and note-taker. Each session was
also recorded and transcribed to ensure accurate analysis.
Two pilot focus groups were held - one at each location -
to test the focus group script, although refinement of the
script continued throughout the study.

The script 1 was designed to prompt participants to
have open-ended dialogues with each other about their
social practices surrounding commercial music services.
Generally, each focus group began with a warm-up activ-
ity where each participant introduced themselves and de-
scribed the commercial music services they use, then the
group brainstormed different locations where they listen to
music identifying the social situations. Participants were
then prompted to talk about their social practices in co-
listening situations, when sharing, and with technology.

3.3 Analysis

After transcribing each focus group session, we
anonymized participant information and analyzed the
results in a two-part qualitative content analysis process.

For the first part, we separated each participant com-
ment into individual post-it notes and conducted constant
comparative analysis including affinity diagraming [21].
We opted for this method because it allows the creation
of categories to be driven by the raw data and not estab-
lished a priori [21]. When building an affinity diagram,

1 Documented here: https://perma.cc/Z58H-XQJU

not only did social practices surrounding commercial mu-
sic services emerge from the data, but influencers to these
practices also emerged. Reflecting on previous work de-
veloping personas of commercial music service users [17],
we recognized the importance of understanding these in-
fluences on individual behavior in social situations.

For the second part, a codebook with social practices
and influences was developed following an iterative coding
process using Dedoose, custom Python code, and Google
Sheets. An initial version of the codebook was produced
by a single team member who coded all transcripts asking
two questions about each excerpt: 1) Does this describe
a social practice surrounding a commercial music service?
and 2) Does this describe something that influences a social
practice surrounding a commercial music service?

The codebook was then revised and refined through
an iterative team coding process, following a consensus
model [13]. During each test, each excerpt was coded with
applicable codes for social practices and influences. Each
excerpt describing a social situation could be coded with
multiple social practices and influences. Codes applied to
excerpts by different independent coders were then com-
pared. When applied codes differed, the team members
who coded the excerpts discussed their reasoning leading
to an agreement that one coder erred, that an update to the
codebook was needed, or that a third team member was
needed as a tie-breaker.

4. RESULTS

4.1 Social Music Practice Codebook and Model

During analysis, 9 distinct social practices and 24 influ-
ences emerged 1 (Table 1). These influences were grouped
into three categories: group/social influences, external in-
fluences, and internal influences.

Many of the practices and influences that emerged could
be applied to – and have been observed with – other tech-
nologies. For example, Music Technology Management
could have been described as Technology Management –
something that has been studied in households with all
technologies [5].

Co-occurrence of social practices and influences when
applying codes to the transcript led to the insight that
each social practice surrounding commercial music ser-
vices happens in an ecosystem. The ecosystem’s complex-
ity is captured in our model of the influences on the social
practices surrounding commercial music services, as ex-
plained in more detail in the following sub-sections.

4.1.1 A Flexible Model of a Rich Ecosystem

Our model of the social practices surrounding commercial
music services and the influences thereof represents a rich
community of practices and influences. Influences affect
other influences. Social practices affect other social prac-
tices as well as their own influences. This meant that a
simple situation would likely capture multiple social prac-
tices and multiple influences, as illustrated by the sample
quote below.
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Figure 1. A model of the influences on the social practices
surrounding commercial music service.

“. . . my roommate also likes Phish so I was at a show and they
played her favorite song, so I like sent it to her... Like I sent a
video recording of it and she was so excited. And we bonded over
that. ” (P22)

We coded this sample quote of a participant describ-
ing sharing a video of a song with her roommate with
two social practices (Sharing Music (Information) and So-
cial Interaction/Navigation) as well as three influences -
two external influences (Technology/Music Collection and
Event/Activity) and one group/social influence (Level of
Group Intimacy). Level of Group Intimacy and Social In-
teraction/ Navigation demonstrate the bidirectional nature
of the influences and social practices. The practice here
- sharing music - is influenced by an existing relationship
which it also strengthened.

4.1.2 A Non-Linear Model

Our model does not define the sequence in which social
practices occur. Similar to Fosters’ nonlinear model of in-
formation seeking behavior, our model of social practices
is nonlinear [10]. Practices precipitate other practices, co-
occur, and can be repeated. While a practice like Music
Identification can occur after listening to music, it can also
happen during listening or before listening.

“Yeah, for me, they need to be vetted as friend first, and then I’ll
see if I’ll take their music recommendations.” (P2)

As described by participant 2, for a social practice like
sharing (Sharing Music (Information)) to be successful it
may need to be preceded by social interactions (Social
Interaction/Navigation) that build trust and develop inti-
macy. These preceding practices could also include shar-
ing (Music (Information) Sharing).

4.2 The Full Spectrum of Each Influence

Each code refers to the full spectrum of that influence, so
users could describe an influence as being very important
to them or not at all. For instance, the Privacy and Secu-
rity Considerations code also captures the lack of privacy

concerns when a participant described sharing their phone
with friends:

“You can never be too sure, but I just don’t care. If they see any-
thing, they see it. I guess I trust them not to snoop around on the
phone.” (P15)

5. DISCUSSION

To illustrate the utility of the codebook and model, we dis-
cuss findings that emerged from its application, adding to
the overall understanding of music services in social con-
texts.

5.1 The Unequal Weight of Influences

Understanding the meaning and underlying weight of in-
fluences supports quantitative data and adds depth to de-
sign considerations. Quantitative network analysis is bol-
stered by an understanding of both the strength of connec-
tions and what is driving each relationship. Understanding
which influences will hinder the adoption of a new feature
or technology can save time and money, and identify neg-
ative externalities that may not have been considered.

5.1.1 Weight of Relationships in Social Networks

Social network analysis is used to study the “connection[s]
and interaction[s] between social actors” [7]. Crossley et
al.’s 2014 collection of essays explore different applica-
tions of social network analysis for understanding “music
worlds” - a phrase they use to describe collective actions
that are similar to social movements [7]. Rather than look-
ing at large scale social movements, we focused on what
practices surrounded commercial music services and why.
Understanding why users share music and what sharing in-
dicates about their relationships provides insight into the
strengths of connections between social actors.

“Sometimes I will share [playlists] ... but usually just [with] close
friends. . . ” (P18)

“She knows music and knows when it sounds good and when it
doesn’t. So, if she’s like ‘listen to this because it sounds good’,
then I take every opinion that she has.” (P23)

Our findings indicate that a person is more likely to
share a playlist with close friends. In addition, participants
reported that after receiving music, they were more likely
to listen to songs shared by vetted friends. With this find-
ing in mind, quantitative data showing social actors that
share playlists and listen to one another’s recommenda-
tions could indicate users that have a high Level of Inti-
macy.

5.1.2 Social Norms as Design Considerations

We found social norms exist around vehicles and resi-
dences, and have strong influences on social practices. Our
participants indicate the location and the type of relation-
ship influence music sharing in social situations. Partic-
ipants were unlikely to share a request with a stranger, a
host, or a driver in a social situation because they did not
believe it was socially appropriate. On the other hand, the
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A Social Practices Surrounding Music Any activity
involving two or more participants engaging with mu-
sic, or situations where an individual changes his/her
music-related behavior based on social influences. Oth-
erwise, does not apply to individual settings.

A.1 Music Discovery When one finds new music
with someone, from someone else, or from a social
interaction/environment.
A.2 Music Identification When one takes action to
determine the title of a song, artist, or album in a so-
cial interaction/environment.
A.3 Music Listening When a group (two or more
participants) listens to music together.
A.4 Music Management When one actively engages
with music and music metadata (e.g., adding an al-
bum, adding a song to a playlist, browsing another’s
collection, using a storing practice to remember a
song for later).
A.5 Music Selection When one selects music for co-
listening, sharing, and for collaborative playlists.
A.6 Music Technology Management When one reg-
ulates how one’s music technologies and accounts are
protected, shared, accessed, or determined for their
uses in a social interaction/environment.
A.7 Navigating Space/Setting When one adjusts
their behavior depending on the setting (e.g., leaving
a room when roommate is playing bad music or pass-
ing the phone around in a car).
A.8 Music (Information) Sharing When one shares
or receives music/ music metadata.
A.9 Social Interaction/Navigation Bonding activi-
ties, group dynamic formation activities, group norm-
ing activities.

B Internal Influences Any activity where a social mu-
sic practice is influenced by how an individual engages
with the practice to a varying degree.

B.1 Assertiveness Level The degree an individual in-
fluences or confronts others, or vice versa (e.g., tak-
ing over music selection for the group or not feeling

comfortable suggesting a song be changed when one
does not like it).
B.2 Considerateness The degree to which an indi-
vidual cares about bothering others.
B.3 Current State The current emotional state,
mood, or preference of an individual. NOT the cur-
rent event or activity, for this USE: External Influence
>Event/Activity.
B.4 Effort/Engagement Level of effort or engage-
ment an individual is willing to put forth or take on
responsibility.
B.5 Expertise/Knowledge of Music Having an ex-
pertise/knowledge about music, such as an awareness
of new music, or lack thereof.
B.6 Impression Management Considerations
When others’ perceived reception of music choices,
suggestions, or tastes affect an individual’s actions in
a social music practice.
B.7 Openness Willingness to explore new music or
others’ recommendations.
B.8 Privacy and Security Considerations Consid-
erations relating to privacy and/or security that influ-
ence an individual’s actions in a social music practice.
B.9 Social Driver Social need or purpose for interac-
tion (e.g., a bonding experience, a desire to share the
same space with another person).
B.10 Technology Knowledge/Considerations
Knowledge and consideration, or lack thereof, of
features of technology, preferences for technology,
personal attachment to technology.
B.11 Tolerance The degree an individual endures
music or music-related behavior/situation they do not
like.
B.12 Trust/Reliability When group members have
varying degree of confidence in another member’s
ability to undertake social music practices (e.g., mu-
sic selection/sharing) or when a member has varying
degree of confidence from other group members.

B.13 Willingness The degree of willingness an indi-
vidual exhibits to take part in a practice.

C External Influence Any activity where a social music
practice is influenced by something outside of individ-
ual, group, or social traits.

C.1 Event/Activity Attributes of an event or activity
including the goals and the situational context.
C.2 Norm/Expectation Societal norms including for
places, events, and gatherings.
C.3 Ownership and/or Control of Service or Tech-
nology Possession of technology (e.g., speakers,
Chromecast) or access (e.g., subscription) to a com-
mercial music service.
C.4 Popularity/Reception of Music The wider soci-
etal and cultural reputation of a song, artist, or genre
as well as the prevalence of this knowledge.
C.5 Technology/Music Collection Technology, or
the attributes/features thereof, being used (e.g., com-
mercial music service or physical collections likes
vinyl or CDs).
C.6 Temporal/Spatial Physical space, physical prox-
imity, or temporality.

D Group/Social Influence Any activity where a social
music practice is influenced by the social aspect of a sit-
uation or setting to a varying degree.

D.1 First Mover When someone else being in a set-
ting first affects the social situation.
D.2 Group Dynamic When a group’s shared prefer-
ences or norms affect how they generally engage with
music (e.g., a group’s preferences for songs, genres,
technologies, or a group member to play music).
D.3 Group Size When the number of people in the
social situation affects how the group engages with
music.
D.4 Level of Group Intimacy When the level of fa-
miliarity between group members affects how they
engage with music (e.g., perceived knowledge of an-
other’s taste or opinion in music).

Table 1. Codebook of Social Practices and Influences.

more intimate the relationship, the less these social norms
stood in the way.

“If someone’s playing music, it’s usually the driver’s call.” (P1)

“I’ve never even thought about asking an Uber driver to play
music, like I don’t even know like, well I guess like because a
driver’s a stranger I’d feel kind of weird.” (P12)

“It depends on the people you are with, if you’re with friends, it’s
fine, if you’re with siblings it’s possible you can compete, but if
you’re with people who you don’t know much, you would rather
listen to what’s going on rather than insist on playing something
or maybe just plug in own earphones and not notice it.” (P9)

Participants discussed situations where they would or
would not ask music to be changed or request a song to
be played. The ownership of the space seemed to matter
significantly as they talked about respecting the host of the
party or the driver being in control of the music. Partici-
pants indicated that they would be uncomfortable request-
ing a song or a song change if they were not the driver
unless with a group of friends. Most participants reported
that they would be unlikely to do either of these behaviors
in a rideshare vehicle.

5.2 Insight into Invisible Influences

Leong and Wright observed recent technologies support-
ing social practices, but also contributing to social ten-
sions [18]. They observed nuanced situations that involved

control (Assertiveness), rituals (Group Dynamic), cul-
tural/linguistic elements (Social Norms, Group Dynamic),
relationship (Level of Group Intimacy), Considerateness,
and setting (Temporal/Spatial, Event/Activity). While in-
dependently developing our codebook we captured simi-
larly nuanced situations. In addition, we identified an ad-
ditional influence not explained in the previous research,
“Social Driver”, to describe situations where participants
simply wanted to be collocated with others.

“Sometimes it’s nice with my roommate, we’ll go to our rooms. . .
and just listen to our own individual music and do our own thing
which can be nice, but you know when we want to be social . . .
then it’s kind of nice to listen to music together ...” (P17)

“[Headphones allow] me to immerse myself, like, in myself
while still being in public.” (P23)

This need to be social has implications for social mu-
sic practices and what technologies should consider. So-
cial needs may drive people with disparate music tastes
to use a commercial music service together to select mu-
sic or for people to wear headphones in a shared space.
Event/Activity, Temporal/Spatial, and Level of Group In-
timacy played a role in what participants did in these sit-
uations. For instance, when studying, participants would
often use headphones, but when taking a break from study-
ing, participants would more likely select music with their
roommates. This finding — that an interaction between So-
cial Driver and Event/Activity affects Music Selection —
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has implications for playlist development and how com-
mercial music services can support individual and social
listening (described in Section 5.3).

5.3 Supporting Selection and Listening Practices
through Playlist Generation

Music Selection practices varied depending on a num-
ber of influences including Group Size, Group Dynamic,
Event/Activity, and Effort/Engagement. The broadness of
a music collection and playlist content (Technology/Music
Collection) played a role in what technology was used and
what music was selected during different experiences.

“Depending on the activity, most of the time when I’m alone,
I’ll just put on a playlist that’s already curated. Like running,
or at the gym, that way I don’t have to skip anything. It’s usually
pretty tailored to that specific activity. Or like studying, I usually
don’t really listen stuff with a lot of lyrics, because that can be
distracting. But when I’m with friends, there’s more skipping,
we’ll have a pretty broad variety of songs.” (P16)

For many social situations, participants described either
developing or selecting playlists that included a larger vari-
ety of music enabling more skipping of songs. This behav-
ior can be supported by anticipating this skipping behavior
with playlists - both pre-made and auto-generated - by in-
cluding a larger selection of songs knowing that some will
be skipped.

“You might choose to play some common songs which generally
people would like and not very exotic choices so that most of
them enjoy - not all - but maybe most of them would like to have
it there.” (P9)

“If I really want to listen to something, I’ll usually just listen to
it by myself, because I can just focus on the music or focus on
the task that I’m doing rather than having to socialize with other
people, which is kind of, where you get lost in the conversation
and miss out on the music.” (P15)

For social situations, participants described choosing
playlists and songs “commonly” popular amongst their so-
cial groups. Many participants described selecting music
to set the mood, but recognized the music would not be the
sole focus of the social situation. They would choose to
listen to music on their own if they really wanted to focus
on it. The described playlists for social situations included
go-to songs for the group, current hits, classics, and other
music already likely to be know my group members.

“If we’re pre-gaming, we can use a playlist and just use that and
that way no one has to touch the phone. Everyone can be talking
while the music is just in the background.” (P16)

“It is annoying to like constantly be adding songs and also to
listen to three people’s songs that you may not like their music
as much.” (P7)

“I do the queue thing a lot, like taking requests, if not just queue-
ing up stuff yourself.” (P6)

Effort and engagement also played a role in music selec-
tion in social situations. While most participants preferred
playlists in social situations, some participants described
behaviors that required more effort – selecting and queu-

ing songs was one of these behaviors.

6. CONCLUSION AND FUTURE WORK

In this work, we created a model of these practices and
influences that provides a lens through which social ex-
periences surrounding commercial music services can be
understood as technology continues to evolve and affect
them. Our model, building on previous work, provides in-
sight into the social practices and influences that should be
taken into consideration when designing commercial mu-
sic services. Applying our codebook on qualitative data
pertaining to specific technologies and user groups enables
researchers to gather design considerations for social prac-
tices specific to their own technology and context.

Design implications for music services based on the
user data include:

1. Invitations to break social norms: If a music ser-
vice wanted to support music sharing in social situ-
ations, a push notification sent from a host or driver
inviting the guest or passenger to make a request
through a selected music service could help over-
come inhibitive social norms.

2. Customization of playlists and stations for social
influences: Playlists and stations are currently or-
ganized by genre, activity, and mood. Designing to
support social listening would involve allowing par-
ticipants to select, customize, or generate playlists
and stations based on group size. Recognition of
group consumption should increase the amount of
songs and their level of popularity/broad appeal.

The addition of individual interviews in future studies
would likely lead to further insight into privacy consid-
erations and impression management behaviors, although
participants seemed to speak freely about both. Addi-
tional studies with different methodologies and different
segments of the population will allow the model and code-
book to be revised, enriched, updated, and validated. Also,
further research is currently underway exploring the Q-
method as a way to understand the personal significance
of different influences for individual participants.

While this model was based on the social practices sur-
rounding commercial music services, it can apply to other
technologies. A good example might be the streaming
video services that were often described analogously by
participants. It is likely that many of the influences will be
similar, although the technologies differ.
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ABSTRACT

We investigate the complex relationship between the fac-
tors (i) preference for music mainstream, (ii) social ties
in an online music platform, and (iii) demographics. We
define (i) on a global and a country level, (ii) by several
network centrality measures such as Jaccard index among
users’ connections, closeness centrality, and betweenness
centrality, and (iii) by country and age information. Using
the LFM-1b dataset of listening events of Last.fm users,
we are able to uncover country-dependent differences in
consumption of mainstream music as well as in user be-
havior with respect to social ties and users’ centrality. We
could identify that users inclined to mainstream music tend
to have stronger connections than the group of less main-
streamy users. Furthermore, our analysis revealed that
users typically have less connections within a country than
cross-country ones, with the first being stronger social ties,
though. Results will help building better user models of
listeners and in turn improve personalized music retrieval
and recommendation algorithms.

1. INTRODUCTION

When meeting new people, they frequently tend to talk
about their favorite music as conversation starter [30]. In-
deed, several studies (e.g., [3, 23, 33, 43]) indicate that
shared music preferences create and intensify social bonds.
For instance, Boer et al. found in a study that participants
liked others with the same music preferences more than
those with different music preferences [3]. Based on this
result, the authors conclude that shared music preferences
can generate and increase social attraction.

In online social networks (OSN), such as Facebook, In-
stagram, or Twitter, the social bonding effects of shared
music preferences are expected to follow similar patterns
as the ones observed in offline settings, i.e., in the physi-
cal world. In the context of OSN, it is particularly interest-
ing to consider that connections between users are not con-
strained to any single country, which is frequently the case
in offline scenarios [5]; indeed, many social ties between

c© Christine Bauer, Markus Schedl. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Christine Bauer, Markus Schedl. “Investigating Cross-Country
Relationship between Users’ Social Ties and Music Mainstreaminess”,
19th International Society for Music Information Retrieval Conference,
Paris, France, 2018.

users are cross-country connections [1]. Yet, sometimes
individuals center their interactions within locally bounded
social circles also in their online interaction behavior [10].
Whether they do so or rather not, however, strongly de-
pends on the users’ cultural backgrounds. For instance,
Choi et al. found that American users maintained larger
but looser networks, whereas Korean users had smaller but
denser networks [9]. Barnett and Benefield analyzed cross-
country friendship connections on Facebook and found
that international ties tended to share borders, language,
civilization, and migration aspects [1].

Similarly, it has been found that music preferences are
highly influenced by the cultural background of listen-
ers [40]. In particular, they strongly depend on the country
the user lives in, and each country has its own characteris-
tics with respect to which music is considered popular or
mainstream in that very country [38].

In contrast to the above general studies on cross-country
user connections and music preferences, little is known
about how shared music preferences and social ties are re-
lated in OSN and how the social bonding effect varies for
cross-country ties. Against this background, the research
questions (RQ) we address are:
• RQ1: In which ways do listeners in different coun-

tries differ in terms of their inclination to listen
to mainstream music (considering both global and
country-specific mainstream)?

• RQ2: In which ways do listeners in different coun-
tries differ in terms of their social ties and con-
nectedness in a music-related online social network
(Last.fm)?

• RQ3: In which ways do the previous two aspects
interrelate, i.e., does maintaining strong social ties
(within or between countries) interrelate with a pref-
erence for mainstream music?

The answers to these questions will help building better
models of listeners—individually and on a country level—
and in turn improve personalized music retrieval and rec-
ommendation algorithms, as it has already been shown for
other user characteristics, such as demographics [47], ac-
tivity [49], or mood [26]. For instance, the intensity of
cross-country ties of a user u together with information
about the music mainstream of u’s country and the coun-
tries u’s friends originate from may be used to tailor rec-
ommendations for u. To give an example, if a Spanish user
u maintains very strong ties to users in Brazil, a music rec-
ommender system may include in its recommendation list
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a few music items that are popular only in Brazil, to ideally
provoke serendipitous music encounters for u.

The remainder of this article is organized as follows.
Section 2 presents related work on music mainstream, so-
cial connectedness, and culture-aware listener analysis and
modeling. Section 3 details the methodology we apply to
answer the research questions. Section 4 presents and dis-
cusses the obtained results. Eventually, Section 5 rounds
off this work with a conclusion and pointers to future re-
search.

2. RELATED WORK

The work at hand connects to research on music prefer-
ences and mainstream, on user connectedness in social net-
works, and on culture-aware music and listener analysis.
We briefly discuss the most important related literature in
these areas and connect our work to it.

2.1 Music Mainstream

A user’s music preferences are shaped by various fac-
tors. Extant studies have investigated the relationship
between music preferences and, amongst others, demo-
graphics (e.g., [4]), personality traits (e.g., [7]), or social
influences (e.g., [3, 46]). Music tastes and preferences
are measured in various ways, for instance, in terms of
genre (e.g., [3, 29, 32, 40]), artist (e.g., [36, 48]), or mood
(e.g., [14, 18]) preference.

Another approach to distinguish music preferences is
to consider the degree of people’s tendency to favor mu-
sic that is considered mainstream, i.e., music that is most
popular within the entire population [41]. In short, measur-
ing music preferences in terms of a user’s degree of main-
streaminess is a popularity-based approach that considers
the degree to which a user prefers music items that are
currently popular or rather ignores such trends [34]. Fur-
ther studies revealed that people’s preferences vary across
countries, which holds true for both music genres [40] as
well as mainstream music [38]. Early research with re-
spect to music mainstreaminess for the use in music rec-
ommendation systems shows that the population which a
user is compared to tremendously impacts the outcome
with respect to recommendation performance [2,34]. More
specifically, a user may be compared to the mainstream
from a global perspective, but also from a country per-
spective. Yet, an in-depth analysis of country-specific dif-
ferences concerning mainstreaminess—from a global per-
spective and a country perspective—is a research gap.

2.2 Social Connectedness

Research on the strength of social connections dates back
to Granovetter’s paper entitled “The Strength of Weak
Ties” [15], describing the social network theory, which
he later revisited in [16]. In OSN research, social con-
nectedness has been a target of research since the early
days of OSN. For instance, although theoretically not con-
strained to any single region [5, 9], social connections on

OSN sometimes tend to center within locally bounded so-
cial circles [10,51], because social ties in OSN may follow
the spatial, structural, and cultural perimeters of the soci-
etal system that OSN users belong to in offline settings,
i.e., in the physical world [5].

Initially, designing measures of tie strength had been
difficult as Granovetter [15, 16] had not given a precise
conceptual definition for it [24]. A scale of measures has
developed since then. Among the most common measures
for tie strength and derived measures for node importance
are the overlap in users’ neighborhoods via Jaccard index
(J), the closeness centrality (C), and the betweenness cen-
trality (B), which we therefore also use in our work, and
detail in Section 3.2.

Studies have revealed that music preferences play an
important role in creating and intensifying social bonds [3,
23,33,43], because shared music preferences can generate
and increase social attraction [3]. In other words, people
tend to like people with the same music preferences more
than people with different music preferences [3].

This fact has been exploited, among others, in [25],
where a social approach for music recommendation is pre-
sented. It is based on the assumption that friendship rela-
tions in OSN are similar to those offline and that Facebook
relationships are indicative of similar music tastes. The
proposed system recommends YouTube music tracks to a
target user, which have been positively rated (with at least
3 on a 5-point Likert scale) by the target users Facebook
friends, but have not been rated by the target user him or
herself.

While previous research on music and social bonding
most often measures music preferences in terms of genre
(e.g., [3,23,43]), we argue that music mainstreaminess may
be an additional, insightful indicator for music preferences
with regard to social bonding.

2.3 Culture-aware Music and Listener Analysis

Generally, human preferences have shown to be rooted and
embodied in culture [20], and also listeners’ music prefer-
ences are affected by cultural aspects (e.g., [11]). For in-
stance, perception of music varies across cultures [22, 44,
45], which obviously influences music preferences. Fur-
thermore, national market structures, including local air-
play and subsidizing (e.g., local music quotas on radio)
are different across countries [28, 31] and shape country-
specific popularity of artists and songs. This results,
among others, in the fact that pop music preferences
disconverge rather than converge within European coun-
tries [8].

With the increasing popularity of personalized music
recommender systems—i.e., systems that tailor recom-
mendations for particular music items (e.g., artists, albums,
or songs) to the preferences of individuals [42]—and the
acknowledgement that tailoring recommendations to a lis-
tener’s cultural specificities may substantially increase the
performance of a music recommender system [2, 38, 47],
research investigating and describing music and listener
profiles from a culture perspective has received attention
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lately. To provide some examples, [27] show that incor-
porating cultural characteristics allows for more precise
characterization of listeners; [50] integrate cultural aspects
for modeling music similarity; [21] use culture-aware ap-
proaches describing and modeling intonation of audio mu-
sic recordings. Comparisons of listener profiles across
countries have been presented from many different an-
gles [11, 37, 39], most frequently in terms of genres, while
our work concentrates on mainstreaminess.

3. METHODOLOGY

For our study, we use and extend the LFM-1b dataset [35],
which comprises 1,088,161,692 listening events of
120,322 unique Last.fm users. Since our investigation
aims at uncovering country-specific factors, we consider
only the subset of the LFM-1b dataset that includes lis-
tening events of users who provide country information.
To reduce the likelihood of less significant results due to
a sample bias of users within a given country, we further-
more filter countries with less than 100 users, which results
in a dataset of 53,258 users from 47 countries. Some of
the users do not maintain any social ties on Last.fm. Ex-
cluding those (because we cannot compute the respective
measures), we finally end up with a stable dataset of 5,680
users from 18 countries, on which we conduct our analysis.

3.1 Music Mainstreaminess

To quantify the proximity of a user to both the country-
specific and the global mainstream, we employ the ap-
proach proposed in [2, 38]. Schedl and Bauer identified
two rank-based measures as being best suited to estimate
mainstreaminess of a user among his or her fellow citizens
within the same country (Equation 1) and compared to a
global mainstream (Equation 2). In the equations, which
have been simplified from [2], where a complex framework
is proposed, M(u, c) denotes the rank-based mainstreami-
ness of user u in regard to country c (which is in our case
always the country of the user); M(u) denotes u’s global
mainstreaminess. Furthermore, τ denotes the rank-order
correlation coefficient according to Kendall [19]; AF de-
notes a vector containing the global artist frequencies of all
artists in the dataset, keeping a fixed order (i.e., the first el-
ement in vector AF is the total number of listening events
to the artist who is most frequently listened to globally, and
so on); AF (c) is defined analogously, but only considers
listening events in country c, maintaining the ordering of
artists given by the global AF vector; AF (u) analogously,
but only considering listening events of user u (again main-
taining the global ordering); ranks(·) represents the ranks
of the real-valued artist frequencies given in vector (·).

Less formally, M(u, c) measures how well user u’s
ranking of artist preferences corresponds to that of all users
in country c;M(u) measures how well u’s ranking of artist
preferences matches with the global ranking. Higher val-
ues indicate closer to the mainstream.

M(u, c) = τ (ranks (AF (c)) , ranks (AF (u))) (1)

M(u) = τ (ranks (AF ) , ranks (AF (u))) (2)

3.2 Social Ties and Centrality Measures

To uncover social ties between users in the LFM-1b
dataset, we first enrich the dataset using the Last.fm API
endpoint user.getFriends 1 to obtain the connections of all
users in LFM-1b. Since we are only interested in the intra-
connectedness between users in the dataset, we exclude
all friendship connections to users that are not contained
in the LMF-1b dataset. This results in a total of 79,254
connections by 11,801 users (5,680 users only considering
the 18 countries with at least 100 users). On the result-
ing network, we then compute tie strength and centrality
scores that estimate the importance of nodes (users) in a
network. More precisely, we use Jaccard index (J), close-
ness centrality (C), and betweenness centrality (B) since
they are among the most common measures. Jaccard index
(J) is defined as the fraction of shared neighbors among
all neighbors of the two users u and v under considera-
tion [17]. To obtain a single measure per user u, we com-
pute the arithmetic mean of the Jaccard indices between u
and all users connected to u. Closeness centrality (C) of
user u is defined as the reciprocal of the sum of the short-
est path distances between u and all other users in the net-
work [13]. Higher values of closeness therefore indicate
higher centrality. Betweenness centrality (B) of user u is
defined as the sum of the fraction of all shortest paths be-
tween pairs of nodes v, w ( 6= u) that pass through u [12].
Betweenness can therefore be regarded as how much in the
way between two arbitrary users u lies. Users with high
betweenness are assumed to have more control in the net-
work, because more information will pass through them.

4. RESULTS AND DISCUSSION

4.1 Country vs. Mainstreaminess

To answer the first research question, i.e., how listeners
in different countries vary in terms of their inclination to
listen to mainstream music, Table 2 shows basic statis-
tics (mean and standard deviation) of country-specific and
global mainstreaminess, for the top countries in the dataset
(those with at least 100 users). The grand means and SD
are 0.091 ± 0.060 for M country and 0.103 ± 0.062 for
M global. Additionally, mean, standard deviation, and
median age of users are depicted. The countries with high-
est local mainstreaminess are the Netherlands, the United
Kingdom, and Canada (M country = M(u, c) > 0.1);
those with highest global mainstreaminess are Finland, the
Netherlands, and Mexico (M global = M(u) > 0.11).
This is in line with previous work [36], which used a dif-
ferent definition of mainstreaminess, nevertheless identi-
fied the Netherlands, the United Kingdom, Belgium, and
Canada as most mainstreamy countries. 2 The high rank
of Finland in our results may be surprising since many citi-
zens of this country are know to have a preference for metal
music, cf. [38], which is rather not considered mainstream.
At the same time, however, also the standard deviation of

1 https://www.last.fm/api/show/user.getFriends
2 Note that Belgium is not included in our analysis because only 63

Belgian users remained after filtering.
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Table 1. Top 20 global artists and their deviations of
Finnish preference from the global preference in terms of
artist frequency.

Artist Global rank Deviation
The Beatles 1 -47.44 %
Radiohead 2 -43.95 %
Pink Floyd 3 -25.80 %
Metallica 4 +126.72 %
Muse 5 +131.66 %
Arctic Monkeys 6 -55.71 %
Daft Punk 7 +96.84 %
Coldplay 8 -16.63 %
Linkin Park 9 -11.17 %
Red Hot Chili Peppers 10 -0.10 %
System of a Down 11 +152.54 %
Nirvana 12 -30.23 %
Iron Maiden 13 +170.77 %
Rammstein 14 +171.76 %
Depeche Mode 15 -22.87 %
Lana Del Rey 16 -28.33 %
Lady Gaga 17 +132.72 %
Led Zeppelin 18 -34.54 %
Florence + the Machine 19 -29.49 %
David Bowie 20 -19.43 %

mainstreaminess is very high for Finland, which indicates
a strong dispersion over mainstream and non-mainstream
music preferences among Fins. In fact, a deeper analysis
reveals a large variety of music tastes in Finland, cf. Ta-
ble 1. On the one hand, metal bands such as Metallica, Sys-
tem of a Down, and Iron Maiden are indeed more popular
among Fins than globally. On the other hand, also artists
such as Muse (top tags on Last.fm: alternative, rock), Daft
Punk (electronic, house), and Lady Gaga (pop, dance) are
highly popular in Finland.

According to our dataset, the least mainstreamy coun-
tries are Germany, Australia, and the Czech Republic, re-
gardless of whether mainstreaminess is computed on the
country level or globally.

Another observation is that the Scandinavian countries
Norway and Sweden both show low standard deviations
in their citizens’ mainstreaminess level, indicating a sta-
ble inclination for a certain level of mainstream among the
listeners in these countries. Interestingly, for Norway this
goes together with a rather low mainstreaminess level (low
tertile), while Sweden’s level ranges in the high tertile.

We further investigate the correlation between all
aspects in Table 2. Computing Pearson correla-
tion coefficients between all pairs of aspects and a
2-tailed t-test to investigate significance, we identify
the following significant correlations at p ≤ 0.05:
ρ (M country:mean,M global:mean) = 0.819 (p≈0.0),
ρ (M global:mean,Age:mean) = 0.280 (p=0.05).

4.2 Country vs. Social Ties and Centrality

Towards answering the second research question, i.e., how
listeners in different countries vary in terms of their so-
cial ties and their connectedness within the Last.fm social
network, Table 3 shows means and standard deviations of
social tie strength (Jaccard index), closeness, and between-
ness (cf. Section 3.2), again for the top 18 countries in the
dataset. The grand means and SD for tie strength (J), close-
ness, and betweenness are 0.285 ± 0.101, 0.150 ± 0.067,
and 0.027±0.067, respectively. The countries with highest
average tie strength are Sweden (J = 0.319) and Finland
(J = 0.301), closely followed by Poland (J = 0.299)
and the Netherlands (J = 0.297). These J values indicate
that, on average, users in these countries share nearly one
third of their neighbors with all users they are connected
to. The lowest tie strength values are present for Ukraine
and the Czech Republic (J ≈ 0.26), closely followed by
Italy, Spain, Russia, and Australia (J ≈ 0.27).

With respect to closeness centrality, the countries with
highestC value are Ukraine, Italy, Spain, Russia, and Mex-
ico (C > 0.16), those with lowest closeness are Swe-
den (C = 0.117), Poland, Finland, and the Netherlands
(C ≈ 0.13). Interestingly, in the case of Sweden, the
lowest mean closeness centrality is paired with the highest
standard deviation (C = 0.117± 0.084). Investigating the
reason for this, we find that there are many Swedish out-
liers with very low closeness centralities. Quantitatively,
the 25-, 50-, and 75-percentiles for closeness in Sweden
are 0.0002, 0.1500, and 0.1790, respectively, while being
0.1248, 0.1672, and 0.1910, on average, among all other
countries.

As for betweenness, the countries with highest values
(B > 0.0004) are Mexico and Italy, while lowest scores
(B < 0.0002) are realized by users in the Netherlands,
Sweden, and France. Mexico and Italy, however, also show
the largest standard deviations. In fact, the median of their
B values approaches zero. About half of Italian and Mexi-
can users therefore have no or very few connections. Still,
these countries’ 75-percentile as well as maximum B is at
the same time the highest among all countries,B ≈ 0.0003
and B ≈ 0.01, respectively. A few users in Italy and
Mexico are hence extremely well connected and can be
assumed to have a high level of influence in the entire ana-
lyzed network, i.e., sub-network of Last.fm [6].

Investigating which of the aspects in Table 3 correlate,
Pearson correlation coefficients are significant at p≤ 0.05
for the following pairs of aspects: ρ (B:mean, J:mean) =
−0.363 (p = 0.01) and ρ (C:mean, J:mean) = −0.637
(p ≈ 0.0). The negative correlations between tie strength
and centrality measures indicate that while direct neigh-
bors between connected users show significant overlaps,
this does not generalize to the whole network. Our as-
sumption, which we test in the next section, is that these
local neighbors who are well connected are rather users in
the same country.
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Table 2. Statistics of country-specific and global main-
streaminess as well as age for countries with at least 100
users. Country names are abbreviated according to ISO
3166-1 alpha-2.

Country Users mean std mean std mean std median

US 927 0.091 0.062 0.096 0.067 20.8 13.6 22.0

RU 789 0.093 0.057 0.102 0.061 18.9 12.0 21.0

PL 775 0.095 0.066 0.104 0.070 19.2 10.3 20.0

BR 531 0.091 0.065 0.107 0.069 19.7 10.0 21.0

UK 470 0.102 0.057 0.107 0.057 21.2 13.8 23.0

DE 463 0.081 0.062 0.088 0.066 20.7 13.3 22.0

FI 217 0.092 0.094 0.112 0.065 20.2 10.3 22.0

UA 207 0.097 0.052 0.108 0.052 19.3 11.5 22.0

IT 175 0.090 0.058 0.106 0.067 23.1 14.0 23.0

ES 157 0.088 0.053 0.104 0.059 21.9 12.1 24.0

NL 155 0.106 0.058 0.112 0.059 25.6 16.0 23.0

SE 132 0.094 0.049 0.105 0.053 21.6 13.9 22.0

CA 127 0.101 0.059 0.108 0.061 19.3 11.3 22.0

CZ 124 0.075 0.057 0.093 0.063 19.2 10.4 22.0

MX 109 0.087 0.060 0.110 0.062 21.7 11.4 23.0

FR 108 0.088 0.055 0.101 0.058 22.3 11.8 25.0

AU 107 0.085 0.061 0.092 0.070 20.0 11.4 21.0

NO 107 0.090 0.048 0.100 0.058 20.6 13.9 22.0

M_country M_global Age

Table 3. Statistics of social tie strength and centrality mea-
sures for countries with at least 100 users. Country names
are abbreviated according to ISO 3166-1 alpha-2.

Country Users mean std mean std mean std

US 927 0.287 0.102 0.152 0.066 0.023 0.061

RU 789 0.270 0.103 0.162 0.064 0.031 0.073

PL 775 0.299 0.106 0.132 0.072 0.023 0.061

BR 531 0.287 0.102 0.159 0.060 0.028 0.075

UK 470 0.290 0.098 0.149 0.067 0.028 0.069

DE 463 0.286 0.106 0.145 0.072 0.024 0.056

FI 217 0.301 0.112 0.133 0.080 0.022 0.057

UA 207 0.261 0.098 0.165 0.054 0.027 0.055

IT 175 0.268 0.086 0.163 0.059 0.040 0.125

ES 157 0.269 0.092 0.163 0.055 0.032 0.067

NL 155 0.297 0.113 0.135 0.080 0.017 0.053

SE 132 0.319 0.104 0.117 0.084 0.019 0.044

CA 127 0.294 0.105 0.156 0.067 0.023 0.058

CZ 124 0.265 0.098 0.152 0.063 0.027 0.065

MX 109 0.295 0.100 0.161 0.064 0.042 0.122

FR 108 0.282 0.100 0.154 0.062 0.019 0.039

AU 107 0.270 0.096 0.157 0.060 0.025 0.060

NO 107 0.291 0.103 0.142 0.068 0.026 0.067

Betweenness (x100)Social Ties (J) Closeness

4.3 Mainstreaminess vs. Social Ties and Centrality

Regarding RQ3, i.e., in which ways do mainstream and so-
cial connectedness interrelate, we analyzed various aspects
with respect to the 33,974 connections between the users
in our sample. Most connections in our sample are cross-
country (26,914 connections, i.e. 79%), while only 21%
(or 7,060) are between users of the same country.

In a detailed analysis for differences between different
degrees of mainstreaminess vs. social ties and centrality,
we found two significant differences: As conjectured, the
social tie strength of users within the same country (mea-
sured by the Jaccard index between the connections of the
two users to compare, cf. Section 3.2) differs from the so-
cial tie strength of cross-country connections. In a 2-tailed
t-test, the difference between connections within a country

(mean = 0.241, std = 0.109) and cross-country connec-
tions (mean = 0.219, std = 0.095) is highly significant
(t=17.154; df=33972, p=0.000).

Comparing each user’s social tie strength (averaged
over all his or her connections with his or her respective
mainstreaminess level), in a t-test, we found that the differ-
ence between the group of users with a low preference for
mainstream (mean = 0.281, std = 0.102) and the group
of high mainstream users (mean = 0.289, std = 0.104)
is highly significant (t = −2.819, df = 3777.883, p =
0.005), when using the M global measure. When using
the M country measurement, this effect disappears. We
conjecture that from a country perspective of mainstreami-
ness, the different forms of mainstream per country and the
more focused music preference within a country levels the
effect that can be seen from a global perspective.

Investigating individual countries, Table 4 shows that
for all countries, the social tie strength between users
within the country is higher than for connections span-
ning two countries. The difference is highly significant
(p≤0.001) for BR, CA, DE, FI, NO, PL, SE, UA, UK, and
US; the difference is significant (p≤0.05) for ES, NL, and
RU. So, although the number of cross-country connections
is higher than the number of connections within a coun-
try, the social tie strength for inner-country connections is
higher for all countries under investigation.

5. CONCLUSION

Using the LFM-1b dataset of country-specific listener and
listening information, we set out to answer three research
questions: In which ways do listeners in different coun-
tries differ in terms of their inclination to listen to main-
stream, on a global and a country level (RQ1)? In which
ways do listeners in different countries differ in terms of
their social ties and connectedness in Last.fm (RQ2)? In
which ways do mainstream and social connectedness in-
terrelate (RQ3)?

We found large differences between countries in terms
of the level of global and regional mainstream consump-
tion of listeners as well as their fluctuations, i.e., stan-
dard deviations (RQ1). A particularly interesting exam-
ple is Finland with a mid (regional) to high (global) main-
streaminess level. While seeming surprising at first glance,
a high standard deviation in mainstreaminess reveals that
there is a group of Finnish listeners that largely follows the
trend, whereas another large group established their own
preferences, far away from the mainstream. Further analy-
sis showed that this group’s influence foremost stems from
metal music. In contrast, Finland’s neighbors Sweden and
Norway show a very stable level of preference for main-
stream.

In terms of social ties and centrality measures (RQ2),
we found that, on average, Last.fm users share between one
fourth (Italy, Spain, Russia, and Australia) and one third
(Sweden and Finland) of their neighbors. Moreover, so-
cial tie strength is negatively correlated with betweenness
and closeness centrality, which indicates that direct neigh-
bors between connected users show significant overlaps,
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Table 4. Differences in social tie strength between connections within a country and cross-country connections. Country
names are abbreviated according to ISO 3166-1 alpha-2. Significance levels are: * p < 0.05, ** p < 0.01, *** p < 0.001.

country connections mean social ties (J) std t df p

AU
within country 34 0.25620 0.11058

1.784 35.268 0.083
cross-country 760 0.22181 0.09615

BR
within country 1075 0.25639 0.11569

7.736 3622.000 0.000 ***
cross-country 2549 0.22605 0.10438

CA
within country 28 0.29538 0.12547

3.259 874.000 0.001 ***
cross-country 848 0.23501 0.09537

CZ
within country 110 0.22807 0.09750

0.051 184.758 0.959
cross-country 315 0.22753 0.09416

DE
within country 369 0.25107 0.11538

7.542 2704.000 0.000 ***
cross-country 2337 0.21144 0.08993

ES
within country 180 0.23885 0.09972

2.730 248.262 0.007 *
cross-country 880 0.21680 0.09397

FI
within country 171 0.26051 0.12002

4.761 1252.000 0.000 ***
cross-country 1083 0.22110 0.09719

FR
within country 42 0.25933 0.12916

1.114 44.620 0.271
cross-country 673 0.23666 0.10755

IT
within country 246 0.24656 0.08706

1.856 1261.000 0.064
cross-country 1017 0.23359 0.10085

MX
within country 108 0.22272 0.11188

0.002 128.309 0.998
cross-country 908 0.22270 0.10033

NL
within country 67 0.26510 0.12334

2.113 75.556 0.038 *
cross-country 717 0.23217 0.10690

NO
within country 84 0.26555 0.10218

4.769 105.179 0.000 ***
cross-country 578 0.20911 0.09553

PL
within country 958 0.25610 0.11539

12.336 3270.000 0.000 ***
cross-country 2314 0.20937 0.09075

RU
within country 1596 0.21208 0.09940

2.201 5299.000 0.028 *
cross-country 3705 0.20598 0.08945

SE
within country 50 0.32686 0.11978

5.880 57.000 0.000 ***
cross-country 474 0.22339 0.10359

UA
within country 160 0.22599 0.11370

3.547 1228.000 0.000 ***
cross-country 1070 0.19947 0.08376

UK
within country 513 0.25545 0.11070

7.558 2869.000 0.000 ***
cross-country 2358 0.22043 0.09135

US
within country 1269 0.23737 0.10070

4.474 5595.000 0.000 ***
cross-country 4328 0.22367 0.09456

but this does not generalize to the whole network.
Our hypothesis that users whose neighborhoods are

well connected are likely from the same country could be
verified (RQ3). For most analyzed countries, our analysis
revealed significantly higher social tie strength for connec-
tions within the same country compared to cross-country
connections. In other words, although users have less
connections within the same country than cross-country
ones, the social ties are stronger for inner-country connec-
tions. Furthermore, our analysis identified that the group
of mainstreamy users have stronger social ties compared to
the group of users less inclined to mainstream music con-
cerning tie strength.

The logical next step in this line of research is to inte-
grate the findings into a music recommendation system.
The mainstreaminess and country information is highly
useful to alleviate cold-start; the information about cross-

country social ties can be exploited to personalize recom-
mendations depending on the tie strength between the tar-
get user and connections to users in other countries. For in-
stance, collaborative filtering techniques could be extended
by a mainstreaminess or social tie filtering component, in
a fashion similar to [38].

Finally, it would be worth investigating whether results
generalize to platforms other than Last.fm. However, this
research question may be hard to investigate externally and
independently in the absence of publicly available datasets
from the big players.
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ABSTRACT

When a user signs up with an online music service, she
is often requested to register her demographic attributes
such as age, gender, and nationality. Even if she does
not input such information, it has been reported that user
attributes can be predicted with high accuracy by using
her play log. How can users enjoy music when using an
online music service while preserving their demographic
anonymity? To solve this problem, we propose a system
called Listener Anonymizer. Listener Anonymizer moni-
tors the user’s play log. When it detects that her confi-
dential attributes can be predicted, it selects songs that can
decrease the prediction accuracy and recommends them to
her. The user can camouflage her play logs by playing
these songs to preserve her demographic anonymity. Since
such songs do not always match her music taste, selecting
as few songs as possible that can effectively anonymize her
attributes is required. Listener Anonymizer realizes this
by selecting songs based on feature ablation analysis. Our
experimental results using Last.fm play logs showed that
Listener Anonymizer was able to preserve anonymity with
fewer songs than a method that randomly selected songs.

1. INTRODUCTION
When a user signs up with an online music service (e.g.,
Last.fm 1 and Spotify 2 ), it is common for the user to be
asked to input her demographic attributes such as age and
gender. Registering such demographic attributes is bene-
ficial for her because various songs are recommended to
her by the service according to her attributes. In addition,
she can follow another user who has similar demographic
attributes, and they can communicate with each other. De-
spite such benefits, many users conceal their demographic
attributes because they would be concerned about privacy.
As shown in Section 5.1, as many as 49.3% of Last.fm
users do not register any of the age, gender, and national-
ity attributes. If a user does not register her demographic
attributes, is her privacy fully protected?

Several studies have aimed to predict users’ demo-
graphic attributes from their music play logs [10, 12, 25].

1 http://www.last.fm
2 http://www.spotify.com
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They have tackled the problem because it had been re-
ported that the attributes contribute to improving music
recommendation accuracy [21, 23, 27]. However, users
who do not register their attributes might not want re-
searchers or companies to predict their demographic at-
tributes. It is not only a psychological problem; if a user’s
demographic attributes are predicted, she may suffer dam-
age. For example, suppose one day the email address and
music play logs of a female user who has not input her gen-
der on an online music service are leaked from the website,
and a malicious company obtains the data. If the malicious
company can predict her gender with high accuracy from
the logs, it can send her spam e-mails that target females.

What should we do to enable users to enjoy music when
using an online music service while preserving their de-
mographic anonymity? In this paper, we propose a system
called Listener Anonymizer to solve this problem. Listener
Anonymizer camouflages the user’s play log and preserves
the anonymity of her confidential attributes. To be more
specific, when a user plays a song using an online music
service, Listener Anonymizer monitors the songs that are
played. If Listener Anonymizer detects that the user’s con-
fidential attributes can be predicted with an accuracy above
a certain level, the system selects songs that can decrease
the prediction accuracy and recommends them to her. The
user can camouflage her play log by playing them and pre-
serve her anonymity. However, since such selected songs
do not always match her music taste, selecting as few songs
as possible that can effectively anonymize her attributes is
required. To achieve this, we propose a method for select-
ing songs according to the user’s confidential attributes.

Our contributions in this paper are as follows.

• To the best of our knowledge, this is the first
study that introduces the concept of preserving
the anonymity of the users’ demographic attributes
while they play songs using an online music service.

• We propose an approach that camouflages the user’s
play log to preserve her anonymity. We marshaled
factors to consider for selecting songs from five
viewpoints: the definition of anonymity, method for
predicting demographics, timing of camouflaging
play logs, user’s true demographics, and anonymiza-
tion of multiple demographics.

• To examine the effectiveness of the proposed
method, we carried out experiments using Last.fm
play logs. Our experimental results showed that our
proposed method was able to preserve anonymity
with fewer songs than a method that randomly se-
lected songs. Based on the experiments, we dis-
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cuss four important considerations: impact on rec-
ommendation accuracy, user’s taste in music, simu-
lation of multiple prediction methods, and real-time
monitoring of songs that are played.

2. RELATED WORK
Since predicting the user’s demographic attributes can be
used in many applications such as content recommendation
and user behavior analysis, studies of demographic predic-
tion have been conducted in various domains. One of the
most popular domains is social media such as Twitter 3 and
Facebook 4 . It is known that language use on social media
varies according to demographic attributes such as age [9]
and gender [7]. Hence, most studies have used text data
posted to social media and utilized machine learning tech-
niques to predict users’ demographic attributes [15,18,24].
Although it was thought that predicting demographics was
a difficult task [15, 16], recent studies reported a high pre-
diction accuracy. For example, age and gender can be pre-
dicted with mean absolute error (MAE) of 3.40 and a bi-
nary classification accuracy of 91.9%, respectively [18].
In addition to social media, demographic prediction has
been conducted in the fields of blogs [2,5] and web search
queries [8].

In the field of music information retrieval (MIR), too,
users’ demographic attributes on an online music service
play an important role mainly for music recommendation.
As reported by Uitdenbogerd and Schnydel [22], music
preference is affected by individual factors including age
and ethnicity. In fact, it was revealed that music recom-
mendation accuracy was improved by considering demo-
graphic attributes [21, 23, 27]. Motivated by these results,
several studies in MIR have aimed to predict demographic
attributes. The main way to perform this task is to use
play logs obtained from an online music service and su-
pervised machine learning techniques. Liu and Yang [12]
predicted age and gender by using timestamps, song/artist
metadata, and acoustic features of music signals. Wu et
al. [25] also proposed methods to predict age and gender
based on music metadata. They created two kinds of fea-
tures: a TF-IDF-based one and a GSV(Gaussian super vec-
tor [3])-based one. They applied support vector machine
(SVM) to them. Krismayer et al. [10] predicted national-
ity in addition to age and gender based on music metadata
(artist names and artist’s tags). The details of their method
are described in Section 4.2. By using their method, it was
reported that demographic attributes can be predicted with
high accuracy. The age was predicted with MAE of 4.13,
and the gender and nationality were predicted with a clas-
sification accuracy of 81.36% and 69.37%, respectively.

Unlike these studies, our goal is to preserve users’ de-
mographic anonymity since some users do not want re-
searchers or companies to predict their demographic at-
tributes. Although several studies have discussed privacy
problems (e.g., the release of a user query log can lead
to loss of privacy [8], confidential information such as
medical conditions can be inferred from tweets [14], and

3 https://twitter.com
4 https://facebook.com

how should researchers deal with personal information in
MIR [19]), our study is different from these studies in that
we propose a concrete anonymization system and carried
out experiments to evaluate how well it works.

3. FACTORS FOR REALIZING LISTENER
ANONYMIZER

As we described in Section 1, we propose an approach that
selects songs and camouflages the user’s play log by play-
ing these songs so that the user can preserve demographic
anonymity. To enable an intuitive understanding of our
idea, we give the following example story.

Emma is a 22-year-old French female. She is a Last.fm
user and concealed her nationality when she signed up.
She also uses Listener Anonymizer, which monitors the
music she plays using Last.fm. One day, when Emma is
listening to music using Last.fm with her smartphone, Lis-
tener Anonymizer detects that her nationality can be pre-
dicted as French with high accuracy from her play logs.
Thus, Listener Anonymizer shows an alert message stating
“your nationality can be predicted as French with a proba-
bility of 67%” on her smartphone screen and recommends
three songs to her. Emma plays the songs to preserve the
anonymity of her nationality.

Although this is just an example story, we need to con-
sider various factors to realize Listener Anonymizer. Be-
low, we marshal the factors from five viewpoints.

3.1 Definition of Anonymity
First, we define the anonymity of demographic attributes.
In this paper, we propose two kinds of concepts for
anonymity: not-first-anonymity and k-flat-anonymity. Sup-
pose a demographic attribute d has n attribute values rep-
resented by Ad = {a1, a2, · · · , an}. For example, when
d is nationality, ai ∈ Ad can be French, Japanese, etc.
When user u has an attribute value au ∈ Ad and conceals
the attribute, given her music play log, we can compute
the probability p(ai) for each attribute value in Ad by us-
ing an attribute prediction method (0 ≤ p(ai) ≤ 1 and∑n

i=1 p(ai) = 1). In this case, not-first-anonymity is sat-
isfied if the following condition is met: the rank of p(au)
among all attribute values is not the highest. In the case of
Emma, not-first-anonymity is satisfied when the probabil-
ity of French is not the highest.

In the case of k-flat-anonymity, the anonymity is sat-
isfied if the following condition is met. Given the top k
attribute values in terms of the probability, au is included
in the top k attribute values and the probability gap be-
tween any two attribute values is lower than θ. In k-flat-
anonymity, user’s demographic attributes may be regarded
as unpredictable because the top k attribute values have
almost the same probabilities. In the example of Emma,
suppose k and θ are set to 3 and 0.05, respectively, and
the probabilities of French, Spanish, and German are 0.32,
0.28, and 0.29, respectively. In this case, because the prob-
abilities of other nationalities are lower than those of the
three nationalities and the probability gap between any
two nationalities out of the three nationalities is lower than
0.05, k-flat-anonymity is satisfied even though French has
the highest probability.
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3.2 Method for Predicting Demographics
To realize Listener Anonymizer, simulating the method
used in a demographics prediction system is required so
that we can show an alert at the right time. However, since
it is generally impossible to know the prediction method,
we have to assume some prediction methods and propose a
song selection method according to them. It is common to
use music metadata extracted from the user’s play log for
predicting demographic attributes [10, 12, 25]. If we pro-
pose a song selection method that works well for state-of-
the-art methods that are based on music metadata, we can
say that our proposed method is robust to a certain extent.
In light of the above, in this paper, we propose a method for
selecting songs in Section 4.3 and show the effectiveness
of this method through experiments in Section 5.

3.3 Timing of Camouflaging Play Logs
Listener Anonymizer selects songs and camouflages play
logs in two main situations. One is when not-first-
anonymity (or k-flat-anonymity) is no longer satisfied as
we described in the example story at the beginning of this
section. The other is when a user does not use a smart-
phone such as when she is sleeping or taking a bath. In the
former case, since the user listens to her favorite songs be-
fore the songs are recommended by Listener Anonymizer,
it should select as few songs as possible so that the user can
soon resume listening to her favorite songs. In the latter
case, since the user has enough time to play recommended
songs and does not need to listen to them, a method that
randomly selects many songs might be enough for recov-
ering not-first-anonymity. Some users still hope to play as
few recommended songs as possible to save on the packet
communication fee.

3.4 User’s True Demographics
In the preceding sections, we assumed that our anonymiza-
tion system knows the user’s true attribute values (e.g.,
Emma’s nationality is French). That is, the user has to in-
put the true demographic attributes before starting to use
Listener Anonymizer. However, some users would not
want to tell even the system their true demographics. When
the system does not know the user’s true demographic
attribute, not-first-anonymity can be defined as follows:
when the difference between the highest probability and
the second highest probability is lower than θ. In this case,
not-first-anonymity will not often be satisfied, and songs
will be more frequently recommended to the user than the
case where the system knows the true demographic at-
tribute. In the example of Emma, suppose she does not
tell her nationality to Listener Anonymizer. If she wants to
preserve complete anonymity, she must play recommended
songs at every alert, but this is a heavy burden for her. She
could ignore an alert if the predicted nationality is wrong.
However, if she plays only the recommended songs when
the predicted nationality is French, Listener Anonymizer
can estimate that Emma’s nationality is French.

When the anonymization system knows a user’s true
attribute, the alert is displayed only when the true demo-
graphic can be predicted, which reduces the user’s burden.
In addition, if we can implement Listener Anonymizer as a

stand-alone smartphone application, the user’s true demo-
graphics are stored only in the smartphone and are not sent
to a server. In this case, users do not need to worry about
leakage of demographic information from the server.

3.5 Anonymization of Multiple Demographics
We need to consider a situation where a user wants to pre-
serve anonymity of more than one demographic attribute.
For example, in the example of Emma, she anonymized
only her nationality; now suppose she did not register her
nationality, age, and gender on Last.fm. She may think that
it does not matter if her age is predicted but may think it is a
big problem if her nationality and gender are predicted. In
such a case, she tells Listener Anonymizer the two demo-
graphic attributes that she wants to preserve the anonymity
of. The system shows an alert and recommends songs
when at least one demographic does not satisfy not-first-
anonymity. If more than one demographic attribute does
not satisfy not-first-anonymity at the same time, the system
needs to select songs that can recover not-first-anonymity
for all of the demographic attributes by playing recom-
mended the songs. When a user tells the system many de-
mographics that she wants to preserve the anonymity of,
alerts may frequently be displayed, and this makes it diffi-
cult for the user to enjoy listening to her favorite songs.
Therefore, the user has to select demographic attributes
that she really wants to preserve the anonymity of.

4. CAMOUFLAGING PLAY LOGS
In Section 3, we described various factors to be considered
to realize Listener Anonymizer. In this section, based on
these factors, we discuss the situation dealt with in this pa-
per, give the problem definition, and propose a method for
selecting songs for camouflaging play logs.

4.1 Problem Definition
In terms of the type of anonymity, we use not-first-
anonymity because of its simplicity. If we can show the ef-
fectiveness of our proposed method in not-first-anonymity,
we will deal with k-flat-anonymity in future work. As for
the timing of selecting songs and camouflaging play logs,
we camouflage the user’s play log with as few songs as
possible. That is, given user u’s play log Lu that con-
sists of m songs (Lu = {s1, s2, · · · , sm} where si rep-
resents a song), we aim to anonymize u’s confidential de-
mographic attribute by selecting as few songs as possi-
ble. We assume our system knows the user’s true de-
mographic attributes. This assumption is reasonable be-
cause users will not hesitate to tell their demographics to
the system if it is implemented as a stand-alone applica-
tion as we described in Section 3.4. Finally, for preserving
the anonymity of multiple demographics, since this paper
deals with a new research problem, we consider single de-
mographic anonymity as a first step. We are fully aware
of the issue of multiple demographic anonymity; we leave
this for future work.

Based on the above assumptions, our problem is defined
as follows: “User u conceals an attribute value au in de-
mographic d and wants to preserve not-first-anonymity re-
garding au. Given u’s play log consisting of m songs, we
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verify if au satisfies not-first-anonymity. If it does not, we
select as few songs as possible so that au can satisfy not-
first-anonymity by playing them.”

4.2 Demographic Prediction Method
To the best of our knowledge, the state-of-the-art method
for prediction of users’ demographic attributes of an on-
line music service is the method proposed by Krismayer
et al. [10]. They proposed a feature modeling approach.
More specifically, given the users’ play logs in the train-
ing data, they extract an artist name and the artist’s tags
as features for each song in each user’s play log. Here,
only the top 10,000 artists and top 10,000 tags in terms of
the popularity in the training data are used to create fea-
ture vectors. They compute the weight for each feature in
the form of TF-IDF values and create a feature vector for
each user. The feature vectors, each of which has 20,000
dimensions, are reduced to 500 dimensions by principal
component analysis (PCA) [6]. Finally, the classifier is
built by using SVM. Since their evaluation results showed
that the polynomial kernel achieved high prediction accu-
racy on average, we assume that using the SVM with the
polynomial kernel is the state-of-the-art method. More de-
tails can be found in Krismayer et al. [10]. Once a classifier
is built, given a user’s play log, the classifier computes the
probability distribution over demographic attribute values
and outputs the attribute value that has the highest prob-
ability as the user’s predicted attribute value. We imple-
mented this prediction method by ourselves with reference
to Krismayer et al. [10].

4.3 Song Selection Method
When Emma’s nationality is predicted as French, Listener
Anonymizer needs to select as few songs as possible that
can anonymize her nationality. To achieve this, we aim
to find songs that can largely increase the probability of
the second-highest nationality (in this example, suppose
Italian has the second highest probability). Since the fea-
ture vector corresponding to a song is compressed and
the compressed vector is projected onto a new coordinate
space by a polynomial kernel of SVM, it is difficult to
find such songs based on the characteristics of an orig-
inal 20,000-dimension vector. Instead, we assume such
songs are played by users who are in the training dataset
and are classified as Italian with high probabilities. From
these users’ play logs, we extract effective songs by using
feature ablation analysis [1]. More formally, given Lu, we
first compute the probability distribution over n attribute
values by using the method in Section 4.2. If p(au) is not
the highest among them, we do not need to do anything. If
p(au) is the highest, we select songs as follows.

Suppose aj(6=au) has the second-highest probability
after au. Let U = {ut1, ut2, · · · , utq} be a set of users in
the training data. By developing the SVM classifier, user
uti ∈ U has the probability p(aj , uti) that represents the
probability of uti on aj . From all users in U , we collect the
top r users in terms of p(aj , uti). Each user has her play
log that consists of m songs. Suppose we remove the lth
song from uti’s play log and compute the new probability
of p(aj , uti) by applying the SVM to the remaining m− 1

Table 1. Percentage of users who anonymize their demo-
graphic attributes. “X” represents anonymization.

Age Gender Nationality No. of users %
X X X 59,350 49.3
X X 2,345 1.95
X X 2,713 2.25

X X 454 0.377
X 9,794 8.14

X 2,402 2.00
X 2,615 2.17

4,0649 33.8

songs (let the new probability be p′(aj , uti) ). If the score
of p(aj , uti) − p′(aj , u

t
i) is large, we assume that the lth

song is essential to increase the probability of aj . Based
on this idea, we compute the score for each of the r ×m
songs and collect the top c corresponding artists based on
the score. After collecting the top c artists, we randomly
select one artist; then we randomly select one song of the
artist’s songs. By adding the song to Lu, we generate a
camouflaged play log consisting of m + 1 songs. We re-
peatedly select a song and add it to Lu until the camou-
flaged play log satisfies not-first-anonymity.

5. EXPERIMENTS
In this section, we carry out experiments to evaluate the
effectiveness of our proposed method.

5.1 Dataset
We used the Last.fm dataset provided by Schedl [20]. As
for the user’s demographic attributes, this dataset includes
age, gender, and nationality. Table 1 shows the num-
bers of users and the percentages for each of the combi-
nations of confidential attributes, where “X” indicates a
confidential attribute. It can be observed that as many as
49.3% of users do not register any of their attributes, and
66.2% of them conceal at least one attribute. These statis-
tics suggest the importance of preserving the user’s demo-
graphic anonymity, though there might be other reasons.
The dataset also includes users’ play logs, each of which
consists of the user ID, artist ID, track ID, and timestamp.

Following Krismayer et al. [10], we selected users who
registered all of the three attributes, had equal to or more
than 500 play logs, and had a nationality that was one of
the 25 most common nationalities in terms of the number
of users in the dataset. This gave us 32,991 users. We used
70% of them as training data and developed an SVM clas-
sifier. The remaining 30% of them were used as test data.
Artists’ tags were collected by using the Last.fm API 5 .
The number of classes of each attribute is as follows. The
nationality consists of 25 classes that correspond to the top
25 most common nationalities, the gender has two classes
that are male and female, and following Schedl et al. [21],
the age was divided into seven age groups ([6 - 17], [18 -
21], [22 - 25], [26 - 30], [31 - 40], [41 - 50], and [51 - 60]).

5.2 Methods Comparison
5.2.1 Settings
Our first research question is “Is our proposed method able
to camouflage play logs with fewer songs than a base-

5 https://www.last.fm/api
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line method that randomly selects songs?” To answer this
question, we count the number of songs selected by each
method to preserve anonymity as follows. In this evalua-
tion, for each user in the test dataset, we use the first 30
songs from the oldest songs in the play logs (i.e., m =
30). For example, given the demographic attribute “na-
tionality,” we first compute each user’s probability distri-
bution over 25 nationalities when the 30 songs are played.
We then sample 50 users whose nationality does not sat-
isfy not-first-anonymity (i.e., the user’s nationality has the
highest probability among 25 nationalities). Note that in
this case, each user’s play log in the training data also con-
sists of 30 songs. Given a sampled user’s play log consist-
ing of 30 songs, we add a song selected by our proposed
method and compute the new probability distribution for
the 31 songs. If the probability of the user’s nationality is
not the highest among 25 nationalities, it means her nation-
ality is anonymized and the song selection process ends;
otherwise, we add a new song selected by our method and
compute the probability distribution for the 32 songs. If
the user’s nationality is not anonymized even after select-
ing the additional 30 songs, we stop the song selection pro-
cess. In this way, we count the number of selected songs
for all of the 50 users. In this evaluation, the values of r
and c were set to 3 and 1, respectively. Note that r is the
number of users used for selecting candidate songs and c
is the number of artists used for recommending songs as
we described in Section 4.3. The random baseline method
(hereafter, the random method) randomly selects a song
from all the songs in the dataset and counts the number of
songs in the same manner as described above.

In addition to the proposed method and the random
method, we use a popularity-based baseline method (here-
after, the popularity method). Intuitively, in this method, if
we want to decrease the probability of France, for exam-
ple, we select a song that is not popular in France but is
popular in the other 24 nationalities. To achieve this, we
rank all artists in each nationality where an artist’s score is
the number of users who have listened to one of the artist’s
songs at least once. The artists are ranked in descending
order of their score. When a user u’s nationality au is not
anonymized, the popularity method first selects an artist b∗

where

b∗ = arg max
b∈B

∑
ai∈Ad\{au} (rank(ai, b)− rank(au, b))

|Ad \ {au}|
.

In the equation, B is the set of all artists and rank(ai, b)
represents the rank of artist b in nationality ai. Finally, a
song of b∗ is selected and added to u’s play log.

Note that in this evaluation, we used the same 50 users
for all of the three methods for a fair comparison.

5.2.2 Results
The results are shown in Figure 1 where each bar repre-
sents the average number of selected songs over 50 users.
It can be observed that our proposed method outperformed
the other two methods in all attributes. In the “gender”
attribute, even the proposed method selected as many as
19.68 songs on average. Since the “gender” attribute has
only two classes (male and female), the probability tended

0

10

20

30

Age Gender Na�onality

Random Popularity Proposed

Figure 1. Comparison results between three methods. The
y-axis is the average number of selected songs for camou-
flaging play logs. Error bars indicates the standard error.

to be strongly biased to one class. Thus, we presume that
many songs were needed to fill the large gap. In the “na-
tionality” attribute, the proposed method was especially ef-
fective: it selected less than one third of the songs selected
by the random method.

The results of the popularity method were worse than
those of the random method. This is because of the com-
plexity of the demographic prediction method as described
in Section 4.3. These results indicate that songs selected by
the popularity method are rarely plotted to ideal points in
the coordinate space created by an SVM polynomial ker-
nel. Moreover, in the random method, a song that largely
decreases the probability of the user’s confidential attribute
can be selected by chance. Because of these reasons, the
random method outperformed the popularity method.

5.3 Parameter Effect
5.3.1 Settings
Remind that our method has a parameter c that determines
how many artists we use from the result of the feature abla-
tion, although we set c to 1 in Section 5.2. Our second re-
search question is “What is the relation between the value
of c in the proposed method and the number of selected
songs?” To answer the question, we change the value of
c from 1 to 10 and count the number of selected songs for
each c. In each of the three demographic attributes, the
same 50 sampled users were used for all of the c values.

5.3.2 Results
Figure 2 shows the results. In the “age” and “nationality”
attributes, the number of selected songs decreases when c
changes from 1 to 2 and the number is at a minimum when
c is 2 or 3; then the number increases with the increase
of c. In particular, in the “age” attribute, when c is 2, only
3.22 songs are required on average to camouflage play logs
consisting of 30 songs. In the “gender” attribute, although
the number of selected songs decreases when c changes
from 1 to 2, the minimum score was 9.28 when c is 10.
From these results, we can say that selecting songs only
from the best artist in terms of feature ablation analysis
does not lead to the best result.

In addition to the decrease of the number of selected
songs for large c, the increase of c has another advan-
tage. When c is 1, songs are always selected from one
artist to anonymize an attribute value. This may enable
a company that wants to predict users’ demographic at-
tributes to easily detect the camouflaged logs and predict
the true attributes by removing the camouflaged logs. In
contrast, when c is large, it becomes difficult to detect the
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Figure 2. The relation between the value of c in the proposed method (x-axis) and the average number of selected songs
for camouflaging play logs (y-axis).
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Figure 3. Examples of transition of probability distribu-
tion when two songs (top) and three songs (bottom) are
selected for camouflaging play logs (y-axis: probability).

camouflaged parts in play logs. Moreover, by selecting
songs from various artists, Listener Anonymizer may be
able to expand the user’s music taste while preserving her
anonymity. Figure 2 shows that even when c is 10, our
method can anonymize an attribute with much fewer songs
than the random method in all attributes. It would be useful
to enable a user to select the value of cwhile thinking about
a trade-off between the number of songs and the diversity
of selected songs.

Figure 3 shows examples of the transition of probabil-
ity distribution when two or three songs are selected by our
proposed method in the “nationality” attribute. The value
of c was set to 3. For visibility, we show only the top three
nationalities in terms of the probability. In the top exam-
ple, the user’s attribute is German. Listener Anonymizer
can anonymize the user’s attribute by selecting two songs.
In the bottom example, although the initial probability dis-
tribution is strongly biased to the user’s nationality (PL),
this user can camouflage the play log by playing only three
songs recommended by Listener Anonymizer.

6. DISCUSSION
In Section 5, we showed the effectiveness of the pro-
posed method. However, since preserving demographic
anonymity by camouflaging play logs is a quite new re-
search theme, we discuss four important considerations.

6.1 Impact on Recommendation Accuracy
Since Listener Anonymizer camouflages play logs, it
might degrade recommendation accuracy of music ser-
vices. Although this paper dared to propose this controver-
sial topic of research to give users an option of increasing
the privacy and raise privacy issues in the MIR commu-
nity, we are fully aware of the importance and usefulness of
music recommendation to improve the user’s music experi-
ence. We hope that our paper could contribute to discuss a
diversity of options for music experiences while balancing
privacy versus accuracy in music recommendation.

6.2 User’s Taste in Music
In our method, the selected songs do not always match her
taste in music. Even if those songs can camouflage the play
logs, she might be reluctant to keep listening to the songs.
Hence, it is beneficial to select songs by considering the

user’s taste in music. Many studies about song recommen-
dation [11, 26, 28] and playlist generation [4, 13, 17] that
can reflect the user’s taste in music have been conducted.
By introducing the methods proposed in these studies, we
plan to propose a song selection method that can balance
camouflaging the play logs and taste. That would also be
beneficial to satisfy both anonymization and good recom-
mendation.

Considering the user’s taste has another advantage. If
our method to camouflage play logs gains in popularity,
companies that want to know the user’s demographic at-
tributes will try to predict them by removing songs that
camouflage her play log. By selecting songs that match
the user’s taste, it becomes more difficult to detect songs
that are played for camouflage.

6.3 Simulation of Multiple Prediction Methods
In our experiments, we assumed that the system knew that
the method by Krismayer et al. [10] is used to predict the
user’s demographic attributes. However, we cannot always
know the prediction method in advance. When we do not
know it, one strategy is to prepare multiple possible pre-
diction methods and simulate them one at a time. An alert
is issued when more than v methods detect that the user’s
demographic attribute can be predicted with high accuracy.
For small v, the degree of anonymity preservation is high
but alerts are often issued and vice versa for large v. It
would be useful for a user to be able to set the value of v
according to the degree of anonymity she requires.

6.4 Real-time Monitoring of a Play Log
In our experiments, the number of songs in a given play log
was set to 30. Hence, all logs in training data also consisted
of 30 songs. However, this assumption is not sufficient
to monitor the user’s played songs and recommend songs
at the right time as we described in Section 3.3. This is
because, when a user plays her first song, there is no play
log in the training data consisting of only one song and
we cannot correctly compute the probability distribution
for the song. To solve this problem, we need to develop
classifiers for various values of l, where l is the number of
songs included in a play log.

7. CONCLUSION
In this paper, we proposed Listener Anonymizer that can
preserve the user’s demographic anonymity by camouflag-
ing her play log. Our experimental results show the effec-
tiveness of our proposed method to select as few songs as
possible. For example, in the “age” attribute, 15.3 songs
were selected by the random method, while only 3.22
songs were selected by our method. Since this paper pro-
posed a new concept, there are many remaining issues to
be addressed as we discussed in Section 3 and 6. We plan
to tackle them one by one and make Listener Anonymizer
more flexible and useful.
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ABSTRACT

Numerous studies have demonstrated that mood affects
emotional and cognitive processing. Previous work has
established that music-induced mood can measurably al-
ter people’s behavior in different contexts. However, the
nature of how decision-making is affected by music in so-
cial settings hasn’t been sufficiently explored. The goal
of this study is to examine which aspects of people’s de-
cision making in inter-social tasks are affected when ex-
posed to music. For this purpose, we devised an experi-
ment in which people drove a simulated car through an in-
tersection while listening to music. The intersection was
not empty, as another simulated vehicle, controlled au-
tonomously, was also crossing the intersection in a differ-
ent direction. Our results indicate that music indeed alters
people’s behavior with respect to this social task. To fur-
ther understand the correspondence between auditory fea-
tures and decision making, we have also studied how indi-
vidual aspects of music affected response patterns.

1. INTRODUCTION

There is plentiful evidence that one’s mood can affect how
one processes information in a wide array of contexts and
tasks. Previous work has established that positive mood
induces a relative preference for positive emotional con-
tent and vice versa [6, 14]. Recent work has confirmed
this effect is indeed induced by music that is culturally
categorized as “happy” vs. “sad”, and illustrated how the
emotional content of music informs the apriori expectation
for the emotional content of verbal stimuli [11]. As for
non-emotional and quantitative decision-making, previous
work has shown robust effects of loss aversion, whereby
participants put more weight on potential losses than po-
tential gains. In a recent study, Liebman et al. presented
evidence for the complex impact of music-induced mood
on risky decision-making in the context of gambling. They
observed an overall improved stimulus processing in par-
ticipants listening to “happy” music compared to “sad”

c© Elad Liebman, Corey N. White, Peter Stone. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Elad Liebman, Corey N. White, Peter Stone. “On
the Impact of Music on Decision Making in Cooperative Tasks”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

music, i.e., music-induced positive mood has led to better
and faster decision-making overall [12].

Given the complexity and variability of the observed ef-
fects of music on decision-making in the context of differ-
ent tasks, an inevitable question arises - how does music
affect more complex tasks? More specifically, how does
music affect complex decision-making that involves tak-
ing into consideration the agency of other entities? In this
paper, we study the impact of music on decision behavior
in the context of cooperative tasks, in which a person has
to take into account the intentions of another agent when
attempting to achieve their own goal. To this end, we de-
sign an experiment in which a person must cross a simu-
lated intersection that is simultaneously being crossed by
another autonomous agent, controlled by artificial intelli-
gence. Our results indicate different types of music indeed
have a differential effect on people’s behavior in this set-
ting.

The structure of the paper is as follows. In Section
3 we discuss our experimental design and how data was
collected from participants. In Section 4 we present and
analyze the results of our behavioral study. In Section 5
we examine more closely how music altered the partici-
pants’ behavior in more specific contexts. In Section 6,
we analyze how individual auditory components correlate
with the behavioral patterns observed in our human study.
In Section 2 we provide additional context about previous
work leading up to this paper. Lastly, in Section 7 we recap
our results and discuss them in a broader context.

2. RELATED WORK

Studies that induce mood through listening to happy/sad
music have shown mood-congruent bias across a range of
tasks. Behen et al. [9] showed participants happy and sad
faces while they listened to positively or negatively va-
lenced music and underwent fMRI. Participants rated the
happy faces as more happy while listening to positive mu-
sic, and the fMRI results showed that activation of the su-
perior temporal gyrus was greater when the face and music
were congruent with each other. In a study of mood and re-
call, De l’Etoile [4] found that participants could recall sig-
nificantly more words when mood was induced (through
music) at both encoding and retrieval.

Previous work at the intersection of musicology and
cognitive science has also studied the connection between
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music and emotion. As Krumhansel points out [10], emo-
tion is a fundamental part of music understanding and ex-
perience, underlying the process of building tension and
expectations. There is neurophysical evidence of music
being strongly linked to brain regions linked with emotion
and reward [2], and different musical patterns have been
shown to have meaningful associations to emotional affec-
tations [15]. Similarly, studies have indicated that mood
also affects the perception of music [18]. Not only is emo-
tion a core part of music cognitive processing, it can also
have a resounding impact on people’s mental state, and aid
in recovery, as shown for instance by Zumbansen et al. [19]
in the case of people suffering from Brocas aphasia. Peo-
ple regularly use music to alter their moods, and evidence
has been presented that music can alter the strength of
emotional negativity bias [3]. All this evidence indicates
a deep and profound two-way connection between music
and emotional perception.

Considering the impact of music on risk-related deci-
sion making, previous work has studied the general con-
nection between gambling behavior and ambiance factors
including music [5, 8, 17] in an unconstrained casino envi-
ronment. Additionally, Noseworthy and Finlay have stud-
ied the effects of music-induced dissociation and time per-
ception in gambling establishments [13].

Lastly, in the context of music and its impact on coop-
eration, not much research has been done to quantitatively
explore how music impacts the cooperative and adversar-
ial behaviors of participants in social settings. Greitemeyer
presented evidence that Exposure to music with prosocial
lyrics reduces aggression [7]. From a different perspective
entirely, Baron was able to show how environmentally-
induced mood helped improve negotiation and decrease
adversarial behavior [1]. To the best of our knowledge, this
is the first work to study how different types of music dif-
ferentially affect people’s decision-making in the context
of tasks involving other agents.

3. EXPERIMENTAL SETUP

In this section we describe the details of the experiment
conducted in this study. First, we describe the overall pro-
cedure. We proceed to describe the participants, the au-
tonomous car behavior, the music selected for the experi-
ment, and the data collected for analysis.

3.1 Procedure

In this study, participants were given control of a simu-
lated vehicle crossing an intersection. They had three con-
trol options - speed forward, go in reverse, and brake. In
addition to the human-controlled vehicle, another vehicle,
controlled autonomously by an artificial agent, was also
crossing the intersection from a different direction. If the
two cars collided, they would crash. Participants were in-
structed to safely cross the intersection without crashing.
Participants were also instructed that the autonomous car
would generally respect the laws of traffic but cannot be
blindly relied upon to drive safely. Each time both vehicles

Figure 1. (A) A screen capture of the experiment. The
red car was controlled by the participant. The blue car was
controlled autonomously. (B) A collision would result in
a crash, as demonstrated in this screen capture. After the
crash, the trial terminates and the next trial begins.

cleared the intersection and reached the end of the screen
safely, the trial would end and a new trial would commence
(a 2 second pause was introduced between trials). The ex-
periment was divided into 8 blocks of 12 trials (for a total
of 96 trials per participant). In each trial the behavior of the
blue vehicle was randomized, determining its speed and
the amount of time it would wait by default in the intersec-
tion if it had arrived to the intersection first. In each block,
a different song was played, alternating between positive
and negative music across blocks. The order of the songs
was counterbalanced across subjects. A 3 second pause
before the beginning of each block to make sure the new
song had started before a new trial commenced. Each ex-
periment lasted approximately 20 minutes. A snapshot of
the experiment is presented in Figure 1.

3.2 Participants

For this paper we have originally collected data from 20
participants. All participants were graduate students who
volunteered to participate in the study. Two participants
were filtered out for behaving uniformly without paying
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attention to the experimental conditions (always going for-
ward at the beginning of each trial without slowing, stop-
ping or paying attention to the autonomous vehicle), leav-
ing a total of 18 participants. Note that the comparisons
of interest were within participants (happy vs. sad mu-
sic). Thus, the sample size was sufficient to detect sta-
tistically significant differences in behavior between these
conditions.

3.3 Autonomous Car Behavior

The key variability in stimuli in this experiment was pre-
sented through randomization of the autonomous car be-
havior. The three main aspects of the autonomous car be-
havior that were variable were its speed approaching the in-
tersection, how long it would wait in the intersection before
going forward if it arrived to the intersection first, and how
fast it would move into the intersection and onward after
entering the intersection. Participants were instructed not
to blindly rely on the autonomous car’s behavior, but in the
scope of this experiment we opted to have the autonomous
car always give right of way if the human-controlled car
made it to the intersection first. The consequence of this
was that the decision whether to give right of way or move
forward was almost always in the hands of the human par-
ticipant. Indeed, one of the explicit goals of this study were
to examine how different music-induced mood would af-
fect people’s aggressiveness vs. their inclination to give
right of way.

3.4 Music

The music used for this experiment is the same as that used
in [11]. It is a collection of 8 publicly available songs
which was surveyed to isolate two clear types - music that
is characterized by slow tempo, minor keys and somber
tones, typical to traditionally “sad” music, and music that
has upbeat tempo, major scales and colorful tones, which
are traditionally considered to be typical to “happy” music.
The principal concern in selecting these musical stimuli,
rather than their semantic categorization as either happy or
sad, was to curate two separate “pools” of music sequences
that were broadly characterized by a similar temperament
(described above), and show they produced consistent re-
sponse patterns. In [11], it has been shown experimentally
that the selected music was effective for inducing the ap-
propriate mood. This was done by selecting a separate pool
of 40 participants and having them rate each song on a 7-
point Likert scale, with 1 indicating negative mood and 7
indicating positive mood. It was then shown that the songs
designated as positive received meaningfully and statisti-
cally significantly higher scores than those denoted as sad.

4. OVERVIEW OF RESULTS

In this section we survey the key findings of the study, ex-
amining the participants’ behavior globally (that is, across
all types of circumstances and autonomous vehicle behav-
ior).

Figure 2. Normalized minimal distance kept from the au-
tonomous car by the participants in the sad and happy mu-
sic conditions (here and elsewhere, bars represent std. er-
ror). Participants tended to keep a lower minimal distance
when listening to sad music.

Figure 3. The average normalized speed of the participants
in the happy and sad music conditions. Participants were
more likely to go faster when listening to happy music.

4.1 Minimal Distance from Autonomous Car

The most statistically significant difference (p < 0.05 us-
ing a paired t-test) across all trials was that participants
listening to sad music kept a lower minimal distance over-
all from the autonomous car compared to when they were
listening to happy music. In other words, their behavior
when listening to sad music was riskier and less consider-
ate (“cutting it closer” with respect to how much margin
for error they kept when entering the intersection). This
result is illustrated in Figure 2.

4.2 Driving Speed

Participants also differed in their driving speed in the sad
and happy music conditions (significant at p < 0.05 using
a paired t-test). Overall, participants were more likely to
go fast in the happy music condition compared to the sad
music condition, as reflected in Figure 3.
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Figure 4. The likelihood of the participants to go first
into the intersection in the sad and happy music conditions.
Participants were more likely to go first when listening to
happy music.

4.3 Right of Way

Another difference, which is strongly related to the pre-
vious observation, and is borderline significant 1 (at p <
0.1 using a paired t-test) was that participants listening to
happy music were more likely to go into the intersection
first compared to when they were listening to sad music, as
illustrated in Figure 4.

5. BREAKDOWN OF USER BEHAVIOR UNDER
DIFFERENT TRIAL CONDITIONS

In this section we consider how different music induced
different participant behavior when breaking down the tri-
als by the different types of autonomous car behavior. It
is worth noting that the observation made in the previous
section held under most partitions of the trial data.

5.1 Behavior under Different Autonomous Car
Intersection Wait Times

If we compare how participants behaved when the au-
tonomous vehicle waited < 4 seconds at the intersection,
the difference in the participants’ driving speed because
dramatically more accentuated in the happy vs. sad mu-
sic conditions. Additionally, the participants’ difference
in wait times at the intersection in the happy and sad mu-
sic conditions also becomes more differentiated when we
only consider trials in which the autonomous car waited
less than < 4 seconds. These observations are presented in
figures 5(a) and 5(b), and are both statistically significant
with p < 0.05 using an unpaired t-test.

1 A 0.1 threshold for testing the significance of p-values is accepted in
the context of relatively small samples sizes. Nonetheless, we strive to
use these measures responsibly in our choice of language, thus using the
equally common term “borderline significance” to describe results with
p-value < 0.1 but > 0.05

Figure 5. (a) Normalized average per-trial speed of partic-
ipants in the happy and sad music conditions, specifically
in the case that the autonomous vehicle waited less than 4
seconds. (b) Normalized per-trial time waiting at the inter-
section of participants in the happy and sad music condi-
tions, specifically in the case that the autonomous vehicle
waited less than 4 seconds.

5.2 Behavior under Different Autonomous Car
Average Speed

A similar related trend to that observed in the previous sec-
tion were observed when considering the average speed of
the autonomous car. In trials in which the average speed
of the autonomous vehicle was above the median, people
were slower to drive and took longer to wait at the intersec-
tion while listening to sad music, compared to when listen-
ing to happy music (again with p < 0.05 using an unpaired
t-test).

6. IMPACT OF MUSICAL PARAMETERS ON
USER BEHAVIOR

The partition between “positive” and “negative” mood-
inducing songs is easy to understand intuitively, and in it-
self is enough to induce the different behavioral patterns
discussed in the previous section. However, similarly to
the analysis performed in [11] and [12], we are interested
in finding a deeper connection between the behavior ob-
served in the experiment and the different characteristics
of music. More exactly, we are interested in finding the
correspondence between various musical features, which
also happen to determine how likely a song is to be per-
ceived as happy or sad, and the driving decision-making
manifested by participants. To this end, we considered the
8 songs used in this experiment, extracted key character-
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izing features which we assume are relevant to their mood
classification, and examined how they correlate with the
subject behavior we observed.

6.1 Extracting Raw Auditory Features

We focused on four major auditory features: a) overall
tempo; b) overall “major” vs. “minor” harmonic charac-
ter (we will refer to this feature as “major chord ratio”
for simplicity); c) average amplitude, representing overall
loudness; and d) maximum amplitude, representing peak
loudness. Features (a), (c) and (d) were computed using
the Librosa library [16]. To compute feature (b), we imple-
mented the following procedure, similar to that described
in [11]. For each snippet of 20 beats an overall spec-
trum was computed and individual pitches were extracted.
Then, for that snippet, according to the amplitude intensity
of each extracted pitch, we identified whether the domi-
nant harmonic was major or minor. The major/minor score
was defined to be the proportion of major snippets out of
the overall song sequence. Analysis done in [11] confirms
these features are indeed associated with our identification
as “positive” vs. “negative”. Having labeled “positive” and
“negative” as 1 and 0 respectively, a Pearson correlation of
0.7−0.8 with p-values ≤ 0.05 was observed between these
features and the label. Significance was further confirmed
by applying an unpaired t-test for each feature for positive
vs. negative songs (p-values < .05).

6.2 Results

Overall, the most prominently influential aspect of the mu-
sic as observed by statistical analysis is the loudness of the
music. Additional effects were observed relating to tempo
and major chord ratio, but they did not meet the same cri-
teria for significance.

6.3 Loudness and Overall Time Out of Intersection

The normalized overall time out of intersection is the total
time it took the participant to drive up to the intersection,
wait, and cross the intersection, normalized per subject.
The normalized time out of the intersection was statisti-
cally significantly (p < 0.05 2 ) inversely correlated with
both the average loudness (r = -0.72) and the maximum
loudness (r = -0.77) of the music. The correspondence
between the average loudness and the overall time out of
intersection is presented in Figures 6 (the findings for the
maximum loudness are similar). In other words, the louder
the music was, the faster people were to complete the task.

6.4 Loudness, Speed, Time Stopped, and Minimal
Distance

Loudness also impacted various aspects of participant be-
havior that are related to the participants’ driving speed and
overall aggressiveness. These results are borderline signif-
icant at p < 0.1 for all correlations reported in this subsec-
tion.

2 P-values for correlation are results obtained by analysis of the distri-
bution of correlation values given the null hypothesis.

Figure 6. Correlation between the average loudness of the
music and the normalized total time out of the intersection
for the participants.

Figure 7. Correlation between the average loudness and
the average speed of the participants.

• Most straightforwardly, the average loudness was
positively correlated (r = 0.65) with the normalized
average speed of the participants, meaning that par-
ticipants drove faster when listening to louder music.
This result is illustrated in Figure 7.

• Similarly, other metrics reflect overall speed, includ-
ing the minimum speed, the median speed and the
initial speed (speed after 1 second from the begin-
ning of the trial) were positively correlated with r >
0.6.

• The overall normalized time the participants stopped
at the intersection was inversely correlated at r =
-0.67 with the average loudness, meaning people
were faster to continue into the intersection when lis-
tening to louder music. This finding is presented in
Figure 8

• Lastly, the minimal distance the participants kept
from the autonomous car was positively correlated
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Figure 8. Correlation between the average loudness and
the average time the participants stopped at the intersec-
tion.

Figure 9. Correlation between the normalized key press
count of the participants and the tempo.

with the average loudness, meaning the louder the
music was, the higher the minimal distance was.
Considering the other findings in this section and the
fact that the minimal distance and the average speed
are positively correlated at r = 0.75 (and p < 0.05),
it is reasonable to assume this relationship is a re-
sult of the impact of loudness on the participants’
speed rather than an indication of how loud music
increases people’s risk aversion, for instance.

6.5 Tempo and Hesitancy

The total number of key presses per trial, normalized per
participant, is a good proxy for hesitancy in decision mak-
ing (speeding and slowing down, going forward and brak-
ing, etc). Interestingly, the key press count was inversely
correlated to the tempo (r = -0.59 and p < 0.1), suggest-
ing faster music reduced people’s hesitancy. This results is
presented in Figure 9.

6.6 Additional Observations

Beyond the results reported thus far in this section, sev-
eral relationships between musical features and participant
behavior were observed that did not meet the p < 0.1 cri-
terion for significance, but came sufficiently close to merit
mention:

• The normalized key press count was also inversely
correlated with the major chord ratio (at r = -0.52),
implying it’s possible that music that leans heavier
towards major harmonies also reduces hesitancy in
the participants.

• The the major chord ratio was also positively corre-
lated with the maximum speed of the participants,
and the minimal distance the participants kept from
the autonomous car, at r = 0.54 and r = 0.52, re-
spectively.

• The tempo was positively correlated with both the
average and the max speed at r = 0.53 for both.

7. SUMMARY AND DISCUSSION

In this study we analyzed how people’s decision-making
behavior is affected by music in the context of a social task
which requires a certain level of cooperation to avoid ad-
verse consequences. Participants were required to drive
a simulated car through an intersection while another car,
controlled by an autonomous agent, was also crossing from
a different direction. Examining the results reveals a com-
pound picture befitting the subtleties of the performed task.
While happy music induced some aspects of behavior that
could be described as more social, namely that participants
kept a safer distance from the other car when crossing,
they also manifested less social behavior by driving faster
and being less likely to let the autonomous vehicle go first.
All in all, our initial expectation that happier music would
make people more cooperative was not supported by the
findings. Conversely, it can be argued that sad music made
people slower and more cautious, and therefore safer to
their environment and to the other agent specifically. This
study is the first step towards a better understanding of how
music informs people’s decision-making in multi-agent en-
vironments that require some level of cooperation. Follow-
up work would help refine our observations, as well as pos-
sibly leverage them in the context of human-agent interac-
tion and negotiation.
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The combination of rhythm and pitch can account
for the beneficial effect of melodic intonation therapy
on connected speech improvements in brocas aphasia.
Frontiers in human neuroscience, 8, 2014.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 701



VENUERANK: IDENTIFYING VENUES THAT CONTRIBUTE TO ARTIST
POPULARITY

Emmanouil Krasanakis1 Emmanouil Schinas1,2
Symeon Papadopoulos1 Yiannis Kompatsiaris1 Pericles Mitkas2

1CERTH-ITI, Thessaloniki, Greece - {maniospas,manosetro,papadop,ikom}@iti.gr
2AUTH, Thessaloniki, Greece - manosetro@issel.ee.auth.gr,mitkas@auth.gr

ABSTRACT

An important problem in the live music industry is find-
ing venues that help expose artists to wider audiences.
However, it is often difficult to obtain live music audi-
ence data to tackle this task. In this work, we investigate
whether important venues can instead be inferred through
social media data. Our approach consists of employing
bipartite graph ranking algorithms to help discover impor-
tant venues in artist-venue graphs mined from Facebook.
We use both well-established algorithms, such as BiRank,
and a modification of their common iterative scheme that
avoids the impact of possibly erroneous heuristics to the
ranking, which we call VenueRank. Resulting venue ranks
are compared to those obtained from feature extraction for
predicting the most listened artists and large listener incre-
ments in Spotify. This comparison yields high correlation
between venue importance for listener prediction and bi-
partite graph ranking algorithms, with VenueRank found
more robust against overfitting.

1. INTRODUCTION

In the music industry, artists aim to present themselves to
wide audiences. Therefore, it is important for them to gain
as much exposure as possible from their live performances.
In turn, this exposure can influence their popularity, as ex-
pressed by the size of their audience.

In this paper we try to identify which performances of-
fer higher exposure. Factors such as timing and other re-
cent events can influence this. Listener geolocation has
also been found to contribute to artist popularity predic-
tion [3, 21]. Consequently, it is reasonable to hypothesize
that performing in certain venues could contribute more
to artist popularity. Having access to a ranking of venues
based on expected exposure could be valuable for artists
and their agents; when confronted with different options
regarding their future performances, they could consider
these rankings as an important decision criterion.

c© Emmanouil Krasanakis, Emmanouil Schinas, Symeon
Papadopoulos, Yiannis Kompatsiaris, Pericles Mitkas. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Emmanouil Krasanakis, Emmanouil Schinas, Symeon Pa-
padopoulos, Yiannis Kompatsiaris, Pericles Mitkas. “VenueRank: Iden-
tifying Venues that Contribute to Artist Popularity”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

To rank venue exposure, one could try to predict it using
machine learning algorithms. Unfortunately, there are dif-
ficulties in quantifying the notion of exposure, not least of
which is that real-life data may misrepresent audience size
and reactions. For example, participating in a large event
held in a well-known venue with many other artists may
contribute less to gaining popularity compared to an artist-
focused event. A viable alternative to measuring venue ex-
posure, which we also adopt in this work, is to instead es-
timate whether venues contribute to artist popularity (e.g.
the number of listeners in music services) from a machine
learning perspective. To do so, we can employ feature ex-
traction methods to identify the most important venues that
help determine and increase artist popularity.

However, even this formulation depends on obtaining
live music audience data required for supervised training.
Such data are not necessarily easy to obtain, as they are
typically considered confidential. Therefore, in this work
we attempt inferring important venues through unsuper-
vised training, which does not require such data.

In particular, given a graph representation, where artists
are linked with venues they have performed in, we use
graph ranking algorithms to rank venues. To validate
whether this approach ranks venues based on offered ex-
posure, we compare the produced ranks with venue impor-
tances obtained through feature extraction for predicting
popular artists and artist popularity increments. We find
that ranking methods can be more informative than raw
social media measures in predicting important venues.

2. BIPARTITE GRAPH RANKING

2.1 Motivation for Graph Ranking

We can organize data pertaining to artists A and venues V
where they have performed as bipartite graphs, i.e. graphs
in which vertices form two disjoint sets linking only to
each other. To analyze the importance of venues based
on the structure of such artist-venue graphs, we employ
ranking algorithms, which are used to determine the rel-
ative importance of nodes given a graph’s structure [17].
These algorithms often operate under the premise that
nodes linked to a higher number of important nodes are
also more important.

Formulations such as HITS [14] further refine this con-
cept by recognizing that there can be two types of impor-
tant nodes; authorities that provide important information
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and hubs that point to a lot of information sources. A
node’s authority is then derived from its predecessors’ hub
scores and its hub score is derived from its successors’ au-
thority scores, forming an iterative process.

The distinction between authorities and hubs is of great
interest when applied on bipartite graphs, especially if the
links between disjoint set elements represent the same type
of relation. In this case, we can formulate that one of those
sets contains only authorities and the other only hubs.

For example, in our artist-venue graph setting, where
venues always represent locations where artists have per-
formed, artists can be considered as authorities and venues
as hubs from which popularity-related authority stems. In-
tuitively, this means that artists are considered more im-
portant if they have performed in more important venues,
whereas venues are considered more important if more im-
portant artists have performed there.

2.2 Ranking based on Prior Ranks

Formally, bipartite graph ranking algorithms attempt to
rank nodes in a graph defined by a (weighted) adjacency
matrix W : V ×A between the disjoint groupsA,V based
on heuristically estimated prior ranks.

Prior ranks 1 are supported by most graph ranking algo-
rithms and are used to introduce ranking bias that is driven
by information unrelated to graph structure. For exam-
ple, in web searches [17] prior ranks place more weight
on the pages more similar to the search query. In bipar-
tite graphs, prior ranks often represent an informed belief
about ranks and help attract the solution towards conver-
gence. However their usage can reduce the robustness of
extracted structural characteristics (see Subsection 2.3).

As demonstrated by He et al. [12], previous bipartite
graph ranking algorithms follow similar formulations. In
particular, if S and S′ are normalizations of W and its
transposition WT respectively, a0, v0 are prior ranks that
initially estimate node ranks for the two bipartite graph
groups and ra, rv are prior rank elimination parameters,
approaches follow a common recursive rule for calculating
bipartite graph group ranks as recursions n→∞:

an+1 = (1− ra)a0 + raS
′vn (1a)

vn+1 = (1− rv)v0 + rbSan (1b)

In practice, this iterative process stops when rank differ-
ences converge to a stable set of values. In this work, we
empirically adopt a simple stopping criterion across algo-
rithms that stops after rank changes become small enough:

‖an+1 − an‖22 + ‖vn+1 − vn‖22 < 0.1 (2)

Differences between bipartite graph ranking algorithms
lie in the way normalization is performed on the adjacency
matrix and its transposition. If DA, DV are two diagonal
matrices containing the node degrees of the disjoint sets
A,V , those algorithms perform normalization as:

S = D−pv
v WD−pa

a (3a)

S′ = D−pv
a WTD−pa

v (3b)

1 Prior ranks have also been referred to as ‘query vectors’ [12].

where pa, pv are non-negative constants specific to each al-
gorithm (see Table 1). These constants determine whether
degree normalization should be performed row-wise or
column-wise or whether the normalization should produce
a stochastic matrix.

Algorithm pa pv
HITS [14] 0 0
Co-HITS [6] 1 0
BGRM [19] 1 1
BGER [1] 0 1
BiRank [12] 1

2
1
2

Table 1: Different parameters between bipartite graph
ranking algorithms.

The advantage of the iterative scheme demonstrated in
Eqn (1) over more general ranking schemes, which do not
take the bipartite nature of the graph into account, is that
the former converges fast to unique stationary solutions, as
demonstrated below.
a) If ra, rv < 1 then substituting Eqn (1) into itself as n→
∞ yields:

a∞ = (I − rarvS
′S)−1[ra(1− rv)S

′v0 + (1− ra)a0]

v∞ = (I − rarvSS
′)−1[rv(1− ra)Sa0 + (1− rv)v0]

Although this solution can also help analytically derive
node ranks a∞, v∞, doing so can be computationally in-
tensive, since it requires matrix inversion. For that reason,
all previous approaches adopt the iterative scheme, which
is computationally efficient, especially when W is sparse.
b) If ra = rv = 1 then:

a∞ = S′v∞

v∞ = Sa∞
⇒

(S′S − I)a∞ = 0

(SS′ − I)v∞ = 0

Therefore, if S′S, SS′ are stochastic matrices, i.e. if
pa + pv = 1 in Eqn (3), their largest eigenvalue is 1
and thus a∞, v∞ are their principal eigenvectors respec-
tively. In this case, the iterative scheme resembles the
power method for calculating the principal eigenvectors.
However, due to absence of vector normalization after each
step, large enough ranks may grow uncontrollably and fail
to converge [16].

2.3 VenueRank

The above formulation of bipartite graph ranking algo-
rithms relies heavily on the correctness of the prior ranks
a0, v0 to produce accurate ranks. If the prior ranks are only
partially correct (e.g. are only sparsely filled) ranking al-
gorithms may converge to much different values. Further-
more, structure-related information could be more useful
for important venue detection than prior rank heuristics.
Hence, there exist cases where eliminating the effect of
prior ranks is desirable [15].

In such cases, the previous bipartite graph ranking algo-
rithms eliminate the prior ranks by selecting ra = rv = 1.
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However, as discussed above, numeric convergence is not
theoretically guaranteed for these parameters. For exam-
ple, BiRank fails to converge for these parameters when
run on data gathered in Subsection 3.1.

Therefore, we propose modifying the previous iterative
process to gradually remove the dependency on initial prior
ranks across iterations:

an+1 = (1− ra)an + raS
′vn (4a)

vn+1 = (1− rv)vn + rvSan (4b)

Similarly to before, as n → ∞ we obtain a∞ = S′v∞
and v∞ = Sa∞ and thus a∞, v∞ become the principal
eigenvectors of S′S and SS′ respectively, as long as the
latter are stochastic matrices.

This iterative process differs from previous ones in that
it stabilizes on these eigenvectors for any non-zero param-
eters ra, rv . As a result, we can retrieve theoretical guar-
antees [16] that there exist small enough ra, rv that make
it converge. Moreover, we can see that:

S′S = D−pv−pa
a WTD−pa−pv

v W

S′S = D−pa−pv
v WD−pv−pa

a WT

Therefore, for constant pa + pv = 1 the eigenvectors of
these two matrices remain the same and Eqn (4) converges
to the same ranks regardless of the type of normalization
defined by these two parameters.

In short, we have shown that, for the iterative scheme
demonstrated in Eqn (4), which we will call VenueRank,
it suffices to select any pa + pv = 1 and small enough
ra, rv to converge to bipartite graph ranks where the effect
of prior ranks is eliminated.

3. EXPERIMENTS

3.1 Data Collection

We collected two types of data for our experiments; data
from Facebook about artist and venue pages and the re-
spective number of listeners for those artists from Spotify.
We use Facebook data to run bipartite graph ranking al-
gorithms and Spotify data to extract the ground truth with
which to evaluate these algorithms.

We started with a collection of 542 artists, for which we
were granted access to their number of streams and listen-
ers in Spotify Analytics 2 from 1 January 2015 to 3 May
2019. We also used the Facebook Graph API 3 to automat-
ically find Facebook pages for those artists and manually
removed artists with erroneously matched pages. After this
step, the collection comprises 323 artists, for whom we can
retrieve both the monthly number of listeners in Spotify
and their Facebook page.

Next, we retrieved the events published in the discov-
ered Facebook pages dating later than 1 January 2014, as
well as the venues that hosted them. This process results
in a tripartite graph with nodes representing artists, events
and venues (see Figure 1).

2 https://analytics.spotify.com/
3 https://developers.facebook.com/docs/

graph-api/
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Figure 1: Artist (red) and venue (blue) pages in Facebook
alongside their associated events (yellow) of the largest
connected subgraph of the dataset that contains a Finnish
rock band called ‘The Rasmus’ (green).

This graph contains a total of 105, 251 events that took
place in 4, 051 venues across 72 timezones (see Figure 2).
Using the events in that graph as indicators of the appear-
ance of an artist in a venue, we infer a bipartite artist-venue
graph, which we use for our analysis. Artists associated
with a non-zero number of venues number 224 and they
are associated with a total of 2, 392 venues.

Figure 2: Timezones with more than 20 venues each.

Our dataset contains the number of Spotify listeners per
month for each artist. From these listeners we procure
artist popularity based on the total number of listeners for
each artist, as well as the increase of the number of artist
listeners for each month, which yields 8, 619 datapoints
across all artists. The number of total listeners spans a
wide range of magnitudes. Hence, denoting the number
of listeners for month m of an artist as Lm, we define:

popularity = log(1 +
∑

m Lm)
which yields the normal-like artist distribution shown in
Figure 3. We also quantify the relative increments of
monthly listeners as:

incm = min{Lm/Lm−1 − 1, 1} when Lm−1 6= 0
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Figure 3: Artist popularities (left) and the distribution of
relative listener increments (right).

3.2 Ground Truth Construction

It is difficult to directly extrapolate the exposure granted by
venues using only artist popularity and incm data. How-
ever, we can employ a feature extraction scheme to ob-
tain venue importances reflecting their contribution to pre-
dicting these quantities. Based on the systemic property
of graph ranking algorithms in Section 2.2, to rank based
on the nodes’ positions on the graph, we can then evalu-
ate the quality of those algorithms by measuring whether
higher ranked venues are actually more important for pre-
diction. Effectively, this would assert that higher ranks
represent higher exposure. This way, venue importances
extracted from machine learning on Spotify data can be
used as ground truth against which to validate ranking al-
gorithms, which do not utilize such data.

The machine learning setting for feature extraction can
be either a regression or a classification task (popular-vs-
unpopular). Here, we focus on the latter, since the classifi-
cation task leads to clearer separation between venues that
lead to each of the two target classes. Indeed, regression
tasks using only venues to predict popularity and incm
values yield high error rates, whereas the binary classifiers
demonstrated below boast high predictive capabilities.

Labeling and Feature Selection
To set up the venue ranking task, we distinguish high
popularity and incm values by performing outlier detec-
tion [13] and considering outliers residing in the 20% right
tail of their distributions 4 as popular and high increment
ones respectively. We then use methods that perform ro-
bust feature extraction [10] based on these labels.

To do so, we consider venues as binary artist features to
predict popularity, whereas we use exponential decay to
model the decreasing influence [9] on incm of performing
in a venue held at month mv as exp

(
− m−mv

2

)
if mv ≤ m

and 0 otherwise. Using these feature values, the feature
extraction mechanism then identifies which features (i.e.
venues) contribute the most to label prediction (i.e. high
artist popularity and high listener increments).

Unfortunately, outliers represent a small fraction of all
datapoints and hence cause imbalance between label pri-
ors. Imbalance often affects classification validity and can
distort or bias estimated feature importances. To alleviate
such concerns, we employ SMOTE oversampling [2] to
generate synthetic popular artist profiles, so that the num-
ber of popular artists becomes equal to the number of un-

4 To obtain the outliers residing in the right 20% distribution tail, we
use the z-score detection threshold 0.84 for those greater than the median.

popular ones. We prefer an oversampling scheme, because
the small number of collected artists prohibits an under-
sampling one. This process is summarized in Figure 4.

Figure 4: Extracting venue importances.

Classifier
We use the random forest classifier of the sklearn Python
package [18] with an entropy feature selection crite-
rion. Compared to other classification algorithms, random
forests calculate feature importances during the training
process and do not require tuning. On the other hand,
they can produce lower importances for cross-correlated
features. To improve the robustness of such features,
we instead deploy an ensemble of random forests [20],
which averages importance scores obtained from 10 ran-
dom forests. To avoid erroneously overstating the impor-
tance of unique venue appearances, we train these ensem-
bles and produce importances only for venues in our data
where at least 2 artists have performed, which number 602.

Validation
To assert the validity of feature importances assigned by
random forest ensembles, we performed leave-one-out
cross-validation on trained random forests across 13 train-
ing repetitions. For predicting high popularity labels we
obtained 9% false positive error rate (i.e. rate of assign-
ing unpopular artists as popular) and 7% false negative er-
ror rate (i.e. rate of assigning popular artists as unpopu-
lar), whereas for predicting high incm labels we obtained
29% false positive error rate and 33% false negative error
rate. Since error rates reflect informed classification, venue
importances obtained through this process can indeed be
considered as the ground truth for subsequent experiments.
These error rates indicate that popularity importances are
more accurate, although from a methodological standpoint
causation is better explored by incm importances.

3.3 Compared Ranking Algorithms

In this section, we explore the performance of unsuper-
vised ranking algorithms (such as those presented in Sec-
tion 2) that aim to rank venues using only Facebook data.
These algorithms require prior rank estimations, which
we heuristically infer through metadata obtained from the
Facebook Graph API. In particular, we estimate artist and
venue prior ranks respectively as:

a0 = log(1 + fans+mentions/2)

b0 = |events in venues|
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We alternatively tried calculating venue prior ranks by
summing of the size of all events hosted in a venue, heuris-
tically estimated by size = max{0, log(1 + attending +
interested/2 + maybe/2 − noReply/2 − declined)}.
However, this reduced all BiRank evaluations more than
30% compared to their currently reported values. We com-
pare the following algorithms:

Raw: Estimates venue ranks as their prior ranks.

RFE: Feature extraction using random forest ensembles,
similarly to ground truth construction, but aiming to pre-
dict high artist prior ranks.

BiRank: BiRank on the artist-venue bipartite graph ex-
tracted from Facebook data. Unless stated otherwise, this
method uses parameters ra = rv = 0.85, which are a com-
mon empirical selection for ranking algorithms [8, 12].

VenueRank: VenueRank on the artist-venue bipartite
graph extracted from Facebook data. As argued above,
VenueRank eventually removes the effect of prior ranks.
Although inconsequential from a theoretical standpoint,
we follow previous conventions and reasoning well-
established for BiRank [12], to select the parameters ra =
rv = 0.85 and pa = pv = 0.5, unless stated otherwise.

Evaluation Measures
To evaluate bipartite venue ranking algorithms, we com-
pare the ranks they produce when applied on Facebook
data with the ground truth importances extracted from Spo-
tify data in Subsection 3.2. Our aim is to find whether
venues are correctly ranked by unsupervised ranking al-
gorithms. To this end, we measure rank similarities using
the robust Spearman correlation coefficient [5], which is
is computed as a Pearson correlation between the cardinal
ranks of compared quantities. It must be noted that, due to
the possibility of negative exposures being found more im-
portant, the supremum of Spearman correlation can be less
than 1. This, however, does not affect the fact that Spear-
man correlations closer to 1 indicate that higher ranked
venues are more important and thus boast higher exposure.

Additionally, if ranksGT lists venues in a descending
order of their ground truth importances and ranksC in de-
scending order of their calculated ranks, we can define the
overlap between the top N venues:

overlap(N) =

∣∣ranksGT [0 : N ] ∩ ranksC [0 : N |
∣∣

N

To evaluate the overall overlap curves across all venues,
we also measure their Area Under Curve (AUC) [11],
which is a fair method of curve comparison. To calcu-
late this area, we perform numerical trapezoid integration
of overlaps and normalize the result by dividing it with
the width of the horizontal axis. Higher AUC values rep-
resent better ability to recognize both high-exposure and
low-exposure venues.

3.4 Results

Experiments are performed under two variants of unsuper-
vised training on Facebook data: venue ranking on the

same 224 artists (224A) (including venues with only one
performance) as those used for ground truth construction
and venue ranking using all 542 artists (542A) and their
respective venues. Since the latter dataset contains more
artists and venues, it presents a more challenging setting.
Using both variants for evaluation helps identify which al-
gorithms generalize better and are more robust.

In Table 2, we can see that BiRank and VenueRank
achieve high correlation values with the ground truth in
the 224A dataset. However, BiRank heavily relies on ac-
curate prior ranks to do so and does not perform well in the
larger 542A dataset, where it produces worse estimations
compared to even its prior ranks. This implies that BiRank
exhibits overfitting characteristics. On the other hand, both
RFE and VenueRank boast great robustness in that they are
less affected by the transition to the larger 542A dataset.
Consequently, VenueRank exhibits high performance and
is more suited to real-world applications, since it is more
robust to artist-venue graph changes.

Since there exist -to the best of our knowledge- no
previous studies that can serve as comparison for venue
correlations, common guidelines [7] suggest that we can
resort to the Cohen convention [4] to classify extracted
venue ranks as strongly correlated between VenueRank
and ground truth importances across all experiments.

popularity incm
Algorithm 224A 542A 224A 542A
Raw 36% 38% 44% 42%
BiRank 70% 33% 76% 28%
RFE 57% 51% 64% 49%
VenueRank 71% 63% 69% 60%

Table 2: Spearman correlation coefficient between ground
truth venue rankings and rankings produced by algorithms.

Feature importances forming the popularity and incm
ground truths are themselves significantly correlated, with
58% Spearman correlation coefficient. This indicates that
venues characterizing popular artists also tend to charac-
terize higher listener increments and conversely.

Figure 5 shows the overlap between various algorithms
and the ground truth for different numbers of top venues.
We can see that, for a small number of top venues (i.e. less
than 200), ranking methods do not produce high overlap
with ground truth venues. However, for a greater number
of venues, they rank highly a large portion of important
venues. A curve over a larger area is more important than
only identifying top venues, because ranking methods may
be used to compare middle-ranked or low-ranked venues
to the majority of artists instead of only the most popular
ones. AUC results corroborate the previous ones. In par-
ticular, BiRank again performs better than other methods
under perfect information, whereas VenueRank performs
better than other methods and is thus more robust in the
case of the more challenging 542A dataset variant.
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(a) 224A for popularity (b) 542A for popularity

(c) 224A for incm (d) 542A for incm

Figure 5: Curves and AUCs of high-ranked venue overlap
between ranking algorithms and the ground truth.

3.5 Convergence when Ignoring Prior Ranks

In Figure 6 we present the convergence time of BiRank
with respect to its iterative scheme parameters ra, rb. We
can see that execution time increases asymptotically to in-
finity as prior ranks are ignored, i.e. ra = rb → 1. Instead,
VenueRank exhibits similar behavior for these parameters
convergence-wise, and it always converges to the same sta-
tionary solution, as long as these parameters are not close
enough to 1 to cause numeric errors. Furthermore, that so-
lution is the same as BiRank when the effect of the prior
ranks is completely eliminated. Hence, when the effect
of prior ranks is undesireable, it is preferable to employ
VenueRank instead of selecting BiRank parameters close
to 1, if we want to achieve faster convergence.

Figure 6: Convergence time of BiRank (green solid line)
and VenueRank (dashed black line). VenueRank always
has the stationary solution of BiRank with ra = rb → 1.

3.6 Case Study

Finally, we conduct a case study, where we try to find im-
portant venues in the city of Stockholm, Sweden through
venue ranking algorithms. To this end, we used two online

articles 5 , 6 to gather a total of 10 highly recommended
venues and find their rankings obtained from running the
previous algorithms on all 542 artists and 5, 041 venues.
In Table 3 we show their rank within the ordered list of all
635 Stockholm venues in our dataset (rank of the highest-
ranked venue is 1).

VenueRank places 8 of the 10 venues in the top 50
ranks, whereas other methods place at most 5 of the 10
venues in the top 50 ranks. VenueRank’s performance is
commendable, given that our dataset also includes popu-
lar parks and hotels often used for live music acts, which
would not be recommended in the above articles, and that
worse ranks often stem from incomplete data (e.g. the
dataset contains only two events hosted in ‘Nalen’).

Raw RFE BiRank VenueRank
Annexet 95 105 147 40
Berwaldhallen 48 94 96 46
Cirkus 67 61 193 23
Debaser Medis 9 29 9 11
Debaser Rest. 3 8 4 1
Fasching 55 50 125 33
Nalen 195 97 172 113
Pet Sounds Bar 81 19 343 49
Sodra Teatern 39 1 24 2
Stallet 11 63 13 68

Table 3: Rank cardinality for recommended venues com-
pared to other Stockholm venues.

4. CONCLUSIONS AND FUTURE WORK

In this work, we introduce VenueRank as a modification
of the common iterative scheme of bipartite graph ranking
algorithms that removes dependence on prior ranks while
ensuring convergence. We then explore ranking algorithms
that help identify which venues help predict artist popular-
ity. Experiments on real-life data show that VenueRank ap-
plied on a Facebook artist-venue graph can robustly iden-
tify which venues are correlated with more popular artists
and actively contribute to increasing their Spotify listeners.
In particular, in a setting with partially inaccurate informa-
tion, VenueRank yields substantial improvement compared
to other unsupervised ranking algorithms.

In part, this shows that graph structure can be more im-
portant than rough social network metrics when predicting
high-exposure venues. Furthermore, it demonstrates that
there exists a clear link between graph structure and venue
exposure that increases artist popularity.

In the future, we plan to carry out more detailed exper-
iments on larger datasets. Furthermore, from a theoretical
perspective, the VenueRank iterative scheme can also be
combined with BiRank to produce more robust solutions
across the whole parameter space. Finally, we propose im-
proving venues ranks by taking into account how they con-
tribute to the exposure of lower popularity artists.

5 https://theculturetrip.com/europe/sweden/articles/
the-6-best-live-music-venues-in-stockholm

6 https://scandinaviantraveler.com/en/places/
7-best-music-venues-in-stockholm
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ABSTRACT

User models that capture the musical preferences of users
are central for many tasks in music information retrieval
and music recommendation, yet, it has not been fully ex-
plored and exploited. To this end, the musical preferences
of users in the context of music recommender systems have
mostly been captured in collaborative filtering-based ap-
proaches. Alternatively, users can be characterized by their
average listening behavior and hence, by the mean values
of a set of content descriptors of tracks the users listened
to. However, a user may listen to highly different tracks
and genres. Thus, computing the average of all tracks does
not capture the user’s listening behavior well. We argue
that each user may have many different preferences that
depend on contextual aspects (e.g., listening to classical
music when working and hard rock when doing sports) and
that user models should account for these different sets of
preferences. In this paper, we provide a detailed analy-
sis and evaluation of different user models that describe
a user’s musical preferences based on acoustic features of
tracks the user has listened to.

1. INTRODUCTION

In the last decade, the amount of tracks available on
streaming platforms has literally exploded. Users are sup-
ported in exploring and wading through these music col-
lections by means of personalization—mostly by recom-
mender systems that provide users with a list of tracks they
might like to listen to. Such personalization is central for
the success of streaming platforms as it eases the task of
discovering new and enjoyable music for users.

For music information retrieval (MIR) and particularly,
for personalization tasks in this context, modeling the mu-
sical preferences of users is naturally a central aspect. Yet,
user modeling for MIR and music recommender systems
(MRS) has hardly been investigated [4,32,33]. To this end,
music recommender systems have mostly been realized by
means of collaborative filtering (CF) methods [16] or more

c© Eva Zangerle, Martin Pichl. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Eva Zangerle, Martin Pichl. “Content-based User Models:
Modeling the many faces of musical preference”, 19th International So-
ciety for Music Information Retrieval Conference, Paris, France, 2018.

advanced factorization approaches [17], where recommen-
dations are based on interactions between users and items.
Such systems are agnostic to content features as recom-
mendations are computed based on the similarity of users
(or items) based on their co-occurrence in the listening his-
tories of all users. On the other hand, (the less adopted)
content-based recommender systems [22] compute recom-
mendations based on the similarity of content descriptors
of tracks. Also, hybrid recommender systems combining
CF- and content-based approaches have been proposed [7].

In the field of MIR, tracks are traditionally character-
ized by content descriptors—these range from detailed fea-
tures such as MFCCs [21] to high-level content descrip-
tors such as acousticness, tempo or danceability (e.g., pro-
vided by the Spotify platform 1 ). While these features
are widely used to characterize single tracks, for a user
model that captures the user’s preferences well, these fea-
tures have to be aggregated across all tracks the user has
listened to. To this end, Pichl et al. [30] utilized con-
tent descriptors of tracks for representing a user’s musi-
cal preference by computing the average acoustic features
across all tracks the user has listened to. They also find
that users create different playlists that feature different
acoustic characteristics—implying that these playlists cor-
respond to different sets of preferences of a user (which
may naturally be context-related) and stress the need for
more comprehensive user models to describe users’ musi-
cal preferences [30]. Similarly, Wang et al. [36] state that
people prefer different music for different daily activities.
Along these lines, we argue that users may exhibit differ-
ent preferences depending on the context and e.g., listen to
more energetic music when doing sports or calming mu-
sic when being at home [36]. These different preferences
cannot be sufficiently reflected in a model that averages the
characteristics of all the tracks a user listened to. In a prob-
abilistic user model, Bogdanov et al. [4] characterize a user
in a semantic feature space derived from low-level content
features by utilizing Gaussian Mixture Models.

In this paper, we build upon and extend these previous
works by proposing different user models to describe the
musical preferences of users based on content descriptors
of tracks. We perform a large-scale evaluation of these
models in a track recommendation task based on 8 million
listening events of 13,000 users. Our experiments show

1 https://developer.spotify.com/web-api/get-several-audio-features/
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that utilizing a user model based on a user’s specific pref-
erences regarding different types of music (modeled prob-
abilistically by GMMs) complemented with a user’s gen-
eral musical preference achieves the best results. Our re-
sults show that in terms of recommendation quality, the
proposed models contribute to substantially improved rec-
ommendation performance. We believe that our findings
can contribute to improved user models for music recom-
mender systems and generally, MIR tasks.

The remainder of this paper is organized as follows.
Section 2 discusses related work and Section 3 presents
the features utilized and the dataset underlying our experi-
ments. Section 4 presents the user models proposed. Sec-
tion 5 details the experimental setup and Section 6 presents
the results of our study, which are discussed in Section 7.
Section 8 concludes the paper and discusses future work.

2. RELATED WORK

Generally, Schedl et al. [32, 33] note that the user and
his/her preferences are often not considered when it comes
to MIR and MRS tasks. Particularly, the authors lay out
that user modeling for such tasks has hardly been explored
and evaluated yet.

To this end, content descriptors have widely been used
in MIR and MRS. For similarity search, often a content-
based similarity measure is used for matching queries and
a music database [9, 20, 35, 39]. In the context of mu-
sic recommender systems, Yoshii et al. [38] propose a hy-
brid recommender system that combines collaborative fil-
tering via user ratings and content-based features modeled
via Gaussian Mixture Models over MFCCs by utilizing
a Bayesian network. Also, Liu [20] investigates differ-
ent distance metrics for content-based recommender sys-
tems. Recently, also deep learning-based hybrid MRS have
also been proposed [37]. In regards to user modeling for
MRS, Bogdanov et al. compute a user’s musical prefer-
ences by a set of exemplary tracks that the user enjoyed.
They model the user’s preference in a latent semantic space
based on a set of diverse content features and propose a
set of similarity-based recommender systems. One sys-
tem models a user by a Gaussian Mixture Model based on
the proposed semantic audio feature space. The authors
evaluated these recommender systems in a user experiment
with twelve users. As for musical preferences of users,
Pichl et al. found in a large-scale study of Spotify users
that music streaming users listen to different types of mu-
sic. Those types can be observed via k-means clustering
of content descriptors of tracks. They also found that users
organize their music in playlists based on these types and
stress the importance of more comprehensive user models
to describe users’ musical preferences [30]. Along these
lines, we specifically investigate user models that are solely
based on content descriptors. We propose six user models
and compare these in a large-scale offline study based on a
recommendation task comprising 13,000 users and 8 mio.
listening events.

3. DATASET AND FEATURES

The main data source used in our experiments is the pub-
licly available LFM-1b dataset [31], which provides the
full listening histories of 120,322 Last.fm users. For each
listening event (i.e., a certain user listening to a certain
track), information about the track, artist, album and user
is available. Besides the information contained within the
LFM-1b dataset, we also require content features to de-
scribe tracks. Following the lines of, e.g., [1, 25, 30], we
propose to rely on the Spotify API 2 to gather the follow-
ing content descriptors for each track:

1. Danceability describes how suitable a track is for
dancing and is based “on a combination of musi-
cal elements including tempo, rhythm stability, beat
strength, and overall regularity.”

2. Energy measures the perceived intensity and activ-
ity of a track. This feature is based on the dynamic
range, perceived loudness, timbre, onset rate and
general entropy of a track.

3. Speechiness detects presence of spoken words. High
speechiness values indicate a high degree of spo-
ken words (talk shows, audio book, etc.), whereas
medium to high values indicate e.g., rap music.

4. Acousticness measures the probability that the given
track is acoustic.

5. Instrumentalness measures the probability that a
track is not vocal (i.e., instrumental).

6. Tempo quantifies the pace of a track in beats per
minute.

7. Valence measures the “musical positiveness” con-
veyed by a track (i.e., cheerful and euphoric tracks
reach high valence values).

8. Liveness captures the probability that the track was
performed live (i.e., whether an audience is present
in the recording).

These features are high-level descriptors of the acous-
tic content of tracks. We argue that they are neverthe-
less representative and hence, the obtained results should
give a good impression on the differences of the user mod-
els. We expect our findings to also hold for more com-
plex and lower-level content descriptors such as e.g., Mel-
Frequency Cepstral Coefficients (MFCC) [21].

To obtain these features for all tracks of the dataset, we
apply the following steps: we perform a conjunctive query
for the <track, artist, album>-triples extracted from the
LFM-1b dataset using the Spotify search API 3 to gather
the Spotify URI of each track. This URI is subsequently
used to query the acoustic features API 4 . Finally, we add
tracks for which can obtain all required features to the
dataset 5

Since the set of tracks a user listened to may also con-
tain outlier tracks that may distort the user profile, we
propose to remove outlier tracks from this set by apply-

2 A detailed description of these features and the API can be found at
https://developer.spotify.com/web-api/get-several-audio-features/.

3 https://developer.spotify.com/web-api/search-item/
4 https://developer.spotify.com/web-api/get-several-audio-features/
5 Except for tempo, all of these features are given in the range of [0, 1]

and for tempo, we apply a linear min-max scaling.
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Item Value

Listening Events (LE) 8,457,205
Users 12,995
Tracks distinct 965,293
Min. LE per User 1
Q1 LE per User 252
Median LE per User 478
Q3 LE per User 826
Max. LE per User 21,660
Avg. LE per User 650.80 (± 713.99)

Table 1. Dataset statistics.

ing the median absolute deviation (MAD) outlier detection
method [19]. We consider a feature value an outlier if it is
not within M ± a ·MAD, where M is the median of this
particular feature across all tracks of a user and MAD is
the median absolute deviation of these values. We consider
a value an outlier if it is not within within three MADs
around the median, setting a rather conservative threshold
a = 3 as proposed by [19]. Lastly, a track is considered
as an outlier in the list of tracks of a particular user if one
of its features is considered an outlier and consequently re-
moved from the user listening history.

Applying this procedure results in a dataset of 55,149
users, 394,944,868 listening events and 3,478,399 distinct
tracks. We randomly sample users from this dataset for
our experiments, where we require each user to have more
than 100 listening events to ensure that our user models
are representative. We present basic statistics about the
resulting dataset in Table 1. As can be seen, on average,
each user has listened to 651 tracks.

4. USER MODELS

In the following, we present the proposed user models to
capture user’s listening preferences. We specifically focus
on modeling users solely by acoustic features of tracks they
listened to and deliberately neglect other information that
could contribute to a user model (e.g., demographic user
aspects, cultural information or further contextual features
that might improve MRS and MIR performance).

4.1 Feature Space

Based on the users, tracks and their acoustic features
within the dataset, we perform the following steps prior to
the computation of the user models. Most of the proposed
models require clustering tracks based on their acoustic
features to find groups of tracks that exhibit similar fea-
tures. Given that we aim to perform a large-scale anal-
ysis of the proposed user models (we perform the analy-
sis on 8 million tracks and 13,000 users), these clustering
computations are computationally intensive. Hence, we
firstly perform a proximity-preserving dimension reduc-
tion on the input data by applying UMAP (Uniform Mani-
fold Approximation and Projection) [23]. Also, the use of
latent representations of elements in the musical ecosystem
(users, tracks, etc.) has been to be effective in MIR and

MRS tasks [18, 26, 27]. In our experiments, we compute
a 2-d latent representation of tracks for the computation of
user models. This allows us to inspect the resulting clus-
ters visually during the development of the user models
and, more importantly, reduces cluster computation time
substantially, which naturally permits better scalability for
larger datasets.

4.2 User Models

For modeling user preferences for musical tracks and their
characteristics, we naturally require models for both tracks
and users as we utilize a user’s model and compare it with
track models to find suitable similar tracks that may be rec-
ommended to the user.

As for modeling tracks and their characteristics, we rely
on their acoustic features (AF; e.g., danceability or tempo).
However, for users we require more sophisticated user
models, as these have to represent a possibly extensive and
diverse set of tracks and their characteristics to eventually
represent a user’s musical preferences. We propose user
models that are based on clusters of similar tracks and uti-
lize a user’s membership in these clusters (i.e., the fact that
user has listened to tracks that belong to a given cluster)
to get a fine-grained representation of the many faces of
the listening preferences of a given user. For determining
such clusters and computing the membership of tracks in
these clusters, we experiment with two approaches: (i) we
utilize k-means clustering to find tracks that exhibit similar
acoustic features and use the characteristics of these clus-
ters to characterize users; and (ii) we apply Gaussian Mix-
ture Models (GMM) [24] as these allow to model a track
by the computed probability density function regarding the
GMM’s components. Based on a track’s density functions,
we derive a set of GMM-based user models. Generally,
the idea is that based on these clusters or components, we
aim to model a user based on the characteristics of one or
multiple of these track clusters.

In the following, we describe the proposed user models
to capture the musical preferences of users. An overview
of the user models and the features used to characterize
users and tracks is shown in Table 2.

Content avg: In a baseline model, we utilize the eight
acoustic features of all tracks a user has listened to and
compute the average across all tracks of a user for each of
the features presented in Section 3. This allows us to de-
scribe a user with his/her average listening behavior, break-
ing a user’s preferences down into eight acoustic features.
Please note that in the remainder of this paper, we refer to
models as Content-models if the representation of the user
or a track relies on acoustic features.

Content avg, sd: This model is built upon the Content
avg model, which we extend by adding the standard de-
viation of each of the acoustic features across all tracks
of a user. We expect the added SD to mitigate the ef-
fects of averaging a large number of features that poten-
tially differ substantially as users may listen to music with
highly diverse acoustic characteristics. We again consider
this model a baseline that additionally quantifies to which
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Model User Features Track Feat.

Content avg user AF avg AF
Content avg, sd user AF avg and SD AF

Content binary k-means avg. AF of single cluster AF
Content weighted k-means weighted avg. AF of clusters AF
GMM avg. densities of user’s tracks GMM densities
Content binary GMM avg. AF of single GMM comp. AF
Content weighted GMM weighted avg. AF of GMM comp. AF
GMM + Content avg, sd GMM and user AF avg and SD GMM, AF

Table 2. Overview of evaluated models (AF stands for
acoustic features, GMM for Gaussian Mixture Model and
SD for the standard deviation).

extent the user’s musical preferences vary regarding the
acoustic features of his/her listening history.

Content binary k-means: In this model, we rely on
the clusters computed by a k-means clustering of all tracks
within the dataset in the computed 2-d latent space. In a
next step, we attribute each of the tracks a user has listened
to a cluster and do a majority vote on the clusters to obtain
the cluster that holds most of the user’s tracks. We subse-
quently model a user using the characteristics of the cluster
that contains the majority of the user’s track. To represent
this cluster, we compute the average of the eight acous-
tic features of all tracks contained in the cluster and add
the according standard deviations. Single tracks are repre-
sented by its acoustic features. We consider this a rather
simple model as we assign the user to a single cluster and
hence, limit the model to a single preference scope.

Content weighted k-means: The previous model is
limited as it is restricted to a single preference scope. To
tackle this problem, we propose the Content weighted k-
means model in which we now aim to address multiple sets
of preferences of a user. Therefore, we again rely on the
k-means clusters, however, we compute a weight for each
cluster based on the number of tracks a user has listened
to in each cluster. Based on the user’s weights for each
cluster, we compute a weighted average for each acoustic
feature to represent the user, where each cluster is again
characterized by its average acoustic features and its stan-
dard deviation. Again, in this model each track is repre-
sented by its acoustic features.

GMM: In this model, we utilize a Gaussian Mixture
Model [24] for representing both the track and the user.
Therefore, we compute Gaussian components and repre-
sent a track by its probability densities regarding the GMM
components. For users, we compute the average proba-
bilities for each component across all of the user’s tracks
to model a user’s musical preferences by using the GMM
components. We consider this model a proxy, as it does not
directly utilize acoustic features to represent a track, but
the probabilistic assignments of a track to a set of groups
of tracks (components).

Content binary GMM: In contrast to the pure GMM
model, this model relies on content features instead of
probability densities to represent a user. Analogously to
the Content binary k-means model, we rely on GMM to
assign the user’s tracks to components. In particular, we
assign the tracks found in the user’s listening history to

GMM components. In a next step, we select the compo-
nent with the highest number of user tracks assigned to,
where we assign a track to the component with the highest
probability density for the track. The user is then modeled
by the characteristics of the selected component (again us-
ing the average and standard deviation across all acoustic
features of the tracks assigned to the component), whereas
each track is again represented by its acoustic features.

Content weighted GMM: This model is again analo-
gous to the content weighted k-means model. However, we
rely on a GMM to assign a user’s tracks to certain a com-
ponent as described in the previous model. Based on these
assignments, we analogously compute the weighted mean
and standard deviation for each acoustic feature for each
GMM cluster to represent a user and the characteristics of
tracks are captured by their acoustic features.

GMM + content avg, sd: In this model, we com-
bine the GMM components baseline model with the con-
tent avg, sd baseline model and hence, represent a user by
his/her component weights regarding the Gaussian Mix-
ture Model and further add the average and standard devi-
ation across all acoustic features of the user’s tracks. Sim-
ilarly, a track is represented by its GMM densities and its
acoustic features.

We also performed experiments on representing users
and tracks with cluster or component assignments only and
did an analysis of further combinations of the proposed
models. However, the results were below the evaluated
baselines and hence, we do not list these models here.

5. EXPERIMENTAL SETUP

We model the evaluation of the proposed user models as a
recommendation task, where we aim to obtain a ranked list
of tracks that are of interest to the user. For this task, we
rely on Gradient Boosting Decision Trees. Particularly, we
utilize the popular XGBoost system [8], a scalable end-
to-end tree boosting approach that has been shown to be
highly suited for recommendation tasks [2, 28]. For the
training phase of the tree, we set the training objective to
be the binary classification error rate (i.e., the number of
wrongly classified tracks in relation to all tracks classi-
fied, where tracks with a predicted probability of relevance
larger than 0.5 are classified as relevant for the given user,
and all other tracks are considered irrelevant for the user).
Please note that we deliberately chose a classification-
based recommendation approach and refrained from uti-
lizing more elaborate recommender approaches such as
context-aware matrix factorization [3] or tensor-based fac-
torization approaches [15] as we aim to focus on user mod-
eling aspects in this paper.

For the recommendation task carried out, we require
a rating for each track in the dataset to define whether a
given track was listened to and thus, considered relevant
for a given user. Hence, we add a binary factor rating
to the processed dataset: for each unique <user, track>-
combination, the rating ri,j is 1 if the user ui has listened
to track tj . Due to a lack of publicly available data, our
dataset does not contain any implicit feedback of users
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(i.e., skipping behavior, session durations or dwell times
during browsing the catalog). This is why we cannot esti-
mate any preference towards a track a user not listened to
as proposed by [14]. Thus, we assume tracks the user has
not listened to as negative examples [14] and hence, assign
a rating of 0 to these tracks. Even though there is a certain
bias towards negative values as some missing values might
be positive, Pan et al. [29] found that this method for rating
estimation works well. To perform the proposed recom-
mendation task via classification, we require the dataset to
also include negative examples. Therefore, for each user,
we add random tracks the user did not interact with (i.e.,
tracks tj with ri,j = 0 for the given user ui) to the dataset
until both the training and test sets are filled with 50% rele-
vant and 50% non-relevant items. We chose to oversample
the positive class to avoid class imbalance and hence, a
bias towards the negative class.

Using the resulting data set, we train a XGBoost model
that performs a binary classification on the relevance of
tracks for a given users. We extract the probabilities un-
derlying the classification decision to rank tracks by their
probability of relevance in the recommendation task.

To evaluate the performance of the proposed user mod-
els in regards to recommendation quality, we perform a
per-user evaluation. Therefore, we use each user’s lis-
tening history and perform a leave-k-out evaluation (also
known as hold-out evaluation) [6, 10] per user. Based on
the dataset that now contains both positive and negative
samples for each user, we compute a hold-out set of size k:
along the lines of previous research [12, 13], we randomly
select 10 positive samples (tracks that the user has listened
to) and 100 negative samples (tracks the user has not lis-
tened to). These 110 tracks form the test set for each user,
whereas the recommender system is trained on the remain-
der of the dataset. We compute the predicted ratings for
the tracks in the test set and rank the track recommenda-
tion candidates w.r.t. the probability that the current track
belongs to the positive class in descending order. For our
experiments, we consider all predicted probabilities > 0.5
as a predicted interaction and thus, we consider these items
as relevant, all others as irrelevant and hence, not added to
the list of recommendations. 6

Based on the predicted ratings, we compute precision,
recall, and the F1-measure to assess the top-10 accu-
racy [11]. We evaluate the 10 top ranked tracks as too
many track recommendations might provoke choice over-
load and hence, is not feasible. The problem of choice
overload has been addressed by Bollen et al. [5] who state
that user satisfaction is highest when presenting the user
with Top-5 to Top-20 items—naturally assuming that the
recommendation list contains a sufficient number of rele-
vant items for the user. For assessing the overall precision,
recall, and F1-measure of the evaluated recommender sys-
tems, we compute the measures for each individual user
and compute the average among all users. For computing
the recall measure, all relevant items in the test set are con-

6 This distinction between the two classes is also utilized by XGBoost
for binary classification tasks based on logistic regression.

sidered, independent of the number of recommendations.
Thus, there is a natural cap for recall, namely the num-
ber of recommendations divided by the number of relevant
items in the test set.

For the tuning of XGBoost parameters, we did a pre-
liminary cross-evaluation aiming to optimize precision val-
ues for the proposed models and hence, set the number
of maximum trees to learn the models to 2,000. For all
other parameters, we relied on the default settings. For
the training and tuning of k-means and GMM for the cre-
ation of the user models, we performed the following steps.
For k-means, estimated the number of clusters by utiliz-
ing the elbow method based on the within-cluster sum of
squares. For the given dataset, we estimated the number of
clusters to be 5. For the GMM, we performed a training
phase based on expectation maximization and determined
the number of components using the Bayesian Information
Criterion (BIC), which resulted in a total of 9 components
for the GMM.

6. RESULTS

We present the results of our evaluation for a recommen-
dation list of size ten in Table 3 and in a precision-recall
plot depicted in Figure 1.

The best results are obtained by the GMM + Content
avg, sd model, reaching a precision@10 of 0.771 and a re-
call@10 of 0.427 and hence, achieving substantially higher
precision and recall scores than any other model. Compar-
ing the results of this model to the GMM model (relying on
solely the assignments to GMM components) and the Con-
tent avg, sd baseline model shows that those two models
individually perform substantially worse than when com-
bined. When inspecting the results of the GMM model,
we find that solely relying on the GMM density functions
does not suffice to represent a user’s musical taste. Partic-
ularly, all content-based GMM or k-means models achieve
higher performance when applied in isolation. However,
combining a simple content-based approach that provides
acoustic features regarding the user’s general preferences,
with GMM, provides us with a representative user model.
This suggests that the GMM model captures a user’s di-
verse preferences regarding the detected components and
hence, his/her distribution in preference towards specific
types of music, while his/her general preferences are cap-
tured by the average acoustic features and the according
standard deviation.

Model Prec Rec F1

GMM + Content avg, sd 0.771 0.427 0.632
Content k-means weighted 0.606 0.316 0.400
Content k-means binary 0.573 0.300 0.383
Content binary GMM 0.569 0.298 0.381
Content weighted GMM 0.569 0.298 0.381
GMM 0.231 0.122 0.226
Content avg, sd 0.161 0.089 0.241
Content avg 0.159 0.087 0.241

Table 3. Precision, Recall and F1@10, ordered by F1.
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Our results also show that the user models based on
k-means clusters slightly outperform the methods based
on GMM components (1.8% in recall, 3.7% in precision).
Please note that for k-means we determined the number of
clusters to be five, whereas we created nine GMM compo-
nents (as described in Section 5). Our findings regarding
the number of clusters are also in line with previous analy-
ses on playlists [30], where the authors found that cluster-
ing the tracks within playlists into five clusters allows for
cohesive and homogeneous clusters.

The weighted k-means approach achieves better results
than the binary k-means approach. This seems natural as
the former incorporates the user’s membership in all clus-
ters, whereas the latter does a majority vote and utilizes the
resulting (single) cluster to characterize the user. However,
this does not hold for the GMM-based approaches. While
the differences between the weighted and binary k-means
approaches are marginal, for GMM there is no difference
between weighted and binary Content GMM.

The proposed baseline model Content avg achieves the
lowest values regarding recall, precision and F1. Adding
the standard deviation to this model hardly impacts the
results. We initially suspected that adding the SD to the
model may allow mitigating the effects of aggregating pos-
sibly highly different tracks as we aggregate across all
tracks of a user (regarding their acoustic features), how-
ever, this is not confirmed by our experiments. In pre-
liminary experiments, we also used different representa-
tions of clusters: while we now utilize the mean acous-
tic features and the according SDs, we also used only the
mean features. We found that the SD contributes only
marginally as the dispersion of tracks in regards to acous-
tic features is already captured by the individual clus-
ters/components and hence, the tracks contained in a sin-
gle cluster/component are more homogeneous. We also
experimented with models that utilize user-cluster assign-
ments for k-means, however, those models achieved in-
ferior results. In contrast, representing those clusters by
the average acoustic features across all contained tracks
seems to be representative. Combining k-means cluster
assignments with content-based models also lead to infe-
rior results, which we lead back to the fact that the GMM
probability densities provide more information than sheer
cluster-assignments.

Generally, we conclude that content features strongly
contribute to user models and that grouping tracks into
clusters (k-means) or components (GMM) and solely re-
lying on the assignment to those clusters or components
is not sufficient for a representative user model. Finding
groups of similar tracks to represent users by user-group
assignments via the tracks a user listened to is not expres-
sive enough. Naturally, utilizing content features allows
to compute higher-dimensional similarities between users
and their tracks (in our experiments, 8 dimensions) and
hence, a more fine-grained notion of similarity.
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Figure 1. Precision-Recall curves for all models.

7. DISCUSSION

We find that a GMM that captures the specific preferences
of a user towards a set of nine types of music (captured
by nine GMM components) complemented by the general
musical preference of a user (captured by the avg. acoustic
features of his/her tracks) provides the best results.

Regarding the limitations of this study, we note that the
content descriptors utilized are aggregated high-level fea-
tures. This allowed us to keep the feature space smaller and
to specifically focus on the user modeling aspects. Further-
more, this evaluation is solely based on aspects related to
the content of tracks and no further user-related aspects as
e.g., proposed by Schedl et al. [34]. Lastly, while the pro-
posed models characterize users based on their interest in
different clusters/components and hence, are able to build
more specific user models, we still represent each clus-
ter/component by the mean acoustic features of the tracks
contained, which naturally limits the user model’s speci-
ficity. However, we believe that our findings are a valuable
contribution to advance user modeling for MIR and MRS
and to foster further research in this direction.

8. CONCLUSION AND FUTURE WORK

We proposed and evaluated a set of user models for de-
scribing the musical preference of users by leveraging con-
tent descriptors of tracks the user has listened to. We find
that a GMM complemented by the user’s general musi-
cal preferences describes a user’s different musical pref-
erences best. We believe that our findings can contribute
to improved user models for music recommender systems
and generally, MIR tasks. In future work, we aim to in-
vestigate methods to combine the models evaluated by
e.g., ensemble methods. Furthermore, we aim to tackle
the problem that our current model still computes average
acoustic features across a large number of tracks.
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ABSTRACT

In music domain, feature learning has been conducted
mainly in two ways: unsupervised learning based on sparse
representations or supervised learning by semantic labels
such as music genre. However, finding discriminative fea-
tures in an unsupervised way is challenging and supervised
feature learning using semantic labels may involve noisy
or expensive annotation. In this paper, we present a super-
vised feature learning approach using artist labels anno-
tated in every single track as objective meta data. We pro-
pose two deep convolutional neural networks (DCNN) to
learn the deep artist features. One is a plain DCNN trained
with the whole artist labels simultaneously, and the other is
a Siamese DCNN trained with a subset of the artist labels
based on the artist identity. We apply the trained models to
music classification and retrieval tasks in transfer learning
settings. The results show that our approach is compara-
ble to previous state-of-the-art methods, indicating that the
proposed approach captures general music audio features
as much as the models learned with semantic labels. Also,
we discuss the advantages and disadvantages of the two
models.

1. INTRODUCTION

Representation learning or feature learning has been ac-
tively explored in recent years as an alternative to feature
engineering [1]. The data-driven approach, particularly us-
ing deep neural networks, has been applied to the area of
music information retrieval (MIR) as well [14]. In this pa-
per, we propose a novel audio feature learning method us-
ing deep convolutional neural networks and artist labels.

Early feature learning approaches are mainly based on
unsupervised learning algorithms. Lee et al. used convolu-
tional deep belief network to learn structured acoustic pat-
terns from spectrogram [19]. They showed that the learned
features achieve higher performance than Mel-Frequency
Cepstral Coefficients (MFCC) in genre and artist clas-
sification. Since then, researchers have applied various

* Equally contributing authors.

c© Jiyoung Park, Jongpil Lee, Jangyeon Park, Jung-Woo
Ha, Juhan Nam. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Jiyoung Park, Jongpil
Lee, Jangyeon Park, Jung-Woo Ha, Juhan Nam. “Representation Learn-
ing of Music Using Artist Labels”, 19th International Society for Music
Information Retrieval Conference, Paris, France, 2018.

unsupervised learning algorithms such as sparse coding
[12, 24, 29, 31], K-means [8, 24, 30] and restricted Boltz-
mann machine [24, 26]. Most of them focused on learn-
ing a meaningful dictionary on spectrogram by exploiting
sparsity. While these unsupervised learning approaches are
promising in that it can exploit abundant unlabeled audio
data, most of them are limited to single or dual layers,
which are not sufficient to represent complicated feature
hierarchy in music.

On the other hand, supervised feature learning has been
progressively more explored. An early approach was map-
ping a single frame of spectrogram to genre or mood labels
via pre-trained deep neural networks and using the hidden-
unit activations as audio features [11, 27]. More recently,
this approach was handled in the context of transfer learn-
ing using deep convolutional neural networks (DCNN)
[6, 20]. Leveraging large-scaled datasets and recent ad-
vances in deep learning, they showed that the hierarchi-
cally learned features can be effective for diverse music
classification tasks. However, the semantic labels that they
use such as genre, mood or other timbre descriptions tend
to be noisy as they are sometimes ambiguous to annotate
or tagged from the crowd. Also, high-quality annotation
by music experts is known to be highly time-consuming
and expensive.

Meanwhile, artist labels are the meta data annotated to
songs naturally from the album release. They are objective
information with no disagreement. Furthermore, consid-
ering every artist has his/her own style of music, artist la-
bels may be regarded as terms that describe diverse styles
of music. Thus, if we have a model that can discriminate
different artists from music, the model can be assumed to
explain various characteristics of the music.

In this paper, we verify the hypothesis using two DCNN
models that are trained to identify the artist from an audio
track. One is the basic DCNN model where the softmax
output units corresponds to each of artist. The other is the
Siamese DCNN trained with a subset of the artist labels to
mitigate the excessive size of the output layer in the plain
DCNN when a large-scale dataset is used. After training
the two models, we regard them as a feature extractor and
apply artist features to three different genre datasets in two
experiment settings. First, we directly find similar songs
using the artist features and K-nearest neighbors. Second,
we conduct transfer learning to further adapter the features
to each of the datasets. The results show that proposed ap-
proach captures useful features for unseen audio datasets
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(a) The Basic Model (b) The Siamese Model

Figure 1. The proposed architectures for the model using artist labels.

and the propose models are comparable to those trained
with semantic labels in performance. In addition, we dis-
cuss the advantages and disadvantages of the two proposed
DCNN models.

2. LEARNING MODELS

Figure 1 shows the two proposed DCNN models to learn
audio features using artist labels. The basic model is
trained as a standard classification problem. The Siamese
model is trained using pair-wise similarity between an an-
chor artist and other artists. In this section, we describe
them in detail.

2.1 Basic Model

This is a widely used 1D-CNN model for music classifica-
tion [5, 9, 20, 25]. The model uses mel-spectrogram with
128 bins in the input layer. We configured the DCNN such
that one-dimensional convolution layers slide over only a
single temporal dimension. The model is composed of 5
convolution and max pooling layers as illustrated in Fig-
ure 1(a). Batch normalization [15] and rectified linear unit
(ReLU) activation layer are used after every convolution
layer. Finally, we used categorical cross entropy loss in the
prediction layer.

We train the model to classify artists instead of semantic
labels used in many music classification tasks. For exam-
ple, if the number of artists used is 1,000, this becomes
a classification problem that identifies one of the 1,000
artists. After training, the extracted 256-dimensional fea-
ture vector in the last hidden layer is used as the final audio
feature learned using artist labels. Since this is the repre-
sentation from which the identity is predicted by the lin-
ear softmax classifier, we can regard it as the highest-level
artist feature.

2.2 Siamese Model

While the basic model is simple to train, it has two main
limitations. One is that the output layer can be excessively
large if the dataset has numerous artists. For example, if a

dataset has 10,000 artists and the last hidden layer size is
100, the number of parameters to learn in the last weight
matrix will reach 1M. Second, whenever new artists are
added to the dataset, the model must be trained again en-
tirely. We solve the limitations using the Siamese DCNN
model.

A Siamese neural network consists of twin networks
that share weights and configuration. It then provides
unique inputs to the network and optimizes similarity
scores [3, 18, 22]. This architecture can be extended to use
both positive and negative examples at one optimization
step. It is set up to take three examples: anchor item (query
song), positive item (relevant song to the query) and nega-
tive item (different song to the query). This model is often
called triplet networks and has been successfully applied to
music metric learning when the relative similarity scores of
song triplets are available [21]. This model can be further
extended to use several negative samples instead of just one
negative in the triplet network. This technique is called
negative sampling and has been popularly used in word
embedding [23] and latent semantic model [13]. By using
this technique, they could effectively approximate the full
softmax function when the output class is extremely large
(i.e. 10,000 classes).

We approximate the full softmax output in the basic
model with the Siamese neural networks using negative
sampling technique. Regarding the artist labels, we set up
the negative sampling by treating identical artist’s song to
the anchor song as positive sample and other artists’ songs
as negative samples. This method is illustrated in Figure
1(b). Following [13], the relevance score between the an-
chor song feature and other song feature is measured as:

R(A,O) = cos(yA, yO) =
yTAyO
|yA||yO|

(1)

where yA and yO are the feature vectors of the anchor song
and other song, respectively.

Meanwhile, the choice of loss function is important in
this setting. We tested two loss functions. One is the soft-
max function with categorical cross-entropy loss to max-
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imize the positive relationships. The other is the max-
margin hinge loss to set only margins between positive and
negative examples [10]. In our preliminary experiments,
the Siamese model with negative sampling was success-
fully trained only with the max-margin loss function be-
tween the two objectives, which is defined as follows:

loss(A,O) =
∑
O−

max[0,∆−R(A,O+) + R(A,O−)]

(2)
where ∆ is the margin, O+ and O− denotes positive ex-
ample and negative examples, respectively. We also grid-
searched the number of negative samples and the margin,
and finally set the number of negative samples to 4 and
the margin value ∆ to 0.4. The shared audio model used in
this approach is exactly the same configuration as the basic
model.

2.3 Compared Model

In order to verify the usefulness of the artist labels and the
presented models, we constructed another model that has
the same architecture as the basic model but using semantic
tags. In this model, the output layer size corresponds to
the number of the tag labels. Hereafter, we categorize all
of them into artist-label model and tag-label model, and
compare the performance.

3. EXPERIMENTS

In this section, we describe source datasets to train the two
artist-label models and one tag-label model. We also in-
troduce target datasets for evaluating the three models. Fi-
nally, the training details are explained.

3.1 Source Tasks

All models are trained with the Million Song Dataset
(MSD) [2] along with 30-second 7digital 1 preview clips.
Artist labels are naturally annotated onto every song, thus
we simply used them. For the tag label, we used the
Last.fm dataset augmented on MSD. This dataset contains
tag annotation that matches the ID of the MSD.

3.1.1 Artist-label Model

The number of songs that belongs to each artist may be ex-
tremely skewed and this can make fair comparison among
the three models difficult. Thus, we selected 20 songs for
each artist evenly and filtered out the artists who have less
than this. Also, we configured several sets of the artist lists
to see the effect of the number of artists on the model per-
formances (500, 1,000, 2,000, 5,000 and 10,000 artists).
We then divided them into 15, 3 and 2 songs for training,
validation and testing, respectively for the sets contain less
than 10,000 artists. For the 10,000 artist sets, we parti-
tioned them in 17, 1 and 2 songs because once the artists
reach 10,000, the validation set already become 10,000
songs even when we only use 1 song from each artist which
is already sufficient for validating the model performance.

1 https://www.7digital.com/

We also should note that the testing set is actually not used
in the whole experiments in this paper because we used the
source dataset only for training the models to use them as
feature extractors. The reason we filtered and split the data
in this way is for future work 2 .

3.1.2 Tag-label Model

We used 5,000 artists set as a baseline experiment setting.
This contains total 90,000 songs in the training and valida-
tion set with a split of 75,000 and 15,000. We thus con-
structed the same size set for tagging dataset to compare
the artist-label models and the tag-label model. The tags
and songs are first filtered in the same way as the previous
works [4, 20]. Among the list with the filtered top 50 used
tags, we randomly selected 90,000 songs and split them
into the same size as the 5,000 artist set.

3.2 Target Tasks

We used 3 different datasets for genre classification.

• GTZAN (fault-filtered version) [17, 28]: 930 songs,
10 genres. We used a “fault-filtered” version of
GTZAN [17] where the dataset was divided to pre-
vent artist repetition in training/validation/test sets.

• FMA small [7]: 8,000 songs, 8 balanced genres.

• NAVER Music 3 dataset with only Korean artists:
8,000 songs, 8 balanced genres. We filtered songs
with only have one genre to clarify the genre char-
acteristic.

3.3 Training Details

For the preprocessing, we computed the spectrogram using
1024 samples for FFT with a Hanning window, 512 sam-
ples for hop size and 22050 Hz as sampling rate. We then
converted it to mel-spectrogram with 128 bins along with
a log magnitude compression.

We chose 3 seconds as a context window of the DCNN
input after a set of experiments to find an optimal length
that works well in music classification task. Out of the 30-
second long audio, we randomly extracted the context size
audio and put them into the networks as a single exam-
ple. The input normalization was performed by dividing
standard deviation after subtracting mean value across the
training data.

We optimized the loss using stochastic gradient descent
with 0.9 Nesterov momentum with 1e−6 learning rate de-
cay. Dropout 0.5 is applied to the output of the last ac-
tivation layer for all the models. We reduce the learning
rate when a valid loss has stopped decreasing with the ini-
tial learning rate 0.015 for the basic models (both artist-
label and tag-label) and 0.1 for the Siamese model. Zero-
padding is applied to each convolution layer to maintain its
size.

2 All the data splits of the source tasks are available at the link for re-
producible research https://github.com/jiyoungpark527/
msd-artist-split.

3 http://music.naver.com
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Our system was implemented in Python 2.7, Keras 2.1.1
and Tensorflow-gpu 1.4.0 for the back-end of Keras. We
used NVIDIA Tesla M40 GPU machines for training our
models. Code and models are available at the link for re-
producible research 4 .

4. FEATURE EVALUATION

We apply the learned audio features to genre classifica-
tion as a target task in two different approaches: feature
similarity-based retrieval and transfer learning. In this sec-
tion, we describe feature extraction and feature evaluation
methods.

4.1 Feature Extraction Using the DCNN Models

In this work, the models are evaluated in three song-level
genre classification tasks. Thus, we divided 30-second au-
dio clip into 10 segments to match up with the model input
size and the 256-dimension features from the last hidden
layer are averaged into a single song-level feature vector
and used for the following tasks. For the tasks that require
song-to-song distances, cosine similarity is used to match
up with the Siamese model’s relevance score.

4.2 Feature Similarity-based Song Retrieval

We first evaluated the models using mean average preci-
sion (MAP) considering genre labels as relevant items. Af-
ter obtaining a ranked list for each song based on cosine
similarity, we measured the MAP as following:

AP =

∑
k∈rel precisionk

number of relevant items
(3)

MAP =

∑Q
q=1 AP (q)

Q
(4)

where Q is the number of queries. precisionk measures
the fraction of correct items among first k retrieved list.

The purpose of this experiment is to directly verify
how similar feature vectors with the same genre are in the
learned feature space.

4.3 Transfer Learning

We classified audio examples using the k-nearest neigh-
bors (k-NN) classifier and linear softmax classifier. The
evaluation metric for this experiment is classification ac-
curacy. We first classified audio examples using k-NN to
classify the input audio into the largest number of genres
among k nearest to features from the training set. The num-
ber of k is set to 20 in this experiment. This method can be
regarded as a similarity-based classification. We also clas-
sified audio using a linear softmax classifier. The purpose
of this experiment is to verify how much the audio features
of unseen datasets are linearly separable in the learned fea-
ture space.

4 https://github.com/jongpillee/
ismir2018-artist.

MAP Artist-label
Basic Model

Artist-label
Siamese Model

Tag-label
Model

GTZAN
(fault-filtered) 0.4968 0.5510 0.5508

FMA small 0.2441 0.3203 0.3019
NAVER Korean 0.3152 0.3577 0.3576

Table 1. MAP results on feature similarity-based retrieval.

KNN Artist-label
Basic Model

Artist-label
Siamese Model

Tag-label
Model

GTZAN
(fault-filtered) 0.6655 0.6966 0.6759

FMA small 0.5269 0.5732 0.5332
NAVER Korean 0.6671 0.6393 0.6898

Table 2. KNN similarity-based classification accuracy.

Linear Softmax Artist-label
Basic Model

Artist-label
Siamese Model

Tag-label
Model

GTZAN
(fault-filtered) 0.6721 0.6993 0.7072

FMA small 0.5791 0.5483 0.5641
NAVER Korean 0.6696 0.6623 0.6755

Table 3. Classification accuracy of a linear softmax.

5. RESULTS AND DISCUSSION

5.1 Tag-label Model vs. Artist-label Model

We first compare the artist-label models to the tag-label
model when they are trained with the same dataset size
(90,000 songs). The results are shown in Table 1, 2 and
3. In feature similarity-based retrieval using MAP (Table
1), the artist-based Siamese model outperforms the rest on
all target datasets. In the genre classification tasks (Table 2
and 3), Tag-label model works slightly better than the rest
on some datasets and the trend becomes stronger in the
classification using the linear softmax. Considering that
the source task in the tag-based model (trained with the
Last.fm tags) contains genre labels mainly, this result may
attribute to the similarity of labels in both source and target
tasks. Therefore, we can draw two conclusions from this
experiment. First, the artist-label model is more effective
in similarity-based tasks (1 and 2) when it is trained with
the proposed Siamese networks, and thus it may be more
useful for music retrieval. Second, the semantic-based
model is more effective in genre or other semantic label
tasks and thus it may be more useful for human-friendly
music content organization.

5.2 Basic Model vs. Siamese Model

Now we focus on the comparison of the two artist-label
models. From Table 1, 2 and 3, we can see that the Siamese
model generally outperforms the basic model. However,
the difference become attenuated in classification tasks and
the Siamese model is even worse on some datasets. Among
them, it is notable that the Siamese model is significantly
worse than the basic model on the NAVER Music dataset
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Figure 2. MAP results with regard to different number of artists in the feature models.

Figure 3. Genre classification accuracy using k-NN with regard to different number of artists in the feature models.

Figure 4. Genre classification accuracy using linear softmax with regard to different number of artists in the feature models.

in the genre classification using k-NN even though they are
based on feature similarity. We dissected the result to see
whether it is related to the cultural difference between the
training data (MSD, mostly Western) and the target data
(the NAVER set, only Korean). Figure 5 shows the de-
tailed classification accuracy for each genre of the NAVER
dataset. In three genres, ‘Trot’,‘K-pop Ballad’ and ‘Kids’
that do not exist in the training dataset, we can see that the
basic model outperforms the Siamese model whereas the
results are opposite in the other genres. This indicates that
the basic model is more robust to unseen genres of music.
On the other hand, the Siamese model slightly over-fits to
the training set, although it effectively captures the artist
features.

5.3 Effect of the Number of Artists

We further analyze the artist-label models by investigat-
ing how the number of artists in training the DCNN af-
fects the performance. Figure 2, 3 and 4 are the results
that show similarity-based retrieval (MAP) and genre clas-
sification (accuracy) using k-NN and linear softmax, re-
spectively, according to the increasing number of training
artists. They show that the performance is generally pro-
portional to the number of artists but the trends are quite
different between the two models. In the similarity-based
retrieval, the MAP of the Siamese model is significantly
higher than that of the basic model when the number of

Figure 5. The classification results of each genre for the
NAVER dataset with only Korean music.

artists is greater than 1,000. Also, as the number of artists
increases, the MAP of the Siamese model consistently
goes up with a slight lower speed whereas that of the ba-
sic model saturates at 2,000 or 5,000 artists. On the other
hand, the performance gap changes in the two classifica-
tion tasks. On the GTZAN dataset, while the basic model
is better for 500 and 1,000 artists, the Siamese model
reverses it for 2,000 and more artists. On the NAVER
dataset, the basic model is consistently better. On the FMA
small, the results are mixed in two classifiers. Again, the
results may be explained by our interpretation of the mod-
els in Section 5.2. In summary, the Siamese model seems
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Models GTZAN
(fault-filtered) FMA small

2-D CNN [17] 0.6320 -
Temporal features [16] 0.6590 -
Multi-level Multi-scale [20] 0.7200 -
SVM [7] - 0.5482†

Artist-label Basic model 0.7076 0.5687
Artist-label Siamese model 0.7203 0.5673

Table 4. Comparison with previous state-of-the-art mod-
els: classification accuracy results. Linear softmax classi-
fier is used and features are extracted from the artist-label
models trained with 10,000 artists. † This result was ob-
tained using the provided code and dataset in [7].

to work better in similarity-based tasks and the basic model
is more robust to different genres of music. In addition,
the Siamese model is more capable of being trained with a
large number of artists.

5.4 Comparison with State-of-the-arts

The effectiveness of artist labels is also supported by com-
parison with previous state-of-the-art models in Table 4.
For this result, we report two artist-label models trained
with 10,000 artists using linear softmax classifier. In this
table, we can see that the proposed models are comparable
to the previous state-of-the-art methods.

6. VISUALIZATION

We visualize the extracted feature to provide better insight
on the discriminative power of learned features using artist
labels. We used the DCNN trained to classify 5,000 artists
as a feature extractor. After collecting the feature vec-
tors, we embedded them into 2-dimensional vectors using
t-distributed stochastic neighbor embedding (t-SNE).

For artist visualization, we collect a subset of MSD
(apart from the training data for the DCNN) from well-
known artists. Figure 6 shows that artists’ songs are appro-
priately distributed based on genre, vocal style and gender.
For example, artists with similar genre of music are closely
located and female pop singers are close to each other ex-
cept Maria Callas who is a classical opera singer. Interest-
ingly, some songs by Michael Jackson are close to female
vocals because of his distinctive high-pitched tone.

Figure 7 shows the visualization of features extracted
from the GTZAN dataset. Even though the DCNN was
trained to discriminate artist labels, they are well clustered
by genre. Also, we can observe that some genres such
as disco, rock and hip-hop are divided into two or more
groups that might belong to different sub-genres.

7. CONCLUSION AND FUTURE WORK

In this work, we presented the models to learn audio fea-
ture representation using artist labels instead of semantic
labels. We compared two artist-label models and one tag-
label model. The first is a basic DCNN consisting of a
softmax output layer to predict which artist they belong to
out of all artists used. The second is a Siamese-style ar-
chitecture that maximizes the relative similarity score be-

Figure 6. Feature visualization by artist. Total 22 artists
are used and, among them, 15 artists are represented in
color.

Figure 7. Feature visualization by genre. Total 10 genres
from the GTZAN dataset are used.

tween a small subset of the artist labels based on the artist
identity. The last is a model optimized using tag labels
with the same architecture as the first model. After the
models are trained, we used them as feature extractors and
validated the models on song retrieval and genre classifi-
cation tasks on three different datasets. Three interesting
results were found during the experiments. First, the artist-
label models, particularly the Siamese model, is compa-
rable to or outperform the tag-label model. This indicates
that the cost-free artist-label is as effective as the expensive
and possibly noisy tag-label. Second, the Siamese model
showed the best performances on song retrieval task in all
datasets tested. This can indicate that the pair-wise rele-
vance score loss in the Siamese model helps the feature
similarity-based search. Third, the use of a large number
of artists increases the model performance. This result is
also useful because the artists can be easily increased to a
very large number.

As future work, we will investigate the artist-label
Siamese model more thoroughly. First, we plan to in-
vestigate advanced audio model architecture and diverse
loss and pair-wise relevance score functions. Second, the
model can easily be re-trained using new added artists be-
cause the model does not have fixed output layer. This
property will be evaluated using cross-cultural data or us-
ing extremely small data (i.e. one-shot learning [18]).
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ABSTRACT

We present the StructureNet - a recurrent neural network
for inducing structure in machine-generated compositions.
This model resides in a musical structure space and works
in tandem with a probabilistic music generation model as
a modifying agent. It favourably biases the probabilities of
those notes that result in the occurrence of structural ele-
ments it has learnt from a dataset. It is extremely flexible
in that it is able to work with any such probabilistic model,
it works well when training data is limited, and the types
of structure it can be made to induce are highly customis-
able. We demonstrate through our experiments on a sub-
set of the Nottingham dataset that melodies generated by a
recurrent neural network based melody model are indeed
more structured in the presence of the StructureNet.

1. INTRODUCTION

Automated generation of symbolic music using comput-
ers involves the application of computer algorithms to the
creation of novel musical scores. The natural predisposi-
tion of computers to quickly enumerate and choose from
a large set of compositional alternatives makes them suit-
able candidates for discovering novelty in the vast space
of musical possibilities that could be daunting to a human
composer. Leveraging computing power for this purpose
has the potential to aid and accelerate the creative process,
thus lowering the bar for composition and democratising
it. So-called machine-generated music has been a subject
of steady interest since the pioneering work of a few mu-
sically inclined information theorists [5, 8]. This interest
has surged during the past decade or so within academia
and especially outside it with the rise of certain industry
players (such as Jukedeck 1 and the Magenta project 2 ).

1 https://www.jukedeck.com/
2 https://magenta.tensorflow.org/

c© Gabriele Medeot, Srikanth Cherla, Katerina Kosta, Matt
McVicar, Samer Abdallah, Marco Selvi, Ed Newton-Rex, Kevin Webster.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Gabriele Medeot, Srikanth Cherla, Ka-
terina Kosta, Matt McVicar, Samer Abdallah, Marco Selvi, Ed Newton-
Rex, Kevin Webster. “StructureNet: Inducing Structure in Generated
Melodies”, 19th International Society for Music Information Retrieval
Conference, Paris, France, 2018.

The roughly seven decade-long history of machine-
generated symbolic music has seen the application of a
plethora of algorithms to varying degrees of success [8].
With the increasing digitisation of musical scores, those
relying on machine learning have gained importance in re-
cent times. The relatively successful approaches among
these have been Probabilistic Grammars [9], (Hidden)
Markov models [19, 21], and Connectionist architectures
[2,18]. The latter in particular have proven to be highly ef-
fective at representing musical information and modelling
long-term dependencies which are crucial to generating
good-quality music [3].

This paper addresses the issue of long-term structure in
machine-generated symbolic monophonic music. Struc-
ture is a key aspect of music composed by humans that
plays a crucial role in giving a piece of music a sense of
overall coherence and intentionality. It appears in a piece
as a collection of musical patterns, variations of these pat-
terns, literal or motivic repeats and transformations of sec-
tions of music that have occurred earlier in the same piece.
Hampshire underlines that a piece can be conceived as a
work of art if and only if the listener’s mind is actively
tracing the structure of the work using her own natural im-
agery and musical memory [7, p. 16].

Here we introduce StructureNet - a recurrent neu-
ral network that induces structure in machine-generated
melodies. It learns about structure from a dataset consist-
ing of structural elements and their occurrence statistics,
which is created using a structure-tagging algorithm from
an existing dataset of melodies. Once trained, StructureNet
works in tandem with a melody model which generates a
probability distribution over a set of musical notes. Given
the melody model’s prediction at any given time during
generation, StructureNet uses the structural elements im-
plied by the melody so far to alter the prediction, leading
to a more structured melody in the future. Our experiments
reveal that music generated with StructureNet contains sig-
nificantly better structure, even when it is trained on a rel-
atively small dataset. We provide musical examples that
highlight this fact.

The next section introduces relevant state-of-the-art.
Some preliminaries and a description of StructureNet fol-
low in Sections 3 and 4 respectively. Based on the results
presented in Section 5, we summarise our findings and sug-
gest potential future work in Section 6.
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2. RELATED WORK

In order to repeat verbatim or with variations sections that
have occurred previously in a piece of machine-generated
music, i.e. to induce structure in it, the model must be able
to encode and recall in some way what has happened in the
past. This can be achieved in a variety of ways. In a first
instance, improving structure simply involves making the
generation model more powerful. An example of this is the
RNN-RBM [2] that was enhanced purely by replacing its
components - the Recurrent Neural Network (RNN) by a
Long-Short Term Memory (LSTM) Network to improve its
temporal memory, making it the LSTM-RTRBM [16], and
the Restricted Boltzmann Machine (RBM) by a Deep Be-
lief Network (DBN) to improve its output layer, making it
the RNN-DBN [10]. Similarly, it was demonstrated in [4]
that connectionist models outperform Markov models in
modelling melodic sequences. Closely related to these is a
musically informed improvement that enriches the feature
encoding to include those features that have the potential to
add more information about structure [6, 19]. Along simi-
lar lines, the Magenta Project proposed two neural network
architectures to model higher-level structure in music - the
Lookback RNN and Attention RNN [25]. While the for-
mer augments the model’s feature vector with information
about notes from previous measures, repeat information
and metrical location, the latter adopts an attention-based
mechanism [1] wherein a weighted sum of the model’s out-
puts in the previous n locations is used in addition to its
current state to make better predictions. Such approaches
address the overall quality of music, of which high-level
structure is just one aspect. Moreover, the improvements
afforded by the former kind are highly dependent on the
training loss, which does not explicitly take into account
structure of the kind observed in music. So while an im-
provement in the model or feature representation does tend
to improve the overall quality of music in a piece, improve-
ment is often observed over short time-spans and not nec-
essarily in the higher-level structure.

Alternatively, one can explicitly addresses the issue of
high-level structure in machine-generated compositions.
One simple solution involves dividing the generation task
between multiple models. The MELONET system [13],
whose goal is to produce variations of a given melodic
theme, achieves structural coherence by dividing the ef-
fort between two mutually interacting neural networks op-
erating at different time-scales. The first network learns
to recognise musical structure while the second network
predicts the musical notes. Similarly, Todd [24] proposed
two cascaded networks that allow the explicit representa-
tion of structure in a hierarchy. The first network gener-
ates a sequence of plans which correspond to descriptions
of melodic chunks, and the second a sequence of notes
given a plan. More recently, Roig et al. [22] devised a
system in which melodic and rhythmic patterns existing
in the dataset are concatenated according to statistically
governed rules to form new patterns that are not too dis-
tant from those occurring in the dataset. In the system
known as MorpheuS [11] music generation is formulated

as a combinatorial optimisation problem in which a tem-
plate of musical structure acts as a hard-constraint, and
solved using a meta-heuristic search algorithm known as
Variable Neighbourhood Search. Patterns contained in the
dataset of pieces are discovered using an existing pattern-
detection algorithm [17]. In a similar vein, [20] control the
generation of chord sequences and melodies using steer-
able constraints Markov chains. Lattner et al. [14] adopt a
similar approach where a Convolutional Restricted Boltz-
mann Machine is combined with a constraint optimisation
technique to constrain the music sampled from the C-RBM
according to the musical structure of a given template.

3. BACKGROUND

StructureNet is a Recurrent Neural Network (RNN) that
operates in the space of musical structure and learns se-
quences of features that denote the presence or absence
of repeats at a point in time and their type, if present.
Here we give an overview of the Long Short-Term Mem-
ory (LSTM) RNN that underlies StructureNet and the def-
inition of structural repeats that we rely on.

3.1 Long Short-Term Memory

The RNN is a type of neural network for modelling se-
quences and its basic architecture consists of an input layer,
a hidden layer and an output layer. The state of its hidden
layer acts as a memory of the past information it encoun-
ters while traversing a sequence. At each location in the se-
quence, the RNN makes use of both the input and the state
of its hidden layer from the previous location to predict an
output. Here we use a special case of the RNN known as
the Long-Short Term Memory (LSTM) network [12] that,
owing to the presence of purpose-built memory cells to
augment its hidden layer, boasts a greater temporal mem-
ory than the standard RNN. Given an input vector xt at
sequence location t, the output of the LSTM ht−1 and its
memory cell ct−1 (collectively, its state) from the previous
location, the output of the LSTM layer ht is computed and
further propagated into another layer of a larger model.

3.2 Modelling Melodies and Structure Elements

The output layer of the note-based (as opposed to frame-
based) melody model in the present work contains two
groups of softmax units. Each group of softmax units mod-
els a single probability distribution over a set of mutually
exclusive possibilities. The first of these denotes the musi-
cal pitch of the note, and the second its duration. Given the
output of the LSTM layer ht at any given location t in the
sequence, this is transformed into two independent proba-
bility distributions pt and dt that together make up the out-
put layer of the network. From these two distributions, the
probability of a certain note (with pitch and duration) can
be obtained simply by multiplying the probabilities of its
corresponding pitch and duration respectively. Note that
the output layer of StructureNet contains three groups of
softmax units. Although these represent different quanti-
ties that define aspects of structure (explained in detail in
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Figure 1. A 16-measure melody generated by our LSTM
melody model together with the StructureNet. A selection
of repeats in this melody are as follows: measures 9-12 are
a duration-interval repeat of measures 5-8, as are measures
13-14 of measures 9-10; and measures 15 and 16 are both
duration repeats of measure 12.

Sections 4.1 and 4.2), the manner in which these are com-
bined to generate the probabilities of structural elements is
identical to the melody model. Also note that the choice of
the LSTM as the melody model is arbitrary and it can be
replaced by any other probabilistic prediction model.

3.3 A Definition of Structure

There are various types of structure present in music.
Composers use techniques such as instrumental variation,
changes and repeats in timbre, and dynamics to induce a
feeling of familiarity in the listener. In the present work,
however, we focus on the score-level repeat information.
In a score, perhaps the two most obvious types of repeat
are of (1) duration (rhythmic), and (2) pitches (melodic).

A duration repeat is a section of the melody, the du-
rations of whose notes are the same as those of a previ-
ous section. Examples of duration repeats can be found in
the melody of Figure 1. These are determined purely by
the sequences of crotchets and quavers contained in these
measures. When it comes to pitch, it is helpful to think
of these repeats in terms of intervals rather than absolute
pitch. The interval between two notes can be defined in a
number of ways, but in this work we use the scale degree
distance between notes. For instance, in the key of C ma-
jor, the scale degree between a C note and subsequent E
note would be the same as the scale degree between a D
note and subsequent F note. Given this definition of an in-
terval, a duration-interval repeat is a section of the melody
that holds the same relationship to a previous section as
a duration repeat, and additionally the intervals between
whose consecutive notes are the same as those between the
consecutive notes of that previous section. Figure 1 also
illustrates duration-interval repeats. In the present work,
we consider duration repeats as well as repeats of both du-
rations and intervals. Purely interval repeats were found to
be very few in our chosen dataset and were thus ignored.

4. StructureNet

StructureNet is only able to produce structural repeat in-
formation that biases the predictions of an accompanying
music (in the present case melody) model. In Section 4.2

we will outline a methodology whereby it modifies the
probability of notes that the melody model produces, thus
encouraging structure but not enforcing it. Crucially, this
means that the structure network is able to suggest repeats
of certain types, but if the melody network assigns very
low probability to notes that would form these repeats, it
is free to “override” the structure network’s suggestions in
a probabilistic and flexible manner. The specifics of how
StructureNet achieves these goals is outlined in the remain-
der of this section, beginning with the type of structure we
capture and how we identify it.

4.1 A Dataset of Structure

StructureNet operates in a space of musical structure. In
order to train the model, we first create this structure
dataset by processing a dataset of melodies with a musical
repeat-detection algorithm. The algorithm encodes each
melody into a sequence of binary feature vectors in the
semi-quaver temporal resolution (although this resolution
is not a strict requirement: if the dataset contains no notes
shorter than a quaver, one may use a quaver as the minimal
resolution). The feature vector itself is a concatenation of
three one-hot sub-vectors. The first is given by

[f, d, ditr, dint]

wherein each bit of the first sub-vector indicates which of
four categories a given frame of music belongs to. These
are (1) f - free music, (2) d - duration repeat, (3) ditr -
duration-interval repeat with transposition and (4) dint -
duration-interval repeat without transposition. The only
distinction between the two types of duration-interval re-
peats is that in the case of ditr the section to which the
frame belongs is a transposed version of the original sec-
tion whereas in the case of dint the section to which the
frame belongs is at the same musical pitch as the original
section. The free music bit f indicates that the frame is a
part of a section that is not a repeat of any previous section
of the melody. The second one-hot sub-vector is given by

[f, l0.5, l0.75, l1.0, l1.5, l2.0, l3.0, l4.0, l8.0, l16.0]

and contains bits that indicate the lookback, i.e. the dis-
tance (in crotchets) between the original section and the
section containing the current frame, if the section con-
taining the current frame is a repeat of the original sec-
tion. If it is not a repeat, the free music bit f is on.
Note that the value of the free music bits in both sub-
vectors is identical and hence uses the same notation. Also
note that the choice of the set of lookbacks is completely
open to change, and highlights another flexible aspect of
the model; it may even be possible to learn the optimal
set of lookbacks for a given dataset. Finally, the third 8-
dimensional one-hot vector φ encodes the location of a
frame via its beat strength β and its measure strength ρ.
The beat strength [15] encodes the strength of each met-
rical location in a measure. In a measure divided into 16
semi-quaver beats (as in the present work), its values are
β = [0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4]. The measure
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strength extends the notion of beat strength to a sequence
of measures. The strengths associated with beats in a mea-
sure are associated with measures in a piece, beginning
with the first measure. In the present work, we choose a
cycle of 8 measures that correspond to the following se-
quence of measure strengths ρ = [0, 3, 2, 3, 1, 3, 2, 3]. In
both cases, a lower value indicates a higher strength. Our
encoding is defined as

φt =

{
ρ(mod(t, 8)) if mod(t, 16) = 0

max(ρ) + β(mod(t, 16)) otherwise

(1)
Note that just as the beat strength, the measure cycle dura-
tion for the measure length can also be varied as desired.

StructureNet models the vector that is a concatenation
of these three sub-vectors as three groups of softmax units
in its output layer. As noted earlier in Section 3.2, the
manner in which one combines the probability distribu-
tions represented by these two groups of softmax units (for
instance, a duration-interval repeat of lookback 8.0, or an
interval repeat of lookback 1.5) is by multiplying the cor-
responding probabilities one from each group.

The repeat-detection algorithm works by first convert-
ing a sequence of notes into two strings - one correspond-
ing to durations and the other to intervals. In each of these
strings, it then uses a string matching algorithm to find
substrings that repeat. Single-note repeats are trivial and
thus discarded, and only those repeats that correspond to
the above listed lookbacks are retained. Any note that is
longer than 2 measures is split into multiple notes of the
same pitch to limit the number of characters required to
represent the piece as a string. Then the list of duration re-
peats are filtered such that only the longest repeats remain
and all overlapping and shorter repeats are discarded. At
this stage, the duration-interval repeats are nothing but du-
ration repeats with coinciding interval repeats. So from the
list of interval repeats only those are retained that coincide
exactly with the current list of duration repeats with the
same lookbacks. These are tagged as duration-interval re-
peats, replacing the corresponding duration repeats to give
the final list of duration repeats and duration-interval re-
peats. While it is indeed possible to look for other types
of repeats, we limit ourselves in this paper to the above as
it is sufficient to demonstrate the efficacy of StructureNet.
This also highlights the flexibility of the model wherein
one may change the type of repeats detected and also cus-
tomise the number of lookbacks as needed.

4.2 Influencing Event Probabilities

Once trained on the above described structure dataset,
StructureNet is then put to use with the probabilistic
melody prediction model Mm. At time t (that is, given
the history of notes generated up to time t), the modelMm

predicts a probability distribution Pt over a set of notes N .
At the same time, given the history of repeats generated so
far, the structure modelMs predicts a probability distribu-
tion Qt over a set of possible repeats Π, which includes an
element πf , representing ‘free music’. Each note ν ∈ N

can be consistent with a subset Πν
t of these repeats, which

will always include πf , meaning that every note is consis-
tent with ‘free music’.

StructureNet influences the prediction Pt by modifying
the probability of each note according to the probabilities
of the repeats with which it is consistent. Let φt : N×Π→
{0, 1} be a function such that φt(ν, π) = 1 when note ν is
consistent with repeat π at time t and 0 otherwise. In terms
of this we can express Πν

t as {π ∈ Π|φt(ν, π) = 1}, and
further define Nπ

t = {ν ∈ N |φt(ν, π) = 1}, which is the
set of notes consistent with π. Each note ν is then assigned
a weight

Wt(ν) = Pt(ν)
∑
π∈Πνt

Qt(π)

µπt
, (2)

where µπt =
∑
ν∈Nπt

Pt(ν). In this way, the relative prob-
ability of a note ν is increased when it is consistent with
repeat(s) to whichMs has assigned high probability.

It is important to note that Mm and Ms operate at
different temporal resolutions—note-level and semiquaver
frame-level respectively—and that this difference becomes
significant here. Suppose note ν is of duration ∆ν = τνδ,
where δ is the frame duration and τν is the number of
frames occupied by ν. Ideally, in order to get an accurate
estimate of the joint probability of the note ν and the repeat
π, one should consider the probability thatMs assigns to
τν consecutive frames of π. This would be expressed as

Wt(ν) = Pt(ν)
∑
π∈Πνt

τ−1∏
k=0

Qt+k(π)

µπt+k
. (3)

However, we found in our experiments that the single-step
approximation (2) works well in practice and is less com-
putationally intensive than (3).

Next, the weight distributionWt is normalised to obtain
a probability distribution Rt:

Rt(ν) =
Wt(ν)∑
ν∈N Wt(ν)

. (4)

We may now sample a note νt from this distribution and
update the internal state of the melodic model Mm with
this observation.

It remains to update the state of the structure modelMs

with some observed repeat. The note νt sampled at time t
could be associated with any of the repeats that were con-
sistent with it. We choose one by sampling πt from a dis-
tribution St over Πνt

t defined as

St(π) =
Qt(π)∑

π′∈Π
νt
t
Qt(π′)

. (5)

At this point the two models are misaligned due to the dif-
ferent time-scales they operate in, withMm being τ semi-
quaver frames ahead ofMs. Since each update of the state
ofMs takes it ahead by just one semi-quaver frame, it is
necessary to updateMs τ times repeatedly with the same
structure vector so that it is once again aligned withMm.

At the end of the process described above, we have a
melody note sampled from our melody model that has been
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influenced by StructureNet. StructureNet has also updated
its own state according to the sampled note and is ready to
influence the choice of next note.

5. EXPERIMENTS

We demonstrate the efficacy of StructureNet on a well-
known dataset of melodies by comparing statistics over
several musical quantities computed both on the dataset
and compositions generated by the melody model alone
and the melody and structure models combined. The re-
sults show that the presence of StructureNet leads to music
that is more structured and closer in the statistics to the
dataset. We also share the generated music to allow the
reader to her or himself be the judge of our claims.

5.1 Dataset

We evaluate StructureNet on the cleaned Nottingham folk
melody dataset that was released by the Jukedeck Research
Team [23]. This publicly available dataset facilitates repro-
ducibility. We carry out our experiments on the subset of
450 4/4 time-signature pieces out of the 1, 548 contained
in it. Each piece of the dataset was truncated to its first
16 measures and transposed into the Key of C, and all up-
beats at the beginning of each piece were removed prior to
training. We used 20% (90 segments) of the data as the val-
idation and the rest (360 segments) for training the models.
StructureNet is also trained on the same dataset following
the application of the repeat-tagging algorithm. However,
one must note that this is not a requirement and a different
dataset may be used for learning structure and could poten-
tially lead to interesting results. StructureNet successfully
induces structure in the generated melodies despite the few
examples contained in the training data.

5.2 Training methodology

As mentioned earlier, both the structure network and the
melody network are LSTMs and contain a single hidden
layer. A Bayesian Optimisation based method was em-
ployed to carry out model selection. In the case of the
melody model, the single best outcome of the grid search
was used. As for StructureNet, ten models with the same
best set of hyperparameters as determined by the model
selection step, and different initial conditions, were trained
and used in tandem with the melody model. This was done
in order to be able to compute confidence intervals in the
figures. The hidden layer size of each network was varied
between 50 and 1000 in steps of 50 during model selection,
which led to nshid = 950 in the former and nmhid = 250 in
the latter. Early stopping was used as a regulariser, such
that the training was stopped and the best models thus far
retrieved after no improvement in the validation cost for
25 epochs. The models were trained using the ADAM op-
timiser with an initial learning rate ηinit = 0.001, and pa-
rameters β1 = 0.9, β2 = 0.999 and ε = 10−8.

5.3 Evaluation

Our hypothesis is two-fold: (1) that repeat-related statis-
tics computed over the melodies generated with Struc-
tureNet are closer to those over the dataset melodies than
those over melodies generated without StructureNet, and
(2) that non repeat-related statistics do not differ between
the melodies generated by the melody model with and
without StructureNet. This would demonstrate that the
use of StructureNet leads to more structured melodies than
are generated by the melody model on its own, and that
are musically at least as similar to the original data as the
melody model alone achieves. The statistics are:

1. Repeat Count: Number of repeats corresponding to
various lookback values (in crotchets).

2. Repeat Duration: Number of repeats of various du-
rations (in crotchets).

3. Repeat Onsets: Number of repeats beginning at
various locations (in crotchets) in a piece.

4. Pitch, start time and duration distributions: Oc-
currence statistics of pitches, start times in measure,
and durations.

The first three are repeat-related statistics and the rest
are not. A histogram of each is first computed per col-
lection of melodies (dataset, generations with and with-
out StructureNet), and then normalised by the count of
melodies in the collection to generate a probability distri-
bution (as the counts vary between the different collections
of melodies). The KL-Divergences (KLD) κdata,SN and
κdata,NoSN between the distribution pairs (dataset, Struc-
tureNet) and (dataset, No StructureNet) respectively high-
light the effect of introducing StructureNet (Table 1). Ide-
ally, among the structure-related distributions, we would
want κdata,SN < κdata,NoSN . And among the non-repeat-
related distributions, we wish for κdata,SN ≤ κdata,NoSN .

κdata,NoSN κdata,SN

Repeat Count (D) 0.0356 ± 0.0022 0.0069 ± 0.0043
Repeat Duration (D) 0.1071 ± 0.0047 0.0389 ± 0.0168
Repeat Onset (D) 0.0844 ± 0.0038 0.0357 ± 0.0094
Repeat Count (DI) 0.0511 ± 0.0049 0.0173 ± 0.0095
Repeat Duration (DI) 0.2402 ± 0.0069 0.0634 ± 0.0352
Repeat Onset (DI) 0.1209 ± 0.0073 0.0639 ± 0.0194
Repeat Count (all) 0.0483 ± 0.0035 0.0083 ± 0.0045
Repeat Duration (all) 0.0996 ± 0.0033 0.025 ± 0.0081
Repeat Onset (all) 0.0875 ± 0.0036 0.031 ± 0.0103
Pitch 0.0079 ± 0.0011 0.0061 ± 0.0012
Duration 0.0049 ± 0.0016 0.0042 ± 0.0014
Onset 0.058 ± 0.0081 0.0275 ± 0.0082

Table 1. KL-divergences between the training data and
melodies generated with and without StructureNet (com-
puted over 10 sets of 450 melodies generated with each
trained StructureNet) for the Duration (D), Duration-
Interval (DI) and all repeat types.
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5.4 Observations

In Table 1, the KLD values show a greater match between
the dataset and the set of generated melodies in the pres-
ence of StructureNet than in its absence. This holds true
for both duration and duration-interval repeats. Figure 2
illustrates such similarities (over all repeat types) visually.
One will see here that overall StructureNet (a) is conducive
to the creation of longer repeats while generally having a
positive effect on shorter ones as well, (b) is conducive to
the creation of repeats that have lookback values similar to
those in the dataset, particularly larger lookbacks (encour-
aging distant repeats), and (c) encourages repeats to begin
on those metrical locations in a generated piece where they
tend to occur in the dataset.
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Figure 2. Repeat-related statistics of the dataset to the two
generation modes (with/without StructureNet).

It is also evident from the set of three non-repeat-related
statistics of Figure 3 that the presence of StructureNet has,
more often than not, led to a better match of the gener-
ated melody statistics to the dataset. This is also sup-
ported by the very similar KLD values (often lower in the
κdata,NoSN column) for these three musical quantities at
the bottom of Table 1. And finally, each plot in Figure 4
shows the percentage of generated melodies with various
degrees of free music in them. The three plots together re-
veal that using StructureNet reduces the proportion of free
music (and thus increases the proportion of repeats) in the
generated melodies in a way that more closely matches the
proportions of free music and repeats in the dataset. Note
that the statistics in Figures 2, 3 and 4 have been computed
over the same number of melodies (of the same duration
in measures). We have made a representative subset of
melodies generated with and without StructureNet in the
MIDI format available for scrutiny 3 .

3 https://goo.gl/hL9RhZ
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Figure 3. Non repeat-related statistics of the dataset to the
two generation modes (with/without StructureNet).
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Figure 4. The amount of generated melodies with various
degrees of free music in them.

6. CONCLUSIONS & FUTURE WORK

We introduced StructureNet - an RNN that influences the
predictions of a melody model so as to give the gener-
ated melodies greater structure. We demonstrated using
statistics, as well as several musical examples, that this
model does indeed increase the probability of encounter-
ing longer and more distant (greater lookback) patterns in
music generated by a melody model. Given these initially
successful results, we foresee some interesting directions
for future work. Firstly, we are interested in experimenting
with a more evolved pattern detection algorithm such as
SIATEC and COSIATEC [17]. This will lead to new fea-
ture representations over and beyond just repeats that can
perhaps provide a better insight into musical structure to
StructureNet. We would like to expand the three musical
quantities introduced in Section 5.3 into a more compre-
hensive set of quantities that can lead to a more thorough
evaluation of musical structure.
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ABSTRACT

While there is a multitude of music information retrieval
algorithms that have distance functions as their core pro-
cedure, comparing the similarity between recordings is a
costly procedure. At the same, the recent growth of digi-
tal music repositories makes necessary the development of
novel time- and memory-efficient algorithms to deal with
music data. One particularly interesting idea on the lit-
erature is transforming the music data into reduced rep-
resentations, improving the memory usage and reducing
the time necessary to assess the similarity. However, these
techniques usually add other issues, such as an expensive
preprocessing or a reduced retrieval performance. In this
paper, we propose a novel method to summarize a record-
ing in small snippets based on its self-similarity informa-
tion. Besides, we present a simple way to compare other
recordings to these summaries. We demonstrate, in the sce-
nario of cover song identification, that our method is more
than one order of magnitude faster than state-of-the-art ad-
versaries, at the same time that the retrieval performance
is not affected significantly. Additionally, our method is
incremental, which allows the easy and fast update of the
database when a new song needs to be inserted into the
retrieval system.

1. INTRODUCTION

With the arising of digital music platforms and the con-
sequent growth of music data repositories, we have wit-
nessed an increasing interest in fast methods for mining
this kind of data. Organizing, searching, and finding pat-
terns in large repositories require algorithms that are ef-
ficient in memory and time while providing an accurate
performance.

Several algorithms proposed for different music
mining and information retrieval rely on comparing
(dis)similarities among the recordings of interest. One is-

c© Diego Furtado Silva, Felipe Vieira Falcão, Nazareno An-
drade. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Diego Furtado Silva, Felipe Vieira
Falcão, Nazareno Andrade. “Summarizing and Comparing Music Data
and Its Application on Cover Song Identification”, 19th International So-
ciety for Music Information Retrieval Conference, Paris, France, 2018.

sue regarding this approach is the scalability of these meth-
ods, since comparing distances is usually a costly proce-
dure.

The cover song identification (CSI) is one task that usu-
ally is assessed by similarity-based methods. Most work
on advancing the knowledge in CSI is based on creating
or adapting new similarity measures and algorithms for
comparing the recordings [8, 11, 19] or fusing features or
distances to improve the retrieval performance [6, 17, 25].
While some efforts point to the direction of improving
CSI runtime [4, 10, 18, 24], the majority of papers on
CSI rely on quadratic algorithms to compare each pair of
songs [3,21,26–28], which may difficult its application on
large databases.

One particular idea on speeding up the CSI was pre-
sented by Silva, Souza and Batista [24]. The authors pro-
posed a training phase to find what they called “triplets”,
which are three short excerpts of each original recording
that summarize them, i.e., that represent the songs with a
reduced amount of data. When comparing a new query
against these summarized data, the runtime for the distance
calculations drastically reduces, since it is proportional to
the length of the feature vectors under comparison.

While summarizing tracks can significantly improve
retrieval runtime, the triplets technique has some con-
trivances that make its use difficult. Most importantly, its
training phase is costly in time and memory. Also, it con-
siders that more than one original or authorized version
of each song is available: the method depends on measur-
ing the distance of each candidate excerpt to several other
segments of the same “class label.” Finally, once a new
recording is added to the dataset, the training phase must
be recomputed, since the method to choose the summaries
also relies on comparing songs from different labels to an-
alyze the class separability.

In this work, we also leverage the idea of summariz-
ing recordings for fast retrieval. However, we proposed a
new suite of methods for summarizing and comparing mu-
sic data that makes these two usually costly steps simpler
and faster. The methods put forward are based on a fast
subsequence similarity join algorithm that achieves good
retrieval performances and can easily and quickly incre-
ment the reference dataset when a new original recording
is presented.
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The suit of methods proposed in this work has the fol-
lowing contributions:

• considerably higher speed to summarize recordings
compared to the state-of-the-art;

• a reduction of an order of magnitude in the runtime
of the comparison and retrieval phase compared to
recent proposals of scalable algorithms;

• no significant loss of retrieval performance is in-
curred in process of speeding up summarization; and

• because our summarization method solely relies on
the recording being summarized, the method is nat-
urally parallelizable and incremental.

Figure 1 illustrates the pipeline of our method.
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Figure 1: The pipeline of our method consists of summa-
rizing the reference dataset using similarity joins and, for
each query, comparing it to the summaries to achieve a
ranking by similarity.

This paper is organized as follow: Section 2 introduces
a background on the task of cover song recognition and a
few related work. Section 3 presents our summarizing and
comparing techniques, which composes the proposed suite
for fast similarity recover. Section 4 presents the experi-
mental evaluation of our method. Section 5 discuss some
ideas on how further improve our proposal. Finally, Sec-
tion 6 concludes this work.

2. BACKGROUND AND RELATED WORK

The main focus of this paper is the cover song identifica-
tion (CSI) task. A cover song is a generic name to refer for
any recording that is a new version of an original record-
ing. While it may represent an attempt to make a faithfully
reproduction of the original work, covers usually widely
differs on many characteristics, such as key, timbre, struc-
ture and tempo, which makes CSI a difficult task.

To deal with this variation, several methods provide in-
variance to these issues to CSI algorithms. One example
is the Optimal Transposition Index (OTI) [20], which pro-
vides key invariance. This algorithm starts by calculating
and storing a global pitch profile of the recordings under
comparison. Using these profiles, it estimates the differ-
ence in key of the songs and transpose one of their feature
vectors so that the tracks have the same (estimated) key.

Tempo differences also motivate the need for invari-
ance. Several similarity methods for CSI proposed in the
literature are based on a dynamic programming algorithm
to dynamically align the compared recordings [6,8,21,25].
This kind of algorithm provides invariance to tempo at the
cost of relying on a costly alignment algorithm.

For this reason, techniques which are chiefly concerned
with the runtime of CSI systems usually apply lock-step
measures such as the Euclidean distance. In these cases,
providing tempo invariance in the feature level is a com-
mon approach. One option for that is smoothing the feature
vectors, an approach that is adopted by some chroma-based
features definitions, such as the Chroma Energy Normal-
ized Statistics (CENS) [16].

Many methods for CSI in the literature, if not all, use
a pipeline that includes techniques to provide invariances
and a distance measure calculation. One example is the
already mentioned Triplets [24]. Specifically, this method
uses CENS and OTI in its process.

Triplets summarizes the CENS from each reference
(original) recording in three short excerpts that are maxi-
mally close to excerpts (subsequences) from the same song
and far from the excerpts from other pieces. Once a query
is presented to the CSI system, it rotates the query accord-
ing OTI and compares it to the summaries. On the one
hand, the summarization significantly improves the run-
time to assess a query. On the other hand, the step of find-
ing the triplets is prohibitive thanks to the high number of
distance calculations it requires.

Another work from the same research group proposes
to identify covers assessing subsequence similarity joins
by using the similarity matrix profile, or SiMPle [23]. The
SiMPle is a representation of the subsequence similarity
join, which is the task of finding the nearest neighbor of
each subsequence from a frame-level feature vector among
all the subsequences of another vector. Particularly, this
operation is called AB-join. The operation of calculating
of the best match between a subsequence of a song to itself
(disregarding trivial matches) is referred to as self-join.

The join operation returns two pieces of information:
the SiMPle and the SiMPle index. While the SiMPle stores
the distance of each subsequence to its nearest neigh-
bor, the SiMPle index indicate which subsequence is such
neighbor.

The main intuition behind SiMPle in the CSI domain is
that comparing a query to its corresponding original ver-
sion tends to return small distances. Conversely, compar-
ing the query to a recording of another song tends to pro-
duce high subsequence distances. As such, the authors de-
fined the distance between a query B and a candidate orig-
inal recording A as:

dist(A,B) = median(SiMPle(B,A)) (1)

While in the SiMPle paper the SiMPle-based CSI is
performed over the AB-join operation, the authors demon-
strate other applications relying on the self-join procedure.
For instance, it is possible to use the SiMPle and the SiM-
Ple index to find music thumbnails (most repeated subse-
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quence, given by the neighbors stored in the index) and
patterns that are faithfully reproduced in different times of
the song or are the most different excerpts in the recording
(small and high values in the SiMPle, respectively).

However, computing the distance between a high num-
ber of subsequence pairs is a costly operation. To speed
up the SiMPle calculation, the authors used MASS, a
Fast Fourier Transform-based algorithm to perform a fast
subsequence similarity search under the Euclidean dis-
tance [14]. The Euclidean distance (ED) between two vec-
tors of n elements is calculated as:

ED(A,B) =

√√√√ n∑
i=1

(ai)2 +

n∑
i=1

(bi)2 − 2(A ·B) (2)

When using the ED to find the best match between a
subsequence and a long feature vector, we may slide the
short sequence along the longer one. The main idea be-
hind MASS is substituting the required dot product by a
FFT-based algorithm for calculating the cross-correlation
between the compared vectors, often referred to as sliding
dot-product. Besides, we can pre-calculate the quadratic
sums required by the ED and reuse it when necessary.

Consider n the length of the long feature vector and m
the length of the assessed subsequence. The main advan-
tage of using MASS is that it reduces the subsequence sim-
ilarity search’s complexity from O(nm) to O(n log n) by
using the FFT to find the windowed dot-products instead
a brute-force approach [29]. Moreover, these dot-products
can be reused to calculate SiMPle even faster [22].

In this paper, we propose a new method that sums up
the advantages of Triplets and SiMPle in a single solution.
Our algorithm is described in the next section.

3. SUMMARIZING AND COMPARING
RECORDINGS

We propose the Summarizing and Comparing (SuCo)
method. As the name suggests, it is split into two main
procedures. The first one summarizes the reference record-
ings based on SiMPle. To ensure the time efficiency of
our method, we use the faster version of SiMPle’s algo-
rithm [22]. The second part refers to the way that a query is
compared to these summaries to estimate a distance value
between the query and each reference recording.

3.1 Summarization

Summarizing music files is not a novel procedure. Al-
though a few algorithm use it as a intermediate step (e.g.
Triplets for CSI), it is usually the final procedure in some
specific tasks, such as thumbnailing [1]. In this work,
we use the SiMPle to summarize music data as the first
step of our algorithm. Using this representation of subse-
quences similarities, we summarize the music files in five
excerpts 1 using two different approaches, which are de-
scribed in the next sub-sections.

1 The number of summaries per song is a parameter, which we set to
5. For details, please refer to Section 4.2.

The summarization step can be seen as a training phase,
similar to what is done by Triplets. However, while sum-
marizing in Triplets depends on comparing each record-
ing with the entire dataset, our approach processes each
recording independently. This implies that (i) summariza-
tion in SuCo is naturally parallelizable, and (ii) once a new
original recording is added, it is only necessary to summa-
rize it and add this summary to our set of summaries. The
latter operation takes only hundredths of a second.

3.1.1 Thumbnailing

Thumbnailing relies on summarizing a recording in one
short segment that best represents it. A thumbnail en-
ables for example a listener to quickly identify a song or
its marked characteristics.

A possible definition of a good thumbnail is the excerpt
of the song that is most times repeated [1]. Based on this
definition, Silva et al. [22] use the subsequence that most
appears in the SiMPle index as the thumbnail of a track.
This is the subsequence that is most times considered the
nearest neighbor of other fragments. In practical terms, the
thumbnail is the mode of the SiMPle index. In case of a tie,
the subsequence chosen is the one with lowest mean dis-
tance to the segments that point at it in the SiMPle index.

In SuCo we use this same step as our first summary,
and combine it with four other in a set of five segments
that summarizes each recording. The extra segments are
consider that is desirable to extract summaries that faith-
fully describe the song but they need to be diverse. In other
words, we avoid describing music with similar excerpts, as
this aggregates little information to the retrieval step.

That said, after we choose a summary, we exclude from
the choices of next summaries all the subsequences that
have it as the nearest neighbor. From a practical stand-
point, we keep the count of times that each subsequence is
denoted as the nearest neighbor in the SiMPle index and
use this information to decide the next summary. When
we select a subsequence as a summary, we turn to zero the
count regarding each of the subsequences that point at the
current summary in the SiMPle index.

Similarly, we make subsequences around each picked
summary also ineligible for next summaries. Let p be the
position of the current thumbnail and w a constant defined
as one-quarter of the assessed subsequences’ length. We
turn to zero the neighbor count for all subsequences start-
ing at pi ∈ [p− w, p+ w].

3.1.2 Diverse repeated pattern

While the thumbnail-based summaries rely on the SiMPle
index, we also propose a summarization method based on
the distances stored by SiMPle. We count on the fact that
small distances mean faithfully repeated patterns. These
excerpts are very likely to be more precisely repeated be-
cause they are more significant to describe the song. For
instance, a guitar solo is not similar to other points of the
song. Also, that is not a good summary for the cover song
recognition, since many covers skip, modify or poorly per-
form these parts of the song.
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As in the thumbnail version, this summarization pro-
cess also aims to pick diverse patterns. For this, we use a
technique based on that proposed by Dau and Keogh [7].
The main idea of this process is to, after picking a subse-
quence as a summary, increase the value in the SiMPle of
the subsequences that are similar to the current summary.
This procedure reduces the chance that we choose similar
summaries to describe a song.

More precisely, after choosing a summary, we calculate
the distance from it to all the subsequences in the song,
using MASS. This provides us a vector of distance which
has the same length than SiMPle. Then, we normalize this
vector in the interval [0, 1], being that the position storing
1 represents the most distant subsequence and 0 appears at
the position of the current summary. Finally, we perform
a point-by-point division of the SiMPle by this vector. As
similar subsequences have a (normalized) distance close to
zero, the division will make its relative positions in SiMPle
significantly increase its values. Consequently, they will
unlikely be chosen as a summary in the next iterations. We
refer the reader to the paper that first proposed this proce-
dure [7] for a formal definition of it.

In addition to the described procedure, we also make
ineligible the subsequences that are around the picked
summaries. Similarly to the thumbnail, we set a region
pi ∈ [p − w, p + w] of ineligible subsequences. The dif-
ference here is that we set as infinite the values at these
positions in the SiMPle.

3.1.3 Pitch profiles

In addition to the summaries, the global pitch class profile
are also stored in our procedure. This profile is the normal-
ized sum of each bin of the chroma vectors that describe
the recording [20]. This is necessary to apply OTI and,
consequently, provide invariance to key differences when
calculating the distances for a new query recording.

3.2 Distance Calculation

When a new query is presented to the CSI system, SuCo
must compare it to each song in the reference database and
return a ranking by similarity. In our proposal, we match
the query with each summary of each original recording.
For this, we again take advantage of the algorithm MASS.

Given a query q, the steps to compare q with the original
recordings are:

1. Calculate the global pitch profile of q and the statis-
tics required by MASS, i.e., its sliding quadratic
sums and its FFT (which is used to calculate the slid-
ing dot-product). We only need to calculate these
values once and, then, use them in every posterior
distance calculations.

2. From an original recording r, compare its pitch pro-
file with the profile obtained from q. Then, rotate the
chroma vector of each summary of r accordingly.

3. Using the values calculate in the previous steps, cal-
culate the distances between q and each summary of

r. Store the lowest distance value, i.e., the distance
between the summary and the subsequence from q
that best matches it.

4. The final distance between q and r is given by the
geometric mean of the distances stored in the previ-
ous step. The geometric mean benefits low values in
its calculation, favoring the match between q and the
reference songs with one or more summaries with a
good approximate match.

4. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of the
proposed methods. For the sake of reproducibility, all code
and detailed results are provided in a supplementary web-
site 2 .

This section is split in distinct topics regarding different
phases of our evaluation. First, we describe the datasets we
used. Next, we present the experimental setup regarding
feature extraction, parameter setting, evaluation measures,
and adversary methods. Finally, we present the results of
experiments regarding time and retrieval performances.

For simplicity, we refer to our summarizing and com-
paring methods by thumbnails and diverse repeated pat-
terns as SuCo-thumb and SuCo-repeat, respectively.

4.1 Datasets

The datasets used in our experiments include popular and
classical music with different sizes. We opted to use the
same data as in the paper that proposed SiMPle, so that
results are directly comparable. The datasets are:

• YouTubeCovers: This dataset is composed of 50
popular songs of different genres, with seven record-
ings each. The data is split in pre-defined refer-
ence/training and test partitions. The reference set
comprises the original (studio) recording and a live
version performed by the same artist for each song.
The test set is, therefore, composed of five different
versions of each song in the dataset.

• Mazurkas: This dataset is a collection of clas-
sical music. It comprises 2914 distinct record-
ings of 49 Chopin’s Mazurkas obtained from the
Mazurka Project 3 . The number of performances
of each piece varies between 41 and 95. Unlike
the YouTubeCovers dataset, the Mazurkas is not
split into default partitions. We therefore assess this
dataset using the leave-one-out approach.

4.2 Experimental Setup

To detail our experimental setup, we next describe the ap-
plied feature sets, the parameters of our method, and how
we compare results.

2 https://sites.google.com/view/sucomusic
3 www.mazurka.org.uk/
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4.2.1 Feature Extraction

Although some work explores the combination of differ-
ent features to improve retrieval performance [17, 25], the
usual procedure in the literature is to apply chroma-based
features [8, 9, 12, 21, 23] that describe pitch perceived over
time. More recently, deep learning-based methods have
been used to extract cleaner chroma features from audio.
In this work, we extract deep-chroma features [13] to de-
scribe the recordings in our datasets, using the Madmom
tool library [5].

Since the Euclidean distance is sensitive to tempo dif-
ferences, features are smoothed to provide robustness
against this issue. Specifically, we used the technique ap-
plied by CENS, which uses a Hann window to smooth fea-
tures in the time axis. Moreover, we reduced the dimen-
sionality of the temporal axis of the chroma vectors by a
factor of five. At the end of this procedure, each record-
ing is represented by a vector containing two (smoothed)
deep-chroma values per second of audio.

4.2.2 Parameter Settings

The two parameters of our method are the number and
length of subsequences used to describe reference songs.
We assessed three values of relative summary length: 10,
20, and 30 seconds (i.e., 20, 40, and 60 consecutive fea-
tures). Using 10 seconds provide the worst results, and
these results are not shown, while they point that using too
small windows hampers performance.

Similarly, we assessed results using 1, 3 and 5 subse-
quences as the summaries set. We notice that while vary-
ing the set size does not significantly affect runtime, but
the retrieval performance is clearly superior when using
five segments.

Given the results of this parameter exploration, we
henceforth present the results using five summaries of
30 seconds for the YouTubeCovers data. Because some
recordings in the Mazurkas dataset are too short to apply
summarization with 30 seconds per summary, we present
results on this dataset using 20-second summaries.

4.2.3 Evaluation Measures and Compared Algorithms

Our evaluation consider three common evaluation mea-
sures: mean average precision (MAP); precision at 10
(P@10); and mean rank of first correct match (MR1).
These measures allow us to compare SuCo against results
presented in the literature.

For the YouTubeCovers, our experiments compare
SuCo, Triplets [24], SiMPle [23], and a recent technique
based on the 2-D Fourier Transform (which we refer as 2D-
FT) [19]. The Mazurkas dataset has been less often used
in the literature, so it is only possible to compare SuCo
against SiMPle with this dataset.

Because previous evaluations of SiMPle did not use
deep-chroma features, to isolate whether accuracy im-
provements in SuCo compared to previous ideas in SiM-
Ple happen due to its use of deep-chromas or algorithmic
improvements, we also run SiMPle with the same deep-
chroma feature vector used by SuCo.

4.3 Runtime Performance

A central goal of SuCo is to create a fast method for
similarity-based music information retrieval. We thus first
focus on evaluating its runtime in our datasets 4 .

Note that this evaluation does not consider the duration
of feature extraction, since it is common to all methods.
Also, although we report the total runtime of SuCo’s sum-
marizing and comparing procedure, in practice the sum-
marization is only performed once. For the SiMPle-based
CSI, the reported runtime regards only the retrieval phase,
as it does not rely on a training phase.

In the YouTubeCovers dataset, SuCo-thumb and SuCo-
repeat run in 136 and 134 seconds, respectively. On the
other hand, the SiMPle-based CSI took 4,192 seconds to
assess the same dataset. That is, while our method takes a
little more than 2 minutes to run, SiMPle (which is consid-
ered a fast algorithm) needs more than one hour. SuCo is
more than 30 times faster than SiMPle.

This difference can be further observed in the Mazurkas
dataset. While SuCo-thumb and SuCo-repeat take around
10 and 13 hours, respectively, to run the complete process,
SiMPle only assess around 240 queries – out of 2914 – in
the same runtime. This shows that in this larger dataset,
SuCo is two order of magnitudes faster than SiMPle. In-
deed, we aborted the execution of SiMPle for this dataset.

To break down the runtime for summarization and com-
parison in the SuCo pipeline, we isolate the runtime for
summarizing in the YouTubeCovers dataset. This dataset
has 100 reference recordings, and the summarization step
for it takes around 20 seconds. This means that summa-
rizing a new reference track takes around 0.2 seconds, and
therefore that incrementing the training set using SuCo is
nearly instantaneous.

4.4 Retrieval Performance

After efficiency, our second evaluation criteria is accuracy.
Table 1 presents the results for our accuracy evaluation
measures in the YouTubeCovers dataset. The SiMPle-deep
refers to running regular SiMPle algorithm on the deep-
chroma features.

Algorithm MAP P@10 MR1
Triplets [24] 0.48 0.13 8.49
SiMPle [23] 0.59 0.14 7.91
2D-FT [19] 0.65 0.14 8.27
SiMPle-Deep 0.78 0.17 3.66
SuCo-thumb 0.65 0.15 5.13
SuCo-repeat 0.74 0.17 3.80

Table 1: Results on the YouTubeCovers dataset

The results of SuCo and SiMPle-deep are a significant
improvement over previous results presented in the litera-
ture for this dataset. SiMPle-deep presented the best results

4 This version of SuCo is implemented in Matlab. The experiments
were carried out in a desktop computer with 16 Intel(R) Core(TM) i7 −
2600K CPU @ 3.20GHz and 64Gb of memory running Ubuntu 16.04.
Also, at any time, there was only one process computing SuCO.
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in this experiment, while SuCo-repeat achieved a very sim-
ilar performance.

Table 2 presents the results for the Mazurkas classical
music dataset.

Algorithm MAP P@10 MR1
SiMPle [23] 0.88 0.95 2.33
SuCo-thumb 0.83 0.93 2.83
SuCo-repeat 0.85 0.94 2.77

Table 2: Results on the Mazurkas dataset

Like in the YouTubeCovers data, SiMPle displays a
slightly better performance than SuCo, in this case even
without the deep-learned chroma features.

Taken together, the results on the two datasets point that
SuCo is able to attain an accuracy very close to the best
performing method while providing a much higher perfor-
mance, with much lower runtime.

Besides, we notice that we may spend an extra few
time to enhance our distance calculation, improving our re-
trieval performance and not significantly affecting the run-
time. We discuss this topic in the next section.

5. ON REFINING THE EUCLIDEAN DISTANCE

The main purpose of using the Euclidean distance is its
time efficiency and the possibility of exploring algorithms
to further speeding up its application. However, we under-
stand that it has a negative impact on the efficacy, since ED
is sensitive to different distortions in the data.

While we reduce the impact of tempo variances by
smoothing the feature vectors, our method is still sensi-
tive to major differences. Applying a distance measure
which is more robust to tempo differences in the entire
SuCo pipeline could completely compromise our runtime
performance. However, we believe that “refining” the dis-
tance calculation by some of these functions can improve
our results.

To assure this argument, we made a subtle modifica-
tion of the comparison algorithm. Once the best subse-
quence match is found using ED, we re-calculate the dis-
tance of the matched pair using the Open-End Dynamic
Time Warping (DTW) [15] with a relative warping win-
dow of 10% of the subsequence length. For simplicity, we
will refer to this optimization as SuCo-DTW.

Before presenting the results, we discuss another char-
acteristic that may affect the ED calculation: the complex-
ity of the data. Batista et al. [2] show that more complex
time series, i.e., with high variations between consecutive
observations, tends to present higher distances to its neigh-
bors. Figure 2 illustrates an example of a simpler and a
more complex chroma pattern.

To circumvent this issue, we estimate the complexity of
each summary by the standard deviation of its chroma di-
mensions. The mean complexity of the twelve dimensions
is taken as the summary’s complexity estimate. Finally, we
adjust the distance of a query to each summary by diving it

(a) Low-complex chroma (b) High-complex chroma

Figure 2: Examples of two different summaries with
clearly different complexities

by the complexity estimate. For simplicity, we refer to this
approach as SuCo-complexity.

To test our assumptions, we ran an experiment using
these strategies on the YouTubeCovers dataset. Table 3
presents the results. In this experiment both SuCo-DTW
and SuCo-complexity use the diverse repeated patterns as
the summarizing method. As previously noted, we did not
run the complete SiMPle-deep for the Mazurkas data, due
to its impracticable runtime.

Algorithm MAP P@10 MR1
SiMPle-Deep 0.78 0.17 3.66
SuCo-DTW 0.80 0.18 3.42
SuCo-complexity 0.78 0.17 5.09

Table 3: Results on the YouTubeCovers dataset

Finally, refining the distance calculation does not
severely affect the algorithm runtime. For instance, cal-
culating the estimate complexities and “fix” the whole dis-
tance matrix in the YouTubeCovers dataset takes only 0.4
seconds. Also, the total runtime for running SuCo-DTW
takes 459 seconds for the entire pipeline. Although it
is slower than SuCO-thumb and SuCo-repeat, it is still
around ten times faster than SiMPle and presents better re-
trieval performance. Investigating this kind of efficiency-
precision trade-offs is part of our future works, presented
with other concluding remarks in the next section.

6. CONCLUDING REMARKS

This paper presents and evaluates SuCo, a suite of meth-
ods for summarizing and comparing music data for fast
content-based information retrieval. The techniques devel-
oped focus on the identification of cover songs. Our results
demonstrate that it is possible to achieve results that are
close to state-of-the-art algorithms while performing up to
two orders of magnitudes faster depending on the dataset.
Further improvements on the precision of SuCo with sim-
ple post-processing methods were also explored.

Future work may explore the SuCo pipeline in varied
applications which rely on similarity comparisons. It also
seems promising to further investigate methods to be added
to this pipeline to improve precision. Future work may
for example experiment with varied features and similarity
measures, as well as with fusing different approaches to
improve the retrieval efficacy [22].
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ABSTRACT

Utilizing deep learning techniques to generate musical
contents has caught wide attention in recent years. Within
this context, this paper investigates a specific problem re-
lated to music generation, music style transfer. This prac-
tical problem aims to alter the style of a given music piece
from one to another while preserving the essence of that
piece, such as melody and chord progression. In partic-
ular, we discuss the style transfer of homophonic music,
composed of a predominant melody part and an accom-
paniment part, where the latter is modified through Gibbs
sampling on a generative model combining recurrent neu-
ral networks and autoregressive models. Both objective
and subjective test experiment are performed to assess the
performance of transferring the style of an arbitrary mu-
sic piece having a homophonic texture into two different
distinct styles, Bachs chorales and Jazz.

1. INTRODUCTION

Automatic music generation is gaining traction in the mu-
sic industry because of its potential in mass producing mu-
sic according to a user-assigned style, such as genre or
mood. For example, the artificial intelligence (AI) mu-
sic composition service, Jukedeck, supports four genre op-
tions (i.e., folk, rock, electronic, and ambient) and allows
users to choose how the music feels (i.e., ambient, sparse,
meditate, and sci-fi) [1]. Most of the existing advanced
techniques employ deep learning techniques to perform
end-to-end generative modeling of a music style based on a
symbolic music format such as the musical instrument dig-
ital interface (MIDI) [3]. Various kinds of model configu-
rations were explored in this fashion, such as the encoder-
decoder framework [16], generative adversarial networks
(GAN) [6], autoregressive models [13], variational autoen-
coders (VAE) [8], long-short-term memory (LSTM) net-
works [7, 12], recurrent Boltzmann machines (RBM) [2]
and tied parallel networks [10]. These models are de-
signed for two slightly different scenarios of music gen-
eration: one is to simply generate music by taking noise as

c© Wei-Tsung Lu and Li Su. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Wei-Tsung Lu and Li Su. “Transferring the Style of Homophonic
Music Using Recurrent Neural Networks and Autoregressive Models”,
19th International Society for Music Information Retrieval Conference,
Paris, France, 2018.

input [16], while the other is to generate adapted accompa-
niment or voices for a given melody or a lead sheet, also
known as reharmonization [7] or reorchestration [14].

In this paper, we discuss the music style transfer prob-
lem. More specifically, we aim at rearranging the ele-
ments that highly affects style of a given music piece (e.g.,
rhythm patterns in the accompaniment) while preserving
the essence (e.g., melody and chord progression) of that
piece. This problem has been of interest for a long time;
previous related studies include the use of genetic algo-
rithm (GA) [15] and optimization approaches [19]. In
contrast to reharmonization, the style transfer problem in
this paper uses the entirety of a music piece, including all
voices and accompaniment, as the input of a model. In
other words, we aim to obtain a system that can automati-
cally determine which part of an input music is to be pre-
served and which part is to be adapted to another style.

Besides, by leveraging the end-to-end modeling capa-
bility of deep learning, we investigate the potential of a
single neural network to model two or more distinct styles
based on training data of each style. To solve the style
transfer problem, there are two main challenges, model
complexity and the diversity over various musical genres.
For model complexity, since the DeepBach model is de-
signed for generating polyphonic music that only has a
fixed number of voices (i.e., number of polyphony) such as
Bach’s four-part chorales instead of music having varying
numbers of polyphony, such as Jazz music, the number of
voices in the DeepBach model needs to be increased to ac-
commodate the maximum number of voices. For example,
the DeepBach model can be extended to 10 voices or more,
but doing so also increases the model size and complexity
considerably. For the second challenge, the diversity of
various musical genres means that different music styles
correspond to different preferable model setting, making it
virtually impossible to develop a universal framework ap-
plicable to all kinds of music. For example, [14] proposed
a solution to generate music having different styles but had
to adopt different models for those styles.

This paper proposes a solution of music style trans-
fer with one single generalized model. It assumes that
input music is homophonic music decomposable into a
predominant melody and an accompaniment part. There-
fore, we only need to consider style transfer of the ac-
companiment; the melody, while being unaltered in the
output, can be used as a condition of the network. We
employ a DeepBach-based model to model temporal in-
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Figure 1: The proposed model for music style transfer.
The past and future part of the input data (in green) is
first transferred to another feature mapping (in dark gray)
through a shared fully-connected network. The LSTM net-
work then takes this feature mapping as input and outputs
a 150-by-2 matrix (in yellow), which acts as the condition
of the autoregressive model (in light gray). Finally, the au-
toregressive model predicts the activation of the interested
note given the current part of the input data (in red).

formation, and combine this model with an autoregressive
model (Wavenet [13]) to model the pitch information with-
out restricting the number of note co-occurrence in a sin-
gle frame. Experiment results of transferring the style of
an arbitrary homophonic music piece to Bachs chorale and
Jazz styles are provided in this paper since these two styles
are arguably the two most extensively investigated mu-
sic styles in the literature of automatic composition. The
source code and listening samples are available on-line. 1

2. MODEL

Our proposed model of an input music piece is shown in
Fig. 1. The model contains two LSTM networks, with
one taking data preceding a reference time as input and
another taking data following the reference time as input.
In addition, a specific autoregressive model, WaveNet, is
used to process the data of the reference time. Details of
the proposed model are discussed below.

2.1 Data representation

We represent a music score as a piano-roll matrix S ∈
RI×J+ and a metadata matrix M ∈ R3×J

+ . The concate-
nated matrix [S;M ] is then used as the input of the system.
The element at the i-th row and the j-th column of S is de-
noted as Sij , representing the pitch activation at pitch i and
at time j, where i ∈ [1, I], j ∈ [1, J ], I = 88, and J is the
number of time steps of the music piece. S:j ∈ RI is then
the j-th column of S, representing the pitch profile at time
j. To represent homophonic music data, a note activation,
Sij for i ∈ [1, 88], is represented as a Bernoulli random
variable, and Sij = 1 if there is a note activation at pitch i
and time j, and Sij = 0 if no note activation occurs at time
j. Since the number of polyphony of homophonic music

1 https://github.com/s603122001/Music-Style-Transfer

varies with time, S:j becomes a multi-hot vector, where its
number of non-zero elements varies with j.

The metadata matrix M describes the time grids, the
start and the end symbol of the music piece, thereby form-
ing a 3-by-J matrix. The time grids used in this paper are
the same as the ones in DeepBach: each beat interval is
divided into four subdivisions, and are indexed by 1, 2, 3,
and 4 respectively. The starting time and ending time are
denoted as 1 and others as 0. As a result, the dimension of
the input, [S:j ;M:j ], is 91.

To facilitate our discussion, we simplify the input data
in the following two ways. First, sustained note are con-
sidered as repeating notes with the same pitch . Secondly,
any two notes with the same time and pitch are considered
as one note.

2.2 Model Architecture

The proposed model with parameterization θ is obtained
by the following optimization problem:

max
θ

∑
ij

log p
(
Sij = 1|S\ij ,M, θ

)
. (1)

The formulation (1) can be viewed as a generalized ver-
sion of the original DeepBach network discussed in [7],
where the number of voices is fixed at 4 and the pitch of
each voice is modeled individually:

max
θi

∑
j

log pi
(
Vij |V\ij ,M, θi

)
, for i ∈ [1, 4] . (2)

The data representation Vij ∈ R4×J in (2) is different
from Sij ; Vij is the pitch number of the i-th voice (i.e., 1
for soprano, 2 for alto, 3 for tenor, and 4 for bass) at time
j. The four networks in DeepBach have the same struc-
ture, each processing only one part of the four-part Bach’s
chorales and producing an output limited to monophonic
music. By using the four networks together, the condi-
tional probability of notes occurred simultaneously in dif-
ferent parts can be covered.

We tackle our task on the basis of DeepBach because
accessing both past and future parts of a score mitigates
the problem of transition modeling [18], a major obstacle
for music modeling. Besides, the temporal feature of mu-
sic can be well captured with this model (shown in Sec-
tion 3.4). Although DeepBach succeeds in handling Bachs
4-part chorales, it is not readily suitable for our problem
scenario. To adapt the original DeepBach to accommodate
more music types, especially for the music having a ho-
mophonic texture with varying numbers of polyphony, we
remove the restriction of voicing and abandon the origi-
nal four-network structure, and adopt one single network
to process the multi-hot piano-roll representation.

Reducing the number of networks to one causes our
generalized DeepBach to lose the ability to model the joint
distribution of notes articulated simultaneously at a given
time step. Besides, [7] indicated that using the piano-roll
representation causes the generated result to be trapped in
isolated regions during the Gibbs sampling process (see
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(a) Dilated convolutional block

(b) Autoregressive block

Figure 2: Illustration of the autoregressive block and di-
lated convolutional block of a conditional Wavenet.

Section 2.4). In order to overcome these issues, we employ
an autoregressive model, Wavenet [13], to control the rela-
tionship among the 88 possible pitch activations at a given
time step j. The joint distribution of S:j = {S1j ....S88j}
can be written as the product of conditional probabilities
of all pitches:

p(S:j) =
88∏
i=1

P (Sij |S1j , ..., S(i−1)j , S\S:j) . (3)

The Wavenet models the conditional probabilities by
stacking dilated causal convolution layers [13]. We then
employ the output of the generalized DeepBach model as a
constraint. This is implemented by a dilated convolutional
block with constraint (see Fig. 2a) and an autoregressive
block to predict the output by running from i = 1 to i = 88
(see Fig. 2b). Implementation details of them can be seen
in [13].

In summary, the output of the generalized DeepBach
represents the temporal context of music, and it constrains
the Wavenet model to ensure that the output is musically

reasonable in terms of the harmony progression and other
contextual structures.

2.3 Implementation details

The model is implemented using the Keras [4] library with
tensorflow as the back end. First, input data is divided,
such that each unit of the input data contains a segment
of four time steps, i.e., a 91 × 4 matrix, and the segments
do not overlap (see the dark green part in Fig. 1). Every
segment is first flattened, and the flattened segment is em-
bedded into a 150-D vector with a shared fully connected
layer for dimension reduction (see the dark gray part in Fig.
1), so as to incorporate information over a larger temporal
range with a smaller model capacity. Similar to the original
DeepBach model, two LSTM models are employed, one
dealing with the past embedded feature mappings and the
other dealing with the future ones. Both LSTM networks
take a series of embedded features with 32 time steps, i.e.,
a 150-by-32 matrix, as the input. Both networks contain 4
LSTM layers, each having 150 hidden units (see the blue
block in Fig. 1). The outputs of the two networks are con-
catenated and then transformed to an 88-D vector with an-
other fully-connected layer. This merged LSTM output is
then used as the condition of the Wavenet that employs the
original input feature map at the current time step, as il-
lustrated in Fig. 2a. The Wavenet consists of five dilated
convolution layers as shown in Fig. 2b, where only the top
two of the five layers are conditioned by the merged LSTM
output and the other three are not conditioned. A dropout
rate of 30% is adopted for each layer, and batch normal-
ization is added after the activation of each convolutional
layer. The model is optimized using ADAM [11].

2.4 Style transfer

The algorithm of style transfer is shown in Algorithm 1,
and the number of pitch range p is 88 in this paper. Inspired
by the idea in [7], the style transfer is conducted by using
Gibbs sampling to sample the model and then performing
an iterative update on the elements of the input score ma-
trix. In contrast to those models using noise as input [7,16],
the input of our model is the music score to be transferred,
and this initialization enables the resulting musical struc-
ture to follow the original one. In every iteration of the op-
timization process, all the elements at the same time step
in the input matrix (including both note activation and si-
lence) are visited and updated iteratively. It is important to
point out that all notes at the same time step are updated
together for the chosen target time step. While doing this
partly violates the original concept of Gibbs sampling, it
produces stable results in the experiments.

Sampling from an autoregressive model is inefficient
due to the sequential property that every output is condi-
tioned on all the previous ones. To speed up, we adopt the
strategy of independent Gibbs sampling [9, 17]. Indepen-
dent Gibbs sampling uses an annealed masking probability
α that controls the percentage of the elements in the matrix
that are to be updated independently, making the input ap-
proach a stable condition in a short time [9,17]. In the n-th
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Algorithm 1 Music Style Transfer

Input: I by J score matrix S, number of pitch range P ,
maximum number of iteration N , maximum and min-
imum annealed masking probability [αmax αmin], an-
nealed masking ratio η

1: α← αmax, Ŝ ← S, c← 0
2: for n from 1 to N do
3: Choose time index j in the range of J
4: if α > αmin then
5: Update {Sij}Pi=1 by p(Sij |Ŝ1j , · · · , Ŝ(i−1)j ,

Ŝ\Ŝ:j)
6: c← c+ P
7: if c > (α · P · J) then
8: c← 0
9: Ŝ ← S

10: end if
11: α← α− αmax−αmin

η·N
12: else
13: Update {Sij}Pi=1 by p(Sij |S1j , · · · , S(i−1)j ,

S\S:j)
14: end if
15: end for
Output: Transferred score matrix S

iteration of such a sampling process, and for some maximal
and minimal probabilities αmax and αmin, α is updated by
the following formula:

αn = max

(
αmin, αmax −

n(αmax − αmin)

ηN

)
, (4)

where N and η represent the total number of Gibbs steps
and the annealed masking ratio controlling the required
time for α approaching αmin. As α is reduced to the mini-
mum, the procedure approximates the standard Gibbs sam-
pling, which updates only one element at one time and
compensates the poor result produced in the independent
phase. The advantage of using independent Gibbs sam-
pling is its efficiency. Besides, independent Gibbs sam-
pling gives more stable outcomes, especially when trans-
ferring to challenging genres like Jazz.

This research also discovers that during the transfer pro-
cess, the melody in the original music tends to vanish dur-
ing the iteration. As a result, we currently apply a con-
straint on the melody part to address this issue, and leave
the style transfer of the melody part to future work.

3. EXPERIMENTS AND DISCUSSION

3.1 Datasets

Two datasets, Bach’s four-part chorales and Jazz music,
are employed as the training data. The Bach dataset con-
tains 357 Bach four-part chorales included in the music21
toolkit [5]. The Jazz dataset contains 487 songs either col-
lected manually on-line or generated on our own according
to the scores in the well-known Real Book. To simplify the
experiment, we did not distinguish among the sub-genres
of Jazz, and all of the Jazz pieces are played in Jazz trio,

containing one piano, one double bass and one drum. The
drummer part is ignored since we consider only the har-
monic part of music in this paper. In the training process,
we perform data augmentation, by pitch-shifting each song
in the two datasets up and down by at most 6 semitones in
order to cover all possible keys. As a result, we have 4858
pieces and 6331 pieces in the Bach dataset and the Jazz
dataset, respectively. In addition, the two datasets are com-
piled in different time resolutions. In the Bach dataset, a
sixteenth note is defined as one time step, while in the Jazz
dataset, a thirty-second note is defined as one time step, as
the latter one contains faster note groups.

Four songs with different styles were selected as the
testing data: Rocky Raccoon by Beatles, Paranoid Android
by Radiohead, Live and Let Die by Paul McCartney, and
Beethoven’s Moonlight Sonata, Op. 27, No. 2. Each of
the song was cropped to 30 seconds long. These four test-
ing songs will be used in both the objective evaluation and
the subjective test.

3.2 Experiment settings

Experiments are conducted to demonstrate the effect of our
solution to the task of transferring the style of an input mu-
sic piece to Bach or Jazz style, and we employ the pro-
posed models trained from the afore-mentioned datasets of
Bachs chorales and Jazz, respectively. To verify the ca-
pability of the network in modeling signals with a vary-
ing number of voices, we employed two different versions
of the network, one without the autoregressive model (de-
noted as “LSTM only”), and the other incorporating the
autoregressive model (denoted as “LSTM-WN”). We com-
pare the following three models:

1. LSTM-to-Bach: transfer the style of input music to
Bach’s chorale using the LSTM network only.

2. LSTM-WN-to-Bach: transfer the style of input mu-
sic to Bach’s chorale using the LSTM combined
with the Wavenet.

3. LSTM-WN-to-Jazz: transfer the style of input music
to Jazz using the LSTM combined with the Wavenet.

LSTM-to-Jazz is excluded from the experiment results
because our pilot study showed that without the autoregres-
sive model, the generated outputs appear to be composed
of random note groups due to the wide diversity of the Jazz
dataset. Since a subjective test is hard to be performed with
such output samples, we eliminate this case in the follow-
ing experiments. For further comparison, we also com-
pare our model with the original DeepBach model, under
the scenario of reharmonizing given melodies using a pre-
trained DeepBach model.

3.3 Metrics for objective evaluation

To analyze the performance of a style transfer system and
to compare the songs before and after a transferring pro-
cess, we divide the style transfer task into 3 sub-parts and
evaluate them with different metrics.
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1. Content preservation of the original style. Ac-
cording to our definition of music style transfer, a
good music style transfer system should preserve
the backbone of an input song. This means that the
overall structure of a song, such as chord progres-
sion, should not be changed. Therefore, the content
similarity between the original song and the trans-
formed one should be considered. To evaluate the
content similarity between two music pieces, we first
transfer the MIDI representation (in piano roll) of
every time step into a chroma vector with the 12
pitch classes, then compute the moving average of
the chroma vector within a frame size of half bar,
which is 8 time steps in the Bach’s dataset and 16
time steps in the Jazz dataset. Finally, the cosine
similarity between every time step in the two score
matrices is calculated to measure the content preser-
vation degree of the transfer process.

2. Harmony structure similarity to the transferal target
style. Common harmony sets (i.e., combination of
notes) vary across different music styles. For exam-
ple, chords with an extension note like 9th and 11th
are more often used in Jazz music than in Bach’s
chorales. This characteristic is utilized to visualize
how such distribution changes after a style trans-fer.
First the transfer target styles of interest in this pa-
per are represented by collecting all existing har-
mony combinations in the two datasets, and then
mapping them to a 2-D plane by using the principal
component analysis (PCA) and then the t-distributed
stochastic neighbor embedding (t-SNE) method. By
visualizing such 2-D features of the original and
transferred songs on the plane, we could observe the
difference of locations between them, and how the
transferred song moves toward the target dataset.

3. Temporal structure imitating the transferred style.
Rhythmic patterns are an important characteristic in
distinguish different music styles. To model this
property, we utilize the fact that rhythm has a strong
correlation with the timing of harmony changes. For
example, it is common that a chord change coincides
with a strong beat. Therefore, we define the har-
monic transition point of a song to be a time step
where at least three notes change in comparison to
the previous time step, and then we plot the distri-
bution of these points within every bar with the tem-
poral unit being an eighth note. The result is a 32-D
vectors representing the major pattern of rhythm and
harmonic transitions. We examine how similar such
pattern of the transferred music pieces is to the pat-
tern of a target dataset.

3.4 Objective evaluation

Table 1 shows the performance index of content preserva-
tion, the average cosine similarity, of the four testing songs
before and after style transfer. We list the results of the pro-
posed models and the original DeepBach [7], being used as

To Bach To Jazz
DeepBach 0.39 N/A
LSTM-to-Bach 0.86 N/A
LSTM-WN-to-Bach 0.76 N/A
LSTM-WN-to-Jazz N/A 0.56

Table 1: Evaluation results of Content Preservation in
terms of cosine similarity.

Figure 3: Result of the Harmony Distribution. Data points
are the piano roll features mapped to a 2-D space through
PCA and tSNE. Blue: Jazz dataset. Yellow: Bach dataset.
Black: testing clips of Jazz music. Orange: testing clips
transferred to Bach’s style.

a baseline. We do not use the original DeepBach model for
style transfer to Jazz because its number of voice is fixed
at 4. Notably, the original DeepBach, which uses only the
main melody to perform reharmonization, is less effective
in following the structure of the original pieces than the
proposed models designed for homophonic music.

Fig. 3 illustrates the harmony distribution of the
cropped segments of five pieces in the Jazz dataset, before
and after a style transfer using the LSTM-WN-to-Bach
model. Here we illustrate the result of Jazz data instead
of the testing songs because this is a genre-to-genre com-
parison. As shown in Fig. 3, the resulting harmony dis-
tributions indicate that all data points of the Jazz data are
originally within the distribution of the Jazz dataset. After
style transfer, most of the data points move toward the dis-
tribution of the Bach dataset, and some of the transferred
data points are even located within the Bach distribution.

Fig. 4 shows the results of temporal structure similarity
of the four testing songs before and after style transfer. We
used the same songs and models in the content preserva-
tion part. Results show that for the transfer-to-Bach case,
all models fit fairly well to the pattern representing the
Bach dataset, with the original DeepBach model produc-
ing a few extra transitions unseen in the Bach dataset. For
the transfer-to-Jazz task, the proposed model also fits the
pattern of the target dataset well.
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Figure 4: Evaluation results on temporal structures.

Figure 5: Result of the subjective test. The scores rep-
resent the subjects’ evaluation on how similar the style of
music to the genre listed in the questionnaire.

3.5 Subjective tests

To evaluate the performance of our model from a human
perception perspective, a listening test was conducted with
63 participants. Among the participants, 51 of them have
the experience of being a music performer, and 17 of those
51 participants receive formal music education or have
work experience in related fields.

Each of the four testing songs was transferred using the
three afore-mentioned models: LSTM-to-Bach, LSTM-
WN-to-Bach, and LSTM-WN-to-Jazz, respectively. As
a result, three different versions were produced for each
song, and every participant evaluated a total of 12 songs.
For each song to be transferred, the participants were asked
to determine the style of the main melody from 4 music
styles: Baroque music (i.e., Bachs), Jazz, Romanticism,
and Blues. This question aims to direct their attention to
both melody and accompaniment parts. Note that Roman-
ticism and Blues are extra options added to avoid a possi-
ble bias in the questionnaire. After answering the question,
the participants then evaluated the degree of similarity be-
tween the transferred songs and the 4 music styles above,
based on their music knowledge and personal perception.
The evaluation was in the scale from 1 (low) to 5 (high).

The results of the subjective test are shown in Fig. 5.
The results are averaged for different models. It can be
seen that, for the cases of transferring to Bach’s style,
the rated degrees of similarity of the transferred songs to
Baroque and Romanticism are both high. According to a

(a) Original version

(b) Transfer to Bach

(c) Transfer to Jazz

Figure 6: Transfer results of Live and Let Die using the
proposed model. The score is output by LogicPro.

participant who is a major in music, this phenomenon is re-
lated to the main melodies and the original songs we pick.
However, the model with Wavenet produced transferred
songs rated with the highest similarity degree to Baroque,
demonstrating the necessity of the Wavenet component in
our model. For the case of transferring to Jazz style, the
degree of similarity to Jazz surpasses other types of music.

One test sample used in the subjective test is outputted
as music scores illustrated in Fig. 6 to give us some in-
sights into the capability of the proposed models. In Fig.
6(b), the harmony and music contents are simplified with
respect to the original version since the contents of Bach’s
4-part chorales are usually not complicated. Apart from
this, the difference between the temporal structure of the
two scores is a clear example that our model has learned
the temporal feature of the music style. In Fig. 6(c), we
find many non-chord notes and some taste of syncopated
rhythm, both marking the characteristics of Jazz music.

4. CONCLUSION AND FUTURE WORK

We have demonstrated the capability of our model in trans-
ferring arbitrary homophonic music scores into the styles
of Bach’s 4-part chorales and Jazz, and both objective
and subjective tests are conducted. The advantage of our
method is that it does not pose any restrictions on input
music scores, and thus it can be easily applied in other sce-
narios. Besides, different styles of music can be modeled
using the same framework, simplifying the process when
we want to expand the collection of target music genres.
Future work will focus on the style transfer of a melody,
which is not considered in this paper, as well as further
investigation into complicated music styles and extensive
applications based on the proposed model.
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ABSTRACT

We introduce MIDI-VAE, a neural network model based
on Variational Autoencoders that is capable of handling
polyphonic music with multiple instrument tracks, as well
as modeling the dynamics of music by incorporating note
durations and velocities. We show that MIDI-VAE can per-
form style transfer on symbolic music by automatically
changing pitches, dynamics and instruments of a music
piece from, e.g., a Classical to a Jazz style. We evalu-
ate the efficacy of the style transfer by training separate
style validation classifiers. Our model can also interpolate
between short pieces of music, produce medleys and cre-
ate mixtures of entire songs. The interpolations smoothly
change pitches, dynamics and instrumentation to create a
harmonic bridge between two music pieces. To the best of
our knowledge, this work represents the first successful at-
tempt at applying neural style transfer to complete musical
compositions.

1. INTRODUCTION

Deep generative models do not just allow us to generate
new data, but also to change properties of existing data
in principled ways, and even transfer properties between
data samples. Have you ever wanted to be able to cre-
ate paintings like Van Gogh or Monet? No problem! Just
take a picture with your phone, run it through a neural net-
work, and out comes your personal masterpiece. Being
able to generate new data samples and perform style trans-
fer requires models to obtain a deep understanding of the
data. Thus, advancing the state-of-the-art in deep genera-
tive models and neural style transfer is not just important
for transforming horses into zebras, 1 but lies at the very
core of Deep (Representation) Learning research [2].

While neural style transfer has produced astonishing re-
sults especially in the visual domain [21, 37], the progress

1 https://junyanz.github.io/CycleGAN/
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for sequential data, and in particular music, has been
slower. We can already transfer sentiment between restau-
rant reviews [30, 36], or even change the instrument with
which a melody is played [33], but we have no way of
knowing how our favorite pop song would have sounded
if it were written by a composer who lived in the classi-
cal epoch or how a group of jazz musicians would play
the Overture of Mozart’s Don Giovanni. In this work we
take a step towards this ambitious goal. To the best of
our knowledge, this paper presents the first successful ap-
plication of unaligned style transfer to musical composi-
tions. Our proposed model architecture consists of paral-
lel Variational Autoencoders (VAE) with a shared latent
space and an additional style classifier. The style classifier
forces the model to encode style information in the shared
latent space, which then allows us to manipulate existing
songs, and effectively change their style, e.g., from Clas-
sic to Jazz. Our model is capable of producing harmonic
polyphonic music with multiple instruments. It also learns
the dynamics of music by incorporating note durations and
velocities.

2. RELATED WORK

Gatys et al. [14] introduce the concept of neural style trans-
fer and show that pre-trained CNNs can be used to merge
the style and content of two images. Since then, more pow-
erful approaches have been developed [21,37]; these allow,
for example, to render an image taken in summer to look
like it was shot in winter. For sequential data, autoencoder
based methods [30, 36] have been proposed to change the
sentiment or content of sentences. Van den Oord et al. [33]
introduce a VAE model with discrete latent space that is
able to perform speaker voice transfer on raw audio data.
Mor et al. [26] develop a system based on a WaveNet au-
toencoder [12] that can translate music across instruments,
genres and styles, and even create music from whistling.
Malik et al. [23] train a model to add note velocities (loud-
ness) to sheet music, resulting in more realistic sounding
playback. Their model is trained in a supervised manner,
with the target being a human-like performance of a music
piece in MIDI format, and the input being the same piece
but with all note velocities set to the same value. While
their model can indeed play music in a more human-like
manner, it can only change note velocities, and does not
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learn the characteristics of different musical styles/genres.
Our model is trained on unaligned songs from different
musical styles. Our model can not only change the dy-
namics of a music piece from one style to another, but also
automatically adapt the instrumentation and even the note
pitches themselves. Apart from style transfer, our model
can also generate short pieces of music, medleys, interpo-
lations and song mixtures. At the core of our model thus
lies the capability to produce music. In the following we
will therefore discuss related work in the domains of sym-
bolic and raw audio generation. For a more comprehen-
sive overview we refer the interested readers to these sur-
veys: [4, 13, 16].

People have been trying to compose music with the help
of computers for decades. One of the most famous early
examples is “Experiments in Musical Intelligence” [9],
a semi-automatic system based on Markov models that
is able to create music in the style of a certain com-
poser. Soon after, the first attempts at music composition
with artificial neural networks were made. Most notably,
Todd [31], Mozer [27] and Eck et al. [11] all used Recur-
rent Neural Networks (RNN). More recently, Boulanger-
Lewandowski et al. [3] combined long short term memory
networks (LSTMs) and Restricted Boltzmann Machines to
simultaneously model the temporal structure of music, as
well as the harmony between notes that are played at the
same time, thus being capable of generating polyphonic
music. Chu et al. [7] use domain knowledge to model
a hierarchical RNN architecture that produces multi-track
polyphonic music. Brunner et al. [5] combine a hierar-
chical LSTM model with learned chord embeddings that
form the Circle of Fifths, showing that even simple LSTMs
are capable of learning music theory concepts from data.
Hadjeres et al. [15] introduce an LSTM-based system
that can harmonize melodies by composing accompany-
ing voices in the style of Bach Chorales, which is con-
sidered a very difficult task even for professionals. John-
son et al. [18] use parallel LSTMs with shared weights to
achieve transposition-invariance (similar to the translation-
invariance of CNNs). Chuan et al. [8] investigate the use
of an image-based Tonnetz representation of music, and
apply a hybrid LSTM/CNN model to music generation.

Generative models such as the Variational Autoencoder
(VAE) and Generative Adversarial Networks (GANs) have
been increasingly successful at modeling music. Roberts
et al. introduce MusicVAE [29], a hierarchical VAE model
that can capture long-term structure in polyphonic music
and exhibits high interpolation and reconstruction perfor-
mance. GANs, while very powerful, are notoriously dif-
ficult to train and have generally not been applied to se-
quential data. However, Mogren [25], Yang et al. [34] and
Dong et al. [10] have recently shown the efficacy of CNN-
based GANs for music composition. Yu et al. [35] were
the first to successfully apply RNN-based GANs to music
by incorporating reinforcement learning techniques.

Researchers have also worked on generating raw au-
dio waves. Van den Oord et al. [32] introduce WaveNet,
a CNN-based model for the conditional generation of

speech. The authors also show that it can be used to gen-
erate pleasing sounding piano music. More recently, En-
gel et al. [12] incorporated WaveNet into an Autoencoder
structure to generate musical notes and different instru-
ment sounds. Mehri et al. [24] developed SampleRNN, an
RNN-based model for unconditional generation of raw au-
dio. While these models are impressive, the domain of raw
audio is very high dimensional and it is much more difficult
to generate pleasing sounding music. Thus most existing
work on music generation uses symbolic music represen-
tations (see e.g., [3,5,7–10,15,18,23,25,27,29,31,34,35]).

3. MODEL ARCHITECTURE

Our model is based on the Variational Autoencoder [20]
(VAE) and operates on a symbolic music representation
that is extracted from MIDI [1] files. We extend the stan-
dard piano roll representation of note pitches with veloc-
ity and instrument rolls, modeling the most important in-
formation contained in MIDI files. Thus, we term our
model MIDI-VAE. MIDI-VAE uses separate recurrent en-
coder/decoder pairs that share a latent space. A style clas-
sifier is attached to parts of the latent space to make sure the
encoder learns a compact latent style label that we can then
use to perform style transfer. The architecture of MIDI-
VAE is shown in Figure 1, and will be explained in more
detail in the following.

3.1 Symbolic Music Representation

We use music files in the MIDI format, which is a sym-
bolic representation of music that resembles sheet music.
MIDI files have multiple tracks. Tracks can either be on
with a certain pitch and velocity, held over multiple time
steps or be silent. Additionally, an instrument is assigned
to each track. To feed the note pitches into the model
we represent them as a tensor P ∈ {0, 1}nP ·nB ·nT (com-
monly known as piano roll and henceforth referred to as
pitch roll), where nP is the number of possible pitch val-
ues, nB is the number of beats and nT is the number of
tracks. Thus, each song in the dataset is split into pieces
of length nB . We choose nB such that each piece cor-
responds to one bar. We include a “silent” note pitch to
indicate when no note is played at a time step. The note
velocities are encoded as tensor V ∈ [0, 1]nP ·nB ·nT (ve-
locity roll). Velocity values between 0.5 and 1 signify a
note being played for the first time, whereas a value below
0.5 means that either no note is being played, or that the
note from the last time step is being held. The note veloc-
ity range defined by MIDI (0 to 127) is mapped to the in-
terval [0.5, 1]. We model the assignment of instruments to
tracks as matrix I = {0, 1}nT ·nI (instrument roll), where
nI is the number of possible instruments. The instrument
assignment is a global property and thus remains constant
over the duration of one song. Finally, each song in our
dataset belongs to a certain style, designated by the style
label S ∈ {Classic, Jazz, Pop,Bach,Mozart}.

In order to generate harmonic polyphonic music it is
important to model the joint probability of simultane-
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Figure 1. MIDI-VAE architecture. GRU stands for Gated Recurrent Unit [6].

ously played notes. A standard recurrent neural network
model already models the joint distribution of the sequence
through time. If there are multiple outputs to be produced
per time step, a common approach is to sample each out-
put independently. In the case of polyphonic music, this
can lead to dissonant and generally “wrong” sounding note
combinations. However, by unrolling the piano rolls in
time we can let the RNN learn the joint distribution of si-
multaneous notes as well. Basically, instead of one nT -hot
vector for each beat, we input nT 1-hot vectors per beat
to the RNN. This is a simple but effective way of model-
ing the joint distribution of notes. The drawback is that
the RNN needs to model longer sequences. We use the
pretty midi [28] Python library to extract information from
MIDI files and convert them to piano rolls.

3.2 Parallel VAE with Shared Latent Space

MIDI-VAE is based on the standard VAE [20] with a hy-
perparameter β to weigh the Kullback-Leibler divergence
in the loss function (as in [17]). A VAE consists of an en-
coder qθ(z|x), a decoder pφ(x|z) and a latent variable z,
where q and p are usually implemented as neural networks
parameterized by θ and φ. In addition to minimizing the
standard autoencoder reconstruction loss, VAEs also im-
pose a prior distribution p(z) on the latent variables. Hav-
ing a known prior distribution enables generation of new
latent vectors by sampling from that distribution. Further-
more, the model will only “use” a new dimension, i.e., de-
viate from the prior distribution, if it significantly lowers
the reconstruction error. This encourages disentanglement
of latent dimensions and helps learning a compact hidden
representation. The VAE loss function is

LV AE = Eqθ(z|x)[log pφ(x|z)]− βDKL[(qθ(z|x)||p(z)],

where the first term corresponds to the reconstruction loss,
and the second term forces the distribution of latent vari-
ables to be close to a chosen prior. DKL is the Kullback-
Leibler divergence, which gives a measure of how similar
two probability distributions are. As is common practice,
we use an isotropic Gaussian distribution with unit vari-
ance as our prior, i.e., p(z) = N (0, I). Thus, both qθ(z|x)

and p(z) are (isotropic) Gaussian distributions and the KL
divergence can be computed in closed form.

As described in Section 3.1, we represent multi-track
music as a combination of note pitches, note velocities
and an assignment of instruments to tracks. In order to
generate harmonic multi-track music, we need to model
a joint distribution of these input features instead of three
marginal distributions. Thus, our model consists of three
encoder/decoder pairs with a shared latent space that cap-
tures the joint distribution. For each input sample (i.e., a
piece of length nB beats), the pitch, velocity and instru-
ment rolls are passed through their respective encoders,
implemented as RNNs. The output of the three encoders is
concatenated and passed through several fully connected
layers, which then predict σz and µz , the parameters of
the approximate posterior qθ(z|x) = N (µz,σz).

2 Using
the reparameterization trick [20], a latent vector z is sam-
pled from this distribution as z ∼ N (µz,σz ∗ ε) where ∗
stands for element-wise multiplication. This is necessary
because it is generally not possible to backpropagate gra-
dients through a random sampling operation, since it is not
differentiable. ε is sampled from an isotropic Gaussian dis-
tributionN (0, σε ∗ I), where we treat σε as a hyperparam-
eter (see Section 4.2 for more details). This shared latent
vector is then fed into three parallel fully connected lay-
ers, from which the three decoders try to reconstruct the
pitch, velocity and instrument rolls. The note pitch and
instrument decoders are trained with cross entropy losses,
whereas for the velocity decoder we use MSE.

3.3 Style Classifier

Having a disentangled latent space might enable some con-
trol over the style of a song. If for example one dimension
in the latent space encodes the dynamics of the music, then
we could easily change an existing piece by only varying
this dimension. Choosing a high value for β (the weight of
the KL term in the VAE loss function) has been shown to
increase disentanglement of the latent space in the visual
domain [17]. However, increasing β has a negative effect

2 We use notation σ for both a variance vector and the corresponding
diagonal variance matrix.
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Dataset #Songs #Bars Artists
Classic 477 60523 Beethoven, Clementi, ...
Jazz 554 72190 Sinatra, Coltrane, ...
Pop 659 65697 ABBA, Bruno Mars, ...
Bach 156 16213 Bach
Mozart 143 17198 Mozart

Table 1. Properties of our dataset.

on the reconstruction performance. Therefore, we intro-
duce additional structure into the latent space by attaching
a softmax style classifier to the top k dimensions of the la-
tent space (zstyle), where k equals the number of different
styles in our dataset. This forces the encoder to write a
“latent style label” into the latent space. Using only k di-
mensions and a weak classifier encourages the encoder to
learn a compact encoding of the style. In order to change
a song’s style from Si to Sj , we pass the song through the
encoder to get z, swap the values of dimensions zistyle and
zjstyle, and pass the modified latent vector through the de-
coder. As style we choose the music genre (e.g., Jazz, Pop
or Classic) or individual composers (Bach or Mozart).

3.4 Full Loss Function

Putting all parts together, we get the full loss function of
our model as

Ltot =λPH(P, P̂ ) + λIH(I, Î) (1)

+λVMSE(V, V̂ ) + λSH(S, Ŝ)− βDKL(q||p),

where H(·, ·), MSE(·, ·) and DKL(·||·) stand for cross
entropy, mean squared error and KL divergence respec-
tively. The hats denote the predicted/reconstructed values.
The weights λ and β can be used to balance the individual
terms of the loss functions.

4. IMPLEMENTATION

In this section we describe our dataset and pre-processing
steps. We also give some insight into the training of our
model and justification for hyperparameter choices.

4.1 Dataset and Pre-Processing

Our dataset contains songs from the genres Classic, Jazz
and Pop. The songs were gathered from various online
sources; 3 a summary of the properties is shown in Ta-
ble 1. Note that we excluded symphonies from our Clas-
sic, Bach and Mozart datasets due to their complexity and
high number of simultaneously playing instruments. We
use a train/test split of 90/10. Each song in the dataset
can contain multiple instrument tracks and each track can
have multiple notes played at the same time. Unless stated
otherwise, we select nT = 4 instrument tracks from each
song by first picking the tracks with the highest number of

3 Pop: www.midiworld.com / Jazz: http://midkar.
com/jazz/jazz_01.html / Classic (including Bach, Mozart):
www.reddit.com/r/WeAreTheMusicMakers/comments/
3ajwe4/

played notes, and from each track we choose the highest
voice, meaning picking the highest notes per time step. If
a song has fewer than nT instrument tracks, we pick ad-
ditional voices from the tracks until we have nT voices in
total. We exclude drum tracks, since they do not have a
pitch value. We choose the 16th note as smallest unit. In
the most widely used time signature 4

4 there are 16 16th

notes in a bar. 91% of Jazz and Pop songs in our dataset
are in 4

4 , whereas for Classic the fraction is 34%. For songs
with time signatures other than 4

4 we still designate 16 16th
notes as one bar. All songs are split into samples of one bar
and our model auto-encodes one sample at a time. During
training we shuffle the songs for each epoch, but keep the
bars of a song in the correct order and do not reset the
RNN states between samples. Thus, our model is trained
on a proper sequence of bars, instead of being confused by
random bar progressions.

There are 128 possible pitches in MIDI. Since very low
and high pitches are rare and often do not sound pleasing,
we only use nP = 60 pitch values ranging from 24 (C1) to
84 (C6).

4.2 Model (Hyper-)Parameters

Our model is generally not sensitive to most hyperparame-
ters. Nevertheless we continuously performed local hyper-
parameter searches based on good baseline models, only
varying one hyperparameter at a time. We use the recon-
struction accuracy of the pitch roll decoder as evaluation
metric. Using Gated Recurrent Units (GRUs) [6] instead
of LSTMs increases performance significantly. Using bidi-
rectional GRUs did not improve the results. The pitch roll
encoder/decoder uses two GRU layers, whereas the rest
uses only one layer. All GRU state sizes as well as the size
of the latent space z are set to 256. We use the ADAM opti-
mizer [19] with an initial learning rate of 0.0002. For most
layers in our architecture, we found tanh to work better
than sigmoid or rectified linear units. We train on batches
of size 256. The loss function weights λP , λI , λV and λS
were set to 1.0, 1.0, 0.1 and 0.1 respectively. λp was set to
1.0 to favor high quality note pitch reconstructions over the
rest. λV was also set to 1.0 because the MSE magnitude is
much smaller than the cross entropy loss values.

During our experiments, we realized that high values
of β generally lead to very poor performance. We further
found that setting the variance of ε to the value of σε = 1,
as done in all previous work using VAEs, also has a neg-
ative effect. Therefore we decided to treat σε as a hyper-
parameter as well. Figure 2 shows the results of the grid
search. σε is the variance of the distribution from which
the ε values for the reparameterization trick are sampled,
and is thus usually set to the same value as the variance of
the prior. However, especially at the beginning of learn-
ing, this introduces a lot of noise that the decoder needs to
handle, since the values for µz and σz , output by the en-
coder, are small compared to ε. We found that by reducing
σε, we can improve the performance of our model signif-
icantly, while being able to use higher values for β. An
annealing strategy for both β and σε might produce better
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Figure 2. Test reconstruction accuracy of pitch roll for
different β and σε.

Pitch Instrument Style Velocity
Train Test Train Test Train Test Train Test

CvJ 0.90 0.85 0.99 0.87 0.98 0.92 0.008 0.029
CvP 0.96 0.88 0.99 0.89 0.96 0.91 0.017 0.036
JvP 0.88 0.80 0.99 0.86 0.94 0.69 0.043 0.048
BvM 0.91 0.75 0.99 0.82 0.94 0.74 0.010 0.033

Table 2. Train and test performance of our final models.
The velocity column shows MSE loss values, whereas the
rest are accuracies.

results, but we did not test this. In the final models we use
β = 0.1 and σε = 0.01. Note that during generation we
sample z from N (0,σẑ), where σẑ is the empirical vari-
ance obtained by feeding the entire training dataset through
the encoder. The empirical mean µẑ is very close to zero.

4.3 Training

All models are trained on single GPUs (GTX 1080) un-
til the pitch roll decoder converges. This corresponds to
around 400 epochs, or 48 hours. We train one model for
each genre/composer pair to make learning easier. This re-
sults in four models that we henceforth call CvJ (trained
on Classic and Jazz), CvP (Classic and Pop), JvP (Jazz and
Pop) and BvM (Bach and Mozart). The train/test accura-
cies/losses of all final models are shown in Table 2. The
columns correspond to the terms in our model’s full loss
function (Equation 1).

5. EXPERIMENTAL RESULTS

In this section we evaluate the capabilities of MIDI-VAE.
Wherever mentioned, corresponding audio samples can be
found on YouTube. 4

5.1 Style Transfer

To evaluate the effectiveness of MIDI-VAE’s style transfer,
we train three separate style evaluation classifiers. The in-
put features are the pitch, velocity and instrument rolls re-

4 https://goo.gl/vb8Yrh

Train Songs Test Songs
Before After Diff. Before After Diff.

CvJ 0.92 0.38 0.54 0.87 0.39 0.48
CvP 0.94 0.43 0.51 0.92 0.45 0.47
JvP 0.72 0.60 0.12 0.72 0.62 0.10
BvM 0.77 0.45 0.32 0.66 0.47 0.19

Table 3. Style transfer performance (ensemble classifier
accuracies before and after) between all style pairs.

spectively. The three style classifiers are also combined to
output a voting based ensemble prediction. The accuracy
of the classifiers is computed as the fraction of correctly
predicted styles per bar in a song. We predict the likelihood
of the source style before and after the style change. If the
style transfer works, the predicted likelihood of the source
style decreases. The larger the difference, the stronger the
effect of the style transfer. Note that for all experiments
presented in this paper we set the number of styles k = 2,
that is, one MIDI-VAE model is trained on two styles, e.g.,
Classic vs. Jazz. Therefore, the style classifier is binary
and a reduction in probability of the source style is equiv-
alent to an increase in probability of the target style of the
same magnitude. All style classifiers use two-layer GRUs
with a state size of 256. Table 3 shows the performance
of MIDI-VAE’s style transfer when measured by the en-
semble style classifier. We trained a separate MIDI-VAE
for each style pair. For each pair of styles we perform a
style change on all songs in both directions and average
the results. The style transfer works for all models, albeit
to varying degrees. In all cases except for JvP, the predic-
tor is even skewed below 0.5, meaning that the target style
is now considered more likely than the source style.

Table 4 shows the style transfer results measured by
each individual style classifier. We can see that pitch and
velocity contribute equally to the style change, whereas in-
strumentation seems to correlate most with the style. For
CvJ and CvP, switching the style heavily changes the in-
strumentation. Figure 3 illustrates how the instruments of
all songs in our Jazz test set are changed when switch-
ing the style to Classic. Only few instruments are rarely
changed (piano, ensemble, reed), whereas most others are
mapped to one or multiple different instruments. The
instrument switch between genres with highly overlap-
ping instrumentation (JvP, BvM) is much less pronounced.
Classifying style based on the note pitches and velocities of
one bar is more difficult, as shown by the “before” accura-
cies in Table 4, which are generally lower than the ones of
the instrument roll based classifier. Nevertheless, the style
transfer changes pitch and velocity towards the target style.
MIDI-VAE retains most of the original melody, while of-
ten changing accompanying instruments to suit the target
style. This is generally desirable, since we do not want
to change the pitches so thoroughly that the original song
cannot be recognized anymore. We provide examples of
style transfers on a range of songs from our training and
test sets on YouTube (see Style transfer songs).
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Figure 3. The matrix visualizes how the instruments are
changed when switching from Jazz to Classic, averaged
over all Jazz songs in the test set.

Pitch Velocity Instrument
Bf. Af. Bf. Af. Bf. Af.

CvJ Test 0.77 0.66 0.67 0.57 0.90 0.20
CvP Test 0.77 0.67 0.71 0.60 0.91 0.27
JvP Test 0.65 0.63 0.67 0.64 0.67 0.55
BvM Test 0.55 0.47 0.60 0.49 0.64 0.47

Table 4. Average before and after classifier accuracies for
all classifiers (pitch/instrument/velocity) for the test set.

5.2 Latent Space Evaluation

Figure 4 shows a t-SNE [22] plot of the latent vectors for
all bars of 20 Jazz and 20 Classic pieces. The darker the
color, the more “jazzy” or “classical” a song is according
to the ensemble style classifier. The genres are well sepa-
rated, and most songs have all their bars clustered closely
together (likely thanks to the instrument roll being con-
stant). Some classical pieces are bleeding over into the
Jazz region and vice versa. As can be seen from the light
color, the ensemble style classifier did not confidently as-
sign these pieces to either style.

We further perform a sweep over all 256 latent dimen-
sions on randomly sampled bars to check whether chang-
ing one dimension has a measurable effect on the generated
music. We define 27 metrics, among which are total num-
ber of (held) notes, mean/max/min/range of (specific or all)
pitches/velocities, and style changes. Besides the obvious
dimensions where the style classifier is attached, we find
that some dimensions correlate with the total number of
notes played in a song, the highest pitch in a bar, or the
occurrence of a specific pitch. The changes can be seen
when plotting the pitches, but are difficult to hear. Fur-
thermore, the dimensions are very entangled, and chang-
ing one dimension has multiple effects. Higher values for
β ∈ {1, 2, 3} slightly improve the disentanglement of la-

[ Classic (o) ] [ Jazz (+) ]

Figure 4. t-SNE plot of latent vectors for bars from 20 Jazz
and Classic songs. Bars from the same song were given the
same color. Lighter colors mean that the ensemble style
classifier was less certain in its prediction.

tent dimensions, but strongly reduce reconstruction accu-
racy (see Figure 2). We added samples to YouTube to show
the results of manipulating individual latent variables.

5.3 Generation and Interpolation

MIDI-VAE is capable of producing smooth interpolations
between bars. This allows us to generate medleys by con-
necting short pieces from our dataset. The interpolated
bars form a musically consistent bridge between the pieces,
meaning that, e.g., pitch ranges and velocities increase
when the target bar has higher pitch or velocity values. We
can also merge entire songs together by linearly interpolat-
ing the latent vectors for two bar progressions, producing
interesting mixes that are surprisingly fun to listen to. The
original songs can sometimes still be identified in the mix-
tures, and the resulting music sounds harmonic. We again
uploaded several audio samples to YouTube (see Medleys,
Interpolations and Mixtures).

6. CONCLUSION

We introduce MIDI-VAE, a simple but effective model for
performing style transfer between musical compositions.
We show the effectiveness of our method on several differ-
ent datasets and provide audio examples. Unlike most ex-
isting models, MIDI-VAE incorporates both the dynamics
(velocity and note durations) and instrumentation of mu-
sic. In the future we plan to integrate our method into a
hierarchical model in order to capture style features over
longer time scales and allow the generation of larger pieces
of music. To facilitate future research on style transfer for
symbolic music, and sequence tasks in general, we make
our code and data publicly available. 5

5 https://github.com/brunnergino/MIDI-VAE
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ABSTRACT

Methods for interpreting machine learning models can
help one understand their global and/or local behaviours,
and thereby improve them. In this work, we apply a global
analysis method to a machine listening model, which es-
sentially inverts the features generated in a model back into
an interpretable form like a sonogram. We demonstrate
this method for a state-of-the-art singing voice detection
model. We train up-convolutional neural networks to in-
vert the feature generated at each layer of the model. The
results suggest that the deepest fully connected layer of
the model does not preserve temporal and harmonic struc-
tures, but that the inverted features from the deepest con-
volutional layer do. Moreover, a qualitative analysis of a
large number of inputs suggests that the deepest layer in
the model learns a decision function as the information it
preserves depends on the class label associated with an in-
put.

1. INTRODUCTION

Deep neural networks (DNNs) are state-of-the-art in nu-
merous machine learning applications. This success is due
to their high expressive power and strong generalisation
capability [10]. DNNs acquire these capabilities automati-
cally through training over large amounts of data and tun-
ing of millions of parameters. Despite their success, DNNs
remain “black-boxes” as we know very little about the pro-
cess by which they form their predictions.

Recent research has highlighted problems associated
with DNNs. For example, researchers have demonstrated
that attacking these models with carefully generated in-
puts, called “adversarial examples”, changes their predic-
tions [11, 15, 44]. Such behaviour may be dangerous to a
system (e.g., autonomous vehicle) if its decision making
depends on DNN predictions [32]. Moreover, like shallow
machine learning models, a DNN may exploit confounders
in a dataset and behave correctly for the wrong reasons.
Such behaviour limits the performance of a model in the

c© Saumitra Mishra, Bob L. Sturm, Simon Dixon. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Saumitra Mishra, Bob L. Sturm, Simon Dixon. “Un-
derstanding a Deep Machine Listening Model through Feature Inversion”,
19th International Society for Music Information Retrieval Conference,
Paris, France, 2018.

real world where such confounders are absent. Thus, there
is an urgent need to bring interpretability to these black-
box models, i.e. to understand the behaviour of a DNN [4].

Researchers have attempted to analytically [33, 48] and
empirically explain the behaviour of DNNs. In this work,
we focus on understanding these models empirically using
post-hoc visualisation methods [27, 31]. We can broadly
classify such methods into two categories: (1) methods that
explain model predictions (local analysis); and (2) meth-
ods that explain a model (global analysis). Local anal-
ysis uses variants of sensitivity analysis (e.g., gradient-
based sensitivity analysis) to generate attribution maps that
highlight the input dimensions [39,40,43] or input regions
(groups of contiguous dimensions) [35,47] in favour of (or
against) a prediction. Such analysis is useful but may result
in inconsistent [16] and uninterpretable (noisy) explana-
tions [41]. Although some local explanation methods can
generate cleaner visualisations, they depend on the type of
non-linearity [42] or network architecture [38,47] and thus
are not generalisable.

In another direction, the global analysis of DNNs aims
for an insight that generalises across input instances. For
example, irrespective of the class label associated with an
input image, the shallow layers of image content recogni-
tion models show sensitivity to low-level structures, e.g.,
edges and gradients [47]. There exist several methods
for global analysis. For example, activation maximisation
aims to synthesise examples in the input space (e.g., pix-
els) that maximally activate a specific neuron [9,29,40,46]
or layer [28] in a model. Similarly, feature inversion aims
to highlight the input content (features) preserved by any
layer in a DNN model by inverting the corresponding fea-
ture [6, 23].

In this work, we apply feature inversion to a machine
listening model that classifies an input audio frame (or ex-
cerpt) into predefined classes. Previous work in the anal-
ysis of deep machine listening models has focused both
on local and global analysis. The methods to generate
local explanations for model predictions use bin-level [1]
or region-level [26] attribution maps. On the other hand,
Dieleman et al. [3] globally analyse a music autotagging
model by visualising filters in the first convolutional layer.
Similarly, in [36] the authors globally analyse a scaled-
down version of their deep onset detector by visualising
the most activated feature maps and their corresponding
filter kernels. Our method differs from these global analy-
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Figure 1: Functional block diagram of our feature inver-
sion method. The method inverts a feature ΦL(xi) from a
layer L by training a feature inverter GL that jointly min-
imises the input space loss Ψinput and feature space loss
Ψfeature . ΦL and Θ are the representation functions of a
discriminator D and comparator C, respectively.

sis methods as it neither limits the analysis only to shallow
layers nor puts any restriction on the depth of a model.

We demonstrate our method for a state-of-the-art
singing voice detection (SVD) model that classifies an in-
put mel spectrogram excerpt into two classes: ‘vocal’ and
‘non-vocal’ [37]. We first train up-convolutional neural
networks [7], one per layer of the SVD model, to invert the
features generated by it. We then quantify the performance
of the inversion models (we call them “feature inverters”)
by calculating the normalised reconstruction error (NRE)
that [23] defines as the normalised Euclidean distance be-
tween an input and its inverted representation. The results
demonstrate that NRE is largest for a feature inverter that
inverts the deepest layer (the last fully connected layer)
in the SVD model and decreases for feature inverters that
invert features from shallow layers. Finally, we qualita-
tively analyse the inverted features for both classes (vocal
and non-vocal) to understand the preserved input content
at each layer of the SVD model. Similarly, we analyse the
inverted features for inputs selected from different datasets
to test whether the conclusions from one dataset generalise
to the other. The experimental code and results are avail-
able online. 1

2. FEATURE INVERSION

Feature inversion aims to map the feature generated at any
layer of a DNN back to a plausible input. Each layer in
a DNN maps an input feature to an output feature and in
the process ignores the input content that does not seem
relevant to the classification task. Thus, the inversion of a
feature from any layer of a DNN will highlight the input
content preserved by that layer.

2.1 Prior Work

Mahendran et al. [23] and Dosovitskiy et al. [6] apply fea-
ture inversion to analyse the global behaviour of convolu-
tional neural networks (CNNs). Mahendran et al. [23, 24]

1 https://github.com/saum25/ISMIR-2018

invert the features from AlexNet [18] (a CNN for image
recognition). Their work demonstrates that the inverted
features from the deepest convolutional layer in AlexNet
are visually similar (preserve the spatial layout and colour)
to the input image. They also demonstrate that although
the reconstructions from fully connected layers are visually
poor, they still depict the presence of high-level features
(e.g., the facial features of an animal). Their work also
highlights the invariances captured by the AlexNet layers.
For example, the inverted representations from the deep-
est layer in the model (a fully connected layer) depict an
object at different locations, orientations and scales.

The method introduced by Mahendran et al. [23] gener-
ates an inverted representation x∗iL ∈ Rn from an Lth layer
feature by iteratively minimising the feature space loss be-
tween an input image xi ∈ Rn and an intermediate repre-
sentation x′iL ∈ Rn. The method starts with a randomly
sampled x′iL and in each iteration updates it by calculating
the gradient of the loss function at x′iL. Formally, given
a CNN with representation function ΦL : Rn → Rd that
maps an n-dimensional input to a d-dimensional feature
ΦL(xi) at a layer L, the method inverts ΦL(xi) by solving

x∗iL = arg min
x′
iL

‖ΦL(x′iL)− ΦL(xi)‖
2

+ αf(x′iL) (1)

where f : Rn → R is a regularisation function (a natu-
ral image prior) that limits the search to realistic images
and α is a scaling constant. Regularisation is needed since
an unrestricted search may output fooling examples [30]
that cause high activations to a neuron (or a layer), but do
not possess features found in natural images. The method
by Mahendran et al. [23, 24] has two major limitations:
(1) hand-crafting a prior is challenging as for some inputs
(e.g., images, audio) defining the constituents of a real in-
put is difficult; and (2) the method needs to solve Eq. 1 for
every new feature it needs to invert.

The feature inversion method proposed by Dosovitskiy
et al. [6] tackles both the above issues and demonstrates
visually improved reconstructions even for the fully con-
nected layers of AlexNet. The method trains another neu-
ral network, an up-convolutional neural network (feature
inverter) [7], to invert the features of a DNN. The method
trains a feature inverter by minimising the input space loss
Ψinput , defined as the squared Euclidean distance between
an input image and its inverted representation. Although
this method learns a natural image prior implicitly during
training and is expensive only at the training time, the in-
verted representations are blurry for all the layers. The
reason behind this is the way a feature inverter inverts a
feature. A forward pass through AlexNet (or any DNN)
maps several inputs to the same feature. Thus, to invert a
feature, a feature inverter generates an input that is an aver-
age of all the inputs that AlexNet maps to the given feature.
This averaging effect results in blurry reconstructions.

2.2 Our Method

Fig. 1 provides an overview of our method. We use the
approach of Dosovitskiy et al. [6], but modify its loss
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Figure 2: The architecture of the singing voice detection
model proposed by Schlüter et al. [37]. Nfm denotes the
number of feature maps in the output of a convolutional
layer. Nn denotes the number of neurons in a fully con-
nected layer. Conv: convolutional layer, MP: max-pooling
layer, FC: fully connected layer, Out: output layer.

function to reduce the effect of input averaging. Recent
works [5, 14] demonstrate that minimising loss in the per-
ceptual space helps to reduce the over-smoothness problem
for image generation models. We extend this idea to ma-
chine listening. Thus, in addition to the input space loss
Ψinput , our method also calculates the feature space loss
Ψfeature . We define total loss Ψ as:

Ψ = λinputΨinput + λfeatureΨfeature (2)

where λinput and λfeature weight the losses of the input
space and feature space. Thus, our method trains a feature
inverter GL to invert a feature ΦL(xi) by jointly minimis-
ing the input space and feature space losses. To evaluate
Ψfeature , we use the approach from [5] where the authors
use a comparator C to map an input xi and its inverted
representation x̂iL to the feature space. A comparator is
a pre-trained discriminative model that may or may not be
of the same depth as the discriminatorD (the model whose
features we are inverting). We can even use D as a com-
parator by extracting feature vectors at a layer of D (e.g.,
Dosovitskiy et al. [5] use the deepest convolutional layer
of AlexNet as a comparator for inverting AlexNet).

Formally, given an input excerpt xi ∈ Rn and a rep-
resentation function ΦL : Rn → Rd that maps xi to a
d-dimensional feature ΦL(xi) at a layer L of a discrimina-
tor D, our method trains a feature inverter GL that maps
ΦL(xi) to an inverted representation x̂iL ∈ Rn. In or-
der to do that, the method calculates Ψinput and Ψfeature .
Given a comparator C with a representation function Θ :
Rn → Rd′

, we define Ψfeature as the squared Euclidean
distance between Θ(xi) and Θ(x̂iL), where x̂iL is an in-
verted representation for an input xi at layer L and d′ is
the dimensionality of the feature space for C. Similarly,
we define Ψinput as the squared Euclidean distance be-
tween xi and x̂iL. The method trains an up-convolutional
neural network GL(ΦL(xi);w) with parameters w by the
optimisation

w∗ = arg min
w

∑
i

(‖xi −GL{ΦL(xi);w}‖2

+ ‖Θ(xi)−Θ(GL{ΦL(xi);w})‖2) + β‖w‖2
(3)

where β > 0 is the regularisation constant. Once we train
GL, we can invert any feature ΦL(xi) by a forward pass
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Figure 3: Feature inverter architecture for the Conv4 layer
of the SVD model. The highlighted components represent
the ‘Conv2’ convolutional layer and its input and output
feature maps. Uconv: up-convolutional layer, Conv: con-
volutional layer.

through GL:

x̂iL = GL(ΦL(xi);w
∗) (4)

3. INVERTING THE FEATURES OF A DEEP
SINGING VOICE DETECTOR

We now demonstrate our feature inversion method from
Section 2 for a state-of-the-art SVD model [37]. We first
introduce the SVD model and then explain the architec-
tures and training details of our feature inverters. Finally,
we evaluate the performance of the feature inverters on two
SVD datasets.

3.1 The Deep Singing Voice Detection Model

Singing voice detection is an audio segmentation problem
where the task is to classify an input audio frame (ex-
cerpt) into one of the two categories: singing voice with or
without instrumental music (‘vocal’) or instrumental mu-
sic without singing voice (‘non-vocal’). There exist sev-
eral methods for singing voice detection. Some use hand-
crafted features to train shallow classifiers [20, 22, 34],
while others jointly optimise the feature extraction and
classification steps using deep learning [19, 21, 37].

Schlüter et al. [37] train an SVD model using a CNN
and seven data augmentation techniques. Their model
achieves state-of-the-art performance on public benchmark
datasets. 2 Fig. 2 depicts the architecture of their 8-layered
SVD model. Each convolutional layer performs convo-
lution using 3 × 3 filters with 1 × 1 stride and no zero
padding. The two max-pooling layers perform pooling
with 3 × 3 stride and no zero padding. The input to the
model is a mel spectrogram of about 1.6sec (115 frames).
The model was trained on the Jamendo dataset [34]. Ja-
mendo is a dataset of pop music songs and it consists of
non-overlapping training, validation and test subsets with
61, 16 and 16 audio files, respectively. The model uses the
auxiliary data (57 frames on each sides of the centre frame)
as context to classify the centre frame in an input.

3.2 Feature Inverter Architectures

We train up-convolutional neural networks to invert the
features generated by the above SVD model. We design

2 https://github.com/f0k/ismir2015
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Layer Input Shape Units Output Shape
FC1 256× 1 256 256× 1

Reshape 256× 1 - 16× 4× 4
Uconv2 16× 4× 4 64 64× 8× 8
Conv3 64× 8× 8 64 64× 8× 8
Uconv4 64× 8× 8 32 32× 16× 16
Conv5 32× 16× 16 32 32× 16× 16
Uconv6 32× 16× 16 16 16× 32× 32
Conv7 16× 32× 32 16 16× 32× 32
Uconv8 16× 32× 32 8 8× 64× 64
Conv9 8× 64× 64 8 8× 64× 64

Uconv10 8× 64× 64 1 1× 128× 128

Table 1: Feature inverter architecture to invert the FC7
layer of the SVD model. Input and output shape dimen-
sions are ordered as the number of channels × time × fre-
quency. Uconv: up-convolutional layer, Conv: convolu-
tional layer, FC: fully connected layer. Units refer to the
number of neurons in a fully connected layer or the number
of filters in a convolutional layer.

Inv-idx Inv-inp Inv-depth Inv-nconv
FC8 64× 1 11 4
FC7 256× 1 10 4
MP6 64× 11× 7 5 1

Conv5 64× 33× 21 5 3
Conv4 128× 35× 23 5 3
MP3 32× 37× 25 6 4

Conv2 32× 111× 76 4 4
Conv1 64× 113× 78 2 2

Table 2: Architectural overview of the feature inverters
for all the layers in the SVD model. Inv-idx: SVD layer
a feature inverter inverts, Inv-inp: input to a feature in-
verter (number of channels × time × frequency), Inv-
depth: number of layers in a feature inverter, Inv-nconv:
number of convolutional layers in a feature inverter. Conv:
convolutional layer, FC: fully connected layer and MP:
max-pooling layer.

two categories of architectures, one to invert the fully con-
nected (FC) layers and the other to invert the convolutional
(Conv) and max-pooling (MP) layers of the SVD model. 3

The architecture of inversion models in [6] inspires the de-
sign of our feature inverters, but we adapt the architectures
to suit the SVD model. A majority of feature inverters need
to perform the upsampling (unpooling) operation that is an
approximate inverse of the max-pooling operation done in
the SVD model. In order to perform unpooling and con-
volution in a single step, we use up-convolutional layers
(Uconv) with 4 × 4 filters and 2 × 2 stride. This configu-
ration of Uconv layers upsamples an input feature map by
2 [7] . The number of such layers depends on the dimen-
sionality of the layer we are inverting. For example, the

3 “inverting a layer” is another way to refer to the inversion of the
features generated by a layer.

feature inverter to invert the 256-dimensional FC7 layer
uses 5 Uconv layers (Table 1), while the feature inverter
to invert the Conv4 layer uses two Uconv layers (Fig. 3).
The feature inverters for the Conv1 and Conv2 layers in the
SVD model do not use Uconv layers as for them the model
generates features without using the max-pooling layer.

We increase the capacity of the feature inverters
by adding convolutional layers; either after every up-
convolutional layer (for inverting an FC layer) or before
the first up-convolutional layer (for inverting a Conv or MP
layer). We empirically decide the number of convolutional
layers for each feature inverter. The convolutional layers
perform convolution using 3×3 filters with 1×1 stride and
improve the visual appearance of the reconstructions [8].
Table 2 provides details about the depth and the number
of Conv layers in each feature inverter. All the layers
use exponential linear unit (ELU) non-linearity given by
y(x) = x if x > 0, otherwise ex−1 [2]. The network uses
batch normalisation layers [13] to make sure the input to
each layer follows a standard normal distribution. Except
for the Conv1 and Conv2 layers, each feature inverter gen-
erates an inverted representation with a larger spatial size
and later trims it to match the input excerpt size (115×80).
The feature inverters for the Conv1 and Conv2 layers gen-
erate an inverted representation of the same shape as input
by symmetrically padding the missing dimensions.

3.3 Training of the Feature Inverters

We train one feature inverter per layer of the SVD model.
We train a feature inverter using mel spectrogram excerpts
of about 1.6 sec that we extract from the Jamendo training
dataset. We show one such sample in Fig. 4. We generate
excerpts with a hop size of 10 frames (140 ms). Thus, we
train each feature inverter using a data set of about 100k
features. We do not use any data augmentation techniques.
In order to prevent overfitting, we run the optimisation to
a fixed number of weight updates (30 epochs) and select
a feature inverter giving the lowest loss on the validation
subset. We use the Conv5 layer of the SVD model as
the comparator, i.e., we encode the mel spectrogram and
the inverted representation using Conv 5. We initialise the
feature inverter weights using the He normal initialisation
method [12]. In each iteration, for a mini-batch of 32 ran-
domly selected excerpts, the training objective jointly min-
imises the feature and input space losses and updates the
change in parameters using ADAM [17]. We set the scal-
ing factors λinput and λfeature = 1 (Eq. 2). We start train-
ing with an initial learning rate of 0.001 and decay it by
0.5 when the training loss does not change for 2 consec-
utive epochs. The training procedure performs regularisa-
tion using L2 weight decay and sets β = 1e− 4 (Eq. 3).

3.4 Quantitative Evaluation of the Feature Inverters

We train eight feature inverters using the Jamendo training
dataset and the architectures and training methodology dis-
cussed above. We evaluate the performance of each feature
inverter on an evaluation set of 128 mel spectrogram ex-
cerpts. We build the evaluation set by randomly selecting
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Figure 4: Sample mel spectrogram excerpt from the Ja-
mendo dataset. This excerpt belongs to the vocal class.
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Figure 5: Performance evaluation of the feature inverters.
The plot depicts the change in average normalised recon-
struction error (NRE) as a feature inverter inverts different
layers in the SVD model.

8 excerpts from each of the 16 audio files in the Jamendo
test dataset. We quantify the performance of feature in-
verters by calculating the average normalised reconstruc-
tion error (NRE) for each feature inverter on the evaluation
dataset. [23] defines NRE as:

NRE = ‖xi − x̂iL‖/Nc (5)

where Nc is a normalising constant computed from the av-
erage pairwise Euclidean distance between excerpts in the
evaluation set.

We also evaluate the feature inverters on the RWC
dataset [25] to understand whether the results of the quan-
titative evaluation on Jamendo extend to the RWC dataset.
The RWC dataset for singing voice detection is a public
benchmark dataset that contains a collection of 100 pop
music songs, but unlike Jamendo, there is no partitioning
into separate subsets. Thus, to evaluate our models we first
build an RWC test dataset by randomly selecting 20 audio
files from a set of 100 and use them to build an evaluation
dataset of 160 randomly selected excerpts (8 excerpts per
audio files). Moreover, in order to evaluate the feature in-
verters on a larger evaluation dataset, we randomly sample
10 different evaluation sets, calculate the average NRE for
each and later take an average. Thus, effectively we eval-
uate our feature inverters on an evaluation dataset of size
1280 (Jamendo) and 1600 (RWC) excerpts.

Fig. 5 shows the results of the evaluation. For both
datasets, the reconstruction error is largest for the deep-
est layer in the SVD model (FC8) and decreases for rep-
resentations inverted from shallower layers. This is pre-
dictable as the dimensionality of the features in shallow

layers is larger than in deep layers, making it easier to in-
vert them. For instance, the dimensionality reduction of
features from MP6 to FC7 is about 19 times, compressing
a 4928-dimensional feature to 256 dimensions. Similarly,
we see a large increase in the average NRE between the
feature inverters for the Conv2 and MP3 layers. This likely
occurs due to max-pooling operation that compresses fea-
ture dimensionality by 9 times between the two layers.

The results also depict that the feature inverters have
larger reconstruction error on the RWC dataset at all but
two layers. This is expected since both the discrimina-
tor (the SVD model) and the feature inverters are trained
on the Jamendo dataset. One possible explanation for the
comparable average NRE of the Conv1 and Conv2 layers
is that these shallow layers of the model are learning gen-
eralisable features [47]. This becomes less so at deeper
layers, where features are likely tuned to specific traits of
the training data.

We also compare the performance of the feature inver-
sion method we use in this work (we call it ‘Mjoint’) with
a baseline method (we call it ‘Minput’) that trains feature
inverters using image loss only. We train and test the fea-
ture inverters of Minput on the Jamendo dataset. We find
that across all the layers of the SVD model, the average
NRE of the feature inverters using Minput is either similar
or slightly lower than for those using Mjoint. Such a be-
haviour is predictable asMinput aims to only minimise the
input reconstruction loss, while Mjoint aims to jointly op-
timise both the loss functions, which may or may not result
in lower NRE [5]. The benefit of usingMjoint comes from
the generation of inverted representations that are percep-
tually closer to an input, a property that is challenging for
Minput to achieve.

4. QUALITATIVE ANALYSIS OF THE INVERTED
FEATURES

Fig. 6 shows visualisations for each layer of the SVD
model. We generate these visualisations by selecting four
inputs, two from each dataset (Jamendo and RWC), in
which one belongs to each of the two classes (vocal and
non-vocal). We then use the feature inverters to invert the
features extracted by the SVD model from each input. The
results provide some insights into the model behaviour. For
example, reconstructions from the FC8 layer suggest that
FC8 does not retain the harmonic structures present in the
inputs. Moreover, it appears that this layer preserves ei-
ther the high frequency or the low-frequency content of an
input. Similarly, FC8 does not preserve any temporal infor-
mation (musical onset locations) present in the inputs. In-
terestingly, for a large number of cases (in addition to these
four inputs), we found a clear demarcation between the vo-
cal and the non-vocal class visualisations from this layer.
We find that for the vocal class, energy appears in higher
frequencies while for the non-vocal class energy appears
in lower frequencies. These visualisations suggest that the
SVD model learns a class-decision function in this layer.

Similarly, reconstructions from the FC7 layer suggest
that the layer preserves some harmonic content and ap-
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Figure 6: Feature inversion from successive layers of the SVD model. Each row corresponds to one input excerpt: (A), (B)
are respectively non-vocal and vocal excerpts from “03 - Say me Good Bye.mp3” in the Jamendo test dataset. Similarly,
(C) and (D) are respectively non-vocal and vocal excerpts from “RWC- MDB-P-2001-M04/5 Audio Track.aiff” in the RWC
test dataset. Columns contain mel spectrograms of (from left to right): the input signal then inverted representations from
successive SVD model layers (as labelled). The visualisations highlight how the model ignores the input content as it
forms higher-level representations. Inversions of shallow layers resemble the input, but the reconstruction quality reduces
for deeper layers. Conv: convolutional layer, MP: max-pooling layer, FC: fully connected layer.

proximate onset locations of the inputs. But, there are
some deviations from this behaviour. For instance, in Fig.
6 row B, the harmonic structures are less evident. Simi-
larly, for the input in row C, the feature inverter at FC7 is
unable to reconstruct all the harmonic and temporal con-
tent present in the input. This may be due to the fact that
we do not train the feature inverters on RWC, thus the re-
construction error is higher for this input, resulting in poor
reconstruction.

We find that reconstructions from the deepest convolu-
tional layer of the model contain more information than
those from the two fully connected layers. For both in-
puts from Jamendo (Fig 6A-B), the model preserves much
of the input content (e.g., the reconstructions capture the
harmonic structure and approximately align the temporal
boundaries with the input). This confirms the quantita-
tive results of model inversion for Conv5 and FC7 layers,
where we show that the average NRE is about 18% less
for Conv5. The visualisations for the RWC excerpts (Fig.
6C-D) report similar results. Finally, reconstructions from
all the other layers follow a similar pattern. Moving toward
shallower layers, they become visually similar to the input,
increasingly showing the presence of finer harmonics and
temporal structures. Moreover, the inversions from Conv1
and Conv2 are very close to the respective inputs. This sug-
gests that the filters of the first 2 convolutional layers act
as a bijective map, e.g., performing an invertible frequency
transform. Moreover, the visualisations from deeper lay-
ers in the model are more blurry than from shallow layers.
This suggests that deeper layers capture more invariances
from data than shallow layers.

5. CONCLUSION AND FUTURE WORK

In this work, we applied a model analysis method called
feature inversion to a state-of-the-art singing voice detec-
tion model. Feature inversion helped to understand the
global behaviour of the SVD model by visualising the in-
formation preserved by any layer in the model. We trained
up-convolutional neural networks to invert the features of
the model. We quantitatively analysed the feature inverters
for each layer in the model to understand the change in in-
put reconstruction error across different layers. We found
that the average NRE changes by about 15% for Jamendo
between the MP6 and FC7 layers due to high dimensional-
ity reduction. Moreover, we qualitatively visualised the in-
verted representations to understand the input content pre-
served by any layer in the model. We found that the deepest
fully connected layer does not retain any of the temporal or
harmonic structures present in an input. We also found that
for a large number of inputs this layer seems to learn a de-
cision function that depends on the class associated with
an input. Qualitative analysis of other layers revealed that
the FC7 layer preserves some harmonic and temporal in-
formation of an input while the reconstructions from the
Conv5 layer are visually similar to the input.

In our future work, we plan to improve the loss func-
tion by adding adversarial loss [5] that helps to generate
realistic inverted representations that are close to one of
the classes. This facilitates sonification of inverted repre-
sentations, giving more insights into the model behaviour.
Moreover, we plan to extend the analysis by applying fea-
ture inversion to different architectures of the SVD model
and also to different machine listening tasks.
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ABSTRACT

Melodic similarity is an important task in the Music In-
formation Retrieval (MIR) domain, with promising appli-
cations including query by example, music recommenda-
tion and visualisation. Most current approaches compute
the similarity between two melodic sequences by compar-
ing their local features (distance between pitches, intervals,
etc.) or by comparing the sequences after aligning them.
In order to find a better feature representing global charac-
teristics of a melody, we propose to represent the melodic
sequence of each musical piece by the parameters of a gen-
erative Recurrent Neural Network (RNN) trained on its se-
quence. Because the trained RNN can generate the identi-
cal melodic sequence of each piece, we can expect that the
RNN parameters contain the temporal information within
the melody. In our experiment, we first train an RNN on
all melodic sequences, and then use it as an initialisation
to train an individual RNN on each melodic sequence. The
similarity between two melodies is computed by using the
distance between their individual RNN parameters. Ex-
perimental results showed that the proposed RNN-based
similarity outperformed the baseline similarity obtained by
directly comparing melodic sequences.

1. INTRODUCTION

Melodic similarity is a task to analyse the similarity be-
tween melodies, which has been used for music retrieval,
recommendation, visualisation and so on. To compute the
similarity, a melody is always represented by a sequence
of monophonic, musical fragments/events (MIDI event,
pitch, etc.). Current approaches usually compare two
melodic sequences using the string edit distance [8, 9, 17],
geometric measures [19] and N-Gram based measures
[5, 27]. Alignment-based methods are applied when two
melodic sequences are of different lengths [15, 23], or
when events of two sequences are not corresponding to
each other one by one [2]. Not only melodic sequence
but also melody slopes on continuous melody contours
are aligned for comparing melodic similarity [28]. Read-
ers can refer to [25] for state-of-the-art melodic similar-

c© Tian Cheng, Satoru Fukayama, Masataka Goto. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Tian Cheng, Satoru Fukayama, Masataka
Goto. “Comparing RNN parameters for melodic similarity”, 19th In-
ternational Society for Music Information Retrieval Conference, Paris,
France, 2018.

ity methods. The existing methods focus on local features
extracted from melodic sequences, such as distances be-
tween pitches or between subsets of melodic sequence (N-
Gram). In addition alignment is needed when two melodic
sequences are not comparable directly.

In order to deal with these drawbacks, we propose to
train a generative Recurrent Neural Network (RNN) on a
melodic sequence, and use the RNN parameters to repre-
sent the melodic sequence. The proposed feature (RNN
parameters) projects a melodic sequence to a point in the
parameter space, having two characteristics described as
follows. Firstly, the feature is independent to the length of
the input melodic sequence because every sequence is rep-
resented by its RNN parameters of the same dimension.
Secondly, because the RNN can generate an identical se-
quence, we can expect that the RNN parameters contain
the global, temporal information of the melody.

In our experiment, we first train an RNN on all melodic
sequences from 80 popular songs as an initialisation. With
the initialisation, RNNs are trained on individual melodic
sequences. All the networks are trained in tensorflow. We
compute the similarity between two melodic sequences by
the Cosine similarity of their RNN parameters. The results
show that the similarity based on RNN parameters outper-
forms the baseline similarity obtained by comparing the
melodic sequences directly. To the best of our knowledge,
this is the first study that uses parameters of generative
RNNs for the purpose of computing melodic similarity.

2. RELATED WORK

In this section, we introduce related work on RNN-
based melody generation models, and briefly introduce re-
searches on word and sentence embedding for understand-
ing semantic meanings in natural language processing.

2.1 RNN-based melody generation models

We discuss several state-of-the-art RNN-based melody
generation models. The RNN-based generative models are
usually applied with Long Short Term Memory (LSTM)
units in order to model a long time dependence, such as
Melody RNN in Magenta [1] and folk-rnn [22]. Ma-
genta [1] uses 2-layer RNNs with 64 or 128 LSTM units
per layer, while folk-rnn [22] uses a deeper network (RNN
with 3 hidden layers of 512 LSTM units for each layer).

The RNNs generate melody by predicting the next
melodic event based on its previous N events:

[xt−N , ..., xt−1]→ xt,
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Models Representation Architecture

Magenta [1] MIDI event 2-layer RNN (LSTM)

Folk-rnn [22] abc notation 3-layer RNN (LSTM)

Hierarchical bar profile, beat 3 RNNs (2-layer LSTM)
RNN [26] profile and note for bar, beat and note

Table 1: Brief summary of RNN-based melody generation
models.

where xt denotes the melodic event in time t. The melodic
event can be represented in many forms, for example MIDI
events [1], abc notation [22] and so on, as shown in Table 1.
With quantised time steps (in sixteenth notes, for example),
a melody can be represented as a sequence of pitches 1 or
MIDI events (pitch onset, offset, and no event) [1].

Rhythm information can also be modelled for melody
generation. One simple way is to concatenate beat infor-
mation with the melodic event for each frame to feed into
the network [1]. There are also several hierarchical RNNs
proposed with rhythm information. In [4], each note is
represented by its pitch and duration, and 2 RNNs (rhythm
and melody RNNs) are trained for duration and pitch, re-
spectively. The rhythm network receives the current pitch
and duration as inputs, and outputs the duration of the
next note. The melody network receives the current pitch
and generated upcoming duration as inputs to generate the
pitch of the next note. [26] trains 3 RNNs for bar, beat, and
note, respectively. The first RNN generated bar profiles.
Generated bar profiles are fed into the second network to
generate beats, and then bar and beat profiles are fed into
the third network to generate notes.

Studies of generative RNN models always list gener-
ated examples [1, 22] as results, or conduct a listening test
for evaluation [26]. We believe that the generative RNN
actually learns something ‘musical’ and can be used for
music analysis. In this paper we extend the utility of the
generative RNN to represent a melody and evaluate it in a
melodic similarity task.

2.2 Word embedding and sentence embedding

In natural language processing, word embedding and sen-
tence embedding work on representing semantic meanings
of words and sentences. There are two successful word
embedding models introduced in [13, 14]: word represen-
tations are learnt in order to predict surrounding words or
to predict the current word by its content. In these ways,
the meaning of a word is related to its context. With the
embedded words, a representative vector for a sentence (a
sequence of words) can be learned at the same time of pars-
ing the sentence [21] or can be trained in a weakly super-
vised way on the click-through data by making sentence
vectors with similar meanings close to each other [18]. In-
spired by word embeding, [11] learns to represent a para-
graph by predicting words in the paragraph using previous
words and a paragraph vector. The same paragraph vector

1 https://brangerbriz.com/blog/
using-machine-learning-to-create-new-melodies/

is shared when predicting words in the paragraph and then
is used to represent the paragraph.

We believe that word embedding may correspond to
chord embedding [3, 12] in understanding music; and sen-
tence embedding may correspond to representing a se-
quence of chords (also an interesting topic to investigate).
In general, the musical meaning (of a sequence of pitches
or chords) is less intuitive than the textual meaning (of a
word or a sentence). Thus, it is more difficult to learn a
good representation for a musical sequence. In this paper
we work on representing a melody (a sequence of pitches).
We train an RNN model to predict the current pitch by its
previous pitches in a melody and represent the melody by
the RNN parameters. To the best of our knowledge, this
is the first work to use network parameters directly as a
representation.

3. TRAINING RNNS

For each melodic sequence, we train a generative RNN on
it. The parameters of the trained RNN will be used as a fea-
ture to represent the melody. We first train an initialisation
on all melodic sequences, and then train on individually
melodic sequences with the initialisation.

3.1 Data

We conduct the experiment on the RWC Music Database
(Popular Music) [7]. There is a subjective similarity study
[10] undertaken on 80 songs (RWC-MDB-P-2001 No.1-
80) of the RWC Music Database. In this study 27 partici-
pants are asked to vote the similarity (on melody, rhythm,
vocals and instruments, respectively) for 200 pairs of clips
after listening to them. Each clip lasts for 30 seconds (start-
ing from the first chorus starting time). For these pairs of
clips, the similarity votes range from 0 to 27. 2 The larger
the vote is, the more similar the clips are. The melodic
similarity matrix is shown in Figure 1, indicating the simi-
larity scores of 200 pairs of clips. The matrix is symmetric
because if a is similar to b, it means that b is similar to a as
well. There are 400 non-zero values in the matrix (twice
of 200 because of the symmetry).

We use the same 30-second clip as in the subjective
study [10] from each song for training RNNs. We de-
note the clip from piece ‘RWC-MDB-P-2001 No.X’ as
clip X, X∈ [1, 80]. The melodic similarity results of this
study [10] are used as the ground truth for evaluation.

3.2 Arranging the training data

We train RNNs using the melody annotation of the RWC
Music Database (Popular Music) from the publicly avail-
able AIST Annotation [6]. A melody in the annotation is
represented as a fundamental frequency sequence in 10 ms
frames as shown in Figure 2(a). We call the frames with
frequencies ‘melody frames’, and the frames without fre-
quencies ‘silent frames’. We convert the frequencies (f )

2 The dataset [10] has been publicly available on the web page of the
RWC Music Database at http://staff.aist.go.jp/m.goto/
RWC-MDB/AIST-Annotation/SSimRWC/.
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Figure 1: The melodic similarity of 200 pairs of clips.

into pitches (p – indicated by MIDI indices) for melody
frames:

p = 69 + 12 log2
f

440
. (1)

The histogram of the pitches in the training set is shown
in Figure 3. We focus on pitches in 3 octaves ranging from
43 to 78. Frames with pitches beyond this range are con-
sidered as silent frames.

3.2.1 Frame hop size

The original frames are arranged in a hop size of 10 ms.
We use a hop size of 50 ms (shown in Figure 2(b)) be-
cause RNNs tend to repeat the previous frames with a small
frame hop size.

3.2.2 Skip silent frames

Because of the high ratio of the silent frames (shown in
Figure 2(b)), there will be many invalid training samples
with a sequence of silent frames to predict a silent frame
if we use all frames in the training data. Therefore, we
simply skip all the silent frames to discard those invalid
training samples, resulting in a pitch sequence with only
melody frames (shown in Figure 5(b)).

We aim to look back for 2 seconds to predict the next
frame. With a frame hop size of 50 ms, there are 40 frames
in the input sequence: [xt−N , ..., xt−1]→ xt, N = 40.

3.2.3 Zero-padding at the beginning

We find if the first training sample is [x0, ..., x39] → x40,
then the generation of the first 40 frames are not modelled
in the RNN. In order to generate the whole sequence, we
concatenate a sequence of 40 silent frames in the front of
each clip, with the first training sample of [xS , ..., xS ] →
x0 (xS is the silent frame padding in the front of the clip).

3.3 Network architecture

We apply a network architecture similar to Megenta [1],
but with GRU cells instead of LSTM cells to reduce the

(a) A sequence of fundamental frequencies.

(b) A sequence of pitches

Figure 2: Melodic sequences with different frame hop
sizes. Frames with values of 0 are silent frames.

Figure 3: The histogram of the pitches in the dataset.

parameter dimensions. The RNN contains 2 hidden layers
with 64 GRU cells per layer. The output layer is a fully-
connected layer with a softmax activation function. The
inputs are one-hot encoded vectors with a dimension of 37
(36 pitches and a silent state). We hope the RNN can fit
the individual pitch sequences as much as possible. In this
case, overfitting is intended and not a problem any longer;
hence no drop out is applied.

The network is trained by minimising the cross entropy
loss using Adam optimisation with learning rate of 0.001
(other parameters of Adam are with default values in ten-
sorflow).

3.4 Initialisation and training on individual clips

In order to gain a consistent training, we use a fixed ini-
tialisation. The initialisation is trained on the training sam-
ples from all 80 clips for 100 epochs. Then with this ini-
tialisation, we train an individual RNN on each melodic
sequence for 500 iterations. 3 After data arrangement of
Section 3.2, there are around 200-600 training samples for

3 An iteration means RNN parameters are updated once on a batch of
training samples. In contrast, an epoch means a full training on all train-
ing samples. We use the iteration number to stop training because in this
way RNN parameters are updated for the same times, hence more com-
parable. However, when to stop training still needs further investigation.
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Initialisation Individual RNNs

No. of RNNs 1 RNN 80 RNNs

Training data 80 clips each clip

Batch size 512 64

Early stop 100 epochs 500 iterations

Table 2: RNN training settings.

(a) Batch acc. for initialisation. (b) Batch loss for initialisation.

(c) Batch acc. for training on clip 1. (d) Batch loss for training on clip 1.

Figure 4: Batch accuracies and losses of training for ini-
tialisation and training on clip 1 with the initialisation.

every clip. We use a large batch size of 512 for initialisa-
tion training because of a big number of training samples,
and a smaller batch size of 64 for training for each individ-
ual sequence. Training settings are shown in Table 2.

Training for initialisation and training on clip 1 are
shown in Figure 4. After training for initialisation, the
batch accuracy reaches 0.7 (Figure 4(a)) and the batch loss
decreases to around 0.8 (Figure 4(b)). After training on
clip 1 with the initialisation, the batch accuracy further in-
creases from 0.7 to 1 (Figure 4(c)); and the batch loss re-
duces from 0.8 to around 0.1 (Figure 4(d)). With the RNN
trained on clip 1, we can generate an identical melodic se-
quence, as shown in Figure 5.

3.5 Cosine similarity between RNN parameters

The parameter dimensions of an RNN are shown in Ta-
ble 3. The total number of parameters is 46, 757.

We reshape matrices to vectors, and concatenate the
vectors. The concatenated parameters of the initialisation
RNN and RNNs trained on clip 3 and clip 80 are shown in
Figure 6. The differences in parameters of different RNNs
are subtle. The similarity between two clips is indicated
by the Cosine similarity between their concatenated RNN
parameters. The larger the Cosine similarity is, the more
similar the clips are.

In the data arrangement stage (see Section 3.2), the
melody of a clip (30 seconds) is represented as a se-
quence of pitches of 600 frames (including silent frames),
as shown in Figure 2(b). We use the Cosine similarity be-
tween two pitch sequences as the baseline similarity.

(a) Generated pitch sequence.

(b) Original pitch sequence of clip 1.

Figure 5: An identical pitch sequence generated by the
trained RNN.

Matrix Dimension
cell 0/gru cell/gates/kernel (101, 128)
cell 0/gru cell/gates/bias (128)
cell 0/gru cell/candidate/kernel (101, 64)
cell 0/gru cell/candidate/bias (64)
cell 1/gru cell/gates/kernel (128, 128)
cell 1/gru cell/gates/bias (128)
cell 1/gru cell/candidate/kernel (128, 64)
cell 1/gru cell/candidate/bias (64)
fully connected/weights (64, 37)
fully connected/biases (37)
all parameters 46,757

Table 3: Parameter dimensions.

4. RESULTS ANALYSIS

4.1 Evaluation metric and results

In the subjective similarity study, each clip is compared to
4-6 other clips, usually 5 clips [10]. For example, clip 3 is
compared to clips as shown in Table 4(a). We measure the
similarity of two clips by computing the Cosine similar-
ity between their RNN parameters. We compare the rank
of votes to the rank of similarities for evaluation. For ex-
ample, as shown in Table 4(a), 8 people vote the melody
of clip 80 is similar to that of clip 3, and 7 people vote
the similarity between clip 29 and clip 3. Based on these
votes we assume clip 80 is more similar to clip 3 than clip
29. Thus, the Cosine similarity between clip 80 and clip
3 should be larger than that between clip 29 and clip 3
C(80, 3) > C(29, 3). We first convert the similarity and
votes into ranks (as shown in Table 4(b)), and then use the
pair-wise evaluation metric–Kendall’s tau (τ )– to compare
the ranks. For clip 3, the τ is 0.2 based on similarities be-
tween RNN parameters, better than τ = −0.2 based on
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(a) Parameters of the initialisation RNN

(b) Parameters of the RNN trained on clip 3

(c) Parameters of the RNN trained on clip 80

Figure 6: Parameters of different RNNs with subtle differ-
ences.

similarities between pitch sequences.
The results for 200 pairs of clips are shown in Table 5.

The average τs are 0.125 and 0.073 based on Cosine sim-
ilarities between RNN parameters and between pitch se-
quences, respectively. 4 In the preliminary test, we found
that there is no improvement in performance by using a
dimension-reducing technique, such as Principle Compo-
nent Analysis (PCA), before computing Cosine similarity,
or by using distances between eigenvectors (weighted by
eigenvalues) of parameter matrices.

4.2 Visualisation

4.2.1 Similarity v.s. vote

We assume if there are more votes on X than on Y when
comparing to A, then the X should be more similar to A
than Y. However, this may be too strict when votes are
close (8 on X and 7 on Y, for example). In order to show
whether there is a trend that the similarity value is larger
for pairs of clips with a higher vote in general, we show
Cosine similarity v.s. vote plots for RNN parameters and
baseline pitch sequences in Figure 7.

We know the RNN parameters of different clips are very
similar to each other, as shown in Figure 6. Therefore, the

4 Using the Euclidean distance provides similar results as using the Co-
sine similarity: 0.120 and 0.074 for RNN parameters and pitch sequences,
respectively.

No. 80 29 59 62 5

Votes 8 7 6 4 3

CRNN 0.9975 0.9973 0.99717 0.9976 0.99725

Cpitch 0.6175 0.7146 0.6256 0.7097 0.6584

(a) Cosine similarities between parameters of clips compared to clip 3.

No. 80 29 59 62 5 τ

RVotes 1 2 3 4 5

RRNN 2 3 5 1 4 0.2

Rpitch 5 1 4 2 3 -0.2

(b) Ranks of Cosine similarities.

Table 4: Evaluation for clip 3. CRNN and Cpitch are the
Cosine similarities between parameters and between pitch
sequences, respectively.

Similarity τ

CRNN 0.125

Cpitch 0.073

Table 5: Results.

Cosine similarities between RNN parameters are in a small
range from 0.995 to 0.999 (Figure 7(a)). The Cosine sim-
ilarities between melodic sequences are in a larger range
from 0.4 to 0.9 (Figure 7(b)). However, neither RNN pa-
rameters nor melodic sequences provide a clear trend of
the similarity increasing with number of votes.

4.2.2 t-SNE

To visualise the 80 songs in a low-dimensional space, we
first reduce the dimension of the features to 5 by PCA, then
further reduce it to 2 by t-SNE, with the implementation
of [20]. The visualisation based on RNN parameters and
pitch sequences is shown in Figure 8. For a clearer visu-
alisation, we only indicate pairs of clips with higher votes
(above 9 votes out of 27, as listed in Table 6) by connecting
those pairs with lines.

Because the t-SNE visualisation is not a linear pro-
jection from the similarity to the distance on the 2-
dimensional space, we do not compare the vote against the
distance between two clips in t-SNE visualisation, but fo-
cus on the grouping of clips. We observe some interesting
grouping of clips in Figure 8(a): the triangle at the top left
for (75, 79, 80), and two lines at bottom right connecting
(15, 16) and (6,16). In Figure 8(b), no such grouping of
clips can be obviously observed.

5. DISCUSSIONS AND CONCLUSIONS

From the t-SNE visualisation, we observe some interesting
grouping of clips based on RNN parameters (Figure 8(a)).
However, visualisation based on the Cosine similarity be-
tween RNN parameters does not show a clear relation be-
tween the similarity and the vote (Figure 7(a)). It may
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(b) Visualisation based on pitch sequences

Figure 7: Similarity v.s. vote plot based on different fea-
tures.

indicate that a direct comparison between RNN parame-
ters is too simple to infer the information in such a large
dimension. Figure 6 also illustrates the difficulties with
the proposed approach, too many parameters with sub-
tle differences. We would like to dig deeper to under-
stand which parameters are most significant for computing
melodic similarity.

Perception studies show that changes in relative scale
or relative duration do not have a major impact on melodic
similarity [24]. The similarity measure should be invariant
to music transformations, such as transposition in pitch and
tempo changes [16,23]. The proposed generative RNN can
model the input pitch sequence, but cannot deal with the

No. Pair Vote No. Pair Vote No. Pair Vote
1 (79, 80) 23 11 (10, 63) 13 21 (10, 52) 11
2 (47, 68) 19 12 (47, 76) 13 22 (7, 20) 10
3 (65, 78) 18 13 (51, 63) 13 23 (7, 45) 10
4 (6, 16) 17 14 (51, 77) 13 24 (29, 60) 10
5 (12, 47) 16 15 (64, 66) 13 25 (47, 67) 10
6 (12, 63) 16 16 (7, 49) 12 26 (70, 71) 10
7 (15, 16) 16 17 (19, 20) 12 27 (75, 79) 10
8 (67, 75) 16 18 (41, 43) 12 28 (75, 80) 10
9 (54, 63) 15 19 (42, 44) 12

10 (72, 75) 15 20 (68, 72) 12

Table 6: A list of pairs of songs with similarity votes above
9 votes out of 27.
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(b) Visualisation based on pitch sequences

Figure 8: t-SNE visualisation based on different features.

similarity under music transformations. In the future, we
would like to tackle this problem by training RNNs with
coordinate differences instead of absolute coordinates as
inputs, such as intervals and durations instead of pitches
and onsets [16].

We work on the melodic similarity based on the
performance-based representation of melodies, which
seems to complicate the task. We hope we can achieve
more success on symbolic melody representation by using
score-based representation on a simpler dataset.

In this paper, we propose to represent a melodic se-
quence by the parameters of its corresponding generative
RNN, and test the utility of the melodic feature (RNN pa-
rameters) in the melodic similarity task. The proposed fea-
ture contains temporal information within the melodic se-
quence, and independent of the length of the sequence. We
extend the utility of generative RNNs to use the network
for music similarity analysis rather than music generation.
We expect that the proposed feature (generative RNN pa-
rameters) can be used in other tasks, such as musicological
analysis and music cognition.
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ABSTRACT

In this paper, we study the benefit of considering
stacked graphs to display audio data. Thanks to a care-
ful use of layering of the spectral information, the result-
ing display is both concise and intuitive. Compared to the
spectrogram display, it allows the reader to focus more on
the temporal aspect of the time/frequency decomposition
while keeping an abstract view of the spectral information.

The use of such a display is validated using two per-
ceptual experiments that demonstrate the potential of the
approach. The first considers the proposed display to per-
form an identification task of the musical instrument and
the second considers the proposed display to evaluate the
technical level of a musical performer. Both experiments
show the potential of the display and potential applications
scenarios in musical training are discussed.

1. INTRODUCTION

The visual display of quantitative information [13] is at the
core of the growth of human knowledge as it allows human
beings to go beyond the limitation of natural languages in
terms of precision and scale.

Defining what is the essence of a good visual display of
quantitative data is non trivial and usually domain specific.
That said, in most scientific fields, such displays serve two
majors goals: 1) the routine interaction of the researcher
with the data or the physical phenomenon and 2) the need
of the researcher to motivate its claim to its peers. Both
tasks require the display to fulfill the simplicity rule both
in terms of production and design. First, the display shall
be computed and adapted according to the need of the re-
searcher very efficiently in order to allow an effective ex-
ploration of the data. Second, the display shall be able to
convey at the first glance an important qualitative aspect
about the data.

This paper is about the visualization of audio data, and
audio data is originally made to be listened to. There-
fore, we shall keep in mind that ”all visual projections of
sounds are arbitrary and fictitious” [11]. That said, even
if recorded versions of sounds can now be played back

c© Mathieu Lagrange∗, Mathias Rossignol, Grégoire
Lafay∗ . Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Mathieu Lagrange∗, Mathias
Rossignol, Grégoire Lafay∗ . “Visualization of audio data using stacked
graphs”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

at convenience, it is still useful to represent them graph-
ically as listening depends on time. On contrary, the vi-
sual display allows the reader to grasp a global view of
the waveform at a glance. Also, the eye is less subject to
stimulation fatigue and the visual display is very powerful
to convey evidence as we are still fully into the print cul-
ture that since the Gutenberg invention gives an ”uncritical
acceptance [to] visual metaphors and models” [8].

We propose in this paper a display of audio data that is
intuitive and gives information about the main dimensions
of sound in a compact manner using stacked graphs [3].
The display can be computed easily and efficiently 1 . In
order to put this display into context, an overview of the
routinely used type of displays is given, respectively from
the perspective of the musician composer in Section 2 and
the physicist in Section 3. We shall argue that the proposed
display fully described in Section 4 can be thought of as the
physicist’s counterpart to a notational system introduced
by Schafer [11].

The display is then evaluated and compared to the com-
monly used waveform and spectrogram displays with two
perceptual experiments. In the first experiment, the sub-
jects have to distinguish between tones of different musi-
cal instruments by listening to the sounds or by consider-
ing the visual displays under evaluation. The protocol and
the results for this experiment are presented in Section 5.
In the second experiment, the subjects are asked to distin-
guish between saxophone performances of different level
of instrumental expertise by listening to the sound and by
considering the displays under evaluation. The protocol
and the results for this experiment are presented in Sec-
tion 6.

2. ABOUT NOTATION

From the phonetic alphabet for speech to the musical score
for music, notation consists in putting together on a one or
two-dimensional space symbols describing specific sound
events. In a manner probably inherited from writing, time
sequencing is usually depicted from left to right in the
Western musical culture. Specific to the musical score is
the use of the vertical axis to depict the pitch. A musi-
cal tone is therefore solely described in terms of time of
appearance, duration, pitch and sometimes intensity. As
such, the score is largely prescriptive and gives a tremen-
dous amount of freedom to the musical performer in terms

1 A reference implementation as well as all the data discussed in
this paper is available at https://bitbucket.org/mlagrange/
paperaudiostackgraph
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Attack Body Decay
Duration moderate non-existent slow

Frequency steady low
Fluctuations transient steady-state
Dynamics loud to soft
Duration ←− 3 seconds −→

Figure 1: Annotation of a church bell from Schafer [11].

of interpretation.
In an intent to provide a more descriptive notation of

musical objects, Schaeffer [10] designed a ”solfège des
object musicaux” that extensively apprehend the descrip-
tion of any kind of sound object. Perhaps because of its
complexity this notation is hardly used today. In an ef-
fort to simplify this notation, Schafer proposed a notational
system that can be considered for describing any kind of
sound, be it a unique event or any kind of compound. The
main rationale is to split the temporal axis from left to right
into 3 parts corresponding to the attack, sustain and decay.
For each part, its duration, frequency (related to the notion
of mass as introduced by Schaeffer), fluctuations (related
to the notion of grain as introduced by Schaeffer) and dy-
namics are displayed from top to bottom. Except for the
frequency content that is depicted as a rough spectrogram
contour, the other dimensions are described according to
a specific alphabet of a few symbols. An example taken
from [11] of such annotation is given on Figure 1 for the
sound of a church bell.

3. ABOUT MEASURE

When dealing with sound as a physicist, one wants to quan-
tify mechanical properties and display them precisely. As
in notation, the main aspect that is commonly looked for is
the distribution of energy across frequency and time. The
distribution of energy as a function of the modulation rate
and the frequency scale of observations are less considered
in the signal processing literature [2,4] but are shown to be
perceptually important [5, 14].

Therefore, in order to display a sound on a two-
dimensional plane, one has to resort to a choice or a com-
promise. Either timing is emphasized and frequency ne-
glected as in the waveform display 2a or frequency is
emphasized and timing neglected as in the display of the
Fourier spectrum 2b. A compromise is made by consider-
ing time and frequency respectively as horizontal and ver-
tical axes of the two-dimensional plane as with the popu-
lar spectrogram magnitude of the short term Fourier trans-
form, see Figure 2c. In such display, the use of a color code
conveys information about energy.

That said, we believe that the spectrogram display still
favors frequency over time. Spectral structure can be ana-
lyzed precisely, for example harmonicity, modulations, etc.
Conversely, temporal dynamics and structure are harder to
appreciate, as the way energy fluctuates in each sub bands
has to be reconstructed from the color code.

The spectrogram is a display that is thus in our opinion
very powerful for close inspection of a sound event that is

(a) Waveform

(b) Spectrum

(c) Spectrogram

Figure 2: Standard displays of the sound of a church bell.

active over a short period of time. Indeed, enlarging the
time resolution quickly blurs the frequency resolution and
may lead to a completely non informative display.

4. VISUALIZING SPECTRAL CONTENT USING
STACKED GRAPH

With those limitations in mind, we propose in this paper
to take a compromise that conversely favors time over fre-
quency. In such display, the plane is therefore organized
with time and energy as the horizontal and vertical axes
respectively. The frequency is displayed as stacked layers
displaying the level of energy across frequency sub bands
of growing frequency range. Those layers can have colors
assigned.

We seek a display that depicts information that is per-
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Mel scaled
magnitude

spectrogram
StackingAudio spack

Figure 3: Processing chain of the spack display.

Figure 4: Spectral stack display (spack) of the sound of a church bell. The color code conveys nicely the modulation within
each frequency band and the overall disappearance of the high frequency range.

ceptually meaningful. Therefore, we consider spectral data
projected on a Mel-scale [12].

In order to improve legibility, colors are assigned to
frequency layers according to their ranges with a color
code ranging from blue (low frequency) to yellow (high
frequency). The blue color is often associated with large
phenomena, with the following adjectives: celestial, calm,
deep, whereas the yellow color is often associated with
transient phenomena that are highly energetic. Kandinsky
in [7] states that ”Blue is comparable to low pitched organ
sounds. Yellow becomes high pitched and can not be very
deep”. The color code is then chosen to be a linear gradi-
ent from blue (low frequency range) through green (middle
frequency range) to yellow (high frequency range). In this
paper, the gradient follows the LCH color model specified
by the Commission Internationale de l’Éclairage (CIE) so
that the perceived brightness appears to change uniformly
across the gradient while maintaining the color saturation.

We argue that this display, termed spectral stack
(spack), convey useful information about the sound. In
particular, it conveys nicely, aside of fine details, the im-
portant dimensions retained by Schafer, see Figure 1.

To compute the spack display, a mel-scaled magnitude
spectrogram is computed from the audio, see Figure 3. To
each mel spectral band is assigned a given color code from
dark blue (low frequency) to yellow (high frequency). At
each time frame, the spack display is a stacking of the mag-
nitude values of each mel frequency band, see Figure 4.

5. TASK 1: IDENTIFYING THE MUSICAL
INSTRUMENT

The identification of the musical instrument used to play
a tone rely largely on 2 factors, the spectral envelope and
the attack [1, 6]. The spack display shall be able to conve-
niently display those factors. Indeed, the spectral envelope,
i.e. the distribution of the energy across frequency is en-
coded using the stacking axis and color code. The attack is

Figure 5: Classification performance of the different dis-
plays on Task 1 (identifying the musical instrument):
sound (S) waveform (W), spectrogram (Spe) and spack
(Spa). The star shows the average performance and the
length of the vertical line is twice the standard deviation.

also well displayed as the spack focuses on the display of
energy through time.

5.1 Protocol

Several tones played by four musical instruments: piano,
violin, trumpet, and flute are considered as stimuli. Each
instrument is played mezzo forte at 5 different pitches: C,
D, E, F and G. For each sound, three visual representa-
tions are evaluated: waveform (W), spectrogram (Spe) and
spack (Spa). For reference, the sound (S) is also consid-
ered 2 .

The test is a forced-choice categorization task. The
sounds are displayed by gray dots on a 2 dimensional plane
displayed on a computer screen. The dots can be moved

2 The sounds and the visual displays are available on the companion
website
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freely within this plane and colored using 4 different col-
ors, each corresponding to a given instrument. The corre-
spondence is given to the subjects at the beginning of the
experiment by the instructor: piano (black), violin (red),
trumpet (magenta), and flute (green). If the sound modal-
ity is tested, the sound is played when the dot is clicked.
If a visual modality is tested, the corresponding display is
shown when the dot is clicked using the mouse.

Eight subjects, studying at the Engineering school
”Ecole Centrale de Nantes”, aged from 24 to 26 years,
performed the test. Each subject reported normal hearing.
They performed the test at the same time in a quiet en-
vironment using headphones. The sound level was set to
a comfortable level before the experiment. A short intro-
duction was given by the instructor for each display with a
focus on the meaning of the axes and the color code. The
subjects performed the evaluation using the sound modal-
ity first. The order of the three remaining modalities are
ordered randomly among subjects to reduce the impact of
precedence. The test is over when the subjects have as-
signed a color to each dot, this for all the evaluated modal-
ities.

5.2 Results

Classification performance is evaluated as the number of
couple of sounds played by the same instrument that have
been assigned the same color divided by the number of
couples. As can be seen on Figure 5, the task is trivial
when listening to the sound, as the subjects achieve per-
fect classification. On overall, the classification is quite
good for each of the graphical displays with a higher av-
erage performance for the spack display. Subjects verbally
reported ease of use for the spack display.

6. TASK 2: ASSESSING THE LEVEL OF A
SAXOPHONE PERFORMANCE

The control of the breath while playing the saxophone is
crucial and can be monitored to assess the technical level
of a saxophone player [9]. For example, playing a single
tone with sharp attack and constant amplitude during the
steady state is non trivial and requires years of practice.

Professional players typically practice such exercises on
a daily basis as warm-ups and perform them with a trainer
to get criticisms in order to improve their skills. Using
graphical displays of their performance could be useful for
them to spot during or after the performance. In order to be
efficient, such display shall be intuitive with a few degrees
of freedom in order to be easy to understand.

The validation of the spack display for such pedagog-
ical needs is out of the scope of this paper. Nonetheless,
we designed here a task that can demonstrate how several
meaningful characteristics of the saxophone performance
can be identified only by considering the graphical displays
under evaluation.

In this kind of training, it could be useful for the trainer
to have some kind of display of its performance. As the
crucial part is to be able to control the air flow while play-
ing in order to keep a stable amplitude and timbre, we hy-

(a) Waveform

(b) Spectrogram

(c) Spack

Figure 6: Graphical displays of forte B tone. Several per-
formance issues can be observed: lack of airflow control at
the attack, change of pitch and loudness at 3 seconds and
lack of steady airflow during the whole performance.

pothesize that the spack display may be a good candidate
for such a task.

6.1 Protocol

The stimuli considered in this experiment are recorded per-
formances of four saxophone players with a technical level
assumed to be high or low (2 low, 2 high). Each player
played several tones at pitch B and G. They were asked
to play each note in three different ways: piano, forte and
crescendo decrescendo 3 .

The test follows a XXY structure, where three perfor-
mances are shown to the subject, one is at a given level
(high or low) and the other two of the other level (low
or high). The subject is then asked, based solely on the
modality at hand, to select the one that is different from
the two others. 24 triplets are randomly selected from the

3 The sounds and the visual displays are available on the companion
website
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(a) Waveform

(b) Spectrogram

(c) Spack

Figure 7: Graphical displays of another forte B tone. Sev-
eral performance issues can be observed, for example: lack
of sharpness at the attack, change of timbre and loudness
at 5 seconds.

valid combinations of the above described stimuli.

16 subjects, studying at the Engineering school ”Ecole
Centrale de Nantes”, aged from 24 to 28 years, performed
the test in two sessions, 9 for the first session, and 7 for
the second session. Each subject reported normal hear-
ing. For each session, they performed the test at the same
time in a quiet environment using headphones. The sound
level was set to a comfortable level before the experiment.
A short introduction was given by the instructor for each
display with a focus on the meaning of the axis and the
color code. The subjects performed the evaluation using
the sound modality first. The order of the three remain-
ing modalities are ordered randomly among subjects to re-
duce the impact of precedence. The test is over when the
subjects have examined the 24 triplets for the 4 evaluated
modalities.

Figure 8: Boxplot display of the differentiation perfor-
mance of the different displays on Task 2 (detecting the
level of the saxophone player): sound (S), waveform (W),
spectrogram (Spe) and spack (Spa).

Table 1: Results of the repeated measure ANOVA evalu-
ating the effect of the type of display on the performance.

sum sq. df mean sq. F p-value
Type 0.13 3 0.045 5.3 0.003
Error 0.38 45 0.008

6.2 Results

For each modality, the number of correct selection is aver-
aged among the 24 triplets and then averaged among sub-
jects. As can be seen on Figure 8, the task is more complex
than task 1, as the score achieved using the sound modality
is lower than task 1. This might be due to the fact that the
task is less explicit than task 1. For the visual displays, the
same ranking as task 1 is observed with a larger difference
between each modality.

A repeated measure ANOVA is used to test the poten-
tial significance of the type of display on the differentia-
tion performance. A mauchly test reveals that the default
of sphericity is not significant, thus no correction of the
degrees of freedom of the Fisher test is needed. Table 1
presents the results of the Fisher test showing that the ef-
fect of the representation is significant p = 0.003. In
addition, a multiple comparison test shows that the only
significant differences are between Waveform and Spack
p = 0.03 and Waveform and Sound p = 0.003. No signifi-
cant difference is found between the remaining modalities:
the Sound, the Spectrogram and the Spack displays.

Thus, if considering the graphical displays solely, only
the Spack displays significantly improves upon the Wave-
form display. As can be seen on Figure 8, The spectro-
gram display have the largest dispersion of correct answer
rate, i.e. the ratio of correct responses over the number of
possible responses, termed p(c) in the following. Consid-
ering the distribution of p(c) for the spectrogram display
shown on Figure 9, two modes can be observed contrary
to the one of the spack display. Even though each sub-
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jects have been given the same introduction to each of the
graphical displays, their familiarity with the standard dis-
plays may vary since some subjects had previous training
in signal processing courses. This may explain the higher
mode in the distribution of the spectrogram display. Even
if this observation shall be considered with care due to the
rather low number of subjects, this can lead us to conjec-
ture about the influence of the familiarity of the subjects
with the spectrogram display on the reported performance.
The spack display does not exhibit the same distribution
profile and prior familiarity cannot be assumed as the dis-
play was equally new to all subjects.

Figure 9: Histogram of the classification performance for
the spectrogram (Spe) and the spack (Spa) displays. Only
the spectrogram display exhibit two modes, suggesting dif-
ferent levels of expertise of the subjects.

7. CONCLUSIONS

In this paper, we proposed a display based on the stacking
of the envelopes of logarithmically spaced band pass fil-
ters. We have shown qualitatively that this kind of display
may have some potential as it conveys nicely the distri-
bution of the energy across time and frequency in a way
that is an alternative to the one taken when considering the
spectrogram.

When considering two evaluation tasks: 1) identifying
the type of instrument played, and 2) identifying at which
skill level a saxophone tone is played, the spack display
compares favorably to more conventional displays, such as
the waveform and spectrogram displays. Subjects reported
ease of understanding and quick access to important as-
pects of the sounds.

Future work will focus on the design of validation tasks
for the spack display using a wider range of audio data,
namely speech and environmental data.

As the spack display is both compact and intuitive, it
can be considered as an inspection tool while practicing a
musical instrument in order to monitor the control of the
nuance and the timbre while playing. Evaluation of the
spack display in such a training use case would thus be of
interest.

8. ACKNOWLEDGMENTS

The authors would like to acknowledge support for this
project from ANR project Houle (grant ANR-11-JS03-
005-01) and ANR project Cense (grant ANR-16-CE22-
0012).

9. REFERENCES

[1] Trevor R Agus, Clara Suied, Simon J Thorpe, and
Daniel Pressnitzer. Fast recognition of musical sounds
based on timbre. The Journal of the Acoustical Society
of America, 131(5):4124–4133, 2012.

[2] Joachim Anden and Stephane Mallat. Multiscale Scat-
tering for Audio Classification. In ISMIR, 2011.

[3] L Byron and M Wattenberg. Stacked Graphs-Geometry
& Aesthetics. IEEE Trans. Vis. Comput. Graph., 2008.

[4] Taishih Chi, Powen Ru, and Shihab Shamma. Multires-
olution spectrotemporal analysis of complex sounds.
The Journal of the Acoustical Society of America,
118(2):887, 2005.

[5] Torsten Dau, Birger Kollmeier, and Armin Kohlrausch.
Modeling auditory processing of amplitude modula-
tion. i. detection and masking with narrow-band carri-
ers. The Journal of the Acoustical Society of America,
102(5):2892–2905, 1997.

[6] John M Grey. Multidimensional perceptual scaling of
musical timbres. the Journal of the Acoustical Society
of America, 61(5):1270–1277, 1977.

[7] W. Kandinsky. Concerning the spiritual in art. Dover
publications, 1954.

[8] M McLuhan. The Gutenberg Galaxy. University of
Toronto Press, 1963.

[9] Matthias Robine and Mathieu Lagrange. Evaluation of
the technical leval of saxophone performers by consid-
ering the evolution of spectral parameters of the sound.
In ISMIR, pages 79–84, 2006.
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ABSTRACT

This paper presents two novel user interfaces for investi-
gating the pattern content in monophonic jazz solos and
exemplifies how these interfaces could be used for research
on jazz improvisation. In jazz improvisation, patterns are
of particular interest for the analysis of improvisation styles,
the oral transmission of musical language, the practice of
improvisation, and the psychology of creative processes.
The ongoing project “Dig That Lick” is devoted to address-
ing these questions with the help of a large database of jazz
solo transcriptions generated by automated melody extrac-
tion algorithms. To expose these transcriptions to jazz re-
searchers, two prototypes of user interfaces were designed
that work currently with the 456 manually transcribed jazz
solos of the Weimar Jazz Database. The first one is a Shiny
application that allows exploring a set of 653 of the most
common patterns by eminent players. The second one is
a web interface for a general two-staged pattern search in
the Weimar Jazz Database featuring regular expressions.
These applications aim on the one hand at an expert audi-
ence of jazz researchers to facilitate generating and testing
hypotheses about patterns in jazz improvisation, and on the
other hand at a wider audience of jazz teachers, students,
and fans.

1. INTRODUCTION

Music Information Retrieval offers exciting options for mu-
sicological research, particularly for methodologies which
are hard (or impossible) to carry out manually, e. g., large
corpus studies and measuring acoustical properties. One
such field of application is the mining of patterns. Pat-
terns – and repetitions in general – play an important role
in nearly all music styles [10] and are thus of interest for
many sub-fields of musicology. In particular, they form a
crucial component of jazz improvisation [1, 13, 14]. The
concept of ‘pattern’ can be defined in different ways and
appears under different names in the literature. The more

c© Klaus Frieler, Frank Höger, Martin Pfleiderer, Simon
Dixon. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Klaus Frieler, Frank Höger, Martin
Pfleiderer, Simon Dixon. “Two web applications for exploring melodic
patterns in jazz solos”, 19th International Society for Music Information
Retrieval Conference, Paris, France, 2018.

formal definition as ‘repeated sub-sequences’ (over a suit-
able sequence space) contrasts with more specific usages
in jazz theory and practice, where patterns are often called
‘formulas’, ‘licks’, ‘stock-phrases’, and ‘riffs’. The main
differences between these terms lie in their supposed ori-
gin, their function, and their musical characteristics .

A formula is mostly understood as a rather short pattern,
which is well-rehearsed by an improviser. A formula is
generally not musically autonomous, i. e., it can be rhyth-
mized differently or embedded in other formulas to make
longer phrases (e. g., John Coltrane’s solo on “Giant Steps”
[9]). The term ‘lick’ (or stock-phrase) usually refers to a
melodic unit with a distinctive recognizable character. In
some cases, licks trace their origin to an individual per-
former or even to a single solo. For example, Charlie Parker
created many licks that were used by other jazz musicians
[14]. In most cases, however, licks cannot be attributed to
a single originator. Thus, they form specific music vocabu-
laries of smaller and wider scope. A riff can be regarded as
a lick which is constantly repeated as an accompaniment
and has thus a different musical function than a normal
lick [12]. Other special cases are short quotations of pop-
ular tunes which are often used to humorous effect or for
the cultural practice of inter-textuality (‘intermusicality’),
or ‘signifyin’ [11].

Given the significance of patterns and licks in jazz, sev-
eral research questions arise. Some concern historical is-
sues, e. g., the oral tradition of licks and the development
of a typical jazz language; some are of a more systematic
nature, e. g., the psychology of the creative process, where
patterns and formulas can be regarded as necessary to ac-
complish the highly virtuoso feat of modern jazz improvi-
sation. Some of these research questions are:

• To what extent are patterns and licks used to shape
an improvisation?

• When and by whom are patterns and licks created
and how are they transmitted between players over
time (pattern archeology)?

• Does pattern usage change with time and styles?

• Is there an influence of jazz education on pattern us-
age (e. g., by published pattern collections)?

• How are patterns used to build phrases, e. g., to con-
struct a typical bebop line?
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• Which role do external musical influences such as
quotes and signifying references play in jazz impro-
visation?

In this paper, two web tools which could help to address
these questions are introduced. First, the research back-
ground and some similar tools are discussed (Sect. 2), be-
fore we describe the tools in detail in Sect. 3, including two
use case examples. The web applications are still proto-
types under active development, but they are already help-
ful to make some interesting observations which will be
reported in Sect. 4. Thoughts on future prospects of these
tools conclude the paper (Sect. 5).

2. BACKGROUND

The project “Dig That Lick: Analysing Large-Scale Data
for Melodic Patterns in Jazz Performances” (DTL) is a
two-year project within the fourth “T-AP Digging Into Data
Challenge”. 1 It sets out to investigate some of the afore-
mentioned research questions using an interdisciplinary ap-
proach combining musicology, computer science, MIR, and
jazz research. The project aims, first, at developing tools
for pattern mining on symbolic as well as audio data, and,
second, at understanding psychological and social aspects
of patterns and licks in jazz. The development of appropri-
ate tools consists of three main pillars:

1. Automatic transcription of jazz solo improvisations
from audio informed by discographic metadata.

2. Pattern mining and search in the melody transcrip-
tions.

3. Development of suitable user interfaces.

Since the project is still in its initial phase, we will focus
in this paper on the second and third issues by describing
two prototypes of user interfaces for pattern mining in the
Weimar Jazz Database [18] which was created by the Jaz-
zomat Research Project [19] 2 .

In recent years, several scientific or commercial web-
based melody search engines with interfaces for different
databases of different provenance and quality have been
implemented, all of which are scored-based. A web search
showed that many of these projects are now defunct or dis-
continued. To name a few: C-Brahms (defunct), Midomi
(discontinued, but seemingly functional), Hymnar (active,
only hymns), Mutopia, Music N-gram Viewer (discontin-
ued, but functional), Best Classical Tunes (outdated, but
functional), and Melody Search (discontinued, functional-
ity unclear due to Flash player issues). The large number
of abandoned sites suggests that melody search is not very
popular with a general audience. Some more recent sites,
though, aim at musicological experts, e. g., the Troubadour
Melodies Database, Global Chant, and Cantus Manuscript
Database, which provide simple but efficient search inter-
faces to specialized corpora.

1 http://dig-that-lick.eecs.qmul.ac.uk/
2 https://jazzomat.hfm-weimar.de

An older but still functional melody search engine is
Themefinder 3 , which interfaces with some large databases
of folk and classical music in **kern format. The search
works well and is fast, though it does not offer metadata
filters, regular expressions, or a multi-staged search.

Musipedia 4 is branded as a “Wikipedia for Music” and
is based on a user-generated database of melodies. Search
queries are given in Lilypond format, but a piano-like user
interface to enter queries with the help of the mouse is
also provided. The search is based on similarity match-
ing [22] and, hence, always fuzzy; it is not possible to en-
force only exact matches. The result set always comprises
full melodies without indicating the matching location for
the query. The underlying corpus is not clearly specified,
but it seems that some well-known databases such as the
Essen Folk Song Collection [21] are incorporated.

Furthermore, Gulati [7] developed a system for melodic
pattern discovery in Indian Art Music based on automati-
cally extracted pitch contours and a large set of special-
ized methods. A demo for browsing patterns in a large au-
dio corpus and a visualization of pattern networks includ-
ing audio snippets can be found on the accompanying web
site 5 .

The investigation of patterns in jazz has rather different
requirements compared to those melody search engines.
Particularly, the hybrid format of the Weimar Jazz Data-
base, which combines transcriptions with audio, as well as
the greater length of jazz solos (as compared to, for in-
stance, incipits, and folk songs) demands fine grained and
controlled access to pattern instances. Furthermore, to as-
sist users during exploration, providing scores and audio
snippets along with more abstract representations is im-
portant in order to connect to established methodological
standards in jazz research and practice.

3. TWO PATTERN MINING APPLICATIONS

3.1 The Pattern History Explorer

The main goal of the Pattern History Explorer 6 , an inter-
active Shiny web application [2], is to enable the explo-
ration of interval patterns in jazz solos by providing infor-
mation from many different angles. It provides an overview
of interval patterns frequently used by a selected subset of
performers and traces their usage in the Weimar Jazz Da-
tabase, allowing for the discovery of cross-artist and cross-
temporal relationships.

Currently, 653 interval patterns with 11,630 instances
are included. The pattern corpus was created by mining for
interval patterns in solos of eminent performers using the
partition mode of the melpat module from the MeloSpy-
Suite [6]. Subsequently, all instances of these patterns were
searched for in the Weimar Jazz Database, and the results
were included in the application. Since the interval distri-
butions of jazz solos are dominated by step-wise motion,

3 http://www.themefinder.org/
4 https://www.musipedia.org/
5 http://compmusic.upf.edu/node/304
6 https://jazzomat.hfm-weimar.de/pattern_

history/
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a certain number of patterns can be expected by chance
alone, even more so by assuming Markov processes of first
or higher order [4]. Therefore, the following restriction to a
minimum number of instances and sources was imposed to
ensure significance of the patterns: interval patterns were
limited to be of no fewer than six elements occurring in
at least three different solos of at least one musician. Ac-
cording to previous investigations [4], this length seems
to be a critical point for pattern distributions. The number
of instances of each pattern depends partly on the amount
of musical material available. For Bob Berg the criterion
was relaxed to patterns of at least seven elements occur-
ring at least twice in two different solos, since from a for-
mer study [5] it was already known that many interesting
and highly peculiar patterns occur only twice in the sub-
corpus of Berg’s solos in the Weimar Jazz Database. An-
other exception was Charlie Parker, for whom the source
patterns were extracted not from the Weimar Jazz Database
but from the Omnibook, a collection of 56 transcriptions of
his solos. In order to find only Parker’s more eminent pat-
terns, a criterion of at least six elements occurring in at
least ten different solos was applied.

In general, the user of the Pattern History Explorer se-
lects a certain interval pattern from the overall set of 653
patterns. Several options are available in order to filter the
pattern set or to change the ordering of the patterns accord-
ing to several criteria (e. g., filtering by performer, length,
intrinsic characteristics such as Huron contour [8] or tonal-
ity type, or content). For the selected pattern, various kinds
of information can be accessed in the following tabs:

• Listen & See. A sortable list of all instances of the
pattern in the Weimar Jazz Database is displayed. It
includes metadata such as name of the performer, ti-
tle of the solo, year of recording, metrical and start
position. In one column the tonal context is displayed
as a combination of chord context and extended chor-
dal pitch class values (CDPCX, cf. [6]). Most impor-
tantly, score snippets and audio links allow for vi-
sual and aural inspection. Here, and in the following
tabs, cross-links to the Pattern Search web applica-
tion (see below) is provided to allow more refined
searches.

• Instances. Further information about the instances
can be found here. A rhythmic encoding based on
absolute inter-onset interval (IOI) class (very short,
short, medium, long, very long), the starting pitch,
the chord context, the CDPCX value and a binary
vector indicating the position of metrical accents in
the pattern are displayed. Additionally, some of the
metadata from the Listen & See tab are repeated.
The final column indicates whether the instance is
contained in one single phrase. This table is also
sortable.

• Stats. Musical characteristics and statistical infor-
mation of the pattern are compiled. Due to space
limitations we cover just some of these here, and re-
fer the interested reader to the online documentation
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Figure 1. History plot of the pattern [-2, -2, -1, -2, -2, -1,
-1]. The first instance can be found in a solo by Charlie
Shavers on “Limehouse Blues” from 1947. A cluster can
be identified in the years around 1960. The circle radius
represents the frequencies of patterns in each solo in that
year.

for full details. One important feature is log excess
probability, which is defined as log10

po

pe
, where po

is the observed frequency of a certain pattern within
the database and pe is its expected frequency accord-
ing to a Markov model of zeroth order taken from
the global interval distribution. Not surprisingly, log
excess probability is strongly correlated with pattern
length (r = .82, p < .001). Another interesting fea-
ture is the number of different starting pitches, as
this indicates whether an interval pattern is indeed
a pitch pattern. A pitch pattern with a fixed set of
pitches might be based on a physiological motor pat-
tern, i. e., tied to a specific fingering on the instru-
ment. Other interesting information provided here is
which soloists favor this pattern and who played it
first. A list of instances by performer can be found
at the bottom of the page.

• Timeline. This page contains a visualization of the
distribution of pattern instances over time and per-
former. See Fig. 1 for a sample plot for the pattern
[-2, -2, -1, -2, -2, -1, -1] (a descending diatonic line
with a chromatic ending). The first instance can be
found in a solo by Charlie Shavers from 1947 and
it is favored by Hank Mobley with six instances in
three different solos, mostly starting on the super-
tonic (second scale step) over a ii7-V7 transition.
This tonal interpretation is preferred in many other
instances. Other players who use this pattern are Joe
Henderson and Freddie Hubbard with five instances
each. As the plot shows, this pattern is spread widely
over jazz history since its first occurrence.

Besides the tabs related to patterns, the tab ‘Info’ pro-
vides general information on the Pattern History Explorer
and the ‘Help’ tab contains detailed documentation. The
tab ‘General Stats’ collects plots pertaining to statistics of
all included patterns and instances (e. g., Fig. 3).
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3.2 Pattern Search

While pre-computing a set of patterns is helpful in regard
to the exploratory approach of the Pattern History Explorer,
searching for instances of arbitrary patterns of any length
and frequency of occurrence within a database requires a
different approach. Although it is possible to search the
Weimar Jazz Database with its accompanying software Me-
loSpySuite and MeloSpyGUI, our web-based pattern search
interface 7 provides most of the functionality of the melpat
search module while also extending it with audio and score
snippets (both as isolated patterns and within their melodic
context) for visual and aural inspection.

To execute a basic search, the user has to enter a pat-
tern as a space or comma separated list of elements and
choose a corresponding transformation, that is, a mathe-
matical mapping of the basic melodic representation, also
known as viewpoints [3]. Currently, ten pitch-related trans-
formations for primary search are offered (e. g., MIDI pitch,
semitone intervals, CDPCX). An additional 18 transforma-
tions, such as duration, IOI classes and various structural
markers, are supplied for the optional secondary search.
Additionally, the search space can be constrained by seven
metadata categories, like performer, style, or recording year.
Search patterns can be regular expressions (in a specific
hybrid syntax depending on the selected transformation) 8

which allows searches for variants in a single run. The
secondary search can be used to refine the result space,
e. g., by filtering out certain rhythmic or metrical configu-
rations or by confining instances to a single phrase. Since
the last constraint is used frequently, there is also a short-
cut checkbox that fills in the correct secondary search pat-
tern (which is based on phrase boundary markers). The
user also has the option to request inclusion of up to 20
tones before and after the actual pattern instance in both
score and audio files. In order to generate these, the cor-
responding checkboxes have to be selected, which is the
default. There might be cases though, where the result set
is very large (e. g., searching for very short intervals), and
one wants to avoid generating all audio and score files as it
would take a considerable amount of time. If both check-
boxes are disabled, instances will appear in the result table
after a few seconds which allows for a first examination of
the results. The generation of audio and score files is also
suppressed (with a warning being shown) when the result
set exceeds the (current) limit of 100 instances. Finally, by
clicking the ‘Display whole phrase’ button, the score of the
whole phrase containing the pattern is displayed.

The underlying search algorithm is built upon the basic
Python regular expression module, which is fed with vir-
tual Unicode strings constructed from the different melodic
representations (transformations) with different alphabets.
Scores are generated with the help of Lilypond, while au-
dio snippets are directly extracted from the solo audio files.
On average, a full search including audio and score gener-

7 https://dig-that-lick.hfm-weimar.de/pattern_
search

8 https://jazzomat.hfm-weimar.de/commandline_
tools/melpat/melpat.html#search-pattern-syntax

ation takes several minutes, depending strongly on the size
of the result set. If the results can be found in the cache,
they are returned in a few seconds.

Finally, a documentation page 9 is included as well as
a search history which gives a (browser-local) overview of
all distinct search requests which have been submitted by
the user. For each specific search, a comment can be added
and by clicking on the ‘Restore Search’ link the result of
the corresponding search is displayed.

3.3 Example 1: A typical Parker lick

Assume that we want to find all occurrences of interval pat-
tern [-1, -2, -1, -9, 3, 3, -1, -2] which was often played by
Charlie Parker within various recordings [14]. For this, we
enter it into the primary pattern field and select ‘Semitone
intervals’ as the primary transformation. By executing the
search we get eight instances, six by Charlie Parker, and
one each by Dexter Gordon and Sonny Stitt, who are both
known to be strongly influenced by Charlie Parker [15].

3.4 Example 2: Hunting for Coltrane’s “Giant Steps”
pattern

In his improvisations on “Giant Steps” recorded in 1959,
seminal tenor saxophonist John Coltrane repeatedly uses a
four-tone pattern that consists of the root, the supertonic,
the third and the fifth of the underlying chord [9, 20]. It
would be interesting to know whether other jazz musicians
have used this simple pattern, and if Coltrane used it on
other recordings as well. Additionally, it is interesting to
know whether the pattern is only played over major chords
or also with minor chords. While the Pattern History Ex-
plorer currently covers only patterns with seven tones (six
intervals) or more, the Pattern Search application offers
several options to search for arbitrary patterns using var-
ious transformations and filters.

The pattern can be expressed, for example, with the
transformation ‘Chordal Pitch Class’ (CPC), which maps
pitches to pitch classes starting with the root of the under-
lying chord. Since the third of a chord can be either major
(CPC = 4) or minor (CPC = 3), we use regular expression
syntax to reflect this and the search pattern would be

0, 2, "[", 3, 4, "]", 7

This translates as “the root (0) followed by the supertonic
(2) followed by either the minor (3) or the major third (4)
followed by the fifth of the chord (7)” 10 . Note that special
symbols of regular expressions, here the square brackets
as character set indicators, must be quoted, because of the
hybrid syntax, where chordal pitch classes are expressed as
integers (not characters).

Hitting the search button yields 323 instances. Because
the limit of 100 instances is exceeded, no score or audio
file are generated and only the result list together with a

9 https://dig-that-lick.hfm-weimar.de/pattern_
search/documentation

10 Alternatively, the same search could be carried out using the pattern
1235 over the extended chordal diatonic pitch class (CDPCX) represen-
tation.
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Figure 2. The first four search results for a pattern with
chordal pitch class transformation using regular expression
0, 2, "[", 3, 4, "]", 7 and secondary search pat-
tern 1, 0, ".", 0 over primary and secondary metrical
accents.

warning is displayed. To prune the result set, one can tick
the ‘Within Single Phrase’ box, which results in 297 in-
stances. Characteristic of Coltrane’s use of the pattern is
that it very often starts on a strong beat (first or third beat
in 4/4 time). To express this constraint with a secondary
search, we use the transformation ‘Primary and secondary
metrical accent’, which takes on the values ‘1’ for an event
on a beat position and ‘0’ otherwise, and the search pattern

1,".{3}"

with the operation ‘Match’. The dot stands for any sym-
bol (here only ‘0’ or ‘1’), while the number 3 in braces
is a quantifier meaning “exactly three repetitions”. Again,
the quotes are necessary here because of the hybrid syn-
tax. This leads to all CPC patterns that start on a strong
beat, whereby the last three tones can lie on arbitrary met-
rical positions. This results in 93 instances (by 37 players
in 58 different solos), which are displayed as a complete
list (Fig. 2). There are 12 instances with a minor third and
83 instances with major. Interestingly, John Coltrane never
uses the minor version. 26 instances originate from him,
from which 18 can be found in two recordings of “Giant
Steps”. Michael Brecker, who is said to be heavily influ-
enced by John Coltrane, accounts for nine instances, all of
which are also major.

Visual inspection of the results shows, however, that
some of the instances are either not over one single chord
or do not follow an ascending step-wise motion. Similarly,
even though most of the instances feature a plain motion in
eighth notes, there are a few instances with rather different
rhythms which still satisfy our metrical constraint. To fil-
ter these cases, one could use other transformations, e. g.,
searching for duration patterns. Thus, here and in other sit-
uations, a tertiary or even quaternary search stage would be
needed, which is not available yet but planned for a future
version of the Pattern Search application.

4. SOME OBSERVATIONS AND A HYPOTHESIS

In order to demonstrate the usefulness of the two systems
in the context of jazz research, we like to report some first
observations.
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Figure 3. Number of different starting pitches versus log10
of pattern frequency. The correlation is r = −.92. The fit
is a quadratic polynomial.

Observation 1 Pattern usage varies with performers and
appeared with bebop.

Looking at the distributions of patterns in the Pattern
History Explorer with respect to performer, it seems clear
that different jazz improvisers have different levels of pat-
tern usage. For example, players from earlier styles (e. g.,
New Orleans, Swing) have far fewer long interval patterns
in their repertoire than later players. This might be partly
due to the fact that these performers are seldom playing
long lines – a practice that only became widespread with
the advent of bebop, and which probably made the usage
of patterns a necessity.

Observation 2 The more frequent an interval pattern, the
more tonally flexible it is.

As shown in Fig. 3, the number of distinct starting pitches
of a certain pattern generally increases with its frequency
of occurrence. The relationship is approximately logarith-
mic in the frequency Np ∝ log f with a strong correlation
of r = .92 (p < .001). In other words, the more frequent
(and shorter) a pattern, the more tonally flexible it is. This
seems to reflect typical rehearsal routines, where shorter
patterns are more likely to be practiced in all keys whereas
long and very long patterns are designed to fit in only one
or two tonal contexts, e. g., to chord changes of specific
songs. This has to be tested on a larger database, taking
into account that not all keys, chords, and chord combina-
tions are equally likely to occur in jazz.

Observation 3 Patterns are mostly simple and reflect com-
mon rehearsal routines.

Diatonic patterns, i. e., step-wise motions, are by far the
most frequent pattern type followed by chromatic patterns.
Together they account for about 78% of all patterns in-
cluded in the Pattern History Explorer. This implies that
the main share of patterns is musically rather simple, i. e.,
built from diatonic scales, chromatic runs, and arpeggios.
One can conjecture that this is a result of practice traditions
in which scales and arpeggios are rehearsed for technical
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Figure 4. The interval pattern [4, 3, -3, 1, 1, -4, 1, 1, -2, -2,
-1, -2, -2, -1, 3, 3] of length 16 as found in two solos by
Charlie Parker.

fluency, but might end up ‘to lie in the fingers’, i. e., as mo-
tor patterns.

Hypothesis 1 Jazz solos are hierarchically composed of
adaptive chunks.

A general problem of pattern mining in jazz solos and
other melody corpora is, however, to distinguish truly mean-
ingful (i. e., intended) patterns from randomly occurring
patterns [7]. This is closely connected to the problem of
finding adequate models for the underlying (random) pro-
cesses, for which some evidence can be extracted already
from the data.

Some very long patterns can be found, e. g., a pattern of
16 tones by Charlie Parker with two instances in two dif-
ferent solos which are also tonally and rhythmically very
similar (Fig. 4). The a priori probability under any Markov
model for this is practically zero. This clearly shows that
this pattern was preconceived and then reproduced as a sin-
gle chunk. In general, it seems very doubtful that jazz solos
could be successfully modeled with Markov chains (of any
order) on the level of single tones or intervals [16, 17].

This is also corroborated by the existence of (non-trivial)
trill-like patterns (see Fig. 5 for an example), which are
amongst the longest patterns that can be found. These pat-
terns are somewhat trivial, as they are “oscillations” of
a repeated shorter pattern, but they are also examples of
“super-patterns”, i. e., long patterns containing shorter sub-
patterns. This hints at Markov models not working on the
note event level but hierarchically on a chunk level.

To sum up, these first observations suggest that jazz so-
los do not follow Markov models of any order on a tone-
level, but are rather created by hierarchical processes with
interspersed “islands of high probability”, where patterns
are reproduced as complete chunks while being adapted
rhythmically and tonally to the current context. This strat-
egy could be dubbed “mutatis mutandis”, which seems to
be basic not only for improvisation but music creation in
general.

5. CONCLUSION & OUTLOOK

Both applications presented in this paper are already us-
able interfaces for the Weimar Jazz Database and serve
as prototypes for applications to explore large databases,
which are going to be automatically extracted from large
collections of jazz recordings. Both tools can be primarily

Figure 5. The interval pattern [-2, -2, -1, 5, -2, -2, -1, 5,
-2, -2, -1, 5, -2, -2, -1, 5, -2, -2, -1] of length 19 as found
in two solos by Bob Berg on the album ‘Enter the Spirit’
from 1993.

viewed as bespoke interfaces for the specific needs of jazz
researchers, but they could also be of interest to jazz teach-
ers, students and fans, as well as for training courses in
computational music analysis. Compared to the possibili-
ties of the melpatmodule of the MeloSpySuite, they pro-
vide superior presentation of results, particularly in their
provision of audio and score excerpts.

The development of both applications is still ongoing.
The Pattern History Explorer will be augmented by more
patterns in the future. For the Pattern Search application,
removing the limit of 100 instances for full searches and
speed improvements are already under construction. An-
other significant extension would be the implementation of
arbitrarily many search stages, since the current status of
only two stages is often too restrictive. The incorporation
of other databases, such as the Essen Folk Song Collection,
would also be feasible without major modifications.

The current system is based on the Python regular ex-
pression module and requires all melodies to be loaded into
memory at once. This is sufficiently fast for the Weimar
Jazz Database with 200,000 events. For searching larger
data sets, however, a more advanced retrieval technology
is needed, e. g., distributed NoSQL databases and sophisti-
cated search algorithms. Moreover, the generation of score
files could be optimized by switching from Lilypond to
VexFlow 11 , not only to speed up score rendering but also
to allow for score customization.

Some features in the applications are only possible due
to the high-quality manual transcriptions in the Weimar
Jazz Database with its comprehensive set of annotations.
In the scenario of automatically extracted transcriptions,
several curtailments can be expected, e. g., transformations
that depend on such annotations might not be usable. How-
ever, it is always possible to use pitch and interval trans-
formations and to extract audio snippets for aural control,
providing also feedback for the transcription algorithm.

Finally, it is planned to conduct user studies to gather
feedback for further improvements of the interface.
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ABSTRACT

Score following is the process of tracking a musical per-
formance (audio) with respect to a known symbolic rep-
resentation (a score). We start this paper by formulating
score following as a multimodal Markov Decision Process,
the mathematical foundation for sequential decision mak-
ing. Given this formal definition, we address the score fol-
lowing task with state-of-the-art deep reinforcement learn-
ing (RL) algorithms such as synchronous advantage ac-
tor critic (A2C). In particular, we design multimodal RL
agents that simultaneously learn to listen to music, read
the scores from images of sheet music, and follow the au-
dio along in the sheet, in an end-to-end fashion. All this
behavior is learned entirely from scratch, based on a weak
and potentially delayed reward signal that indicates to the
agent how close it is to the correct position in the score.
Besides discussing the theoretical advantages of this learn-
ing paradigm, we show in experiments that it is in fact su-
perior compared to previously proposed methods for score
following in raw sheet music images.

1. INTRODUCTION

This paper addresses the problem of score following in
sheet music images. The task of an automatic score follow-
ing system is to follow a musical performance with respect
to a known symbolical representation, the score (cf. Fig-
ure 1). In contrast to audio-score alignment in general [20],
all of this takes place in an on-line fashion. Score follow-
ing itself has a long history in Music Information Retrieval
(MIR) and forms the basis for many subsequent applica-
tions such as automatic page turning [2], automatic accom-
paniment [6,23] or the synchronization of visualizations to
the live music during concerts [1, 22].

Traditional approaches to the task depend on a sym-
bolic, computer-readable representation of the score, such
as MusicXML or MIDI (see e.g. [1,6,10,14,16,17,21–23]).
This representation is created either manually (e.g. via the

c© Matthias Dorfer, Florian Henkel, Gerhard Widmer. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Matthias Dorfer, Florian Henkel, Gerhard
Widmer. “Learning to Listen, Read, and Follow:
Score Following as a Reinforcement Learning Game”, 19th International
Society for Music Information Retrieval Conference, Paris, France, 2018.

Figure 1. Sketch of score following in sheet music. Given
the incoming audio, the score follower has to track the cor-
responding position in the score (image).

time-consuming process of (re-)setting the score in a mu-
sic notation program), or automatically via optical music
recognition software [3, 4, 12]. However, automatic meth-
ods are still unreliable and thus of limited use, especially
for more complex music like orchestra pieces [26].

To avoid these complications, [7] proposes a multi-
modal deep neural network that directly learns to match
sheet music and audio in an end-to-end fashion. Given
short excerpts of audio and the corresponding sheet music,
the network learns to predict which location in the given
sheet image best matches the current audio excerpt. In
this setup, score following can be formulated as a multi-
modal localization task. However, one problem with this
approach is that successive time steps are treated indepen-
dently from each other. We will see in our experiments
that this causes jumps in the tracking process especially in
the presence of repetitive passages. A related approach [8]
trains a multimodal neural network to learn a joint embed-
ding space for snippets of sheet music and corresponding
short excerpts of audio. The learned embedding allows to
compare observations across modalities, e.g., via their co-
sine distance. This learned cross-modal similarity measure
is then used to compute an off-line alignment between au-
dio and sheet music via dynamic time warping.

Our proposal is inspired by these works, but uses a fun-
damentally different machine learning paradigm. The cen-
tral idea is to interpret score following as a multimodal con-
trol problem [9] where the agent has to navigate through
the score by adopting its reading speed in reaction to the
currently playing performance. To operationalize this no-
tion, we formulate score following as a Markov Decision
Process (MDP) in Section 3. MDPs are the mathemati-
cal foundation for sequential decision making and permit
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us to address the problem with state-of-the-art Deep Re-
inforcement Learning (RL) algorithms (Section 4). Based
on the MDP formulation, we design agents that consider
both the score and the currently playing music to achieve
an overall goal, that is to track the correct position in the
score for as long as possible. This kind of interaction is
very similar to controlling an agent in a video game, which
is why we term our MDP the score following game; it is
in fact inspired by the seminal paper by Mnih et al. [19]
which made a major contribution to the revival of deep
RL by achieving impressive results in a large variety of
Atari games. In experiments with monophonic as well as
polyphonic music (Section 5), we will show that the RL
approach is indeed superior to previously proposed score
following methods [7]. The code for the score following
game is available at https://github.com/CPJKU/
score_following_game.

2. DESCRIPTION OF DATA

To set the stage, we first need to describe the kind of
data needed for training and evaluating the multimodal RL
score following agents. We assume here that we are given
a collection of piano pieces represented as pairs of audio
recordings and sheet music images. In order to train our
models and to later quantify the score following error, we
first need to establish correspondences between individual
pixel locations of the note heads in a sheet and their respec-
tive counterparts (note onset events) in the respective audio
recordings. This has to be done either in a manual annota-
tion process or by relying on synthetic training data which
is generated from digital sheet music formats such as Mus-
escore or Lilypond. As this kind of data representation is
identical to the one used in [7, 8] we refer to these works
for a detailed description of the entire alignment process.

3. SCORE FOLLOWING AS A
MARKOV DECISION PROCESS

Reinforcement learning can be seen as a computational ap-
proach to learning from interaction to achieve a certain pre-
defined goal. In this section, we formulate the task of score
following as a Markov Decision Process (MDP), the math-
ematical foundation for reinforcement learning or, more
generally, for the problem of sequential decision making 1 .
Figure 2 provides an overview of the components involved
in the score following MDP.

The score following agent (or learner) is the active
component that interacts with its environment, which in
our case is the score following game. The interaction takes
place in a closed loop where the environment confronts
the agent with a new situation (a state St) and the agent
has to respond by making a decision, selecting one out
of a predefined set of possible actions At. After each ac-
tion taken the agent receives the next state St+1 and a nu-
merical reward signal Rt+1 indicating how well it is do-
ing in achieving the overall goal. Informally, the agent’s
goal in our case is to track a performance in the score

1 The notation in this paper follows the book by Barto and Sutton [25]

actionreward

Score Following

Agent

Figure 2. Sketch of the score following MDP. The agent
receives the current state of the environment St and a scalar
reward signal Rt for the action taken in the previous time
step. Based on the current state it has to choose an ac-
tion (e.g. decide whether to increase, keep or decrease its
speed in the score) in order to maximize future reward by
correctly following the performance in the score.
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Figure 3. Markov state of the score following MDP: the
current sheet sliding window and spectrogram excerpt. To
capture the dynamics of the environment we also add the
one step differences (∆) wrt. the previous time step (state).

as accurately and robustly as possible; this criterion will
be formalized in terms of an appropriate reward signal in
Section 3.3 below. By running the MDP interaction loop
we end up with a sequence of states, actions and rewards
S0, A0, R1, S1, A1, R2, S2, A2, R3, ..., which is the kind
of experience a RL agent is learning its behavior from.
We will elaborate on different variants of the learning pro-
cess in Section 4. The remainder of this section specifies
all components of the score following MDP in detail. In
practice, our MDP is implemented as an environment in
OpenAI-Gym 2 , an open source toolkit for developing and
comparing reinforcement learning algorithms.

3.1 Score Following Markov States

Our agents need to operate on two different inputs at the
same time, which together form the state St of the MDP:
input modality one is a sliding window of the sheet image
of the current piece, and modality two is an audio spectro-
gram excerpt of the most recently played music (∼ 2 sec-
onds). Figure 3 shows an example of this input data for a
piece by J.S. Bach. Given the audio excerpt as an input the
agent’s task is to navigate through the global score to con-
stantly receive sheet windows from the environment that
match the currently playing music. How this interaction
with the score takes place is explained in the next subsec-
tion. The important part for now is to note that score fol-

2 https://gym.openai.com/
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lowing embodies dynamics which have to be captured by
our state formulation, in order for the process to satisfy the
Markov property. Therefore, we extend the state represen-
tation by adding the one step differences (∆) of both the
score and the spectrogram. With the ∆ images and spec-
trograms a state contains all the information needed by the
agent to determine where and how fast it is moving along
in the sheet image.

3.2 Agents, Actions and Policies

The next item in the MDP (Figure 2) is the agent, which
is the component interacting with the environment by tak-
ing actions as a response to states received. As already
mentioned, we interpret score following as a multimodal
control problem where the agent decides how fast it would
like to progress in the score. In more precise terms, the
agent controls its score progression speed vpxl in pixels
per time step by selecting from a set of actions At ∈
{−∆vpxl, 0,+∆vpxl} after receiving state St in each time
step. Actions ±∆vpxl increase or decrease the speed by a
value of ∆vpxl pixels per time step. Action a1 = 0 keeps it
unchanged. To give an example: a pixel speed of vpxl = 14
would shift the sliding sheet window 14 pixels forward (to
the right) in the global unrolled score.

Finally, we introduce the concept of a policy πΘ(a|s) to
define an agent’s behavior. π is a conditional probability
distribution over actions conditioned on the current state.
Given a state s, it computes an action selection probabil-
ity πΘ(a|s) for each of the candidate actions a ∈ At. The
probabilities are then used for sampling one of the possi-
ble actions. In Section 4 we explain how to use deep neural
networks as function approximators for policy πΘ by opti-
mizing the parameters Θ of a policy network.

3.3 Goal Definition: Reward Signal and State Values

In order to learn a useful action selection policy, the agent
needs feedback. This means that we need to define how to
report back to the agent how well it does in accomplishing
the task and, more importantly, what the task actually is.

The one component in an MDP that defines the over-
all goal is the reward signal Rt ∈ R. It is provided by
the environment in form of a scalar, each time the agent
performs an action. The sole objective of a RL agent is
to maximize the cumulative reward over time. Note, that
achieving this objective requires foresight and planning, as
actions leading to high instantaneous reward might lead
to unfavorable situations in the future. To quantify this
longterm success, RL introduces the return G which is de-
fined as the discounted cumulative future reward: Gt =
Rt+1 + γRt+2 + γ2Rt+3 + · · · . The discount rate γ (with
0.0 < γ ≤ 1.0, in our case 0.9) is a hyper-parameter as-
signing less weight to future rewards if smaller than 1.0.

Figure 4 summarizes the reward computation in our
score following MDP. Given annotated training data as de-
scribed in Section 2, the environment knows, for each on-
set time in the audio, the true target position x in the score.
From this, and the current position x̂ of the agent, we com-
pute the current tracking error as dx = x̂ − x, and define

Figure 4. Reward definition in the score following MDP.
The reward Rt decays linearly (range [0, 1]) depending on
the agent’s distance dx to the current true score position x.

the reward signal r within a predefined tracking window
[x− b, x+ b] around target position x as: r = 1.0−|dx|/b.
Thus, the reward per time step reaches its maximum of 1.0
when the agent’s position is identical to the target posi-
tion, and decays linearly towards 0.0 as the tracking error
reaches the maximum permitted value b given by the win-
dow size. Whenever the absolute tracking error exceeds
b (the agent drops out of the window), we reset the score
following game (back to start of score, first audio frame).
As an RL agent’s sole objective is to maximize cumulative
future reward, it will learn to match the correct position in
the score and to not lose its target by dropping out of the
window. We define the target onset, corresponding to the
target position in the score, as the rightmost frame in the
spectrogram excerpt. This allows to run the agents on-line,
introducing only the delay required to compute the most
recent spectrogram frame. In practice, we linearly inter-
polate the score positions for spectrogram frames between
two subsequent onsets in order to produce a continuous and
stronger learning signal for training.

As with policy π, we will use function approximation
to predict the future cumulative reward for a given state
s, estimating how good the current state actually is. This
estimated future reward is termed the value V (s) of state
s. We will see in the next section how state-of-the-art
RL algorithms use these value estimates to stabilize the
variance-prone process of policy learning.

4. LEARNING TO FOLLOW

Given the formal definition of score following as an MDP
we now describe how to address it with reinforcement
learning. Note that there is a large variety of RL algo-
rithms. We focus on policy gradient methods, in particu-
lar the class of actor-critic methods, due to their reported
success in solving control problems [9]. The learners uti-
lized are REINFORCE with Baseline [27] and Synchronous
Advantage Actor Critic (A2C) [18, 28], where the latter is
considered a state-of-the-art approach. As describing the
methods in full detail is beyond the scope of this paper, we
provide an intuition on how the methods work and refer the
reader to the respective papers.
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Figure 5. Multimodal network architecture used for our
score following agents. Given state s the policy network
predicts the action selection probability πΘ(a|s) for the
allowed action At ∈ {−∆vpxl, 0,+∆vpxl}. The value
network, sharing parameters with the policy network, pro-
vides a state-value estimate V (s) for the current state.

4.1 Policy and State-Value Approximation via DNNs

In Section 3, we introduced policy πΘ, determining the be-
havior of an agent, and value function V (s), predicting
how good a certain state s is with respect to cumulative
future reward. Actor-critic methods make use of both con-
cepts. The actor is represented by policy πΘ and is respon-
sible for selecting the appropriate action in each state. The
critic is represented by the value function V (s) and helps
the agent to judge how good the selected actions actually
are. In the context of deep RL both functions are approx-
imated via a Deep Neural Network (DNN), termed policy
and value network. We denote the parameters of the policy
network with Θ in the following.

Figure 5 shows a sketch of such a network architec-
ture. As the authors in [7], we use a multimodal convo-
lutional neural network operating on both sheet music and
audio at the same time. The input to the network is ex-
actly the Markov state of the MDP introduced in Section
3.1. The left part of the network processes sheet images,
the right part spectrogram excerpts (including ∆ images).
After low-level representation learning, the two modali-
ties are merged by concatenation and further processed
using dense layers. This architecture implies that policy
and value network share the parameters of the lower lay-
ers, which is a common choice in RL [18]. Finally, there
are two output layers: the first represents our policy and
predicts the action selection probability πΘ(a|s). It con-
tains three output neurons (one for each possible action)
converted into a valid probability distribution via soft-max
activation. The second output layer consists of one lin-
ear output neuron predicting the value V (s) of the current
state. Table 1 lists the exact architectures used for our ex-
periments. We use exponential linear units for all but the
two output layers [5].

Table 1. Network architecture. DO: Dropout, Conv(3, stride-1)-
16: 3×3 convolution, 16 feature maps and stride 1.

Audio (Spectrogram) 78 × 40 Sheet-Image 80 × 256
Conv(3, stride-1)-32 Conv(5, stride-(1, 2))-32
Conv(3, stride-1)-32 Conv(3, stride-1)-32
Conv(3, stride-2)-64 Conv(3, stride-2)-64

Conv(3, stride-1)-64 + DO(0.2) Conv(3, stride-1)-64 + DO(0.2)
Conv(3, stride-2)-64 Conv(3, stride-2)-64
Conv(3, stride-2)-96 Conv(3, stride-2)-64 + DO(0.2)
Conv(3, stride-1)-96 Conv(3, stride-2)-96

Conv(1, stride-1)-96 + DO(0.2) Conv(1, stride-1)-96 + DO(0.2)
Dense(512) Dense(512)

Concatenation + Dense(512)
Dense(256) + DO(0.2) Dense(512) + DO(0.2)

Dense(3) - Softmax Dense(1) - Linear

4.2 Learning a Policy via Actor-Critic

One of the first algorithms proposed for optimiz-
ing a policy was REINFORCE [27], a Monte-Carlo
algorithm that learns by generating entire episodes
S0, A0, R1, S1, A1, R2, S2, A2, ... of states, actions and re-
wards by following policy πΘ while interacting with the
environment. Given this sequence it updates the parame-
ters Θ of the policy network according to the following up-
date rule by replaying the episode time step by time step:

Θ← Θ + αGt∇Θ lnπΘ(At|St,Θ) (1)

α is the step size or learning rate and Gt is the true
discounted cumulative future reward (the return) received
from time step t onwards. Gradient ∇Θ is the direction in
parameter space in which to go if we want to maximize the
selection probability of the respective action. This means
whenever the agent did well, achieving a high return Gt,
we take larger steps in parameter space towards selecting
the responsible actions. By changing the parameters of
the policy network, we of course also change our policy
(behavior) and we will select beneficial actions more fre-
quently in the future when confronted with similar states.

REINFORCE and policy optimization are known to
have high variance in the gradient estimate [11]. This
results in slow learning and poor convergence properties.
To address this problem, REINFORCE with Baseline
(REINFORCEbl) adapts the update rule of Equation (1) by
subtracting the estimated state value V (s) (see Section 3.3)
from the actual return Gt received:

Θ← Θ + α(Gt − V (s))∇Θ lnπΘ(At|St,Θ) (2)

This simple adaptation helps to reduce variance and im-
proves convergence. The value network itself is learned
by minimizing the mean squared error between the actu-
ally received return and the predicted value estimate of the
network, (Gt − V (s))2. REINFORCEbl will be the first
learning algorithm considered in our experiments.

Actor-critic methods are an extension of the baseline
concept, allowing agents to learn in an online fashion while
interacting with the environment. This avoids the need for
creating entire episodes prior to learning. In particular, our
actor-critic agent will only look into the future a fixed num-
ber of tmax time steps (in our case, 15). This implies that
we do not have the actual return Gt available for updating
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the value function. The solution is to bootstrap the value
function (i.e., update the value estimate with estimated val-
ues), which is the core characteristic of actor-critic meth-
ods. The authors in [18] propose the Synchronous Ad-
vantage Actor Critic (A2C) and show that running multi-
ple actors (in our case 16) in parallel on different instances
of the same kind of environment, further helps to stabilize
training. We will see in our experiments that this also holds
for the score following task. For a detailed description of
the learning process we refer to the original paper [18].

5. EXPERIMENTAL RESULTS

In this section we experimentally evaluate our RL ap-
proach to score following and compare it to a previously
introduced method [7] that solves the same task. In addi-
tion to quantitative analysis we also provide a video of our
agents interacting with the score following environment. 3

5.1 Experimental Setup

Two different datasets will be used in our experiments. The
Nottingham Dataset comprises 296 monophonic melodies
of folk music (training: 187, validation: 63, testing: 46); it
was already used in [7] to evaluate score following in sheet
music images. The second dataset contains 479 classical
pieces by various composers such as Beethoven, Mozart
and Bach, collected from the freely available Mutopia
Project 4 (training: 360, validation: 19, testing: 100). It
covers polyphonic music and is a substantially harder chal-
lenge to a score follower. In both cases the sheet music is
typeset with Lilypond and the audios are synthesized from
MIDI using an acoustic piano sound font. This automatic
rendering process provides the precise audio – sheet mu-
sic alignments required for training (see Section 2). For
audio processing we set the computation rate to 20 FPS
and compute log-frequency spectrograms at a sample rate
of 22.05kHz. The FFT is computed with a window size
of 2048 samples and post-processed with a logarithmic fil-
terbank allowing only frequencies from 60Hz to 6kHz (78
frequency bins).

The spectrogram context visible to the agents is set to
40 frames (2 sec. of audio) and the sliding window sheet
images cover 160× 512 pixels and are further downscaled
by a factor of two before being presented to the network.
As optimizer we use the Adam update rule [15] with an ini-
tial learning rate of 10−4 and running average coefficients
of 0.5 and 0.999. We then train the models until there is no
improvement in the number of tracked onsets on the val-
idation set for 50 epochs and reduce the learning rate by
factor 10 three times. The tempo change action ∆vpxl is
0.5 for Nottingham and 1.0 for the polyphonic pieces.

5.2 Evaluation Measures and Baselines

Recall from Section 3.3 and Figure 4 that from the agent’s
position x̂ and the ground truth position x, we compute the
tracking error dx. This error is the basis for our evaluation

3 score following video: https://youtu.be/COPNciY510g
4 http://www.mutopiaproject.org/
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Figure 6. Optimal tempo curve and corresponding opti-
mal actions At for a continuous agent (piece: J. S. Bach,
BWV994). The At would be the target values for training
an agent with supervised, feed-forward regression.

measures. However, compared to training, we only con-
sider time steps in our evaluation where there is actually
an onset present in the audio. While interpolating inter-
mediate time steps is helpful for creating a stronger learn-
ing signal (Section 3.3), it is not musically meaningful.
Specifically, we will report the evaluation statistics mean
absolute tracking error |dx| as well as its standard devi-
ation std(|dx|) over all test pieces. These two measures
quantify the accuracy of the score followers. To also mea-
sure their robustness we compute the ratio Ron of overall
tracked onsets as well as the ratio of pieces Rtue tracked
from beginning entirely to the end.

As baseline method we consider the approach described
in [7], which models score following as a multimodal lo-
calization task (denoted by MM-Loc in the following).

As a second baseline, we also tried to train an agent to
solve the score following MDP in a fully supervised fash-
ion. This is theoretically possible, as we know for each
time point the exact corresponding position in the score
image, which permits us to derive an optimal tempo curve
and, consequently, an optimal sequence of tempo changes
for each of the training pieces. Figure 6 shows such an op-
timal tempo curve along with the respective tempo change
actions for a short Bach piece. The latter would serve as
targets y in a supervised regression problem y = f(x).
The network structure used for this experiment is identi-
cal to the one in Figure 5 except for the output layers. In-
stead of policy πθ and value V we only keep a single linear
output neuron predicting the value of the optimal tempo
change in each time step. However, a closer look at Fig-
ure 6 already reveals the problem inherent in this approach.
The optimal tempo change is close to zero most of the time.
For the remaining time steps we observe sparse spikes of
varying amplitude. When trying to learn to approximate
these optimal tempo changes (with a mean squared error
optimization target), we ended up with a network that pre-
dicts values very close to zero for all its inputs. We con-
clude that the relevant tempo change events are too sparse
for supervised learning and exclude the method from our
tables in the following. Besides these technical difficulties
we will also discuss conceptual advantages of addressing
score following as an MDP in Section 6.
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Method Rtue Ron |dx| std(|dx|)

Nottingham (monophonic, 46 test pieces)

MM-Loc [7] 0.43 0.65 3.15 13.15

REINFORCEbl 0.94 0.96 4.21 4.59
A2C 0.96 0.99 2.17 3.53

Mutopia (polyphonic, 100 test pieces)

MM-Loc [7] 0.61 0.72 62.34 298.14

REINFORCEbl 0.20 0.35 48.61 41.99
A2C 0.74 0.75 19.25 23.23

Table 2. Comparison of score following approaches. Best
results are marked in bold. For A2C and REINFORCEbl
we report the average over 10 evaluation runs.

5.3 Experimental Results

Table 2 provides a summary of the experimental results.
Looking at the Nottingham dataset, we observe large gaps
in performance between the different approaches. Both
RL based methods manage to follow almost all of the test
pieces completely to the end. In addition, the mean track-
ing error is lower for A2C and shows a substantially lower
standard deviation. The high standard deviation for MM-
Loc is even more evident in the polyphonic pieces. The
reason is that MM-Loc is formulated as a localization task,
predicting a location probability distribution over the score
image given the current audio. Musical passages can be
highly repetitive, which leads to multiple modes in the lo-
cation probability distribution, each of which is equally
probable. As the MM-Loc tracker follows the mode with
highest probability it starts to jump between such ambigu-
ous structures, producing a high standard deviation for the
tracking error and, in the worst case, loses the target.

Our MDP formulation of score following addresses this
issue, as the agent controls its progression speed for navi-
gating through the sheet image. This restricts the agent as
it does not allow for large jumps in the score and, in ad-
dition, is much closer to how music is actually performed
(e.g. from left to right and top to bottom when excluding
repetitions). Our results (especially the ones of A2C) re-
flect this theoretical advantage.

However, in the case of complex polyphonic scores we
also observe that the performance of REINFORCEbl de-
grades completely. The numbers reported are the outcome
of more than five days of training. We already mentioned
in Section 4 that policy optimization is known to have
high variance in the gradient estimate [11], which is ex-
actly what we observe in our experiments. Even though
REINFORCEbl managed to learn a useful policy for the
Nottingham dataset it also took more than five days to ar-
rive at that. In contrast, A2C learns a successful policy for
the Nottingham dataset in less than six hours and outper-
forms the baseline method on both datasets. For Mutopia
it tracks more than 70% of the 100 test pieces entirely to
the end without losing the target a single time. This re-

sult comes with an average error of only 20 pixels which is
about 5mm in a standard A4 page of Western sheet music
– three times more accurate than the baseline with a mean
error of 62 pixels.

We also report the results of REINFORCEbl to em-
phasize the potential of RL in this setting. Recall that
the underlying MDP is the same for both REINFORCEbl
and A2C. The only part that changes is a more powerful
learner. All other components including network architec-
ture, optimization algorithm and environment remain un-
touched. Considering that deep RL is currently one of the
most intensively researched areas in machine learning, we
can expect further improvement in the score following task
whenever there is an advance in RL itself.

6. DISCUSSION AND CONCLUSION

We have proposed a formulation of score following in
sheet music images as a Markov decision process and
showed how to address it with state-of-the-art deep rein-
forcement learning. Experimental results on monophonic
and polyphonic piano music show that this is competitive
with recently introduced methods [7]. We would like to
close with a discussion of some specific aspects that point
to interesting future perspectives.

Firstly, we trained all agents using a continuous reward
signal computed by interpolating the target (ground truth)
location between successive onsets and note heads. Re-
inforcement learners can, of course, also learn from a de-
layed signal (e.g. non-zero rewards only at actual onsets or
even bar lines or downbeats). This further implies that we
could, for example, take one of our models trained on the
synthesized audios, annotate a set of real performance au-
dios at the bar level (which is perfectly feasible), and then
fine-tune the models with the very same algorithms, with
the sole difference that for time points without annotation
the environment simply returns a neutral reward of zero.

Secondly, we have already started to experiment with
continuous control agents that directly predict the required
tempo changes, rather than relying on a discrete set of ac-
tion. Continuous control has proven to be very successful
in other domains [9] and would allow for a perfect align-
ment of sheet music and audio (cf. Figure 6).

A final remark concerns RL in general. For many RL
benchmarks we are given a simulated environment that the
agents interact with. These environments are fixed prob-
lems without a natural split into training, validation and
testing situations. This is different in our setting, and one
of the main challenges is to learn agents, which generalize
to unseen pieces and audio conditions. While techniques
such as weight-decay, dropout [24] or batch-normalization
[13] have become a standard tool for regularization in su-
pervised learning they are not researched in the context of
RL. A broad benchmark of these regularizers in the context
of RL would be therefore of high relevance.

We think that all of this makes the score following MDP
a promising and in our opinion very exciting playground
for further research in both music information retrieval and
reinforcement learning.
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ABSTRACT

Song recommendation from listening counts is now a clas-
sical problem, addressed by different kinds of collabora-
tive filtering (CF) techniques. Among them, Poisson ma-
trix factorization (PMF) has raised a lot of interest, since
it seems well-suited to the implicit data provided by listen-
ing counts. Additionally, it has proven to achieve state-of-
the-art performance while being scalable to big data. Yet,
CF suffers from a critical issue, usually called cold-start
problem: the system cannot recommend new songs, i.e.,
songs which have never been listened to. To alleviate this,
one should complement the listening counts with another
modality. This paper proposes a multi-modal extension of
PMF applied to listening counts and tag labels extracted
from the Million Song Dataset. In our model, every song is
represented by the same activation pattern in each modality
but with possibly different scales. As such, the method is
not prone to the cold-start problem, i.e., it can learn from a
single modality when the other one is not informative. Our
model is symmetric (it equally uses both modalities) and
we evaluate it on two tasks: new songs recommendation
and tag labeling.

1. INTRODUCTION

New albums and songs are released every day and are in-
stantly available on streaming platforms. An important is-
sue for streaming companies is therefore to develop rec-
ommender systems which are able to handle such new
songs [13, 20]. More generally, additional information on
those songs is needed to enrich the catalog, allowing the
user to efficiently explore and find the songs he might like.
In this perspective, tag labeling has proven to be very use-
ful. The labels can be attributed by experts or by the user,
and algorithms can complement this information with au-
tomatic labeling [7].

For both tasks (song recommendation and tag label-
ing), matrix factorization (MF) techniques [12, 17], and
in particular Poisson MF (PMF), reach significant perfor-
mance. Unfortunately, these techniques suffer from the
well-known cold-start problem: such a recommender sys-

c© Olivier Gouvert, Thomas Oberlin, Cédric Févotte. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Olivier Gouvert, Thomas Oberlin, Cédric
Févotte. “Matrix co-factorization for cold-start recommendation”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

tem cannot recommend songs which have never been lis-
tened to, and similarly it cannot labeled untagged songs.
A joint modeling of both modalities can achieve cold-start
recommendation, as soon as at least one modality is ob-
served for every song [8, 22].

In this paper, we propose a new matrix co-factorization
model based on PMF, which performs those two tasks
jointly. Our model is robust to the cold-start problem for
both modalities. It can recommend a song which has never
been listened to, based on its associate tags. And symmet-
rically, it can associate tags on a song based on who lis-
tened to it. To do that, we separately model the scale (pop-
ularity) of each song according to each modality, while the
patterns across the topics are shared.

The state of the art of co-factorization techniques is
presented in Section 2, along with some background on
PMF. Then, in Section 3 we will present our new model
and explain its properties. In Section 4, we provide
a majorization-minimization (MM) algorithm for solving
our optimization problem and underline its scalability. Fi-
nally, in Section 5, we test our model on songs recommen-
dation and tag labeling in various settings.

2. RELATED WORKS

In this paper, we will focus on works based on so-called
hybrid techniques [1] and Poisson matrix factorization.
Note that recommendation tasks can also be addressed
with other techniques such as factorization machines [19].

2.1 Poisson matrix factorization

PMF is a non-negative MF (NMF) technique [14]. Let Y
be a matrix of size F × I , where each column represent
an item (song) i according to F features. MF approxi-
mates the observed matrix Y by a low-rank product of two
matrices: Y ≈ WHT , where W ∈ RF×K

+ represents a
dictionary matrix, and H ∈ RI×K+ represents a matrix of
attributes (activations), with K � min(F, I).

When observed data are in the form of counts, i.e.,
Y ∈ NF×I , a classical hypothesis is to assume that each
observation is drawn from a Poisson distribution:

yfi ∼ Poisson([WHT ]fi). (1)

The maximum likelihood (ML) estimator of W and H
is therefore obtained by minimizing the cost function de-
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fined by:

C(W,H) = − log p(Y|W,H)

= DKL(Y |WHT ) + cst (2)

s.t. W ≥ 0, H ≥ 0,

where cst is a constant w.r.t. W and H, and whereDKL is
the generalized Kullback-Liebler (KL) divergence defined
by:

DKL(Y|X) =
∑
f,i

(
yfi log

yfi
xfi
− yfi + xfi

)
. (3)

This low-rank approximation is known as KL non-
negative matrix factorization (KL-NMF) [9, 15].

The cost function C is scale invariant, i.e., for any
diagonal non-singular matrix Λ ∈ RK×K

+ , we have
C(W,H) = C(WΛ−1,HΛ). To avoid degenerate solu-
tions, a renormalization such that

∑
f wfk = F is often

used, where wfk = [W]fk.
Several extensions based on Bayesian formulations

have been proposed in the literature [3,5,6,10,17]. In [10],
the authors developed a hierarchical Poisson factorization
(HPF) by introducing new variables: the popularity of the
items and the activity of the users. These variables play a
significant role in recommendation tasks.

2.2 Co-factorization

A way of circumventing the cold-start problem is to intro-
duce new modalities [8, 11, 16]. Co-factorization frame-
works have been developed to jointly factorize two matri-
ces of observations (two modalities): YA ≈ WA(HA)T

and YB ≈WB(HB)T , with shared information between
the activation matrices: HA ≈ HB .

2.2.1 Hard co-factorization

Hard co-factorization [8, 21] posits that the link between
activations is an equality constraint: HA = HB = H.
This is equivalent to concatenate the observations YA and
YB , and the dictionaries WA and WB :

DKL(YA|WAHT ) + γDKL(YB |WBHT )

= DKL

((
YA

γYB

)
|
(

WA

γWB

)
HT

)
, (4)

where γ ∈ R+ is a weighting hyperparameter.
As in Section 2.1, scale invariance issues can

be solved by a renormalization step such that:∑
u w

A
uk + γ

∑
v w

B
vk = U + V .

2.2.2 Soft co-factorization

Soft co-factorization [21] relaxes the equality constraint on
the activations replacing it by a soft penalty controlled by
an hyperparameter δ ∈ R+:

DKL(YA|WA(HA)T ) + γDKL(YB |WB(HB)T )

+δ Pen(HA,HB). (5)

A popular choice for this penalty is the `1-norm:
Pen(HA,HB) =

∥∥HA −HB
∥∥
1
. It is adapted when both

modalities are likely to share the same activations, except
at some sparse locations where they can differ significantly.

2.2.3 Offset models

Bayesian formulations of the soft co-factorization problem
have also been developed through the introduction of an
offset latent variable [11,22]. The link between activations
is therefore given by:

hBik = hAik + εik, (6)

where ε is a latent random variable.
In particular in [11], a co-factorization model is devel-

oped based on PMF, with εik ∼ Gamma(α, β). This
choice is motivated by the conjugacy propriety of the
gamma distribution with the Poisson distribution. Never-
theless, the model is not symmetric with respect to (w.r.t.)
the activations HA and HB , as hBik > hAik by construc-
tion. Thus, it can solve the cold-start problem only for the
modality A and not for B.

3. PROPOSED MODEL

3.1 Notations

In this article, we work with two different modalities. The
first modality, denoted by A, corresponds to the listening
counts of U users on I songs. The second modality, de-
noted by B, corresponds to the tags assigned to these I
songs, among a set of V tags. WA and WB thus denote
the preferences of users and the atoms of tags across theK
patterns, respectively.

3.2 Link between attributes

We propose an equality constraint on normalized activa-
tions. We denote by nAi =

∑
k h

A
ik and nBi =

∑
k h

B
ik, the

sum of the rows of the activations. We impose, for each
item i:

hAik
nAi

=
hBik
nBi

= dik, (7)

when nAi > 0 and nBi > 0.

• The I × K matrix D with entries dik controls
the attributes patterns subject to the constraint∑
k dik = 1. This information is shared by activa-

tions of both modalities. For example, the K pat-
terns can be related to genre information: we ex-
pect that experimental rock songs share the same
patterns.

• NA = diag(nAi ) controls the scale of songs across
the modality A. It corresponds to the popularity of
the song, in the sense that a lot of people listen to it.

• NB = diag(nBi ) controls the scale of songs across
the modality B. It corresponds to the fact that a song
can have more or less tag labels.
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Two songs can have the same attributes patterns D but
different scales. For example, a song i can be a very pop-
ular song, known by a large panel of people: nAi � 0, but
lack tag labeling: nBi ≈ 0. On the contrary, another song i
can be unpopular (because it is new or not well-received):
nAi ≈ 0, but have a lot of tag information (a set of experts
may have labeled the song): nBi � 0.

The counterpart of Equation (2) is the following cost
function C, which we aim to minimize:

C(WA,WB ,D,NA,NB) (8)

= DKL(YA |WA(NAD)T )

+ γDKL(YB |WB(NBD)T )

s.t. WA ≥ 0, WB ≥ 0, D ≥ 0,

diag(NA) ≥ 0, diag(NB) ≥ 0.

We denote by Z = {WA,WB ,NA,NB ,D} the set of
variables to infer.

3.3 Scale invariance

Let Θ = diag(θi) be a diagonal matrix of size I × I with
non-negative entries. We have the following scale invari-
ance:

C(WA,WB ,Θ−1D,NAΘ,NBΘ)

= C(WA,WB ,D,NA,NB). (9)

This scale invariance allows us to impose the constraint on
D, described in Section 3, by applying a renormalization
step (see Section 4.2).

Let Λ = diag(λk) be a diagonal matrix of sizeK×K with
non-negative entries, W̄A = WAΛ−1, W̄B = WBΛ−1

and D̄ = DΛ. We also have the following scale invari-
ance:

C(W̄A,W̄B , D̄,NA,NB)

= C(WA,WB ,D,NA,NB). (10)

In practice, this invariance is not an issue and we do not
apply a renormalization step. However, this kind of invari-
ance plays a role for the scores used in recommendation as
discussed in Section 3.4.

3.4 Recommendation tasks

In recommender systems, a classical problem is to propose
a ranked list of songs, users or tags. We develop how to
construct this list on two tasks: in- and out-prediction.

3.4.1 In-matrix recommendation

In-matrix recommendation is a task of recommendation on
users and items which do not suffer from the cold-start
problem. For in-matrix recommendation, we propose a
ranked list of songs for each user, based on the score de-
fined by:

sAui =
∑
k

wAukh
A
ik. (11)

This score and our cost function C have the same scale
invariance described in Eq. 10.

3.4.2 Cold-start (out-matrix) recommendation

Cold-start (or out-matrix) recommendation is a task of rec-
ommendation on items which suffer from the cold-start
problem (on modality A or B). In this section, we take the
example of a cold-start problem on modality A, i.e., the
song has no information in the modality A (nobody has
listened to this song yet) but has tags associated to it. The
following remark would hold for a cold-start problem on
modality B.

For cold-start (out-matrix) recommendation the score is
defined by:

sAui =
∑
k

wAukdik =
∑
k

wAuk
hAik∑
l h
A
il

. (12)

Contrary to in-prediction, we use D and not HA = NAD
since the popularity in the modality A is close to zero for
songs with no information, i.e., nAi ≈ 0.

This score and the cost function C do not have the same
scale invariance described in Eq. 10. In fact, if we denote
w̄Auk = λkw

A
uk and h̄Aik = λkh

A
ik, we have:

s̄Aui =
∑
k

w̄Auk
h̄Aik∑
l h̄
A
il

= sAui

∑
k h

A
ik∑

k λkh
A
ik

= sAuici, (13)

where ci =
∑

k h
A
ik∑

k λkhA
ik

.

This means that, if we want to rank the different scores
sAui, we have to do it for a fixed item. Therefore, to properly
evaluate the cold-start problem for songs, we will propose
a ranked list of users (or tags), for a given item.

For a streaming company, it corresponds to obtaining
a ranked list of users which are likely to listen to this new
song, or a ranked list of tags which corresponds to the song.

4. OPTIMIZATION

4.1 Auxiliary function

The objective function C has no closed-form minimum
and is not convex. We use a MM algorithm [9] to reach
a local minimum. The MM algorithms start by design-
ing a majorizing surrogate G of the objective function
C(Z) ≤ G(Z | Z̃) which is tight at the current value Z̃,
i.e., C(Z̃) = G(Z̃ | Z̃).

We use Jensen inequality on terms of the form
log(

∑
i xi). We define:

φAuik =
w̃Aukd̃ik∑
k w̃

A
ukd̃ik

, cAuik = yAuiφ
A
uik, (14)

φBuik =
w̃Bukd̃ik∑
k w̃

B
ukd̃ik

, cBuik = yBuiφ
B
uik. (15)

794 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



It leads to the following upper-bound:

G(Z | D̃,W̃A,W̃B) (16)

=
∑
uik

[
−cAuik log(wAukn

A
i dik) + wAukn

A
i dik

]
+ γ

∑
vik

[
−cBvik log(wBvkn

B
i dik) + wBvkn

B
i dik

]
+ cst.

4.2 Updates

The auxiliary functionG can be optimized by using a block
descent algorithm. At each iteration, we optimize one la-
tent variable, keeping all the others fixed. This technique
leads to four update rules described in the following.

• Variables WA and WB :

wAuk ←
∑
i c
A
uik∑

i n
A
i dik

; wBvk ←
∑
i c
B
vik∑

i n
B
i dik

(17)

• Variables NA and NB :

nAi ←
∑
u y

A
ui∑

uk w
A
ukdik

; nBi ←
∑
v y

B
vi∑

vk w
B
vkdik

(18)

• Variable D:

dik ←
∑
u c

A
uik + γ

∑
v c

B
vik

nAi
∑
u w

A
uk + γnBi

∑
v w

B
vk

(19)

As discussed in Section 3.3, we add a renormalization
step at the end of each iteration. The update is as follows:

θi =
∑
k

dik/I, (20)

D← Θ−1D; NA ← NAΘ; NB ← NBΘ. (21)

4.3 Algorithm

The complete algorithm is summarized in Algorithm 1.
Note that the inference only requires browsing the non-
zero data yAui > 0 and yBvi > 0, during the update of the
local variables cAuik and cBuik. Hence, our algorithm has the
same scalability as PMF, making it particularly well-suited
for processing huge sparse matrices, as it is the case in rec-
ommender systems (see Table 1).

The algorithm is stopped when the relative increment of
the cost function C is lower than a chosen parameter τ .

5. EXPERIMENTS

5.1 Experimental Setup

5.1.1 Datasets

We use two datasets extracted from the Million Song
Dataset (MSD) [2] and merge them on songs:

• The Taste Profile dataset provides listening counts of
1M users on 380k songs [18]. We select a subset of
the users and pre-process the data to remove users
and items with few information [16]. We keep only
users who listened to at least 20 songs, and songs
which have been listened to by at last 20 users.

Algorithm 1: MM Algorithm

Input : YA, YB , K, γ

Initialize: WA,WB ,NA,NB ,D
repeat

for each pair (u, i) such that yAui > 0: Eq. 14
for each pair (v, i) such that yBvi > 0: Eq. 15
for each user u and tag v: Eq. 17
for each item i: Eq. 18-19
normalization step: Eq. 21

until C converges;

Taste Profile Last.fm

# columns (songs) 15, 667 15, 667
# rows (users or tags) 16, 203 620
# non-zeros 792, 761 128, 652
% non-zeros 0.31% 1.32%

Table 1. Datasets structure after pre-processing.

• The Last.fm dataset provides tag labels for around
500k songs. These tags were extracted from the
Last.fm API [4]. Since the tags were collected via
user annotation, they are quite noisy. To avoid miss-
labeling in the train data, we pre-process it. We
keep only the 1000 most used tags in the whole
dataset. For each couple song-tag, a confidence rat-
ing is given by Last.fm, we keep only couples with
confidence higher than 10. Finally, we keep only
tags which appears at least in 20 songs. The top 10
of the tags in the dataset after the pre-processing are
shown in Table 2.

We binarize the two datasets. Structure of both datasets is
described in Table 1.

5.1.2 Evaluation metric: ranking prediction

In each experiment, we will propose a ranked list L of N
items (which can be songs, tags or users) and evaluate its
quality w.r.t. a ground-truth relevance. For this, we calcu-
late the discounted cumulative gain (DCG) and its normal-
ized version, the NDCG:

Tags Occ. Tags Occ.

rock 6703 electronic 2413
alternative 4949 female vocalists 2407
indie 4151 indie rock 2171
pop 3853 Love 1875
alternative rock 2854 singer-songwriter 1786

Table 2. Occurences (Occ.) of the top tags in the dataset
after pre-processing.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 795



Experiment OUT-A OUT-B IN-A

Score NDCG@20 NDCG@200 NDCG@1∗ NDCG@10 NDCG@100 NDCG∗∗

P-coNMF 0.0824
±1.48e−5

0.122
±1.33e−5

0.416
±5.85e−4

0.266
±1.59e−4

0.129
±4.24e−6

0.286
±2.82e−6

H-coNMF
0.0873
±1.39e−5

0.131
±2.21e−5

0.391
±1.73e−4

0.264
±1.00e−4

0.122
±5.72e−6

0.283
±2.96e−6

KL-NMF . . . .
0.163
±5.36e−7

0.313
±1.50e−7

Table 3. Performance of three models: P-coNMF, H-coNMF, KL-NMF, on three different tasks: out-matrix song recom-
mendation (OUT-A), tag labeling (OUT-B), in-matrix recommendation (IN-A). Each algorithm is run 5 times, the mean
and the variance of the NDCG metrics are displayed. ∗ NDCG@1 corresponds to the percentage of success on the first
predicted tag. ∗∗ NDCG is not truncated in this column, it is equivalent to chose N = I .

DCG@N =
N∑
n=1

rel(n)

log2(n+ 1)
, (22)

NDCG@N =
DCG@N

IDCG@N
, (23)

where rel(n) is the ground-truth relevance of the n-th item
in the list L. In the following, rel(n) = 1 if the item is
relevant and rel(n) = 0 if not.

The denominator of the DCG penalizes relevant items
which are at the end of the ranked list. It accounts for
the fact that a user will only browse the beginning of the
list, and will not pay attention to items which are ranked
at the end. IDCG is the ideal DCG. It corresponds to the
DCG score of an oracle which ranks perfectly the list, thus
scaling the NDCG between 0 and 1.

5.1.3 Compared methods

For each experiment, we will compare the performance of
our model, proportional co-factorization NMF (P-coNMF)
with two other methods:

• KL-NMF, presented in Section 2.1. It can only be
used for in-matrix prediction as it suffers from the
cold-start problem.

• Hard co-factorization (H-coNMF), presented in Sec-
tion 2.2.1), that use KL-NMF algorithm on concate-
nated matrix. For out-matrix prediction, we will use
a mask that indicates what columns are missing. The
objective function is then:

C(W,H) = DKL(X⊗Y |X⊗WHT ), (24)

where ⊗ is the elementwise multiplication, and X
is the mask. Note that the masked H-coNMF is ex-
pected to perform as good as soft coNMF with the
`1−norm, since it does not enforce common activa-
tion for new songs.

For both methods, we chose K = 100 latent factors.
The hyperparameter is set such that γ = U

V , which al-
lows to compensate for the size difference between the two
datasets (V � U ).

5.2 Cold-start recommendation

In this section, we evaluate our algorithm on cold-start rec-
ommendation tasks for both modalities A and B. For this,
we artificially replace columns of YA and YB by columns
full of zeros, in order to create the train datasets YA

train
and YB

train. It leads to 10% of songs with only listening
counts information, 10% of songs with only tag informa-
tion and 80% of songs with both informations. The re-
moved columns form the test datasets YA

test and YB
test.

For each song among the never-listened-to songs, we
want to find a set of users that is likely to listen to it.
We train all the algorithms on YA

train and YB
train. For each

song, we create a ranked list of users based on the score
defined in Section 3.4.2. We evaluate its relevance based
on the NDCG metrics with ground-relevance defined by:
rel(u, i) = 1(yAtest,ui > 0), where 1(x) is the indicator
function which is equal to 1 when x is true and 0 other-
wise.

Similarly, for each song among the untagged songs,
we want to find a set of tags that can annotate that
song. Then we propose a ranked list of tags and calcu-
late the NDCG score with ground-relevance defined by:
rel(v, i) = 1(yBtest,vi > 0).

The columns OUT-A and OUT-B of Table 3 present the
results of P-coNMF and H-coNMF on the two cold-start
problems. For recommending potential listeners (OUT-
A), H-coNMF seems to be slightly better than our method.
However, P-coNMF outperforms H-coNMF on tag label-
ing task. P-coNMF presents a success rate of 42% on the
first predicted tag. This is an acceptable rate since the tag
dataset is noisy: it has not been labeled by experts but by
users and presents some incoherences. For example, the
tag ’Hip-Hop’ can also be written ’hip hop’. More details
on tag labeling are provided in Section 5.4. Contrary to
H-coNMF, P-coNMF does not need a mask to know which
columns are missing. Additionally, the scale variables NA

and NB are able to explain different scalings of the same
song in the two datasets. This seems interesting because
the amount of listening counts and tags for the same song
is often highly different.
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FACTOR #94 FACTOR #29 FACTOR #30

Top tags

Hip-Hop
hip hop
classic
rap
Gangsta Rap

new wave
post-punk
Guilty Pleasures
intense
Post punk

experimental
Experimental Rock
Avant-Garde
noise
weird

Top songs
based on HA

Eminem - “Mockingbird”
Eminem - “Without Me”
Kid Cudi - “Day ’N’ Nite”
Kid Cudi - “Up Up & Away”
Kid Cudi - “Cudi Zone”

The Cure - “Boys Don’t Cry”
The Smiths - “There Is A Light [...]”
The Smiths - “This Charming Man”
The Smiths - “What Difference Does It Make?”
Wolfsheim - “Once In A Lifetime”

Animal Collective - “Fireworks”
Sigur Ros - “Staralfur”
Sonic Youth - “Youth Against Fascism”
Grizzly Bear - “Little Brother”
TV On The Radio - “Crying”

Top songs
based on D

DMX - “Where The Hood At”
Lil Jon - “Crunk Juice”
50 Cent - “Straight To The Bank”
Eminem - “The Kiss”
The Notorious B.I.G. - “Respect”

New Order - “The Perfect Kiss”
Talking Heads - “Burning Down The House”
Joy Division - “Disorder”
Tears For Fears - “Goodnight Song”
The Smiths - “Miserable Lie”

The Mars Volta - “Tira Me a Las Aranas”
Cocorosie - “Gallows”
The Mars Volta - “Concertina”
The Mars Volta - “Roulette Dares”
TV On The Radio - “Golden Age”

Table 4. Three examples of factors, with, for both of them, the 5 top tags associated to it, the 5 top songs associated to it,
with or without the notion of popularity.

5.3 In-matrix song recommendation

We also evaluate our algorithm on in-matrix prediction.
The goal is therefore to predict which songs a user is likely
to listen. There is no cold-start recommendation here, and
KL-NMF can be trained.

We artificially split the listening counts dataset in two.
20% of non-zero values of YA are removed to create the
test set YA

test. The 80% remaining form the train set YA
train

on which the different models are trained. Each method is
evaluated with NDCG metric. For each user, a list of songs
is proposed based on the score defined in Section 3.4.1,
among the songs he never listened to. The ground-truth
relevance is defined by rel(u, i) = 1(yAtest,ui > 0).

The results are presented in the third column (IN-A) of
Table 3. P-coNMF is slightly better than H-coNMF, but
we observe that KL-NMF achieves state-of-the-art perfor-
mance. This is not surprising, since adding information on
another modality (tags here) can be viewed as a regulariz-
ing term. We lose in precision in in-matrix recommenda-
tion task but we solve the cold-start problem. This seems
an interesting trade-off.

5.4 Exploratory Analysis

In Table 4, we present for each of the three factors
k ∈ {29, 30, 94}:

• in the first row, the tags which corresponds to the five
highest values of WB .

• in the second row, the songs which corresponds to
the five highest values of HA = NAD.

• in the third row, the songs which corresponds to the
five highest values of D.

The top tags associated to each factor are consistent: for
example, genre as ’new wave’ and ’post-punk’ are in the
same factor. The model is also robust to the different
spellings used by the users (’post-punk’ and ’Post punk’
for example). Then, we see that the top songs in each fac-
tor are related with the top tags. Eminem, 50 Cent and The

Notorious B.I.G. are rap artists. The Cure, The Smiths and
Joy Division are the leading figures of the new wave. TV
On The Radio, The Mars Volta and Animal Collective are
known to be experimental rock bands. Finally, we see that
the popularity of songs NA has an important influence on
the diversity of the top songs in each factor. When this no-
tion is removed (last row of the table), less popular songs
and bands appear in the top songs.

6. CONCLUSION

In this paper, we proposed a new Poisson matrix co-
factorization, in which the attributes of each modality are
assumed proportional. Contrary to hard and `1-based soft
co-factorization, in this new model each item may have
different scaling (or popularity) in each modality. This is
of particular interest when tackling cold-start recommen-
dation, in which one scaling is close to zero. The benefits
of the algorithm over standard co-factorization have been
illustrated for song recommendation, with emphasis placed
on cold-start situations.

This raised interesting short-term perspectives, such as
the derivation of more involved Bayesian models, and
inference or extensions to different, possibly non-binary
datasets. Future works should also consider datasets with
highly different dimensions or dynamics, by means of a
tri-factorization.
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nonnegative matrix co-factorization. IEEE Transac-
tions on Signal Processing, 62(22):5940–5949, 2014.

[22] Chong Wang and David M. Blei. Collaborative topic
modeling for recommending scientific articles. In Proc.
International Conference on Knowledge Discovery
and Data Mining (KDD), pages 448–456, 2011.

798 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018



 

 

 

 

 

Author Index 

 





Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 801

Abdallah, Samer 725
Abeßer, Jakob 306, 416, 577
Aljanaki, Anna 615
Andrade, Nazareno 732
Andreux, Mathieu 327
Aravind, Rangarajan 499
Arzt, Andreas 592

Badkobeh, Golnaz 233
Balke, Stefan 306, 416
Barone, Michael 529
Basaran, Dogac 82
Batliner, Anton 376, 461
Bauer, Christine 678
Bello, Juan Pablo 106, 453
Bigo, Louis 355
Bigoni, Francesco 128
Bittner, Rachel 453, 514
Bitton, Adrien 175
Bozkurt, Baris 483
Brunner, Gino 747
Bugbee, Erin H. 341

Calvo-Zaragoza, Jorge 34, 240, 248, 256
Canno, Isabelle 424
Cano, Estefanı́a 577
Carsault, Tristan 18
Castellanos, Francisco 256
Cecconi, Cécile 424
Chemla-Romeu-Santos, Axel 175
Chen, Tsung-Ping 90
Cheng, Tian 763
Cherla, Srikanth 725
Chi, Heng-Yu 168
Choi, Keunwoo 506
Cohen-Hadria, Alice 431
Condit-Schultz, Nathaniel 66
Costantini, Giovanni 376
Crawford, Tim 233
Crayencour, Hélène C. 106
Cumming, Julie 348, 491

Dahl, Sofia 128
de Carvalho, Verônica Oliveira 400
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Levé, Florence 355
Lewis, David 233
Li, Bochen 218
Li, Fanjie 362
Li, Haizhou 600
Liebman, Elad 695
Lisena, Pasquale 424
Lu, Wei Tsung 521, 740
Luo, Yin-Jyun 653
Lustig, Ethan 204
Lykartsis, Athanasios 3

Maezawa, Akira 218
Malheiro, Ricardo 383
Mallat, Stéphane 327
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