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ABSTRACT

The melody extraction problem is analogue to semantic
segmentation on a time-frequency image, in which every
pixel on the image is classified as a part of a melody object
or not. Such an approach can benefit from a signal process-
ing method that helps to enhance the true pitch contours on
an image, and, a music language model with structural in-
formation on large-scale symbolic music data to be trans-
fer into an audio-based model. In this paper, we propose
a novel melody extraction system, using a deep convolu-
tional neural network (DCNN) with dilated convolution as
the semantic segmentation tool. The candidate pitch con-
tours on the time-frequency image are enhanced by com-
bining the spectrogram and cepstral-based features. More-
over, an adaptive progressive neural network is employed
to transfer the semantic segmentation model in the sym-
bolic domain to the one in the audio domain. This pa-
per makes an attempt to bridge the semantic gaps between
signal-level features and perceived melodies, and between
symbolic data and audio data. Experiments show compet-
itive accuracy of the proposed method on various datasets.

1. INTRODUCTION

Melody extraction of polyphonic music has been ac-
counted a key towards bridging the semantic gap in music
processing, as melody is an intermediate object that corre-
lates to both low-level signal attributes such as pitch and
high-level semantics, i.e. the difference between melody
and accompaniment, of music [3, 12, 29]. However, it is
challenging because the notion of melody is complicated
by two levels of information extraction and data modali-
ties. For information extraction, both pitch detection and
semantic segmentation levels are required to specify the
position and shape of a melody out of other pitch con-
tours in a time-frequency representation. As to data modal-
ities, the problem arises from the difference of melody-
related features between the composed data (e.g., sym-
bolic data such as MIDI) and the performed data (e.g., au-
dio data): the former provides structural information such
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as voiced/unvoiced segments and chord/non-chord notes,
while the latter provides interpretational information such
as sliding and vibrato. Both kinds of information are es-
sential for accurately identifying the melody pitch contour.

We perform vocal melody extraction using semantic
segmentation techniques. Semantic segmentation parti-
tions an image into semantically meaningful objects with
precise boundaries. Rendered as a pixel-wise classifica-
tion problem and able to be implemented by an encoder-
decoder network with 2-D convolutional feature mappings,
it brings great success in computer vision [6,7,14,25]. Se-
mantic segmentation also makes a breakthrough in solving
the source separation problem in music processing [17],
which analogously needs to resolve components coexist-
ing in a time-frequency image. In this work, a deep con-
volutional neural network (DCNN) is adopted with dilated
convolution for semantic segmentation as it achieves better
performance in multi-resolution images.

To fully utilize the advance of semantic segmentation
in vocal melody extraction, we further attend to the afore-
mentioned issues, pitch detection and multiple data modal-
ities, both of which are absent from typical image-based
semantic segmentation. For pitch detection, we notice that
when performing melody extraction with semantic seg-
mentation, the spectrogram is usually suboptimal since
it captures the harmonic peaks and information unrelated
to the melody, which accounts for one of the major er-
rors among all the melody extraction methods. This issue
is addressed by modifying the spectrogram with cepstral-
features, which results in a novel time-frequency represen-
tation that enhances the true pitch contour while also sup-
presses harmonic contours [26, 32].

The modality difference between symbolic and audio
data is relatively less noticed in melody extraction. We
address this issue with transfer learning: we first train
a melody extraction model with symbolic data, and the
model parameters are then reused in the vocal melody ex-
traction model trained with audio data. In this way, the
symbolic-based model assists in music language modeling
that audio-based models may fall short of. Incorporating
symbolic music data is of great potential to mitigate the
data scarcity problem, since building a symbolic dataset
with melody annotations is much easier than building an
audio one, and it is also very straightforward to perform
data augmentation on symbolic data. In this work, we
adopt the progressive neural network (PNN) [1], a network
structure providing cross-domain network parameter shar-
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ing to accomplish symbolic-audio transfer learning task.
To sum up, this paper attempt to apply image seman-

tic segmentation to vocal melody extraction, forming a
systematic method to perform singing voice activity de-
tection, pitch detection and melody extraction all at the
same time. This segmentation method gives competitive
results on pitch accuracy, and even works unprecedentedly
well on singing voice activity detection compared to other
deep-learning-based methods. With the integration with
the PNN, we leverage large-scale symbolic data to train the
model, and attain similar performance to the segmentation
method with less training time.

2. RELATED WORK

Melody extraction of polyphonic music has been widely
investigated with various signal processing and machine
approaches. Recent works using convolution neural net-
works (CNNs) or recurrent neural networks (RNNs) are
mostly classification-based, where the output is the frame-
level likelihood score of every pitch at a time instance
[4,22,27,30,37]. [2] adopts a fully convolution neural net-
work and output a salience representation at the song level.
Advanced semantic segmentation networks such as the U-
net [28] have been utilized in source separation [17] and
shows high potential in melody extraction.

Most of the melody extraction studies focus on the sig-
nal processing level, possibly because signal-level charac-
teristics such as slides and vibrato are still the principal fac-
tors in recognizing a melody contour. In contrast, melody
extraction on symbolic data is rarely discussed in the liter-
ature. Although not the main topic of this work, we man-
age to pose the problem of symbolic melody extraction and
emphasize its importance in music language modeling for
cross-domain transfer learning.

Previous works on transfer learning for music informa-
tion retrieval mostly aim under the same type of input data
representation [8,13]. Contrararily, transfer learning across
the data from different domains, such as adapting a model
learned from symbolic data to another learned from audio
data, is relatively less discussed. Previous works dealing
with cross-domain data mainly focus exploring audio-to-
MIDI or audio-to-sheet correspondence [10, 11].

3. METHOD

An overview of the proposed model is shown in Fig.1. The
model contains a feature extractor which computes the au-
dio data representation and a PNN which consists of two
segmentation models, with one trained on the symbolic
data and the other on the audio data. The filter is for di-
mension reduction of the audio representation to fit the
symbolic segmentation model in the PNN. Details of the
model are discussed below.

3.1 Audio data representation

In music processing, designing a data representation suit-
able for the machine learning models to better identify and
capture the information of interest can help significantly

Figure 1: The system diagram of the proposed method.

improve the performance [18]. In the task of pitch de-
tection in polyphonic music, related methods include the
feature scaling [18], the harmonic constant-Q transform
(HCQT) that combines the CQTs based on different oc-
tave numbers [2], the combined frequency and periodicity
(CFP) representation that intergrates a temporal or spectral
representation with its Fourier dual [26, 32, 34], and oth-
ers. All of these methods are designed to emphasize the
saliency of pitch contours in the music signal.

We adopt the data representation used in [33], which
has been shown effective in enhancing the true pitch com-
ponents of polyphonic signals. The adopted data repre-
sentation is essentially the product of a generalized cep-
strum (GC), a classical time-based pitch detection func-
tion [16,20,21,35,36], and a generalized cepstrum of spec-
trum (GCoS), a modified spectrum lying in the frequency
domain [32]. The GC and GCoS are complementary: a
GCoS reveals the presence of a pitch object by its funda-
mental frequency (f0) and harmonics (nf0), while a GC
reveal it by its f0 and sub-harmonics (f0/n) [26, 32, 34].
By simply multiplying GC by GCoS, we effectively sup-
press the harmonic and sub-harmonic peaks, and at the
same time localize a pitch object.

The GC and GCoS are both computed by the discrete
Fourier transform (DFT) and nonlinear activation func-
tions. Consider an input signal x := x[n] where n is the
index of time. Let the magnitude of the short-time Fourier
transform (STFT) of x be X. Given an N -point DFT ma-
trix F, high-pass filters Wf and Wt for eliminating the
DC terms, and activation functions σi, the power-scaled
spectrogram, GC and GCoS are represented as:

ZS[k, n] := σ0 (WfX) , (1)

ZGC[q, n] := σ1
(
WtF

−1ZS
)
, (2)

ZGCoS[k, n] := σ2 (WfFZGC) , (3)

σi (Z) = |relu(Z)|γi , i = 0, 1, 2 (4)

where relu(·) represents a rectified linear unit, | · |γ0 is an
element-wise root function, and we choose (γ0, γ1, γ2) =
(0.24, 0.6, 1) for a feature scaling in the power scale [32].

Besides, to fit the perceptive scale of musical pitches,
ZGC and ZGCoS are mapped onto the log-frequency scale,
by 88 ∗ 4 = 352 triangular filters ranging from 27.5 Hz
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(A0) to 4487 Hz , with 48 bands per octave. The GC and
GCoS after the filterbank are then both on the pitch scale,
as denoted by Z̃GC and Z̃GCoS. The final 2-D data repre-
sentation for semantic segmentation is

C[p, n] = Z̃GC[p, n]Z̃GCoS[p, n] , (5)

where p is the index on the log-frequency scale. The audio
files are resampled at 16 kHz and merged into one mono
channel. Data representations are computed with a Hann
window of 2048 samples. The hop size is 320 samples, and
therefore the time step is 20ms. The upper two subplots of
Figure 4 illustrate a comparison between the spectrogram
and C. We can observe that with the aid of cepstral feature,
the unwanted harmonic peaks are highly suppressed in C.

3.2 Semantic segmentation

The proposed segmentation model for vocal melody ex-
traction is mainly based on the DeepLabV3 and its im-
proved version, DeepLabV3+ [6,7], which are the state-of-
the-art models for semantic segmentation tasks. The model
is a fully convolution neural network with an encoder-
decoder architecture. The encoder is implemented by a
ResNet [15], followed by an atrous spatial pyramid pooling
process, and a decoder implemented by stacks of decoder
blocks, as shown in Figure 2.

One major utility in DeepLabV3 is the use of dilated
convolution, which can be represented as a generalized
version of the standard convolution as follows:

y[i] =
∑
k

x[i+ r · k]w[k] (6)

where x and y denotes the input and output 2-D feature
maps, respectively, w is the convolution filter and i in-
dicates the locations on the feature maps. The number r
is the dilated rate which determines the stride with which
the input are sampled and standard convolution is a spe-
cial case when r = 1. To capture the context in differ-
ent ranges, one can apply dilated convolution with differ-
ent values of r on the same input feature map parallely,
called Atrous Spatial Pyramid Pooling (ASPP) in [6]. The
outputs of these parallel convolution operations are then
concatenated to provide information collected from vari-
ous scales, as shown in Figure 2c.

Different from normal image segmentation task that
target objects usually holds certain area compared to the
whole image, the melody part of music occupies only a
small portion and appears as thin lines when visualized in
a 2-D image. To overcome this difficulty, We proposed two
modifications to improve the performance of the model.

First, the decoder module in DeepLabV3, which is
originally an up-sampling operation, is replaced by stacks
of convolution and transpose convolution layers for fine-
grained outputs. It is shown in [7] that by doing this, the
small and detailed objects in an image can be better recog-
nized. Also, better performance is achieved by introducing
the U-net [28] structure, which lets the output from each
layer of the encoder be concatenated to the corresponding
block of the decoder. This idea is also mentioned in [7].

(a) (b)

(c)

Figure 2: Model descriptions. (a) The overall structure of
the segmentation model. (b) The encoder block. The stride
rate in Stride Conv is (2,2). Stride Conv can be replaced
with standard convolution so it allows more layers in the
encoder. It can also be changed to transpose convolution
with stride (2,2), so the block can serve as a decoder block.
(c) The Atrous Spatial Pyramid Pooling unit.

Second, we adopt the focal loss [23] as the loss func-
tion for the proposed model, in order to solve the class im-
balance problem, where the negative labels, i.e., the time-
frequency pixels corresponding to accompaniment and si-
lence parts, could dominate in the input feature and thus
affect the performance. The focal loss is represented as:

FL(pt) = −αt(1− pt)γ log(pt) , (7)

where pt denotes the model’s estimated probability for an
input to be classified to class t, αt ∈ [0, 1] is a weighting
factor for balancing the importance of positive and neg-
ative examples and the term (1 − pt)

γ acts as a modu-
lating factor with γ controlling the rate at which domi-
nant examples are down-weighted. Following [23], we set
αt = 0.25, γ = 2 in this work.

3.3 Domain adaptation

Most of the existing deep learning models require a large
amount of training data to reach good performance. How-
ever, annotating melody pitch contours on audio data pre-
cisely is quite challenging; it is labor-intensive and also
needs strong expertise in music. Recent attempts to ad-
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dress the issue of data scarcity mostly focus on weakly su-
pervised learning [17, 24, 31].

In this work, we consider the potential of domain-
adaptive transfer learning, which incorporates the informa-
tion in MIDI data to assist in training the audio melody
extraction model. The primary motivation for using MIDI
files is the capability of data augmentation: one can use
MIDI files to easily create large-scale symbolic dataset
with detailed and precise notations. Besides, the symbolic
data also present some musical characteristics clearer than
the audio data do. This therefore gives more insights to the
music language modeling, such as musical structures and
phrases. Moreover, the space efficiency of symbolic data
also allows more training examples than audio data given
the same memory resource.

To discuss transfer learning between audio and sym-
bolic data, we first discuss the difference in their data for-
mats. One difference is the pitch resolution, which is 0.25
semitones in the audio data (i.e., 48 bins per octave), and 1
semitone in the symbolic data; this results in the difference
of dimension between the audio and the symbolic data. As
for the time resolution, there are some more flexible ways
to define it. Therefore, we consider two types of time res-
olution for the symbolic data: the first is time-based res-
olution with its unit length in time (e.g., 20 ms), and the
second is note-based resolution with its unit length in note
name (e.g., a 32nd note). Both the symbolic and audio
data can be represented in time-based resolution. Symbolic
data can also be represented in a more musically informa-
tive note-based resolution since obtaining beat and tempo
information in symbolic data is more straightforward.

To achieve domain-adaptive transfer learning for two
different domains, we adopt the progressive neural net-
work (PNN) [1], in which an adapter network (see
Figure 3) is designed to make one network connected to
another in different domains, regardless of the difference
in data dimension. In the general scenario of PNN, multi-
ple networks trained on various tasks are connected layer-
to-layer in parallel through the adapters, so the trained net-
works can transfer the previously learned knowledge into a
new task and to accelerate the training speed or to improve
the performance of the new task.

In our melody extraction method, we first trained a seg-
mentation model using the symbolic dataset. We connect
the symbolic segmentation model to another segmentation
model, and the latter model is then trained on the audio
dataset, with the parameters in the symbolic segmenta-
tion model frozen. In the testing phase, the input audio
representation is fed into both of the segmentation mod-
els. To make the dimension of audio representation match
the symbolic segmentation model, a triangular filterbank is
used to map the pitch resolution from 0.25 to 1 semitone,
as illustrated in Figure 1.

The adapter between two models in the PNN is illus-
trated in Figure 3. It modifies the dimension of the inter-
layer outputs and make such information be propagated
ahead. In the proposed method, transpose convolution lay-
ers are adopted for the adapter networks, since transpose

Figure 3: The connection between the two networks in
the proposed model. The parameter of the i-th layer in
the symbolic model is first fed into the adapter, and then
connected to the (i + 1)-th layer of the audio model with
an addition operation.

convolution can up-sample the output of the symbolic rep-
resentation (with lower pitch resolution) in order to fit the
audio representation (with higher pitch resolution).

3.4 Inference

Since the segmentation model only allows a limited range
of input at one time, to perform melody extraction on a
given score, we slide a window along the score and then
superpose all the resulting matrices. The analysis window
with a fixed dimension is shifted from one time-step to an-
other. As to the beginning and ending time, we pad the
score with zeros for it captures the process in which in-
formation feeds only the last column then gradually filling
up all the columns in the beginning, and gradually leaving
the window column by column at the end. After the pro-
cess above, the segmentation output is a superposed im-
age representing the salience of vocal melody in the time-
frequency plane. We then find the max value for each col-
umn of the image and set all the other elements to zero,
i.e., unvoiced. Finally, the elements smaller than the aver-
age of each column’s maximum are also set to zero, and
the remaining non-zero elements is considered as voiced.

3.5 Implementation details

The models are implemented using the Keras [9] library
with tensorflow as the back end. The width of the input
window equals 128 timesteps, and for computational con-
venience, we pad the dimension of pitch from 88 to 128,
and 352 to 384 for the symbolic and audio data, so the in-
put dimension will be (128, 128, 1) and (128, 384, 1) for
the symbolic and audio model, respectively. As shown in
Fig.1, the input feature will first be passed into a 29-layer
encoder based on Resnet. Then, the output from the en-
coder which is 16 times smaller than the original input
will be fed into the ASPP unit. Finally, a decoder which
contains 4 decoder blocks will up-sample the dense fea-
tures to the original shape by transpose convolutional lay-
ers with strides equal (2, 2). The output dimension will
be (128, 128, 2) and (128, 384, 2) for the symbolic and
audio model, respectively, with the first channel indicat-
ing the presence melody and the other is for non-melody.
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Figure 4: Data representation and melody extraction re-
sults of the first 15s of ’train06.wav’ in MIREX2005 as
input. From top to bottom: power-scale spectrogram, data
representation C, the result using segmentation, and the
result using segmentation and note-based PNN.

The superposition in the inference process is performed on
the first channel. To implement the PNN, two segmen-
tation networks with same structure are connected using
the adapters which is composed of transpose convolution
layer. These connections happen in layers with dimen-
sion changing. Batch normalizations are applied after each
activations, and a dropout rate of 30% is added after the
batch normalizations. ADAM [19] is used for optimiza-
tion. Source codes can be found at https://github.
com/s603122001/Vocal-Melody-Extraction.

4. EXPERIMENT

4.1 Data

The training data for the audio comes from two datasets,
one is the MIR1K 1 , which contains 1000 Chinese karaoke
clips, another is MedleyDB [5], where 48 songs with vo-
cal tracks are included. The total dataset contains about 3
hours of audio and without data augmentation.

A MIDI corpus contains 600 folk songs with a melody
track is used as the training data for the symbolic model. 2

In the training process, we perform data augmentation, by
pitch-shifting each song up and down by at most 6 semi-
tones in order to cover all possible keys. In addition, half
of the pieces in the dataset are modified by shifting the
melody by one octave down. As a result, we produce 7673
pieces of symbolic training data. The pieces in the dataset
are represented in two different formats. One is the time-
based with 20 ms length in each time step and the other is

1 https://sites.google.com/site/unvoicedsoundseparation/mir-1k
2 https://goo.gl/aPgzrW

the note-based that each time step equals a thirty-second
note. Due to limited computational resources, we only
use 2048 pieces when training the time-based model since
time-based data is space consuming.

The testing data are from three datasets: ADC2004,
MIREX05, 3 and MedleyDB. As the proposed model is
trained solely for singing voice melody, we follow [22] and
select only samples having melody sung by human voice
from ADC2004 and MIREX05. As a result, 12 clips in
ADC2004 and 9 clips in MIREX05 are selected. To ob-
tain the annotation of singing voice in medleyDB, 12 songs
having singing voice included in their ‘MELODY2’ anno-
tations are selected. The vocal melody labels are obtained
from the MELODY2 annotations occurring in the inter-
vals labeled by ‘female singer’ or ‘male singer’. These
12 songs are not included in the training data.

4.2 Experiment setting

To assess the performance of semantic segmentation and
the effects of transfer learning on vocal melody extraction,
we experiment on the following three different settings:

1) Segmentation: using simply the audio-level semantic
segmentation model. This audio-only semantic segmenta-
tion model is trained on the MIR1K dataset.

2) Segmentation with note-based progressive neural
network (Seg + note PNN): using both the audio-level and
symbolic-level segmentation models. The symbolic seg-
mentation model is first trained using the note-based sym-
bolic dataset, then this model is incorporated into the train-
ing stage of the audio segmentation model with the PNN.

3) Segmentation with time-based progressive neural
network (Seg + time PNN): similar to 2), while the symbo-
lic model in trained with the time-based symbolic dataset.

We compare the above-mentioned models with three
baseline methods in deep learning approaches: the multi-
column DNN (MCDNN) [22], the patch-based CNN
(pathc-CNN) [33], and the deep salience map (DSM), for
which on-line source code with the vocal option is avail-
able [2]. Since the detection results of DSM are sensitive
to the thresholding parameter, the parameter is tuned from
0 to 0.9 for all datasets to find the optimal value for bet-
ter comparison. The resulting optimal threshold th=0.1 is
used in the experiment.

The performance metrics include overall accuracy
(OA), raw pitch accuracy (RPA), raw chroma accuracy
(RCA), voice recall (VR) and voice false alarm (VFA); 4

all these metrics are computed from the mir eval standard
with the tolerance of pitch detection being 50 cents.

4.3 Result

Table 1 lists the performance metrics of all the proposed
methods together with the baselines on the three testing
datasets. Among the three proposed models, Segmentation
outperforms the other two PNN-based models in terms of
OA for all datasets except MedleyDB, where Segmenta-
tion performs on par with Seg + note PNN. Through the

3 https://labrosa.ee.columbia.edu/projects/melody/
4 http://www.music-ir.org/mirex/wiki/2016:Audio Melody Extraction
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Method OA RPA RCA VR VFA
Segmentation 74.9 71.7 74.8 73.8 3.0
Seg + note PNN 73.5 70.2 73.2 72.2 3.1
Seg + time PNN 73.2 70.4 72.9 73.2 5.4
MCDNN [22] 73.1 75.8 78.3 88.9 41.2
Patch-CNN [33] 72.4 74.7 75.7 90.1 41.3
DSM [2] 70.8 77.1 78.8 92.9 50.5

(a) ADC2004 (vocal)

Method OA RPA RCA VR VFA
Segmentation 85.8 82.2 82.9 87.3 7.9
Seg + note PNN 84.5 79.6 80.3 84.7 6.9
Seg + time PNN 84.8 82.3 83.0 87.3 9.9
MCDNN 68.4 76.3 77.4 87.0 49.0
Patch-CNN 74.4 83.1 83.5 95.1 41.1
DSM 69.6 76.3 77.3 93.6 42.8

(b) MIREX2005 (vocal)

Method OA RPA RCA VR VFA
Segmentation 70.0 68.3 70.0 77.9 22.4
Seg + note PNN 70.0 67.1 68.7 77.0 21.5
Seg + time PNN 69.1 67.4 69.0 78.7 23.6
Patch-CNN 55.2 59.7 63.8 78.4 55.1
DSM 66.2 72.0 74.8 88.4 48.7

(c) MedleyDB (vocal)

Table 1: Vocal melody extraction results of the proposed
methods and other methods on various datasets. The pro-
posed methods are: segmentation, segmentation with note-
based progressive neural network (Seg + note PNN), and
segmentation with time-based progressive neural network
(Seg + time PNN).

melody extraction accuracies of the segmentation model
are not improved by introducing the PNN structure, there
is still a notable improvement when comparing training ef-
ficiency. In fact, it takes 6 epochs for Segmentation to con-
verge, but Seg + note PNN reach similar performance with
only 2 epochs of training. Therefore, introducing the PNN
improves the training speed.

One reason why PNN does not improve the accuracy
is related to the symbolic dataset we are using: the sym-
bolic data contains only one style of music and turns out
to be of low diversity. Another reason is the lack of in-
tensity labels in symbolic data. Our pilot study indicated
that a segmentation model trained on symbolic data may
result in high RCA and RPA but also relatively high VFA.
However, a segmentation model trained on the audio data
gives inverse results, with low VFA, as shown here. This
might have something to do with the sound intensity in
the audio signal, which is an important sign for to deter-
mine the present of melody. However, our symbolic data
do not have such labels on intensity. Model training with
a larger symbolic music dataset with higher diversity and
with MIDI velocity labels are for future investigation.

The two PNN-based methods, Seg + note PNN and Seg
+ time PNN, achieve similar OA, while the former model

has lower VFA. This implies that the performance of the
symbolic model trained with note-based symbolic data is
better than training with time-based data. One reason may
be that compiling symbolic data in time-based resolution
may result in the ambiguity of musical information; in
time-based data, the same type of note may have differ-
ent lengths in time due to different tempi among the music
pieces. This could affect the model capability in learning
the musical structure.

Comparing the proposed Segmentation model to the
baseline methods, we observe that Segmentation out-
performs all of them in terms of OA. Particularly, in
MIREX2005, Segmentation achieves an OA at 85.8%, a
high accuracy outperforming DSM by 16.2%, patch-CNN
by 11.4% and MCDNN by 17.4%. In other two datasets,
Segmentation also outperforms other methods by around
1 ∼ 4% in terms of OA. These experiment results reveal
the competitiveness of the proposed semantic segmenta-
tion method in audio melody extraction. On the other hand,
when focusing on the pitch accuracy (i.e., RPA and RCA),
DSM is still competitive among all.

The high OA of Segmentation is mainly resulted from
the excellent performance of VFA with the semantic seg-
mentation approach. Among all methods and datasets,
the proposed methods significantly outperform the base-
line methods by a 20-40% reduction in VFA. In ADC2004,
Segmentation further achieves a low VFA of 3.0%. This
implies that the proposed melody extraction method itself
is highly robust to non-vocal interference, and is without
the need of a voice activity detector [27]. In other words,
the semantic segmentation model with fully convolutional
layers itself behaves as a melody pitch classifier and a
voice activity detector at the same time.

Finally, the lower two subplots in Figure 4 illustrate two
melody extraction results using Segmentation without and
with a note-based PNN. Both methods perform well in seg-
menting the main melody part from the representation C
shown in second subplot in Figure 4. This example also
demonstrates one part that using the note-based PNN does
well: in the lowest subplot, the Seg + note PNN method
well detects the unvoiced part between the 6th and the 9th
second, in which the Segmentation method regards the ex-
tended instrument part as melody.

5. CONCLUSION

We proposed a melody extraction method utilizing the se-
mantic segmentation model, the input combining spectral
and cepstral representations, and domain-adaptive transfer
learning. Experiments using a low-diversity training data
indicate the competitiveness of the segmentation model
with the data representation, especially in reducing voice
false alarm. Incorporating large-scale symbolic data pro-
vides better efficiency and exhibits potential in enhancing
contextual information. Future work will focus on the im-
provement of domain adaption. Note-level segmentation
can be considered as a future work as it is also feasible
applying symbolic-audio transfer learning and would also
benefit the melody extraction task.
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