
LEARNING SIMILARITY METRICS FOR MELODY RETRIEVAL

Folgert Karsdorp1 Peter van Kranenburg1,2 Enrique Manjavacas3

1 KNAW Meertens Instituut, The Netherlands, 2 Utrecht University, The Netherlands
3 University of Antwerp, Belgium

folgert.karsdorp@meertens.knaw.nl

ABSTRACT

Similarity measures are indispensable in music informa-
tion retrieval. In recent years, various proposals have
been made for measuring melodic similarity in symboli-
cally encoded scores. Many of these approaches are ulti-
mately based on a dynamic programming approach such
as sequence alignment or edit distance, which has various
drawbacks. First, the similarity scores are not necessar-
ily metrics and are not directly comparable. Second, the
algorithms are mostly first-order and of quadratic time-
complexity, and finally, the features and weights need to
be defined precisely. We propose an alternative approach
which employs deep neural networks for end-to-end simi-
larity metric learning. We contrast and compare different
recurrent neural architectures (LSTM and GRU) for rep-
resenting symbolic melodies as continuous vectors, and
demonstrate how duplet and triplet loss functions can be
employed to learn compact distributional representations
of symbolic music in an induced melody space. This ap-
proach is contrasted with an alignment-based approach.
We present results for the Meertens Tune Collections,
which consists of a large number of vocal and instrumen-
tal monophonic pieces from Dutch musical sources, span-
ning five centuries, and demonstrate the robustness of the
learned similarity metrics.

1. INTRODUCTION

The question of how melodic similarity can be computa-
tionally modeled is of crucial importance for various Mu-
sic Information Retrieval (MIR) tasks [35]. One classic
MIR scenario is a user posing a sung or hummed query
to a retrieval system in order to retrieve resembling pieces
of music from a music collection [6, 24]. This query-
by-humming scenario requires melodic matching methods
that are robust against different kinds of melodic variation
arising from imprecise memory or limited singing skills.
Melody matching is also an important aspect in cover-song
detection, where the predominant melody contains infor-

c© F. Karsdorp, P. van Kranenburg, E. Manjavacas. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: F. Karsdorp, P. van Kranenburg, E. Man-
javacas. “Learning Similarity Metrics for Melody Retrieval”, 20th Inter-
national Society for Music Information Retrieval Conference, Delft, The
Netherlands, 2019.

mation for song identification [29]. Musicologists benefit
from melodic similarity measures for exploring and map-
ping folk songs [19, 30], or other collections with mono-
phonic musical material, such as themes from classical
compositions [18], or score incipits [34]. Finally, mu-
sic similarity detection plays an important role in cases of
copyright violation [31], where objective similarity mea-
sures can support the court in making decisions.

In this paper, we present a Neural Network approach
for melodic similarity learning. The neural encoders learn
complex mappings from input sequences into distributed
melody representations. The primary aim of our system
is to be employable for music retrieval. In addition to ac-
curately modeling melodic similarity, desirable properties
of a retrieval system are speed and indexability. Neural
Networks very well accommodate both. Generally, once
trained, a neural network can compute results very fast by
making use of GPUs. Moreover, indexability is served by
the application of similarity metrics on top of the learned
encodings [3].

Various other approaches to melodic similarity have
been taken [35], including sequence alignment and other
dynamic programming approaches, such as edit distance
and dynamic time warping, and, recently, Recurrent Neu-
ral network representations [4, 9, 11, 16, 27, 30, 33]. In this
study, we contrast our approach with a sequence align-
ment method that has been successfully applied in the con-
text of folk melodies. Alignment-based methods suffer
from at least three drawbacks. First, they typically are
first-order, taking into account only adjacent items in se-
quences. Second, they have quadratic time-complexity. Fi-
nally, an alignment score is not a proper metric. Our neural
network approach overcomes these disadvantages but does
so at the cost of being a supervised learning algorithm.

2. DATA AND FEATURES

2.1 Data sets

The Meertens Tune Collections (MTC) 1 contains a se-
ries of data sets with melodic material from Dutch sources
(mainly manuscripts, printed sources, and audio record-
ings), spanning five centuries of music history [20, 22].
These data sets are subsets of the Dutch Song Database,
maintained by the KNAW Meertens Institute [21]. The lat-

1 http://www.liederenbank.nl/mtc/

478

101

Class size

10 3

10 2

10 1

100

CC
DF

Figure 1. Complementary Cumulative Distribution Func-
tion of the tune family sizes in the subset of MTC-FS-INST
2.0 which we use in our experiments.

est release, MTC-FS-INST 2.0, contains 18,109 digitized
melodies with rich metadata. Many of these melodies oc-
cur in more than one source. Due to oral and semi-oral
transmission, these different occurrences typically show
melodic variation. As an example, Figure 3 depicts three
variant melodies, illustrating the kind and extent of varia-
tion. To denote such a group of variant melodies, we adopt
the concept of tune family from folk song research [1]. In a
long-term effort, the collection specialists of the Meertens
Institute aim to identify each melody in terms of tune fam-
ily membership.

In this paper, we use MTC-FS-INST 2.0, which reflects
the diversity of the contents of the Dutch Song Database.
One main distinction in the data set is between vocal and
instrumental music as illustrated in Figure 2. Generally,
the instrumental part of the data set dates from the 17th
and 18th centuries. It contains melodies that were played
in bars and brothels as well as theaters and upper-class pri-
vate settings. The vocal part of the data set mainly consists
of songs from the 19th and 20th centuries. As a whole, the
data set provides a rich variety in melodic styles, which
renders it a perfect source for training general purpose
melodic similarity measures.

To obtain training, development, and test sets, we filter
and split the data set. First, we exclude all 5,765 unla-
beled melodies and all 3,008 singleton tune families. This
leaves a selection of 9,336 melodies in 2,094 tune fami-
lies. The complementary cumulative distribution function
of the class sizes is presented in Figure 1. The distribution
of class sizes is heavy-tailed.

An important criterion to measure the level of success
achieved by the metric learning approach is its capability
to cluster together tune melodies belonging to families un-
seen during training. In order to make this possible, we
perform a controlled test set split, ensuring that all in-
stances from a proportion of tune families do not appear
in the training data. The actual proportions of seen and un-
seen families is shown in Table 1 together with further data
set size statistics. 2

2 Supplementary material, data sets and code to replicate the exper-
iments are available from https://github.com/fbkarsdorp/

Mel # TF # TF in Train µ|TF| σ|TF|

Train 5,975 1,572 3.80 5.06
Dev 1,492 495 255 3.01 1.64
Test 1,869 611 287 3.06 1.55

Table 1. Composition of the subsets of MTC-FS-INST
2.0 used for training, development and testing. The table
provides the number of melodies (Mel) and tune families
(TF) in each set, the number of tune families that are shared
with the training set, and mean and standard deviation of
tune family sizes.

FS

INST

1600 1700 1800 1900 2000
Year

M
el

od
y

ty
pe

Annual counts 10 500 1000 2000 4000

Figure 2. Number of melodies per year in MTC-FS-
INST 2.0. The plot displays frequencies for instrumental
melodies (INST) and vocal melodies (FS).

2.2 Features

Melodies are represented as sequences of notes, and notes
as sets of feature-values. Since the MTC provide a rich
melody encoding, including key, meter, and phrase bound-
aries, we can assemble a diverse feature-set in which var-
ious musical parameters are represented: pitch, metric
structure, rhythm, tonality, and phrase structure. See the
supplementary material for an exact list of features.

3. METHODOLOGY

Our approach is based on two components. First, we
deploy distributional melody encoders implemented with
Neural Networks. Secondly, we train the encoders with
Stochastic Gradient Descent to minimize a Contrastive
Loss that we describe below.

3.1 Distributional Encoder

An input melody from the dataset xi ∈ X can be rep-
resented by a sequence xi = [x(i,1), . . . , x(i,k)] of length
k = |xi|, where each x(i,t) is a bundle of m features ex-
plained in Section 2.2. For simplicity, we refer to the jth

feature of sequence step t as xjt , thus dropping data set in-
dices. Our goal is to compute an encoding h = f(x) as a
function of the input sequence x, parameterized by a Neu-
ral Network f(x).

The encoding process can be described as follows. We
first process each time step in the input sequence indepen-
dently by concatenating all features into a single vector
et = [e1t ; . . . ; e

m
t]. Categorical features are first encoded

into a one-hot vector and projected into their own embed-
ding space with model parameters Wj ∈ RJxE , where J

melodic-similarity.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

479

�

� �

��
�
�

�
�

� �
�

�

�
�

��
�
�
�

�
�
�

�
� �
�
�

�
�

��
�
�

�

�
�
�

�
�

�

�
�
�

�� �

�
�

� � �
�
�

�
�
�
�

�

�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�

��

�

� �
�
�
�

�
�
�

�
�
�
�
� ��

�
�
�

�

�
�
�
�
�

�
�
�

�

�
�
�

��� �

	�� �

NLB073990_01

NLB073483_01

NLB073337_02

�

�

	�� �

�

�
�
�

�
�

�
�

�
�
�

�
��

�

� �
�
�

�
�

�

�
�
� �� � �

�
�
�
�
��

�
�
� �
� �

�
�

� �
�

��

�
�
�
�

�

�

Figure 3. Three members of tune family Daar was laatstmaal een ruiter 2, showing various kinds of melodic variation.

is the total number of possible values of the jth categori-
cal feature and E is the dimensionality of the embedding
space. Continuous features are normalized to have a mean
of 0 and standard deviation of 1. For all feature types, the
sequences are padded at the beginning and the end using
special symbols in the case of categorical features and the
feature mean after re-scaling for continuous features. The
resulting sequence of input embeddings is fed to a stack of
recurrent layers 3 with the tth hidden activation at layer l
given by h(t,l) = RNNl(h(t,l−1), h(t−1,l)).

We also experiment with bidirectional RNNs, which ex-
tend each RNN layer with an additional RNN run back-
wards. In the case of the bidirectional RNN, the final
melody embedding is given by the concatenation of the
last activations of the forward and backward RNNs at the
last layer: h = [

−−−−→
h(k,|L|);

←−−−−
h(1,|L|)]. In the case of the unidi-

rectional RNN, the embedding is given by a feature-wise
max-pooling operation over the sequence of activations
at the last layer, with the pth output feature defined by
hp = max([h(1,|L|)]p, . . . , [h(k,|L|)]p). Instead of tradi-
tional RNN cells [7], we use LSTM [14] and GRU [5] cells
which have been shown to offer stronger performance and
better training behavior.

3.2 Contrastive Loss

The goal of our approach is to learn a distributional en-
coder such that melodic sequences of the same class are
embedded into neighboring regions and far from melodic
sequences belonging to different families. To this end, we
train the encoder using a contrastive loss [12].

3.2.1 Duplet Loss

Let the encodings of two input sequences with tune family
labels yi and yj be denoted by xi and xj . The goal we
want to achieve is that the similarity between xi and xj is
high when yi and yj are equal, and low otherwise. More
formally, we seek to achieve the following inequality:

D(xi, xj) < D(xi, xk) + α (1)

∀(xi, xj , xk) ∈ X | yi = yj ∧ yi 6= yk, where D is a dis-
tance function and α is a pre-specified margin. In order to
achieve this goal, we optimize a contrastive loss function
defined over input pairs that is therefore known as the du-
plet loss. The contrastive loss function is decomposed in a
positive term L+:

L+(xi, xj) = (β)D(xi, xj)
2 (2)

3 During preparatory work, we also experimented with convolutional
stacks but found no improvements over the recurrent counter-part, which
was, therefore, singled out for the purpose of the present study.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D

lo
ss

Positive loss
Soft Negative Loss
Hard Negative Loss

Figure 4. Visualization of the two loss variants with a hard
margin and a soft margin.

and a negative term L−:

L−(xi, xj) = max(0, α−D(xi, xj))
2 (3)

where β is a parameter used to weight the contribution of
the negative term. 4 The two terms can be combined into
a single loss function with the help of a variable Yi,j that
takes value of 1 for yi = yj and 0 when yi 6= yj :

LD(xi, xj) = (Yij)L+(xi, xj)+(Yij−1)L−(xi, xj) (4)

For the current study, we restrict ourselves to the cosine
distance as defined by Eq. 5:

D(xi, xj) = 1− f(xi) · f(xj)
‖f(xi)‖‖f(xj)‖

(5)

Naturally, other distance functions are equally applica-
ble, but the two-sided boundedness of the cosine distance
(i.e. distances fall between [0, 2]) allows more efficient op-
timization of the parameters α and β. Moreover, the loss
specified above employs a soft margin. By contrast, [28]
propose the use of a hard margin, effectively reducing the
loss to zero if it falls below some value. With the hard
margin, the negative term in Eq. 3 becomes:

L−(xi, xj) =

{
(1−D(xi, xj))

2 D(xi, xj) < α

0 otherwise
(6)

Figure 4 visualizes the two loss variants. In the experi-
ments below, we compare both versions of the loss.

3.2.2 Triplet Loss

The triplet loss [13, 32] differs from the duplet loss in that
it considers input example triplets xi, xj , xk consisting
of a positive example xi, a negative example xj such that

4 The scaling parameter β and margin α are optimized on a develop-
ment data set, which we will discuss below.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

480

yj 6= yi and an anchor xk such that yk = yi. The triplet
loss shares the goal of the duplet loss from Eq. 1, but em-
ploys anchor positive examples to ensure that the distance
between any two instances of the same family is less than
the distance to an instance of a different family by at least
a pre-specified margin α. More formally, the triplet loss is
defined by Eq. 7:

LT (xi, xj , xk) = max(0, D(xi, xk)−D(xj , xk) + α)
(7)

The triplet loss, therefore, presents a more relaxed form
than the duplet loss, allowing instances of the same fam-
ily to occupy larger regions. As opposed to the composite
form of the duplet loss, the triplet loss is simple. However,
the triplet loss is more heavily dependent on the quality of
the sampled negative examples and anchors, which might
lead to poorer training dynamics.

3.3 Online Duplet and Triplet Mining

We train our encoder using mini-batches of duplets or
triplets from the data set. The number of possible du-
plets and triplets grows, respectively, quadratically and cu-
bically with the number of instances in the data set, which
renders exhaustive training costly. Feasibility aside, train-
ing with all possible duplets or triplets is not desirable as a
large proportion of the resulting duplets and triplets make
it either too easy or too difficult to fulfill the objective of
Eq. 4 and Eq. 7. Such examples prevent the network from
learning, and lead to slower convergence.

As suggested by [32] in the context of face recognition,
efficient and fast converging training can be achieved by
online selection of ‘hard’ duplets or triplets, i.e. the most
dissimilar positive examples, and the least dissimilar neg-
ative examples. We apply this approach by first sampling
a mini-batch of k instances per each of n sampled unique
tune families. Subsequently, using the current model we
compute the encodings of all n× k instances and for each
instance we sample positive and negative, or anchor and
negative examples from the mini-batch. In the case of the
duplet loss, for each instance we select all possible pos-
itive examples (i.e. all other instances in the mini-batch
from the same family) and an equal number of negative
examples from the least dissimilar negatives. In the case
of the triplet loss, for each instance xi we select pairs of
anchor xk and negative example xj such that the distance
between positive and anchor is smaller than the distance
between negative and anchor, while the difference between
the distances lies inside the margin α:

0 < D(xi, xk)−D(xj , xk) < α (8)

In case no negative example can be found that satisfies this
condition, we select a random negative.

3.4 Baseline: Alignment

We compare our results with the performance of a previ-
ously proposed alignment method [23]. In this method, the
Needleman-Wunsch-Gotoh algorithm is used [10], which
computes a global alignment score for two sequences of

symbols. The alignment is constructed by inserting gaps at
appropriate locations in the sequences following a dynamic
programming approach. The alignment score is based on a
similarity function for symbols and a gap scoring scheme.
The Gotoh-variant of the algorithm applies an affine gap
scoring function in which the continuation of a gap obtains
a different score than the opening of a gap, opposed to the
basic variant of the algorithm in which all gaps obtain the
same score. We use the best scoring configuration in [23],
which uses pitch, metric weight and the position of a note
in its phrase.

3.5 Evaluation

We formulate the task of tune family identification as a
ranking problem: given a query melody qi and a data set of
melodies X, qi /∈ X , the models should provide a ranked
list of the melodies in X . To evaluate how well our mod-
els solve this problem, we measure the performance of the
models by means of three evaluation measures: (i) ‘Av-
erage Precision’, (ii) ‘Precision at rank 1’, and (iii) ‘Sil-
houette Coefficient’. Each of these measures addresses a
different aspect of the performance quality of the mod-
els. First, Average Precision (AP) addresses the ques-
tion whether given a query melody, all or most relevant
melodies are high up in the ranking:

AP =

∑N
k=1 P (k)× rel(k)

number of relevant melodies
, (9)

where k is the position in the ranked list of N retrieved
melodies. P (k) represents the precision at position k,
and rel(k) = 1 if the melody at position k is relevant,
rel(k) = 0 otherwise. By computing the average AP over
all query melodies, we obtain the Mean Average Precision
(MAP). As a second ranking measure, we focus on the Pre-
cision at rank 1 score (P@1), which computes the fraction
of queries for which the highest ranked sequence is rel-
evant. Third and finally, we compare these two ranking
based evaluation measures with the Silhouette Coefficient,
which is a measure of cluster homogeneity and separation.
The Silhouette Coefficient contrasts the mean similarity
between a sample and all other samples from the same fam-
ily with the similarity of that sample with members of other
families. By taking the average over all silhouette scores,
we obtain a measure of cluster homogeneity ranging from
-1 (incorrect clustering) to 1 (perfect clustering). 5

3.6 Training and Hyper-Parameter Optimization

The networks were trained on the training data sets spec-
ified in Table 1. We use the Adam optimizer [17] and
stop training after no improvement in MAP score was
made on the development data for ten consecutive epochs.
The neural network consists of a large number of hyper-
parameters, making hyper-parameter tuning expensive and
time-consuming. Following [2], we perform a random-
ized hyper-parameter search, in which we train n differ-

5 See the Supplementary Materials for more information.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

481

MAP P@1 Sil.

all seen unseen

RNND 0.72 0.71 0.73 0.78 0.34
RNNT 0.71 0.70 0.71 0.77 0.29
Alignment 0.69 – – 0.78 0.23

Table 2. Best evaluation scores for the development data.
RNND is an RNN with duplet loss, and RNNT is an RNN
with triplet loss.

MAP P@1 Sil.

all seen unseen

RNND 0.72 0.70 0.74 0.78 0.33
RNNT 0.68 0.64 0.71 0.75 0.28
Alignment 0.67 – – 0.78 0.22

Table 3. Evaluation scores for the test data. RNND is an
RNN with duplet loss; RNNT is an RNN with triplet loss.

ent models with random hyper-parameter settings sampled
from parameter-specific, relatively flat distributions. 6

4. RESULTS

Table 2 presents the results for the development data set
with MAP scores for the best performing models trained
with duplet (RNND) and triplet loss (RNNT). The best
RNND achieves a MAP of 0.72, which is markedly better
than the Alignment method (0.69), and slightly better than
the best RNNT (0.71). However, as will be discussed in
more detail below, RNNT models are significantly harder
to optimize than RNND models (at least for the current
data set). The columns ‘seen’ and ‘unseen’ represent MAP
scores for queries of which the corresponding tune fami-
lies were either seen or unseen during training. Crucially,
the scores are almost equivalent, indicating that the neural
networks are capable of actually learning a similarity met-
ric, and not just a clustering or classification procedure,
in which the systems learn to assign sequences to known
class labels and data points. The performance differences
between the models are further expressed by the Silhou-
ette coefficient, which indicates superior performance of
the RNND model. However, note that for P@1, all sys-
tems perform equally well.

The best performing models were employed to encode
the melodies in the test set. The test results in Table 3 show
a similar picture. Again, RNND outperforms the other
systems. Note that the performance of RNNT slightly
dropped in comparison to the development results and that
the performance difference with respect to RNND has be-
come larger. Overall, the RNNs appear to have adequately
learned how to form compact distributional representations
of symbolic music in an induced melody space. This ca-
pability is further illustrated by the two-dimensional pro-

6 The full list of hyper-parameters and the predefined priors are listed
in Section 2 of the Supplementary Materials.

INST
FS

9128_0
13885_0
11112_0
2955_0
9668_1
1876_0
720_0

Figure 5. Two-dimensional UMAP [25] projection of the
induced melody space obtained with RNND. The left
subplot visualizes the positions of instrumental melodies
(INST) and vocal melodies (FS). The subplot to the right
highlights the positions of a small number of randomly
chosen tune families.

jection of the melody space in Figure 5. The left subplot
demonstrates that the learned representations clearly sep-
arate vocal (FS) from instrumental melodies (INST). The
subplot to the right serves as a validation of the cluster-
ing capabilities of the encoder. It highlights the positions
of a small number of randomly chosen tune families, the
members of which all cluster together.

4.1 Hyper-Parameter Importance

We assess the importance of the different hyper-parameters
of the neural networks by modelling their influence on
the MAP scores resulting from the randomized parameter
search [26]. To this end, we fit the following linear regres-
sion model:

MAPi ∼ N (µi, σ) (10)

µi = γ + βlli + βmmi + βhhi + βddi (11)

+βbbi + βcci + βlmlimi,

where Eq. 10 specifies the likelihood function with mean
µ and standard deviation σ, and Eq. 11 represents the lin-
ear model. Here, γ represents the intercept of the linear
model, li is the loss type of model i (i.e. triplet or duplet
loss), mi is the margin value α, hi is the dimension of the
hidden layer, di refers to the embedding dropout value, bi
dummy encodes whether a model employed bidirectional
versus unidirectional RNNs, and ci is the cell type of the
RNN (i.e. LSTM or GRU). Since the margin functions dif-
ferently in the triplet and duplet loss, we model the inter-
action between margin and loss type (βlmlimi). All cat-
egorical predictors are dummy encoded, and the contin-
uous predictors are zero centered. β priors are sampled
from uninformative Normal distributions, N (0, 1), and σ
is sampled from a weakly regularizing half-Cauchy prior
with location 0 and scale 1.

Table 4 presents the posterior distribution estimates of
the model along with their estimation errors, their 95%
credible intervals (CI95), and the R̂ statistic. 7 The mean

7 Since the linear model is Bayesian, the credible intervals can be inter-
preted straightforwardly as the 95% probability that the estimates fall in
a particular range. The ‘No U-Turn Sampler’ (NUTS) was used for sam-
pling [15], which is a specific type of Hamiltonian Monte Carlo (HMC).

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

482

Estimate Error l-CI95 u-CI95 R̂

γ 0.66 0.00 0.65 0.67 1.0
βl -0.08 0.01 -0.09 -0.07 1.0
βm 0.01 0.01 -0.02 0.04 1.0
βd -0.05 0.02 -0.09 0.00 1.0
βb 0.03 0.01 0.02 0.04 1.0
βc -0.05 0.00 -0.06 -0.04 1.0
βh 0.02 0.00 0.01 0.03 1.0
βlm -0.18 0.02 -0.22 -0.13 1.0
σ 0.04 0.00 0.04 0.04 1.0

Table 4. Posterior distribution estimates for the hyper-
parameters of the Neural Networks. In addition to the
mean estimates, the table provides the estimation errors,
95% Credible Intervals, and the R̂ statistic.

0.50

0.55

0.60

0.65

−0.25 0.00 0.25 0.50
margin (centered)

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Loss duplet triplet

Figure 6. Marginal effects plot showing the interaction be-
tween loss type (i.e. Duplet and triplet loss) and the margin
α.

intercept γ = 0.66 represents the mean posterior esti-
mate of MAP values for unidirectional models, fit with
GRU cells (ci = 0), duplet loss (li = 0) and mean (i.e.
0) values for the continuous predictors. Given this base
model, several interesting observations can be made. First,
as suggested by the negative βl estimate, triplet loss mod-
els markedly underperform duplet loss models with, ce-
teris paribus, a mean drop in performance of 0.08. Sec-
ond, employing larger hidden dimensions (βh) and using
bidirectional RNNs (βb) both positively influence the MAP
scores. Third, on average adding too much dropout hurts
performance (βd = −0.05). Fourth, the strong negative
posterior distribution estimate for the interaction between
the margin α and loss type indicates that careful tuning
of α is especially important for the triplet loss. By con-
trast, different values of α barely impact the performance
of duplet loss models. The marginal effects plot in Fig-
ure 6 highlights this interaction. Finally, RNNs trained
with GRU cells markedly outperform models trained with
LSTM cells (βc = −0.05). Figure 7 illustrates this perfor-
mance difference. Additionally, the plot demonstrates the

R̂ is a statistic to assess the convergence of the sampler, and should be be-
low 1.1 [8]. For more information about the convergence and parameters,
see the Supplementary Information.

●

●

●

●

●

●

●

●

LSTM GRU

duplet triplet duplet triplet

0.55

0.60

0.65

0.70

Loss

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Bidirectional ● ●no yes

Figure 7. Marginal effects plot of RNN cell type (i.e.
LSTM or GRU) and bidirectional versus unidirectional
RNNs.

benefits of employing bidirectional RNNs, which consis-
tently outperform unidirectional models.

5. CONCLUSION & FUTURE WORK

This paper proposed a method for end-to-end melody sim-
ilarity metric learning using deep neural networks. We
trained distributional melody encoders to minimize Du-
plet and Triplet Contrastive loss functions with which we
achieve state-of-the-art retrieval performance on a large set
of instrumental and vocal melodies. A thorough statistical
analysis of the hyper-parameters of the Neural Networks
indicates that on average Duplet Loss RNNs are easier to
tune and less sensitive to specific hyper-parameter settings.
Additionally, RNNs trained with GRU cells consistently
outperform LSTM cell implementations. Our system has
several major advantages over more traditional, alignment-
based methods. First, thanks to its ability to infer com-
plex interactions between input variables, the Neural Net-
work approach is less sensitive to specific feature combi-
nations and feature selection. Second, as shown by our
study, the Neural Network approach displays more robust-
ness, achieving similar MAP scores across exclusive sets
of tune families (seen vs unseen).

For future work, we have the following three recom-
mendations. First, the applicability of the proposed ap-
proach should be carefully examined on more diverse data
sets, in order to test for the cross-domain robustness of the
learned similarity metrics. Second, a more extensive and
thorough comparison (including error analysis) with other
existing melodic similarity methods is desired to highlight
advantages and possible disadvantages of the neural sys-
tems. Finally, we acknowledge that, while successful, the
proposed architecture still leaves room for improvement.
Inspired by progress in similarity metric learning within
the fields of Paraphrase Detection and Semantic Textual
Similarity, we would like to experiment with more expres-
sive neural architectures and feature extraction to explore
the performance limits of the Neural Network approach on
melodic similarity metric learning.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

483

6. REFERENCES

[1] S.M. Bayard. Prolegomena to a study of the principal
melodic families of british-american folk song. Journal
of American Folklore, 63(247):1–44, 1950.

[2] James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization. Journal of Machine
Learning Research, 13(Feb):281–305, 2012.

[3] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates,
and José Luis Marroquín. Searching in metric spaces.
ACM Computing Surveys, 33(3):273–321, 2001.

[4] Tian Cheng, Satoru Fukayama, and Masataka Goto.
Comparing rnn parameters for melodic similarity. In
ISMIR, pages 763–770, 2018.

[5] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the Properties of Neural
Machine Translation: Encoder–Decoder Approaches.
In Proceedings of SSST-8, Eighth Workshop on Syn-
tax, Semantics and Structure in Statistical Translation,
pages 103–111. Association for Computational Lin-
guistics, 2014.

[6] Roger B. Dannenberg, William P. Birmingham, Bryan
Pardo, Ning Hu, Colin Meek, and George Tzane-
takis. A comparative evaluation of search techniques
for query-by-humming using the musart testbed. Jour-
nal of the American Society for Information Science
and Technology, 58(5):687–701, 2007.

[7] Jeffrey L. Elman. Finding structure in time. Cognitive
Science, 14(2):179–211, 1990.

[8] Andrew Gelman, Donald B Rubin, et al. Inference
from iterative simulation using multiple sequences.
Statistical science, 7(4):457–472, 1992.

[9] Mathieu Giraud, Ken Déguernel, and Emilios Cam-
bouropoulos. Fragmentations with Pitch, Rhythm and
Parallelism Constraints for Variation Matching, vol-
ume 8905 of Lecture Notes in Computer Science, chap-
ter Fragmentations with Pitch, Rhythm and Parallelism
Constraints for Variation Matching. Springer, 2014.

[10] O. Gotoh. An improved algorithm for matching bi-
ological sequences. Journal of Molecular Biology,
162:705–708, 1982.

[11] Maarten Grachten, Josep Lluís Arcos, and Ra-
mon López de Mántaras. Melody retrieval using the
implication/realization model. In Proceedings of the
6th International Conference on Music Information
Retrieval (ISMIR 2005), 2005.

[12] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimen-
sionality reduction by learning an invariant mapping.
In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
2006.

[13] Alexander Hermans, Lucas Beyer, and Bastian
Leibe. In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737, 2017.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-
Term Memory. Neural Computation, 9(8):1735–1780,
1997.

[15] Matthew D Hoffman and Andrew Gelman. The no-u-
turn sampler: adaptively setting path lengths in hamil-
tonian monte carlo. Journal of Machine Learning Re-
search, 15(1):1593–1623, 2014.

[16] Berit Janssen, Peter Van Kranenburg, and Anja Volk.
Finding occurrences of melodic segments in folk songs
employing symbolic similarity measures. Journal of
New Music Research, 46(2):118–134, 2017.

[17] Diederik P. Kingma and Jimmy Lei Ba. Adam: a
Method for Stochastic Optimization. International
Conference on Learning Representations 2015, pages
1–15, 2015.

[18] Andreas Kornstädt. Themefinder: A web-based
melodic search tool. Computing in Musicology,
11:231–236, 1998.

[19] Peter Van Kranenburg. A Computational Approach to
Content-Based Retrieval of Folk Song Melodies. PhD
thesis, Utrecht University, Utrecht, October 2010.

[20] Peter Van Kranenburg and Martine De Bruin. The
meertens tune collections: Mtc-fs-inst 2.0. Meertens
Online Reports 2019-1, Meertens Institute, Amster-
dam, 2019.

[21] Peter Van Kranenburg, Martine De Bruin, and Anja
Volk. Documenting a song culture: the dutch song
database as a resource for musicological research. In-
ternational Journal on Digital Libraries, 20(1):13–23,
2019.

[22] Peter Van Kranenburg, Martine De Bruin, Louis P.
Grijp, and Frans Wiering. The meertens tune collec-
tions. Meertens Online Reports 2014-1, Meertens In-
stitute, Amsterdam, 2014.

[23] Peter Van Kranenburg, Anja Volk, and Frans Wier-
ing. A comparison between global and local features
for computational classification of folk song melodies.
Journal of New Music Research, 42(1):1–18, 2013.

[24] Velankar Makarand and Kulkarni Parag. Unified al-
gorithm for melodic music similarity and retrieval in
query by humming. In Intelligent Computing and In-
formation and Communication: Proceedings of 2nd In-
ternational Conference, ICICC 2017. Springer Singa-
pore, 2018.

[25] Leland McInnes, John Healy, and James Melville.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

484

[26] Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. An analysis of neural language modeling
at multiple scales. arXiv preprint arXiv:1803.08240,
2018.

[27] Marcel Mongeau and David Sankoff. Comparison of
musical sequences. Computers and the Humanities,
24:161–175, 1990.

[28] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.
Learning text similarity with siamese recurrent net-
works. In Proceedings of the 1st Workshop on Repre-
sentation Learning for NLP, pages 148–157, 2016.

[29] Justin Salamon, Joan Serrà, and Emilia Gómez. Tonal
representations for music retrieval: from version iden-
tification to query-by-humming. International Jour-
nal of Multimedia Information Retrieval, 2(1):45–58,
2013.

[30] Patrick E. Savage and Quentin D. Atkinson. Automatic
tune family identification by musical sequence align-
ment. In Proceedings of the 16th International Soci-
ety for Music Information Retrieval Conference, pages
162–168, 2015.

[31] Patrick E. Savage, Charles Cronin, Daniel Müllen-
siefen, and Quentin D. Atkinson. Quantitative evalu-
ation of music copyright infringement. In Proceedings
of the 8th International Workshop on Folk Music Anal-
ysis (FMA2018), pages 61–66, 2018.

[32] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recog-
nition and clustering. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 815–823, 2015.

[33] Julián Urbano, Juan Lloréns, Jorge Morato, and Sonia
Sánchez-Cuadrado. Melodic similarity through shape
similarity. In Sølvi Ystad, Mitsuko Aramaki, Richard
Kronland-Martinet, and Kristoffer Jensen, editors, Ex-
ploring Music Contents, volume 6684 of Lecture Notes
in Computer Science, pages 338–355. Springer Berlin
Heidelberg, 2011.

[34] Jelmer Van Nus, Geert-Jan Giezeman, and Frans Wier-
ing. Melody retrieval and composer attribution using
sequence alignment on rism incipits. In TENOR 2017
International Conference on Technologies for Music
Notation & Representation, 2017.

[35] Valerio Velardo, Mauro Vallati, and Steven Jan. Sym-
bolic melodic similarity: State of the art and fu-
ture challenges. Computer Music Journal, 40(2):70–
83, 2016.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

485

