
COMBINING MUSICAL FEATURES FOR COVER DETECTION

Guillaume Doras1,2 Furkan Yesiler3
Joan Serrà4 Emilia Gómez3,5 Geoffroy Peeters6

1Sacem, France 2Ircam, CNRS, Sorbonne Université, STMS Lab, France
3Music Technology Group, Universitat Pompeu Fabra, Spain 4Dolby Laboratories, Spain

5European Commission, Joint Research Centre, Spain 6Telecom Paris, LTCI, France
guillaume.doras@ircam.fr, furkan.yesiler@upf.edu

ABSTRACT

Recent work have addressed the automatic cover detection
problem from a metric learning perspective. They employ
different input representations, aiming to exploit melodic
or harmonic characteristics of songs and yield promis-
ing performances. In this work, we propose a compara-
tive study of these different representations and show that
systems combining melodic and harmonic features dras-
tically outperform those relying on a single input repre-
sentation. We illustrate how these features complement
each other with both quantitative and qualitative analy-
ses. We finally investigate various fusion schemes and
propose methods yielding state-of-the-art performances on
two publicly-available large datasets.

1. INTRODUCTION

Music retrieval has come a long way in the last 25 years.
Since the earlier works on symbolic music retrieval [1, 2],
applications with increasing complexity have been devel-
oped. In the mid-1990’s, query-by-humming aimed at re-
trieving songs based on melodic similarity with a short
hummed or whistled audio excerpt [3,4], while fingerprint-
ing in the early 2000’s aimed at identifying a song based on
one of its excerpts [5]. Music matching at large – the task
of retrieving an excerpt based on its musical similarity with
another – was developed in the mid-2000’s, typically com-
paring sequences of harmonic features via dynamic pro-
gramming methods [6–8].

Automatic cover detection – the task of retrieving cov-
ers of a given track from an audio corpora – emerged at
the same period, and was largely inspired by the previous
decade of music retrieval research. Some of the early cover
detection systems were relying on dominant melody to as-
sess musical similarity [9, 10], and one of them reached
the 3rd place (out of 8 participants) at the first MIREX 1

1 https://www.music-ir.org/mirex
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cover song identification contest in 2006. The same year
however, 1st and 2nd ranking algorithms were relying on
harmonic features – chroma vectors or estimated chords
series [11–13]. These results seem to have fostered the use
of harmonic representations – chroma in particular – over
melodic ones for cover detection, and all algorithms sub-
mitted to the next 2007 MIREX edition were using a tonal
representation [14–16]. Enhanced chroma and time series
comparison via dynamic programming then became the de
facto standard method in the field – and remained the state
of the art for more than a decade [17, 18].

During the following years, the community focused on
improving both accuracy and scalability of existing ap-
proaches. As to accuracy, it was proposed to aggregate the
results obtained with different methods [19–21] or differ-
ent input features [22–24]. As to scalability, several strate-
gies were investigated to compress the original representa-
tions and to reduce the similarity comparison function to a
lightweight distance computation [25–28] or a fast lookup
operation in a database index [29, 30].

The advent of efficient machine learning methods in
other fields – such as image recognition – encouraged the
community to shift from these previous methods based on
ad-hoc and handcrafted features toward a new approach
based on data-driven feature learning [31–33]. Recently,
promising results were obtained using the metric learning
paradigm in a cover detection context. The principle is to
train a neural network to represent each track as a compact
vector – its embedding – so that the distance between em-
beddings of a cover pair is smaller than that of non-cover
pairs. Features used as input data were as varied as the
Constant-Q Transform [34], dominant melody or multi-
pitch [35, 36] or chord-informed chroma [37].

In this work, we propose a comparative study of these
input features and investigate their combinations to im-
prove cover detection performance. In Section 2, we
briefly review different works inspiring our approach. In
Section 3, we present the features that we consider for this
study and their respective performances. In Section 4, we
discuss the results obtained using different combinations of
these features with a simple averaging fusion scheme, and
explain them with a qualitative analysis. We then propose
in Section 5 an architecture able to learn to combine vari-
ous features efficiently. We conclude with future potential
improvements.



batch norm + conv2d + pool2d  L2-norm

 

softmax on
time axis

sum on
time axis

dense
layer

X

temporal attention mechanism

average
on frequency axis

Figure 1: MICE architecture.

2. RELATED WORK

We present here the main concepts inspiring this work: in-
put features combination and metric learning paradigm.

2.1 Combination of input features

A first attempt to combine information from various in-
put features for cover detection was made by Foucard et
al. using a source separation algorithm to obtain three in-
puts: the mixed original track, the dominant melody –
assumed to correspond mainly to the solo singing voice
– and the accompaniment [22]. In another study, Sala-
mon et al. argued that, albeit closely related, dominant
melody, bass line and harmonic progression embed differ-
ent and complementary information. To prove this idea,
they proposed to compare the systems that use each fea-
ture separately and their combinations with different fusion
schemes [23]. More recently, Tralie et al. investigated an-
other multi-representation approach, fusing harmonic and
timbral features [24]. These studies showed that systems
combining several input features outperformed those using
each feature individually.

2.2 Classification vs. metric learning paradigm

Different teams recently proposed data-driven feature
learning methods to address the cover detection problem.
A common approach is to use a Convolutional Neural Net-
work (CNN) to extract a compact representation – an em-
bedding – from a low- or mid-level spectral representa-
tion of the audio, for instance Harmonic Pitch Class Pro-
file (HPCP) [38] or Constant-Q Transform (CQT) [34,39].
These authors considered the problem as a classification
task, introducing an additional dense layer as a classifier.

Similarly, Doras et al. used dominant melody or multi-
pitch representations [35, 40], while Yesiler et al. used
crema-PCP [41], a chord-informed chroma representation
[37] to extract the embedding. These input features were
obtained with specialized neural networks [36, 41]. These
authors also adopted a metric learning approach in which
the CNN is trained with a triplet loss to produce embed-
dings whose pairwise Euclidean distance is lower for cov-
ers than for non-covers. Using these melodic or harmonic
input features along with the metric learning paradigm
yielded promising results and inspired this present work.

3. COMPARING INPUT FEATURES

We compare here performances obtained with a full
spectral feature (CQT), two melodic features (domi-
nant melody and multi-pitch) and two harmonic features
(chroma and crema-PCP). For brevity, we denote them Cq,
Dm, Mp, Ch, and Cp, respectively.

3.1 Input features

We computed Cq and Ch using Librosa v0.7 [42]. We
obtained Dm and Mp with the convolutional network we
previously described in [36], and we obtained Cp with the
model publicly released by [41], as done in [37].

Temporal resolution All features were computed for
an audio duration of 180 seconds as in [35], with a frame
duration of 93ms (1937 bins). For tracks longer that 180
seconds, the beginning of the 180 seconds is taken at ran-
dom, while shorter tracks were zero-padded, as in [37].

Frequency resolution All features were computed with
a resolution of 1 bin per semi-tone. Cq was computed
across 6 octaves. Dm and Mp are originally extracted with
a resolution of 5 bins per semi-tone and their resolution is
downsampled by a factor 5 via 2D-interpolation, follow-
ing [35]. For each Dm, only the 3 octaves around its mean
pitch are considered, as done in [35]. To account for all
possible circular shifts in chroma features, we concatenate
on top of the Ch and Cp their 11 lowest frequency bins,
following [37, 38]. To summarize: Cq, Dm, Mp, Ch and
Cp have 72, 36, 72, 23 and 23 frequency bins, respectively.

Normalization Cq and Ch are log-compressed and
trimmed at -80dB. Finally, each feature is globally normal-
ized between 0 and 1.

3.2 Model

Yesiler et al. introduced MOVE, a network containing a
convolutional part specially designed to capture Cp pat-
terns and a temporal attention part [37, 43], while Doras et
al. used a plain convolutional network to capture Dm and
Mp patterns [35, 40]. We introduce here a new model that
reuses the plain convolutional part of the latter and the tem-
poral attention mechanism of the earlier. The rationale be-
hind this architecture is twofold: we need a generic model
that can be used for all types of input features in order to
conduct fair performance comparisons, and we observed in
preliminary experiments that the temporal attention mech-
anism improves the results of the plain CNN. We call this
model MICE (Musically Informed Cover Embeddings).



As shown on Figure 1, the first part of the model is the
5-layer CNN of [35]. Each layer block consists of a batch
normalization layer, a convolution layer with 3×3 kernels
and a mean-pooling layer with 2×2 kernel and 2×2 stride.
The number of kernels K of the first layer is doubled at
each level. Output is then averaged along the frequency
axis, and a dense layer is applied to output a number of
channels of 2E, where E is the final embedding size.

The attention mechanism is then introduced: the tensor
is split in 2 on its channels dimension to obtain two ten-
sors of E channels. A softmax function is then applied on
the time axis for the first tensor, and the output is multi-
plied element-wise with the second tensor. The resulting
values are then summed along the time axis, which gives
a vector of size E. The softmax followed by the multipli-
cation and the sum implements a weighted average along
the time axis per channel. The network is thus trained to
give preference to the parts along the time dimension that
are the most relevant to meet the objective function. The
embedding vector is then L2-normalized. We used K=64
and E=512.

3.3 Experiments

In these first experiments, we train a different instantiation
of MICE for each type of input feature and evaluate their
cover detection performances.

Datasets We used the publicly available training set
SHS5+

2 , containing Cq, Dm, Mp, Ch and Cp features
for ~62k covers of ~7.5k works. It was split into a train-
ing/validation set with a ratio of 80/20 with respect to the
works, i.e. all covers of a given work belong to one or the
other set. We tested our model for each feature with two
publicly available test datasets: SHS4-

2 , containing ~50k
covers of ~20k works, and Da-TACOS 3 , containing 13k
covers of 1k works and 2k confusing tracks [44].

Loss We used a triplet loss to train this network [45].
Formally, if we let {a, p, n} denote a triplet of track em-
beddings, where a is an anchor, and p or n is one of its
covers or non-covers, respectively, the loss to minimize is
expressed as L = max(0, dap + α − dan), where α is a
margin and dap and dan are the distances between anchor
a and p or n, respectively. We set α = 1.

In practice, we used online semi-hard negative pairs
mining [46], where triplets are built within each training
batch: instead of using all possible triplets, each track in
the batch is successively considered as an anchor, and com-
pared with all its covers in the batch. For each of these
positives pairs, if there are negatives such as dan < dap,
only the one with the highest dan is kept. If no such nega-
tive exists, only the one with the lowest dan is kept. Other
negatives are not considered.

Training We train MICE with Adam optimizer [47],
with an initial learning rate of 1e−4, divided by 2 each
time the loss on the validation set has not decreased af-
ter 5k training steps. Training is stopped after 50k steps, or
if the learning rate falls below 1e−7. The batch size is 64.

2 https://gdoras.github.io/topics/coversdataset
3 https://github.com/MTG/da-tacos

Testing For each feature, we use the corresponding
trained model to compute the embeddings on the two test
datasets. For SHS4-, one cover per work is used as a
query against the entire test set to compute a 20k×50k
distance matrix. For Da-TACOS, each cover is used as
a query against the entire dataset to compute a 13k×15k
distance matrix. The Mean Average Precision (MAP), the
mean number of correct answers in the ten first answers
(MT@10) and the mean rank of first correct answer (MR1)
are then computed.

3.4 Quantitative analysis

We report in Table 1 the performance scores obtained on
Da-TACOS and SHS4-for each type of input feature.

Da-TACOS SHS4-

Input MAP MT@10 MR1 MAP MT@10 MR1
Cq 0.215 2.468 94 0.397 0.718 886
Dm 0.311 3.521 111 0.412 0.722 1431
Mp 0.293 3.290 71 0.422 0.760 862
Ch 0.121 1.476 117 0.174 0.371 1465
Cp 0.375 4.084 86 0.499 0.842 1169

Table 1: Results on SHS4-and Da-TACOS for each feature.

Consistently, the Cp yields by far the best results, fol-
lowed by the Dm and the Mp. This confirms our initial
intuition that both melodic line and harmonic progression
are prominent common musical facets between covers. Cq,
representing the full spectrum, yields lower performance,
which suggests that, albeit also embedded in the spectrum,
the melodic and harmonic information is obfuscated, e.g.
by percussive sounds information. Finally, the tonal infor-
mation embedded in the Ch does not seem to be efficiently
caught by our model.

From a practical point of view, crema-PCP is probably
the best feature among those considered in this work, as it
yields the best results with the lowest memory footprint.

4. COMBINING INPUT FEATURES

In this set of experiments, we now investigate if combin-
ing different features can improve the performance of each
feature considered individually.

4.1 Are features complementary ?

We first compare pairwise embedding distances computed
for the same pairs of tracks but obtained with different in-
put features, as shown on Figure 2. The leftmost plot for
instance compares the pairwise distances obtained for Dm
and Cp. If each track’s embeddings extracted from differ-
ent input features were carrying the same information, the
pairwise distance would be the same for a given pair of
tracks, independently of the feature used. Figure 2 shows
on the contrary that the same pair of tracks can obtain a
low distance when using a given input feature, but a no-
tably higher distance when using another one.
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Figure 2: Comparison of the normalized distance obtained for the same pairs from SHS4− (cover pairs in green and non-
cover pairs in red) with different features: Dm vs. Cp (left), Mp vs. Cq (middle), Cp vs. Ch (right). Other combinations are
not shown due to space constraints. For clarity, only 500 pairs randomly picked are drawn (250 covers and 250 non-covers).

All features seem relatively consistent when labeling
non-cover pairs (red points exhibit high distances on both
axes). Conversely, cover pairs (green points) are more scat-
tered. Dm and Cp in particular seem to give very distinct
results, as many pairs are spread far from the diagonal,
which means that some cover pairs are more efficiently
scored by one or the other feature. Intuitively, it seems log-
ical that Dm and Cp are encoding complementary melodic
and harmonic facets. This suggests that combining these
features could benefit of this complementarity. We now
conduct a quantitative and a qualitative analysis to confirm
this intuition and to understand why certain representations
yield better results for certain songs and vice-versa.

4.2 Quantitative analysis

We first experiment with a simple fusion scheme, which
consists of averaging the pairwise distances obtained for
the same pair with different features. We then re-compute
the evaluation metrics based on this new averaged distance
matrix for each possible feature combination. The ratio-
nale behind this approach is that we expect pairs incor-
rectly clustered with one representation to benefit from the
correct clustering obtained with another representation.

The results are summarized in Table 2 for all combina-
tions of Cq, Dm, Mp and Cp representations (we did not
consider Ch here). We also computed the scores obtained
by an oracle, which always picks among the distances ob-
tained for each feature the lowest (resp. highest) distance
for positive (resp. negative) pairs.

It appears clearly that any combination yields a better
performance than any feature isolated (see Table 1). It also
appears that the combinations where the Cp is used yield
higher scores than the others, which was expected as Cp
alone was already obtaining the highest scores. But more
interestingly, we observe that the best improvements are
obtained when combining melodic and harmonic features,
i.e. Dm+Cp or Mp+Cp. The Mp probably embeds some of
the information also carried by the Cp, as the improvement
is lower when combining Mp+Cp than Dm+Cp.

All in all, the combination Dm+Cp yields the best per-
formances, and an improvement of 15%-20% compared to
Dm or Cp alone. Considering a third feature along Dm+Cp

Test set Da-TACOS SHS4-

Input MAP MT@10 MR1 MAP MT@10 MR1
Cq+Dm 0.359 4.002 62 0.590 0.982 567
Cq+Mp 0.324 3.603 62 0.530 0.909 623
Cq+Cp 0.427 4.636 46 0.621 1.024 581
Dm+Mp 0.394 4.347 61 0.571 0.956 614
Dm+Cp 0.547 5.861 37 0.679 1.098 529
Mp+Cp 0.496 5.330 40 0.627 1.034 593
Cq+Dm+Mp 0.403 4.434 51 0.624 1.030 498
Cq+Dm+Cp 0.524 5.640 36 0.713 1.143 430
Cq+Mp+Cp 0.480 5.184 40 0.660 1.078 505
Dm+Mp+Cp 0.553 5.939 35 0.702 1.133 453
Dm+Cp (O) 0.800 8.360 4 0.873 1.344 115
Cq+Dm+Cp (O) 0.881 9.072 1 0.935 1.419 51
Dm+Mp+Cp (O) 0.874 9.022 2 0.924 1.405 63

Table 2: Comparison on Da-TACOS and SHS4-of input
feature combinations. Results obtained with the embed-
dings produced by MICE architecture trained for each fea-
ture (O=Oracle).

(Cq or Mp) improves the results slightly further.
We also observe that the oracle scores about 20%

above the highest scores obtained with the averaging fu-
sion scheme, which suggests that further improvements are
theoretically possible (we also experimented a minimum
fusion scheme, which yielded lower performances).

From a practical perspective (e.g. memory footprint),
the best trade-off seems to concentrate only on the Dm and
the Cp. We will now investigate why the combination of
these two features yields a better performance than others.

4.3 Qualitative analysis

To this aim, we selected the tracks where the first feature
(e.g. Dm) gives particularly correct results and where the
second feature (e.g. Cp) gives particularly incorrect re-
sults, or vice-versa. In other terms, we analyzed the pairs
of songs for which the two features would give the most
contradictory results for positive and negative pairs. The
Dm and the Cp obtained for some of these cover and non-
cover pairs 4 are shown on Figure 3.

4 The audio of the songs described here can be listened on Youtube
with the following IDs: Figure 3(a) clBw3cWgPnE and PNQeBX-
tUdgc, Figure 3(b) -uJ61jgFCMM and xXvPFsoNnD4, Figure 3(c)
7nPBAiE76qY and bRrVMte9IQQ, Figure 3(d) pFrTXGEmU2Q and
3IOD9SqSfY4. Last accessed 11/5/2020.
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(a) dDm=0.15, dCp=0.73
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(b) dDm=0.65, dCp=0.07
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(c) dDm=0.75, dCp=0.12
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Figure 3: Examples of cover pairs (top, (a) and (b)) and non-covers pairs (below, (c) and (d) where Dm and Cp gives
contradictory results due to the melodic or harmonic content of each version. For each pair, Dm is displayed above and Cp
below, and the corresponding distances dDm and dCp obtained for each feature are indicated.

Cover pairs Figure 3(a) displays two versions of
"Jeřabiny", by Czech composer Karel Kryl (left, singing
voice and guitar accompaniment) and Sestry Irglovy (right,
purely a cappella, and poorly caught by the Cp). The pair
is identified as covers thanks to the dominant melody.

Figure 3(b) displays two versions of "Fade Into You",
by Mazzy Star (left) and Catman Cohen (right). The ac-
companiment is similar, but Catman Cohen’s voice is very
hoarse and rough, thus poorly caught by the dominant
melody. The pair is identified as covers thanks to the Cp.

Non-cover pairs Figure 3(c) displays two different
tracks: "La paloma" interpreted by a choir (left, mainly
choir voices) and "Tom Dooley" by German singer Heino
(right, voice and guitar accompaniment). Both songs share
the same succession of two chords (but transposed), so the
Cp are very similar. The pair is identified as non-covers
thanks to the Dm, which are different.

Figure 3(d) displays two different tracks: "I Got a Feel-
ing", by Four Tops (left) and "Stop Her on Sight (S.O.S.)"
by Rare Earth (right). Both songs exhibit leading voice,
backing voices, piano or strings section, and a brass instru-
ments section. Both Dm appear very confused and look
similar. The pair is identified as non-covers thanks to the
Cp, which are different.

We could intuitively expect these results: Dm is bet-
ter suited for songs where a melody is clearly prominent,
while Cp is better suited for songs where no clear melody
is present or is hidden by a prominent accompaniment.
As such, there is no "better" feature: they simply perform
differently on different tracks, and their combination per-
forms statistically better on large corpora than separately.

5. LEARNING TO COMBINE FEATURES

Despite its encouraging results, the simple averaging fu-
sion scheme has two flaws. Firstly, it does not guarantee
that averaging the distances is the most optimal manner
to merge the information contained in different representa-
tions. Many tracks might end up scoring around the mean
of all distances, which will not help to decide whether they
are covers or not. Secondly, it requires to train one model
per representation, and consequently to store one embed-
ding per representation, which complicates the operational
usage of the system (e.g. indexing various embeddings and
combining several search results is sub-optimal). In this
section, we study the possibility to train a single model to
learn how to fuse several input features efficiently.

We consider here only the combination of Dm and Cp
features, as they individually yielded the most promising
results with the averaging fusion scheme, while remaining
practical from a memory footprint perspective.

5.1 Late fusion scheme

To address these flaws, we propose a two-branch architec-
ture, where each input feature is processed by a dedicated
model into an embedding, as previously. These two em-
beddings are then concatenated and merged into a single
one by a final dense layer. We can now use different mod-
els for each feature, as we are not comparing their indi-
vidual performance as previously. In particular, we use
MOVE to process the Cp, as it was specially designed for
this feature, and keep MICE to process the Dm, as shown
on Figure 4.
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Figure 4: The late fusion architecture.

Let eDm and eCp denote the embeddings output by the
Dm and Cp branches, e the final embedding and W the
dense layer parameters. It comes:

e = W
[

eDm

eCp

]
= WDmeDm + WCpeCp (1)

where WDm and WCp are the parameters of W that are ap-
plied to eDm and eCp, respectively. Normalizing e to unit
norm, we can interpret the embedding resulting from this
fusion as a weighted mean of the initial embeddings moved
to another location on the unit sphere to optimize the loss.

5.2 Experiments

We compare here three training options: a) each branch
and the last layer are trained simultaneously with random
initialization from scratch; b) each branch is first pre-
trained individually with its corresponding input feature as
previously; then their trained weights are reloaded in the
late fusion architecture, and are fine tuned while training
the last layer; c) is the same as b), but the weights of each
branch are frozen once reloaded in the fusion model, and
only the weights of the final dense layer are learned.

For these three options, we train each architecture on the
same proprietary training set that was used in [37]. This set
contains 98k tracks and is much larger than the one used
in features comparison experiments of Section 4.2. Mod-
els trained with this proprietary training set were evaluated
with Da-TACOS in order to compare the results with the
baseline established in [37]. We also conduct the same ex-
periments for each architecture trained on SHS5+ and eval-
uated with SHS4- as previously, in order to compare the
results with the baseline established in [40].

The training procedure for all three options is the same
as described in Section 3.3, except that the learning rate is
initialized at 5e−6 for option b) and at 1e−1 for option c).

5.3 Results

The results of the late fusion learning experiments are sum-
marized on Table 3. We indicated the scores obtained for
each feature (Dm and Cp) individually, as well as the cor-
responding distance averaging score for comparison.

For both sets, the two-branch model outperforms the
ones where each feature is considered individually, which
shows that it jointly learns from both input features. Late
fusion with end-to-end training from scratch (option a))
scores below the other two options, which suggests that
the model learns from each feature but does not make an
optimal use of the available information.

Late fusion with fine tuning of the pre-trained branches
(option b)) yields better results. However, it does not
outperform the late fusion where only the dense layer is
trained (option c)). A possible explanation could be that
one feature tends to yield better results than the other
(probably the Cp, as seen in Section 3), and allowing the
update of branches might confuse the previously acquired
knowledge of the weaker one. This assumption should
however be investigated further in another work.

Da-TACOS SHS4-

Input MAP MT@10 MR1 MAP MT@10 MR1
Dm (MICE) 0.360 4.032 94 0.412 0.722 1431
Cp (MOVE) 0.484 5.214 59 0.533 0.890 1188
Dm+Cp (A) 0.621 6.613 32 0.697 1.120 517
Dm+Cp (LF-a) 0.570 6.101 29 0.617 1.017 686
Dm+Cp (LF-b) 0.592 6.318 32 0.655 1.059 655
Dm+Cp (LF-c) 0.635 6.744 30 0.660 1.080 657
Doras et al. [40] n/a n/a n/a 0.323 0.615 1476
Yesiler et al. [37] 0.507 - 40 n/a n/a n/a

Table 3: Comparison on Da-TACOS (resp. SHS4-) of
all fusion schemes trained on [37] proprietary training set
(resp. SHS5+). A=averaging, LF=Late fusion. Note that
Cp and Dm+Cp (A) scores are higher here than in Table 2
because Cp is now processed by MOVE.

Training a dense layer on top of two pre-trained frozen
branches (option c)) thus yields the best scores, similar to
the ones obtained by the averaging scheme.

We finally compare these performances to the current
state of the art for each set. We observe that all late fusion
schemes notably outperform the results obtained in [40]
and [37], for the same training and test sets.

6. CONCLUSION

We proposed in this work a comparative study of differ-
ent input features that have been used in recent works ad-
dressing the cover detection problem with a metric learn-
ing approach. We observed that the best feature of the
one we studied is the crema-PCP, a harmonic feature. We
then showed that combining this feature with a domi-
nant melody representation drastically improves the results
compared to each feature considered alone. We showed
that this can be explained by the fact that using both
melodic and harmonic features helps to disambiguate pairs
of tracks that don’t have a clear melodic or harmonic struc-
ture. We finally proposed a late fusion scheme learning to
combine input features, which yields to new state-of-the-
art performances on two publicly available datasets.

This system could be improved in several ways. As sug-
gested by the oracle results, further strategies could be de-
veloped to force the model to focus more adequately on the
available features. Also, the need to maintain several dedi-
cated branches in the late fusion scheme could be avoided
with a single architecture merging the two branches earlier
in the process. But perhaps more importantly, considering
the variety of other features commonly shared by covers,
such as lyrics, could be a fruitful strategy to build future
cover detection systems.
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