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ABSTRACT

Melodic contour, the ‘shape’ of a melody, is a common
way to visualize and remember a musical piece. The pur-
pose of this paper is to explore the building blocks of a fu-
ture ‘gesture-based’ melody retrieval system. We present
a dataset containing 16 melodic phrases from four musi-
cal styles and with a large range of contour variability.
This is accompanied by full-body motion capture data of
26 participants performing sound-tracing to the melodies.
The dataset is analyzed using canonical correlation analy-
sis (CCA), and its neural network variant (Deep CCA), to
understand how melodic contours and sound tracings re-
late to each other. The analyses reveal non-linear relation-
ships between sound and motion. The link between pitch
and verticality does not appear strong enough for complex
melodies. We also find that descending melodic contours
have the least correlation with tracings.

1. INTRODUCTION

Can hand movement be used to retrieve melodies? In this
paper we use data from a ‘sound-tracing’ experiment (Fig-
ure 1) containing motion capture data to describe music–
motion cross-relationships, with the aim of developing a
retrieval system. Details about the experiment and how
motion metaphors come to play a role in the representa-
tions are presented in [19]. While our earlier analysis was
focused on the use of the body and imagining metaphors
for tracings [17, 18], in this paper, we will focus on mu-
sical characteristics and study music–motion correlations.
The tracings present a unique opportunity for cross-modal
retrieval, because a direct correspondence between tracing
and melodic contour presents an inherent ‘ground-truth.’

Recent research in neuroscience and psychology has
shown that action plays an important role in perception. In
phonology and linguistics, the co-articulation of action and
sound is also well understood. Theories from embodied
music cognition [22] have been critical to this exploration
of multimodal correspondences.
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Figure 1. An example of post-processed motion capture
data from a sound-tracing study of melodic phrases.

Contour perception is a coarse-level musical ability
that we acquire early during childhood [30, 33, 34]. Re-
search suggests that our memory for contour is enhanced
when melodies are tonal, and when tonal accent points of
melodies co-occur with strong beats [16], making melodic
memory a salient feature in musical perception. More gen-
erally, it is easier for people to remember the general shape
of melody rather than precise intervals [14], especially if
they are not musical experts. Coarse representations of
melodic contour, such as with drawing or moving hands
in the air may be intuitive to capturing musical moments
of short time scales [9, 25].

1.1 Research Questions

The inspiration for our work mainly comes from several
projects on melodic content retrieval using intuitive and
multi-modal representations of musical data. The oldest
example of this is the 1975 project titled ‘Directory of
Tunes and Musical Themes,’ where the author uses a sim-
plified contour notation method, involving letters for de-
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noting contour directions, to create a dictionary of musi-
cal themes where one may look up a tune they remem-
ber [29]. This model is adopted for melodic contour re-
trieval in Musipedia.com [15]. Another system is proposed
in the recent project SoundTracer, in which a user’s mo-
tion of their mobile phone is used to retrieve tunes from a
music archive [21]. A critical difference between these ap-
proaches is how they handle mappings between contour in-
formation and musical information, especially differences
between time-scales and time-representations. Most of
these methods do not have ground-truth models of con-
tours, and instead use one of several ways of mappings,
each with its own assumptions.

Godøy et al. has argued for using motion-based, graphi-
cal, verbal, and other representations of motion data in mu-
sic retrieval systems [10]. Liem et al. make a case for using
multimodal user-centered strategies as a way to navigate
the discrepancy between audio similarity and music simi-
larity [23], with the former referring to more mathematical
features, and the latter to more perceptual features. We
proceed with this as the point of departure for describing
our dataset and its characteristics, to approach the goal of
making a system for classifying sound-tracings of melodic
phrases with the following specific questions:

1. Are the mappings between melodic contour and mo-
tion linearly related?

2. Can we confirm previous findings regarding correla-
tion between pitch and the vertical dimension?

3. What categories of melodic contour are most corre-
lated for sound-tracing queries?

2. RELATED WORK

Understanding the close relationship between music and
motion is vital to understanding subjective experiences of
performers and listeners, [7, 11, 12]. Many empirical ex-
periments aimed at investigating music–motion correspon-
dences deal with stimulus data that is made to explicitly
observe certain mappings, for example pitched and non-
pitched sound, vertical dimension and pitch, or player ex-
pertise [5, 20, 27]. This means that the music examples
themselves are sorted into types of sound (or types of mo-
tion). We are more interested in observing how a variety
of these mapping relationships change in the content of
melodic phrases. For this we use multiple labeling strate-
gies as explained in section 3.4. Another contribution of
this work is the use of musical styles from various parts of
the world, including those that contain microtonal inflec-
tions.

2.1 Multi-modal retrieval

Multi-modal retrieval is the paradigm of information re-
trieval used to handle different types of data together. The
objective is to learn a set of mapping functions that project
the different modalities into a common metric space, to
be able to retrieve relevant information in one modality

through a query in another. We see that this paradigm is
used often in the retrieval of image from text and text from
image. Canonical Correlation Analysis (CCA) is a com-
mon tool for investigating linear relationships of two sets
of variables. In the review paper by Wang et al. for cross
modal retrieval [35], several implementations and models
are analyzed. CCA is also previously used to show music
and brain imaging cross relationships [3].

A previous paper analyzing tracings to pitched and
non pitched sounds also used CCA to understand music–
motion relationships [25], where the authors describe in-
herent non-linearity in the mappings, despite finding in-
trinsic sound-action relationships. This work was extended
in [26], in which CCA was used to interpret how different
features correlate with each other. Pitch and vertical mo-
tion have linear relationships in this analysis, although it
is important to note that the sound samples used for this
study were short and synthetic.

The biggest reservations in analyzing music–motion
data through CCA is that non-linearity cannot be repre-
sented, and the dependence of the method on time syn-
chronization is high. The temporal evolution of motion
and sound remains linear over time [6]. To get around
this, kernel-based methods can be used to introduce non-
linearity. Ohkushi et al., present a paper that uses Kernel-
based CCA methods to analyze motion and music features
together using video sequences from classical ballet, and
optical flow based clustering. Bozkurt et al. present a CCA
based system to analyze and generate speech and arm mo-
tion for prosody-driven synthesis of the ’beat-gesture’ [4],
which is used for emphasizing prosodically salient points
in speech. We explore our dataset through CCA due to
the previous successes of using this family of methods.
We will analyze the same data using Deep CCA, a neural-
network approximation of CCA, to understand better the
non-linear mappings.

2.2 Canonical Correlation Analysis

CCA is a statistical method to find a linear combina-
tion of two variables X = (x1, x2, ..., xn) and Y =
(y1, y2, ..., ym) with n andm independent variables as vec-
tors a and b such that their correlation ρ = corr(aX, bY )
of the transformed variables is maximized. Linear
vectors a′ and b′ can be found such that a′, b′ =
argmax

a,b
corr(aTX, bTY ). We can then find the second

set of coefficients which maximize the correlation of the
variables X ′ = aX and Y ′ = bY with the additional con-
straint to keep (X,X ′) and (Y, Y ′) uncorrelated. This pro-
cess can be repeated till d = min(m,n) dimensions.

The CCA can be extended to include non-linearity by
using a neural network to transform the X and Y variables
as in the case of Deep CCA [2]. Given the network param-
eters θ1 and θ2, the objective is to maximize the correla-
tion corr(f(X, θ1), f(Y, θ2)). The network is trained by
following the gradient of the correlation objective as esti-
mated from the training data.
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3. EXPERIMENT DESCRIPTION

3.1 Procedure

The participants were instructed to move their hands as if
their movement was creating the melody. The use of the
term ‘creating,’ instead of ‘representing,’ is purposeful, as
shown in earlier studies [26,27], to be able to access sound-
production as the tracing intent. The experiment duration
was about 10 minutes. All melodies were played at a com-
fortable listening level through a Genelec 8020 speaker,
placed 3m in front of the subjects. Each session consisted
of an introduction, two example sequences, 32 trials and
a conclusion. Each melody was played twice with a 2s
pause in between. During the first presentation, the partic-
ipants were asked to listen to the stimuli, while during the
second presentation, they were asked to trace the melody.
All the instructions and required guidelines were recorded
and played back through the speaker. Their motions are
tracked using 8 infra-red cameras from Qualisys (7 Oqus
300 and 1 Oqus 410). We then post-process the data in
Qualisys Track Manager (QTM) first by identifying and
labeling each marker for each participant. Thereafter, we
create a dataset containing Left and Right hand coordinates
for all participants.

Six participants in the study had to be excluded due to
too many marker dropouts, giving us a final dataset con-
taining 26 participants tracing 32 melodies: 794 tracings
for 16 melodic categories.

3.2 Subjects

The 32 subjects (17 females, 15 males) had a mean age
of 31 years (SD = 9 years). They were mainly univer-
sity students and employees, both with and without musi-
cal training. Their musical experience was quantized using
the OMSI (Ollen Musical Sophistication Index) question-
naire [28], and they were also asked about the familiarity
with the musical genres, and their experience with dancing.
The mean of the OMSI score was 694 (SD = 292), indicat-
ing that the general musical proficiency in this dataset was
on the higher side. The average familiarity with Western
classical music was 4.03 out of a possible 5 points, 3.25 for
jazz music, 1.87 with Sami joik, and 1.71 with Hindustani
music. None of the participants reported having heard any
of the melodies played to them. All participants provided
their written consent for inclusion before they participated
in the study, and they were free to withdraw during the ex-
periment. The study design was approved by the National
ethics board (NSD).

3.3 Stimuli

In this study, we decided to use melodic phrases from vocal
genres that have a tradition of singing without words. Vo-
cal phrases without words were chosen so as to not intro-
duce lexical meaning as a confounding variable. Leaving
out instruments also avoids the problem of subjects having
to choose between different musical layers in their sound-
tracing. The final stimulus set consists of four different

Figure 2. Pitch plots of all the 16 melodic phrases used as
experiment stimuli, from each genre. The x axis represents
time in seconds, and the y axis represents notes. The ex-
tracted pitches were re-synthesized to create a total of 32
melodic phrases used in the experiment.

musical genres and four stimuli for each genre. The mu-
sical genres selected are: (1) Hindustani music, (2) Sami
joik, (3) jazz scat singing, (4) Western classical vocalise.
The melodic fragments are phrases taken from real record-
ings, to retain melodies within their original musical con-
text. As can be seen in the pitch plots in Figure 2, the
melodies are of varying durations with an average of 4.5 s
(SD = 1.5 s). The Hindustani and joik phrases are sung by
male vocalists, whereas the scat and vocalise phrases are
sung by female vocalists. This is represented in the pitch
range of each phrase as seen in Figure 2.

Seeger

Schaeffer

Varna

Hood

xx xy xyy xyx

Impulsive Iterative Sustained

Ascending Descending Stationary Varying

Arch Bow Tooth Diagonal

Adams
Repetition Recurrence

Figure 3. Contour Typologies discussed previously in
melodic contour analysis. This figure is representative,
made by the authors.

Melodic contours are overwhelmingly written about in
terms of pitch, and so we decided to create a ‘clean’ pitch–
only representation of each melody. This was done by
running the sound files through an autocorrelation algo-
rithm to create phrases that accurately resemble the pitch
content, but without the vocal, timbral and vowel content
of the melodic stimulus. These 16 re-synthesized sounds
were added to the stimulus set, thus obtaining a total of 32
sound stimuli.
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ID Description

1 All 16 Melodies
2 IJSV 4 Genres
3 ADSC Ascending, Descending,

Steady or Combined
4 OrigVSyn Original vs Synthesized
5 VibNonVib Vibrato vs No Vibrato
6 MotifNonMotif Motif Repetition Present vs

Not

Table 1. Multiple labellings for melodic categories: we
represent the 16 melodies using 5 different label sets. This
helps us analyze which features are best related to which
contour classes, genres, or melodic properties.

3.4 Contour Typology Descriptions

We base the selection of melodic excerpts on the descrip-
tions of melodic contour classes as seen in Figure 3. The
reference typologies are based on the work of Seeger [32],
Hood [13], Schaeffer [8], Adams [1], and the Hindustani
classical Varna system. Through these typologies, we hope
to cover commonly understood contour shapes and make
sure that the dataset contains as many of them as possible.

3.4.1 Multiple labeling

To represent the different contour types and categories that
these melodies represent, we create multiple labels that ex-
plain the differences. This enables us to understand how
the sound tracings actually map to the different possible
categories, and makes it easier to see patterns from the
data. We describe these labels as seen in Table 3.4.1. Mul-
tiple labels allow us to see what categories does the data
describe, and which features or combination of features
can help retrieve which labels. Some of these labels are
categories, while some are one-versus-rest. Category la-
bels include individual melodies, genres, and contour cat-
egories, while one-versus-rest correlations are computed
for finding whether vibrato, motivic repetitions exist in the
melody, and whether the melodic sample is re-synthesized
or original.

4. DATASET CREATION

4.1 Preprocessing of Motion Data

We segment each phrase that is traced by the participants,
label participant and melody numbers, and extract the data
for left and right hand markers for this analysis, since the
instructions asked people to trace using their hands. To
analyze this data, we are more interested in contour fea-
tures and shape information than time-scales. We therefore
time-normalize our datasets so that every melodic sample
and every motion tracing is the same length. This makes it
easier to find correlations between music and motion data
using different features.

Figure 4. Feature distribution of melodies for each genre.
We make sure that a wide range of variability in the fea-
tures, as described in Table 2 is present in the dataset.

Feature Calculated by

1 Pitch Autocorrelation function using
PRAAT

2 Loudness RMS value of the sound using
Librosa

3 Brightness Spectral Centroid using Librosa
4 Number

of Notes
Number of notes per melody

Table 2. Melody features extracted for analysis, and de-
tails of how they are extracted.

5. ANALYSIS

5.1 Music

Since we are mainly interested in melodic correlations, the
most important feature describing melodies is to extract
pitch. For this, we use autocorrelation algorithm avail-
able in the PRAAT phonetic program. We use Librosa
v0.5.1 [24] to compute the RMS energy (loudness), and
the brightness using Spectral Centroid. We transcribe the
melodies to get the number of notes per melody. The dis-
tribution of these features can be seen for each genre in
the stimulus set in Figure 4. We have tried to be true to
the musical styles used in this study, most of which do not
have written notation as an inherent part of their pedagogy.

5.2 Motion

For tracings, we calculate 9 features that describe vari-
ous characteristics of motion. We record only X and Z
axes, as maximum motion is found along these directions.
The derivatives of motion (velocity, acceleration, jerk) and
quantity of motion (QoM) which is a cumulative velocity
quantity are calculated. Distance between hands, cumula-
tive distance, and symmetry features are calculated as indi-
cators of contour-supporting features, as found in previous
studies.
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Feature Description

1 X-coordinate (X) Axis corresponding to the
direction straight ahead of
the participant

2 Z-coordinate (Z) Axis corresponding to the
upwards direction

3 Velocity (V) First derivative of vertical
position

4 Acceleration (A) Second derivative of vertical
position

5 Quantity of Mo-
tion

Sum of absolute velocities
for all markers

6 Distance between
Hands

Sample-wise Euclidean dis-
tance between hand markers

7 Jerk Third derivative of vertical
position

8 Cumulative Dis-
tance Traveled

Euclidean distance traveled
per sample per hand

9 Symmetry Difference between the left
and right hand in terms of
vertical position and hori-
zontal velocity

Table 3. Motion features used for analysis. 1-5 are for the
dominant hand, while 6-9 are features for both hands.

5.3 Joint Analysis

In this section we present our analysis on our dataset with
these two feature sets. We analyze the tracings for each
melody as well as utilize the multiple label sets to discover
interesting patterns in our dataset which are relevant for a
retrieval application.

5.3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a method to align se-
quences of different lengths using substitution, addition
and subtraction costs. It is a non-metric method giving us
the distance between two sequences after alignment.

In recent research, vertical motion has been shown to
correlate with pitch in the past for simple sounds. Some
form of non-alignment is also observed between the mo-
tion and pitch signals. We perform the same analysis on
our data: compute the correlation between pitch and mo-
tion in the Z axis before and after alignment with DTW
for the 16 melodies and plot their mean and variance in
Figure 5.

5.3.2 Longest Run-lengths

While observing the dataset, we find that longest ascend-
ing and descending sequences in the melodies are most
often reliably represented in the motions, although vari-
ances in stationary notes, and ornaments is likely to be
much higher. To exploit this feature in tracings, we use
“Longest Run-lengths” as a measure. We find multiple
subsequences following a pattern which can possess dis-
criminative qualities. For our analysis, we use the ascend-
ing and descending patterns, thus finding the subsequences

Figure 5. Correlations of pitch with raw data (red) vs after
DTW-alignment (blue). Although a DTW alignment im-
proves the correlation, we observe that correlation is still
low suggesting that vertical motion and pitch height are
not that strongly associated.

from the feature sequence which are purely ascending or
descending. We then rank the subsequences and build a
feature vector from the lengths of the top N results. This
step is particularly advantageous when comparing features
from motion and music sequences as it captures the overall
presence of the pattern in the sequence remaining invariant
to the mis-alignment or lag between the sequences from
different modalities. As an example, if we select the Z-
axis motion of the dominant hand and the melody pitch as
our sequences and retrieve top 3 ascending subsequence
lengths. To make the features robust, we do a low pass
filtering of the sequence as a preprocessing step.

We analyze our dataset by computing the features for
few combinations of motion and music features for ascend-
ing and descending patterns. Thereafter, we perform CCA
and show the resulting correlation of first transformed di-
mension in Table 4. We utilize the various label categories
generated for the melodies, and show the impact of the fea-
tures on the labels from each category in Tables 4 and 5.
We select the top four run lengths as our feature for each
music–motion feature sequence. For Deep CCA analysis,
we use a two layered network (same for both motion and
music features) with 10 and 4 neurons. A final round of
linear CCA is also performed on the network output.

6. RESULTS AND DISCUSSION

Figure 5 shows correlations with raw data and after DTW
alignment between the vertical motion and pitch for each
melody. Overall, the correlation improves after DTW
alignment, suggesting phase lags and phase differences be-
tween the timing of melodic peaks and onsets, and those of
motion. We see no significant differences between genres,
although the improvement in correlations for the vocalize
examples is the least pre and post DTW. This could be be-
cause of the continuous vibrato in these examples, causing
people to use more ‘shaky’ representations which are most
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Motion Music All ADSC IJSV

Ascend Pattern CCA Deep CCA CCA Deep CCA CCA Deep CCA

Z Pitch 0.19 0.23 0.25 0.16 0.09 0.05 0.24 0.17 0.12 0.13 0.16 -0.13 0.01 0.37 0.19 0.21 0.08 0.36
Z + V Pitch 0.21 0.27 0.26 0.09 0.15 0.10 0.30 0.03 0.05 0.17 0.22 -0.13 -0.01 0.35 0.24 0.25 0.15 0.34
All All 0.33 0.44 0.31 0.14 0.19 0.29 0.44 0.29 0.01 0.36 0.30 0.28 0.23 0.42 0.38 0.43 0.27 0.52

Descend Pattern

Z Pitch 0.18 0.21 0.16 -0.11 0.15 0.20 0.17 0.19 0.09 0.19 0.22 0.21 -0.04 0.23 0.22 0.18 0.08 0.28
Z + V Pitch 0.21 0.31 0.23 0.03 0.14 0.22 0.28 0.28 0.30 0.32 0.26 0.23 0.10 0.24 0.42 0.18 0.34 0.17
All All 0.35 0.44 0.39 0.12 0.20 0.25 0.38 0.02 0.37 0.37 0.35 0.25 0.12 0.36 0.40 0.22 0.14 0.52

Table 4. Correlations for all samples in the dataset and the two major categorizations of music labels, using ascend and
descend patterns as explained in Section 5.3.2, and features from Tables 3 and 2

Motion Music MotifNonMotif OrgSyn VibNonVib

Ascend Pattern CCA Deep CCA CCA Deep CCA CCA Deep CCA

Z Pitch 0.05 0.23 0.13 0.26 0.19 0.19 0.22 0.25 0.33 0.07 0.33 0.13
Z + V Pitch 0.10 0.24 0.17 0.31 0.19 0.22 0.24 0.31 0.33 0.09 0.32 0.20
All All 0.29 0.34 0.36 0.47 0.30 0.35 0.42 0.45 0.38 0.29 0.49 0.40

Descend Pattern

Z Pitch 0.20 0.17 0.19 0.21 0.20 0.16 0.23 0.18 0.20 0.17 0.24 0.18
Z + V Pitch 0.22 0.22 0.32 0.29 0.24 0.20 0.35 0.26 0.22 0.22 0.14 0.34
All All 0.25 0.40 0.37 0.45 0.38 0.33 0.45 0.44 0.33 0.35 0.54 0.35

Table 5. Correlations for two-class categories, using ascend and descend patterns as explained in Section 5.3.2
with features from Tables 3 and 2

consistent between participants. The linear mappings of
pitch and vertical motion are limited, making the dataset
challenging. This also means that the associations between
pitch and vertical motion, as described in previous stud-
ies, are not that clear for this stimulus set, especially as
we use musical samples that are not controlled for being
isochronous, nor equal tempered.

Thereafter, we conduct CCA and Deep CCA analysis
as seen in Tables 4, 5. Overall, Deep CCA performs better
than its linear counterpart. We find better correlation with
all features from Table 3, as opposed to just using verti-
cal motion and velocity. With ascending and descending
longest run-lengths, we are able to achieve similar results
for correlating all melodies with their respective tracings.
However, descending contour classification does not have
similar success. There is more general agreement on con-
tour with some melodies than others, with purely descend-
ing melodies having particularly low correlation. There is
some evidence that descending intervals are harder to iden-
tify than ascending intervals [31], and this could explain a
low level of agreement in this study amongst people for de-
scending melodies. Studying differences between ascend-
ing and descending contours requires further study.

While using genre-labels (IJSV) for correlation, we find
that scat samples show the least correlation, and the least
improvement. Speculatively, this could be related to the
high number of spoken syllables in this style, even though
the syllables are not words. Deep CCA also gives an over-
all correlation of 0.54 for recognizing melodies containing
vibrato from the dataset. This is an indication that sonic

textures are well represented in such a dataset.
With all melody and all motion features, we find an

overall correlation of 0.44 with Deep CCA, for both the
longest ascend and longest descend features. This supports
the view that non-linearity is inherent to tracings.

7. CONCLUSIONS AND FUTURE WORK

Interest in cross-modal systems is growing in the context of
multi-modal analysis. Previous studies in this area include
shorter time scales or synthetically generated isochronous
music samples. The strength of this particular study is
in using musical excerpts as are performed, and that the
performed tracings are not iconic or symbolic, but spon-
taneous. This makes the dataset a step closer to under-
standing contour perception in melodies. We hope that
the dataset will prove useful for pattern mining, as it
presents novel multimodal possibilities for the community
and could be used for user-centric retrieval interfaces.

In the future, we wish to create a system to synthe-
size melody–motion pairs based on training a network to
this dataset, and conducting a user evaluation study, where
users evaluate system generated music–motion pairs in a
forced–choice paradigm.
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