
FAST AND FLEXIBLE NEURAL AUDIO SYNTHESIS

Lamtharn Hantrakul
Google Brain

hanoih@google.com

Jesse Engel
Google Brain
jesseengel@

Adam Roberts
Google Brain
adarob@

Chenjie Gu
Google DeepMind

gcj@

ABSTRACT

Autoregressive neural networks, such as WaveNet, have
opened up new avenues for expressive audio synthesis.
High-quality speech synthesis utilizes detailed linguistic
features for conditioning, but comparable levels of con-
trol have yet to be realized for neural synthesis of musi-
cal instruments. Here, we demonstrate an autoregressive
model capable of synthesizing realistic audio that closely
follows fine-scale temporal conditioning for loudness and
fundamental frequency. We find the appropriate choice of
conditioning features and architectures improves both the
quantitative accuracy of audio resynthesis and qualitative
responsiveness to creative manipulation of conditioning.
While large autoregressive models generate audio much
slower than real-time, we achieve these results with a more
efficient WaveRNN model, opening the door for exploring
real-time interactive audio synthesis with neural networks.

1. INTRODUCTION

Expressive musical instruments, whether digital or acous-
tic, enable players to use relatively low-dimensional ges-
tures to control perceptual qualities of audio such as pitch,
dynamics, and timbre in real time [5,10]. Progress in Neu-
ral Audio Synthesis, directly rendering audio with deep
neural networks, has revolutionized the field of speech syn-
thesis [13,15,18,19] by replacing hand-designed functions
with data-driven design, and is similarly poised to cre-
ate a brand new class of expressive musical instruments
[1, 3, 4, 6, 12].

Much of this progress is due to deep autoregressive
models, such as WaveNet [18] and Tacotron [15, 19].
While these models can generate a wide range of realis-
tic audio, using them as expressive musical instruments is
not straightforward as they require fine-grained domain-
specific conditioning information, such as phonemes [18]
or mel-spectrograms [15] for speech, and are prohibitively
slow at generating audio.

c© Lamtharn Hantrakul, Jesse Engel, Adam Roberts, Chen-
jie Gu. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Lamtharn Hantrakul, Jesse Engel,
Adam Roberts, Chenjie Gu. “Fast and Flexible Neural Audio Synthesis”,
20th International Society for Music Information Retrieval Conference,
Delft, The Netherlands, 2019.

Transposed Convolution
(3 layers, 512 dims, stride 2)

F0

Lo
ud

ne
ss

In
pu

t S
ig

na
ls

(2

50
 H

z)
C

on
di

tio
ni

ng
 S

ta
ck

Fully Connected

(2048 dims)

Embedding
(1024 dims)

64X Upsampling

Dilated Convolution
(6 layers, 512 dims)

Dilated Convolution
(6 layers, 512 dims)Fully Connected

(1024 dims)

Fully Connected
(256 dims)

La
te

nt
 F

ea
tu

re
s

(1
60

00
 H

z)

WaveRNN

D
ec

od
er

 S
ta

ck
Au

di
o

(1
60

00
 H

z)

8X Upsampling

…

…Pi
tc

h

C
en

ts

Figure 1. Real-time neural synthesizer architecture. Fun-
damental frequency (F0) and loudness features are fed
through a conditioning stack and upsampled to audio rate.
Using our Pitch/Cents representation, F0 is split into pitch
one-hot embeddings and continuous deviations in cents.
The latent features are concatenated and fed into a Wa-
veRNN which generates audio autoregressively. Audio
samples can be heard in the online supplement 1 .

In this paper, we make progress in overcoming these
challenges by using domain-specific conditioning features
to drive a simpler and more efficient WaveRNN [7] model
to generate audio of musical instruments. We explore
a variety of conditioning features and architectures and
demonstrate that a WaveRNN-based model driven by time-
distributed and fine-scale musical features is capable of
synthesizing realistic audio faster than real time. Our key

524

findings include:

• Fine-grain control over loudness. By condition-
ing on extracted loudness features, WaveRNNs can
resynthesize audio that closely matches the origi-
nal loudness, from long attacks and decays to fast
changes like a tremolo.

• Fine-grain control over pitch. By conditioning
on extracted fundamental frequency features, Wav-
eRNNs can resynthesize audio that closely matches
the original frequencies, from a constant pitch, to
subtle vibratos and large glissandos.

• Feature selection. Conditioning on perceptual loud-
ness consistently outperforms using amplitude en-
ergy, while conditioning on discrete pitches and con-
tinuous cents outperforms using a single continuous
frequency feature.

• Real-time generation. Since the models are built
around WaveRNN, even unoptimized kernels syn-
thesize audio faster than real-time in batch mode.
We show our results hold for casaul conditioning
stacks, opening the door for low-latency interactivity
with a properly optimized implementation.

Audio for all examples shown in this paper can be found
in the online supplement 1 .

2. RELATED WORK

2.1 Musical Conditioning

WaveNet autoencoders can infer a latent conditioning sig-
nal from raw audio [4]. This enables unique opportunities
for timbre transfer and morphing [2,12], but the latent code
is relatively high dimensional and unintuitive to manipu-
late due to entanglement of perceptual attributes.

Discrete pianorolls can serve as an intuitive intermedi-
ate representation to control generation of realistic poly-
phonic audio in focused domains such as solo piano per-
formance [6,9]. However, many instruments have dynamic
pitch and volume that cannot be captured with discrete pi-
anorolls. In contrast, this work examines using continuous
pitch and loudness conditioning to create a synthesizer ca-
pable of such dynamic control.

2.2 Fast Synthesis

A successful approach to speeding up generation is ren-
dering audio in parallel. Parallel Wavenet [17] distills
a teacher WaveNet model into a student network that
generates audio in parallel using inverse autoregressive
flows. This dramatically reduces inference latency but re-
quires training several networks and carefully tuning sev-
eral heuristic losses. Other flow-based models such as
WaveGLOW [14] can train audio generation flows directly,
but so far have only been successful at inverting spectro-
grams. Generative adversarial networks provide another

1 http://bit.ly/2GcCPNV

approach to parallel generation and GANSynth [3] recently
proved four orders of magnitude faster than WaveNet base-
lines by generating magnitudes and phases in the spectral
domain. However, these models are not capable of han-
dling fine-scale conditioning or variable-length sequences
considered here.

The streaming nature of autoregressive models makes
them uniquely suited for real-time performance. Wav-
eRNN and LPCNet [7,16] are single-layer recurrent neural
networks that reduce complexity to generate 24kHz 16-bit
speech at speeds up to 4×real time, even on mobile device
CPUs. These models can also run inference in a stream-
ing fashion; a critical requirement for interactive and live
applications.

WaveRNN in particular, achieves its performance
through a set of architectural and engineering innovations,
including 1) the representation of 16-bit audio as a tuple
of two 8-bit integers, which enables efficient parameteri-
zation of the neural network using a dual-softmax layer, 2)
special GRU cells for the two 8-bit integers which achieves
high quality synthesized audio, and 3) custom kernels on
GPUs and CPUs for dense and sparse models respectively.

3. EXPERIMENTAL DETAILS

3.1 Dataset

We focus our work on a smaller subset of the NSynth
dataset [4] identical to GANSynth [3]. These total 70,379
examples, comprising mostly of strings, brass, woodwinds
and mallets with pitch labels within MIDI range 24-84 (F0
of ∼32-1000 Hz). Each sample is 4 seconds long and sam-
pled at 16KHz, resulting in 64,000 dimensions.

3.2 WaveRNN

Our WaveRNN model consists of a 1280-unit GRU, two
640×512 fully connected layers (projection) and two
512×256 fully connected layers (logits). The output has
two size-256 softmax layers, each predicting 8 bits of the
audio (16 bits in total). The model size is on par with
WaveRNN for speech synthesis [7]. Compared to other
fast audio synthesis models (Parallel WaveNet [17], GAN-
Synth [3], and WaveGlow [14]), WaveRNN has a simpler
training setup: the training loss is simply negative log-
likelihood and the set of hyper-parameters to tune is small.

3.3 Conditioning

Our work explores conditioning with fine-grain pitch and
amplitude control. Details of the conditioning architecture
are shown in Figure 1. Below we motivate the choice of
representation, followed by the choice of conditioning ar-
chitecture.

3.3.1 Amplitude Representation

We experiment with two representations for amplitude:
Root Mean Square (RMS) Energy and an A-weighted Log
Amplitude Loudness.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

525

O
ri

g
in

a
l

R
e
sy

n
th

e
si

s
Lo

u
d
n
e
ss

Original

Resynthesis

Figure 2. Audio resynthesized from extracted features. Spectrograms of examples from the NSynth dataset and and audio
resynthesized from audio features (loudness and fundamental frequency) extracted from the original audio. The bottom row
shows the loudness features of the original audio and resynthesized audio. Spectral and loudness contours, and fundamental
frequency contours (not shown), are largely reproduced by the resynthesized audio. These samples, and those in the other
Figures, were produced with the best performing Loudness + Pitch/Cents conditioned model.

Energy: Energy is computed from the STFT of the
waveform with hop_length=64 and n_fft=2048,
yielding energy vectors of length 1000 for 4 seconds of
audio (250 Hz). For training, we normalize these values
across the entire dataset.

Loudness: There are many detailed psychometric mod-
els of perceived loudness [11]. For clarity, we opt for a
simple A-Weighting of the power spectrum, which places
greater emphasis on higher frequencies, followed by log-
scaling. The loudness vector is centered and has equal
length to energy. The exact computational steps are in-
cluded in the Appendix.

3.3.2 Amplitude Conditioning

Wave2Midi2Wave [6] successfully conditioned a WaveNet
to generate realistic piano audio based on a convolutional
stack encoding a pianoroll. We adopt a similar architec-
ture for encoding amplitude. The conditioning network
consists of a stack of 12 dilated convolution layers (with
dilations 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32), followed by
three transposed convolutions with stride 2. All convolu-
tion layers have 512 filters with kernel size 3. For causal
conditioning, we simply zero-pad and shift the receptive
fields to not include future context.

3.3.3 Fundamental Frequency

We use CREPE [8], a recent and data-driven pitch track-
ing model with state-of-the-art performance. With hop size
of 64, CREPE produces a vector of frequencies of length
1000. We convert these into MIDI pitch using librosa’s
hz_to_midi() function. From this point, we explore
different representations of pitch.

Normalized Frequency: Dividing the vector of MIDI
values by 127.0 yields a normalized vector representing
pitch on a linear scale.

Octaves/Notes/Cents: We experiment with splitting
the F0 vector into an octave one-hot R5, note one-hot R12

and a continuous vector of floats for cents. Each compo-
nent is a vector of length 1000.

Pitches/Cents: Our most effective representation con-
sists of a pitch one-hot R60 and a continuous vector of
floats for cents. Each component is a vector of length 1000.

3.3.4 Fundamental Frequency Conditioning

For normalized frequency, we use the same convolutional
stack as for amplitude features.

For Octave/Notes/Cents and Pitches/Cents, we use sep-
arate conditioning stacks for the one-hot component and
continuous component (shown in Figure 1). The vector of
continuous cents is encoded using the same convolutional
stack as amplitude features.

For one-hot features, we use a mulitilayer perceptron
(MLP) encoder network. The one-hots first pass through
an embedding layer and then projected via a series of fully
connected (FC) layers with RELU non-linearity into a fi-
nal target dimensionality. For Octave/Notes/Cents, the two
branches of encoders for octave and notes each use embed-
ding units 1024 and FC units 2048, 1024, 512. The final
octave and note activations are concatenated to produce a
tensor of shape (1024, 1000). For Pitches/Cents, a single
pitch encoder is used with embedding units 1024 and FC
units of 2048, 1024 and 256. The final activation shape is
(256, 1000). Unlike the convolutional stacks, the one-hot
MLP encoding stacks are causal by definition.

3.4 Conditioning the WaveRNN

All conditioning features are time-series with lower sam-
pling frequency (250Hz) than audio. To be used as local
conditioning vectors by WaveRNN they are upsampled via

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

526

replication to 16 KHz, concatenated and added as an addi-
tional bias term in the GRU gate equations.

3.5 Training

During training, the model is tasked with resynthesiz-
ing the high dimensional audio as accurately as possi-
ble, combining the low dimensional conditioning inputs
and teacher-forced previous “outputs” to autoregressively
make next-step predictions. We minimize the negative log-
likelihood loss of the WaveRNN’s coarse and fine logits,
which is computed via softmax cross-entropy.

The system was implemented in TensorFlow and each
model trained on 1 Million steps. We use the ADAM op-
timizer with epsilon of 1e-8, momentum of 0.9, max gra-
dient norm of 1.0 and an exponential moving average rate
of 0.9999. Learning rate decay is 0.7 for every 100k steps.
We fine-tuned models over batch sizes of 128, 256 and 512
and learning rates of either 9e-5 or 1e-4, and report best
performing models.

4. METRICS

Resynthesis: Since log-likelihood is not a direct measure
of sample quality, we quantitatively evaluate our models
through the task of resynthesis. Audio features are ex-
tracted from the source audio and used to synthesize a new
sound with the same features. Some examples of resyn-
thesis are shown in Figure 2. We take the L1 distance of
extracted features between the orignal and resynthesized
audio to be the fine-scale perceptual error in resynthesis.
Aditionally, since the NSynth dataset has labels for pitch
and instrument family (a proxy for timbre), we use these la-
bels to train a classifer which we use to evaluate the global
similarity of the resynthesis. The classifier has identical
structure to the ones implemented in [4] and [3], and we
provide complete details in the Appendix. We calculate
each metric on resynthesized audio from the full test set of
17,600 samples.

Loudness L1 distance: The loudness vector is ex-
tracted from the synthesized audio and L1 distance com-
puted against the input’s conditioning loudness vector
(ground truth). A better model will produce lower L1

distances, indicating input and generated loudness vectors
closely match. Note this distance is not back-propagated
through the network as a training objective.

F0 L1 distance: Pitch tracking using CREPE, like with
any pitch tracker, is not completely reliable. Instabilities
in pitch tracking, such as sudden octave jumps at low vol-
umes, can result errors not due to model performance and
need to be accounted.

CREPE outputs a useful confidence in its prediction of
F0 for every frame. By examining the accuracy of pitch
tracking on ground truth audio, we found that applying a
confidence threshold of 0.85 filtered out areas of unreliable
pitch tracking and yielded the best trade-off against false
positives. Only F0 from time frames above this threshold
are considered in our analysis. For models representing
pitch using Octaves/Notes/Cents and Pitches/Cents, we re-

Pitch 24 Pitch 36 Pitch 43

Pitch 48 Pitch 55 Pitch 60

Pitch 67 Pitch 72 Pitch 79

Figure 3. Synthesizing audio at different pitches with the
same loudness envelope.

compute the equivalent normalized frequency. The F0 L1

distance is reported in MIDI space for easier interpretation;
an average F0 L1 of 1.0 corresponds to a semitone differ-
ence.

F0 Outliers: Audio examples with F0 confidence be-
low 0.85 for the full length of the example indicate a fail-
ure of pitch tracking and are considered “outliers” of the
measurement. 398 ground truth audio samples in the test
set are categorized as outliers, producing a baseline for this
metric of 398/17600 = 0.02. For generated audio, exam-
ples completely below the 0.85 confidence threshold, are
similarly removed. By inspection, we also found L1 dis-
tances above an octave to correspond to pitch tracking fail-
ures and remove the samples as outliers. Better performing
models have lower values close to the 0.02 baseline.

Pitch Error: The classifier pitch prediction gives a
more global measurement of pitch correspondence during
resynthesis. On ground truth samples, the classifier has a
0.06 error rate, which is the best that generated samples
can hope to achieve.

Instrument Family Error: Instrument family labels
are a rough measure of timbral similarity. We assume that
if the original and resynthesized audio have similar timbre
then they should be classified as the same instrument fam-
ily. Although the classifier is not perfect, with an error rate
of 0.22, it is state-of-the-art for the task and dataset, pro-
viding a rough measure of relative performance between
models.

5. RESULTS AND DISCUSSION

5.1 Resynthesis

Table 1 shows the quantitative metrics for models with dif-
ferent conditioning on the resynthesis task. Models with
causal conditioning are given in parentheses next to their
non-causal equivalents.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

527

Signal Processing CREPE NSynth Classifier
Loudness (L1) F0 (L1) F0 Outliers Pitch Error Family Error

Loudness 0.14 (0.33) 6.20 (6.89) 0.57 (0.66) 0.98 (0.99) 0.75 (0.85)
Loudness + Normalized Frequencies 0.16 (0.24) 1.42 (4.17) 0.07 (0.15) 0.35 (0.81) 0.60 (0.82)
Loudness + Octave/Note/Cents 0.11 (0.14) 1.21 (1.81) 0.07 (0.08) 0.33 (0.25) 0.61 (0.78)
Loudness + Pitch/Cents 0.10 (0.10) 0.94 (1.00) 0.06 (0.07) 0.16 (0.12) 0.53 (0.72)
Ground Truth - - 0.02 0.06 0.22

Table 1. Ablation study showing detailed conditioning improves resynthesis accuracy. Loudness is extracted directly from
the audio as described in Section 3.3.1. CREPE is used for tracking fundamental frequency (F0), and a classifier pretrained
on the NSynth dataset is used to predict pitch and instrument family (see Appendix). Models with causal convolutions in
their conditioning stacks have their numbers in parentheses, while the rest use non-causal convolutions. Conditioning on
F0 in Pitch/Cents tuples outperforms both Octave/Note/Cents tuples and frequencies as normalized floats, and the trend
holds for both causal and non-causal conditioning.

F0 representations: A clear trend is present across
all metrics: performance improves as F0 conditioning
moves from Normalized Frequency, to Octave/Note/Cents,
to Pitch/Cents representations. Interestingly, this improve-
ment is not only present in the frequency-based metrics
(F0 L1, F0 Outliers, Pitch Error), but in the metrics for
volume and timbre as well (Loudness L1, Family Error).

Qualitatively, we found the models to have different
failure modes. Models trained with Octaves/Notes/Cents
conditioning held correct fundamental frequencies more
reliably than Normalized Frequency, but would on rare oc-
casions be completely offset by a large and erroneous inter-
val for the length of the note. This ambiguity seems to arise
from discontinuities at octave boundaries, such as between
MIDI notes B2 and C3 that are close in absolute frequency.
While Normalized Frequency does not suffer from this ef-
fect, we found many models trained on this representation
produced audio that would dip “flat” in frequency. This
could be due to the reduced effective range of input, which
needs to cover the entire range of frequencies on a normal-
ized continuous scale. Unlike speech, slight deviations in
frequency are perceived as notes being out of tune.

Non-causal vs Causal: The trends in F0 condition-
ing are reinforced by the fact they are shared between
both causal and non-causal variants of the models. Non-
causal conditioning allows incorporating future informa-
tion into current predictions which helps performance in
almost cases. Despite this, the best performing models see
less of a performance drop, which is promising for future
low latency applications. Increasing the capacity of the
causal encoder stack may achieve parity in performance.

Energy vs Loudness: Table 1 in the Appendix justi-
fies the preference for loudness over energy as a condition-
ing signal. We compare variants of the best performing
model (Loudness + Pitch/Cents vs. Energy + Pitch/Cents)
and find the loudness-conditioned model outperforms the
energy-conditioned model on all metrics. It is worth em-
phasizing that Loudness L1 is a fair evaluation metric in
this case because it is not used as a loss during training and
is more aligned to human perception.

Missing Conditioning: Finally, Table 1 in the Ap-
pendix also compares a model conditioned only with
Loudness to one conditioned only with Pitch/Cents. Pre-

S
y
n
th

e
si

s
Lo

u
d
n
e
ss

Conditioning

Synthesis

Figure 4. Interpolating in loudness conditioning.

dictably, each does better than the other on their respec-
tive metrics, and fails on the other complementary metrics,
demonstrating that both levels of conditioning are required.
Interestingly, the Instrument Family Error is lower for the
loudness-conditioned model, indicating aspects of timbre
are likely more highly correlated with loudness contours
than pitch contours.

Timbre: In the absence of timbre conditioning, the
models learns to correlate timbre with pitch and loudness
contours in the NSynth dataset. For example, the combi-
nation of a short decay and high F0 vector is a mallet-like
sound whereas a long decay and low F0 vector is a cello-
like sound. This is evidenced by the reduced Instrument
Family Error in tandem with lower Loudness and F0 L1

distances. Naively adding instrument family conditioning
and spectrogram conditioning did little to improve the met-
rics or control of generated timbre. We believe exploring
new methods of timbre control is a rich area for future re-
search and would enable applications like interactive in-
strument morphing.

5.2 Creative Conditioning

We perform qualitative studies with modified out-of-
dataset conditioning vectors. All examples are generated
with the Loudness + Pitch/Cents model, and audio for all
examples can be found in the online supplement 1 .

Interpolation of Loudness vectors: On the bottom
row of of Figure 4, we show three loudness vectors. The
left and right vectors were selected from the test set to

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

528

S
y
n
th

e
si

s
Lo

u
d
n
e
ss

Conditioning

Synthesis

Figure 5. Applying tremolo to loudness conditioning.

S
y
n
th

e
si

s
F0

Conditioning

Synthesis

Figure 6. Applying vibrato to frequency conditioning. F0
extracted with CREPE.

demonstrate two extremes: fast decay (left) and long sus-
tain (right). The middle is a synthetic linear interpolation
of the two vectors. The top row shows spectrograms for au-
dio synthesized by our model conditioned on each of these
loudness vectors with the same F0 vector held at constant
pitch. The model is able to closely adhere to the loudness
curves even for the interpolated example. More impor-
tantly, the spectrogram reveals how loudness conditioning
functions more than a naive “amplitude envelope”, since
the harmonic content changes non-linearly with the loud-
ness signal. This rich behavior draws an analogy to the
behavior of real acoustic instruments, where varying exci-
tation introduces rich non-linear changes to the harmonic
spectra based on the characteristics of the instrument.

Tremolo: Figure 5 shows the spectrogram (top) and ex-
tracted loudness vector (bottom) for an example with in-
creasing an increasing intensity of tremolo (left-to-right)
added to the original loudness vector. The generated au-
dio closely tracks the loudness contours through diverse
modulation of harmonic content. Note how the reduction
in power is uneven across the frequency spectrum, damp-
ening higher harmonics more than fundamental frequen-
cies. A naive multiplicative tremolo would reduce power
equally across all frequency bands.

Vibrato: Figure 6 shows audio synthesized from a
baseline F0 vector with constant pitch. The middle vector
adds a tremolo of a semitone while the rightmost vector
adds a tremolo of about 2 semitones. The loudness vector
is held constant in the synthesized audio. As seen by os-
cillations in frequency of the corresponding spectrograms,
the model can generate audio reflective of increasing inten-
sities of vibrato.

S
y
n
th

e
si

s
Lo

u
d
n
e
ss

Conditioning

Synthesis

15 seconds "Somewhere over the rainbow"

F0

Conditioning

Synthesis

Figure 7. Re-synthesis of out-of-domain input contours
extracted from a live vocalist singing "Somewhere over the
rainbow". Break in F0 corresponds to silence.

Out-of-domain inputs: Figure 7 shows audio re-
synthesized from conditioning signals extracted from a vo-
calist singing “Somewhere Over the Rainbow”. The model
was never trained on sequences longer than 4 seconds,
nor samples with fast-moving amplitude and pitch varia-
tions such as the jump in “Some-where”. Nonetheless, the
model is able to generalize and synthesize audio tightly
following these modulations. This opens the door for a
variety of interactive applications. The user can provide
input contours extracted from live singing, guitar playing
or generate these directly from a MIDI Polyphonic Expres-
sion (MPE) controller or touchscreen interface.

5.3 Generation Speed

For this work, we draw the distinction between “real-time
throughput” (producing x seconds of audio in wall time
less than or equal to x seconds), and “low-latency gen-
eration” (producing audio with little to no delay from a
conditioning input).

The original WaveRNN paper [7] achieved both through
systems optimizations of the underlying kernels. These op-
timizations motivate our use of WaveRNN for future ap-
plications, but are not yet implemented in this paper. De-
spite this, even with unoptimized kernels, we see dramatic
speedups over traditional WaveNet models and are able to
achieve faster than real-time throughput speeds for batches
of audio on commonly available hardware. For example,
our best performing model generates 82 seconds of audio
(batch size 21) in 60 seconds on an NVIDIA GTX 1080
GPU (∼ 1.4× real time).

6. CONCLUSION

In this work, we demonstrate state-of-the-art synthesis of
musical instrument sounds with fine-grain temporal con-
trol over loudness and pitch. The model learns tight corre-
lations between loudness and pitch, being able to introduce
non-linear spectral modulations beyond a naive tremolo or
vibrato. The comparable performance between non-causal
and causal models points towards streaming applications
such as a low-latency re-synthesis guitar pedal or live vo-
cal effect.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

529

7. REFERENCES

[1] Alexandre Défossez, Neil Zeghidour, Nicolas Usunier,
Léon Bottou, and Francis Bach. SING: symbol-to-
instrument neural generator. CoRR, abs/1810.09785,
2018.

[2] Jesse Engel. Hands on, with nsynth super. https://
magenta.tensorflow.org/nsynth-super.
Accessed: 2019-03-01.

[3] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen,
Ishaan Gulrajani, Chris Donahue, and Adam Roberts.
Gansynth: Adversarial neural audio synthesis. CoRR,
abs/1902.08710, 2019.

[4] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander
Dieleman, Douglas Eck, Karen Simonyan, and
Mohammad Norouzi. Neural audio synthesis of
musical notes with wavenet autoencoders. CoRR,
abs/1704.01279, 2017.

[5] Neville H Fletcher and Thomas D Rossing. The physics
of musical instruments. Springer Science & Business
Media, 2012.

[6] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian
Simon, Cheng-Zhi Anna Huang, Sander Dieleman,
Erich Elsen, Jesse Engel, and Douglas Eck. Enabling
factorized piano music modeling and generation with
the MAESTRO dataset. CoRR, abs/1810.12247, 2018.

[7] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb
Noury, Norman Casagrande, Edward Lockhart, Florian
Stimberg, Aäron van den Oord, Sander Dieleman, and
Koray Kavukcuoglu. Efficient neural audio synthesis.
CoRR, abs/1802.08435, 2018.

[8] Jong Wook Kim, Justin Salamon, Peter Li, and
Juan Pablo Bello. Crepe: A convolutional representa-
tion for pitch estimation. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 161–165. IEEE, 2018.

[9] Rachel Manzelli, Vijay Thakkar, Ali Siahkamari, and
Brian Kulis. Conditioning deep generative raw au-
dio models for structured automatic music. In ISMIR,
2018.

[10] Eduardo Reck Miranda and Marcelo M Wanderley.
New digital musical instruments: control and inter-
action beyond the keyboard, volume 21. AR Editions,
Inc., 2006.

[11] Brian CJ Moore, Brian R Glasberg, and Thomas Baer.
A model for the prediction of thresholds, loudness, and
partial loudness. Journal of the Audio Engineering So-
ciety, 45(4):224–240, 1997.

[12] Noam Mor, Lior Wolf, Adam Polyak, and Yaniv Taig-
man. A universal music translation network. CoRR,
abs/1805.07848, 2018.

[13] Wei Ping, Kainan Peng, Andrew Gibiansky, Ser-
can Ömer Arik, Ajay Kannan, Sharan Narang,
Jonathan Raiman, and John Miller. Deep voice
3: 2000-speaker neural text-to-speech. CoRR,
abs/1710.07654, 2017.

[14] Ryan Prenger, Rafael Valle, and Bryan Catanzaro.
Waveglow: A flow-based generative network for
speech synthesis. CoRR, abs/1811.00002, 2018.

[15] R. J. Skerry-Ryan, Eric Battenberg, Ying Xiao, Yux-
uan Wang, Daisy Stanton, Joel Shor, Ron J. Weiss,
Robert Clark, and Rif A. Saurous. Towards end-to-end
prosody transfer for expressive speech synthesis with
tacotron. In ICML, 2018.

[16] Jean-Marc Valin and Jan Skoglund. Lpcnet: Improv-
ing neural speech synthesis through linear prediction.
CoRR, abs/1810.11846, 2018.

[17] Aäron van den Oord, Yazhe Li, Igor Babuschkin,
Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George van den Driessche, Edward Lockhart, Luis C.
Cobo, Florian Stimberg, Norman Casagrande, Do-
minik Grewe, Seb Noury, Sander Dieleman, Erich
Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves, He-
len King, Tom Walters, Dan Belov, and Demis Hass-
abis. Parallel wavenet: Fast high-fidelity speech syn-
thesis. CoRR, abs/1711.10433, 2017.

[18] Aäron van den Oord, Sander Dieleman, Heiga
Zen, Karen Simonyan, Oriol Vinyals, Alexander
Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw
audio. In Arxiv, 2016.

[19] Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton,
Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng
Yang, Ying Xiao, Zhifeng Chen, Samy Bengio,
Quoc V. Le, Yannis Agiomyrgiannakis, Robert Clark,
and Rif A. Saurous. Tacotron: Towards end-to-end
speech synthesis. In INTERSPEECH, 2017.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

530

