
IS
M

IR
L

at
e-

B
re

ak
in

g/
D

em
o

[U
nr

ef
er

ee
d]

Extended abstract for Late-Breaking/Demo ISMIR 2019

partitura: A PYTHON PACKAGE FOR HANDLING SYMBOLIC
MUSICAL DATA

Maarten Grachten1 Carlos Cancino-Chacón2 Thassilo Gadermaier3
1 Independent Researcher, Barcelona, Spain

2 Austrian Research Institute for Artificial Intelligence, Vienna, Austria
3 Institute of Computational Perception, Johannes Kepler University Linz, Austria
maarten.grachten@gmail, carlos.cancino@ofai.at, thassilo.gadermaier@jku.at

EXTENDED ABSTRACT

In this work we present partitura, a Python package for handling the symbolic musical information that is
conveyed by modern staff notation. The package was born out of a need to process richly structured musical
information in a less reductive way than the pianoroll representation that is very common in MIR, in which a
score is represented as a list of timed pitch events. Although there are certainly valid use cases for pianoroll
representations of music, we believe that some musical tasks can be more effectively addressed based on a
richer data representation. Computational modeling of musical expression is one such task.

Musical scores contain a variety of musically relevant information that is typically not present in a pianoroll
representation, including but not limited to pitch spelling, metrical structure, phrasing, voicing, articulation,
tempo, dynamics, and musical form. A challenge when dealing with this information is that it requires
more complex data structures than the matrix structure typically used to represent pianorolls. The partitura
package uses the notion of a timeline to express the temporal scope of the elements in a score, such as
notes, rests, slurs, measures, time and key signatures, and performance directions. Elements may contain
references to each other. For example, a slur contains references to the starting and ending note of the slur.
This approach is further illustrated below.

The package supports exporting and importing musical scores to and from files in MusicXML and MIDI
format. Although the MIDI format in itself does not retain much of the musical information that partitura
intends to capture, the package includes proven algorithms for pitch spelling, voice estimation, and key
estimation (see below), to reconstruct some of that information.

In relation to the well-known music211 Python package it should be noted that the aims of partitura are more
modest. Whereas music21 provides a toolkit for computer-aided musicology—including functionality like
visualization and searching corpora—partitura aims to facilitate processing musical information in Python.
It roughly follows MusicXML in terms of musical entities, but as opposed to MusicXML, where time is largely
implicit, partitura takes a strongly time-oriented approach. This approach allows for extracting local musical
contexts in full detail, but makes it equally straightforward to extract subsets of information from the score
as a whole.

In partitura a score is defined at the highest level by one or more Part objects, possibly grouped by PartGroup
objects. Parts are typically associated with instruments, and each part may have one or more staves. Each
Part contains a TimeLine object that encapsulates a sequence of TimePoint objects, each denoting a temporal
position in the score (in an attribute t). A musical element such as a Note is added to the TimeLine by
registering it with the TimePoints corresponding to its start and end positions. A particularly important
element is the Divisions element, because it specifies the relation between the time interval tp2.t - tp1.t
between two timepoints tp1 and tp1, and the duration of a quarter note. Figure 1 shows a schematic
representation of a Part object and its components.

1https://web.mit.edu/music21/

c© Maarten Grachten, Carlos Cancino-Chacón, Thassilo Gadermaier. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Maarten Grachten, Carlos Cancino-Chacón, Thassilo Gadermaier. “partitura: A
Python Package for Handling Symbolic Musical Data”, Late Breaking/Demo at the 20th International Society for Music Information
Retrieval, Delft, The Netherlands, 2019.

1

https://web.mit.edu/music21/


IS
M

IR
L

at
e-

B
re

ak
in

g/
D

em
o

[U
nr

ef
er

ee
d]

Extended abstract for Late-Breaking/Demo ISMIR 2019

            


Allegro 
Ti
m
eL
in
e

Start of an element

End of an element

Pa
rt

TimePoint

Starts: Ends:
Divisions (q = 2)
Note 1 (F#4)
TimeSignature (4/4)
KeySignature (D major)
Clef (Treble)
Slur 1
TempoDirection (Allegro)
LoudnessDirection (p)
DynamicLoudnessDirection (cresc.)

TimePoint

Starts: Ends:
Note 15 (E4)
Fermata

Note 14 (E4)
Slur 2

t = 0 t = 28

Figure 1. Schematic representation of a Part object: A part contains a TimeLine object, which holds Time-
Points (i.e., pegs that fix score elements in time). The blue lines represent the starting times of the objects in
the score and the red lines represent the end times.

As mentioned above, partitura includes some tools for music analysis which are intended to fill in missing
information with plausible values, for instance when loading a score from a MIDI file. For estimating the
key signature of a piece, we use the Krumhansl–Shepard key identification algorithm [2]. We include an
implementation of the ps13s1 algorithm [3] for estimating pitch spelling. For estimating voice information,
we use VoSA [1], a contig mapping approach for voice separation in polyphonic music. To our knowledge,
this is the first publicly available Python implementation of ps13s1 and VoSA.

The package is available on GitHub2, with documentation available at readthedocs.org3. Future work will
include support of the MEI format4 and the match format5 which is used to encode performance-to-score
alignments.

ACKNOWLEDGMENTS

This research has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 670035 (project “Con Espres-
sione") and the Austrian Science Fund (FWF) under grant P 29840-G26 (project “Computer-assisted Analysis
of Herbert von Karajan’s Musical Conducting Style”).

REFERENCES

[1] Elaine Chew and Xiaodan Wu. Separating voices in polyphonic music: A contig mapping approach. In
Proc. CMMR, Esbjerg, Denmark, 2004.

[2] Carol L Krumhansl. Cognitive foundations of musical pitch. Oxford University Press, New York, 1990.

[3] David Meredith. The ps13 Pitch Spelling Algorithm. Journal of New Music Research, 35(2):121–159,
2006.

2https://www.github.com/mgrachten/partitura
3https://partitura.readthedocs.io/en/latest/index.html
4https://music-encoding.org
5http://www.eecs.qmul.ac.uk/~simond/match/

2

https://www.github.com/mgrachten/partitura
https://partitura.readthedocs.io/en/latest/index.html
https://music-encoding.org
http://www.eecs.qmul.ac.uk/~simond/match/

