THE MULTIPLE VOICES OF MUSICAL EMOTIONS: SOURCE SEPARATION FOR IMPROVING MUSIC EMOTION RECOGNITION MODELS AND THEIR INTERPRETABILITY

Jacopo de Berardinis1,2 Angelo Cangelosi1 Eduardo Coutinho2

1 Machine Learning and Robotics Group, University of Manchester 2 Applied Music Research Lab, University of Liverpool

jacopo.deberardinis@manchester.ac.uk

ABSTRACT

Despite the manifold developments in music emotion recognition and related areas, estimating the emotional impact of music still poses many challenges. These are often associated to the complexity of the acoustic codes to emotion and the lack of large amounts of data with robust golden standards. In this paper, we propose a new computational model (EmoMucs) that considers the role of different musical voices in the prediction of the emotions induced by music. We combine source separation algorithms for breaking up music signals into independent song elements (vocals, bass, drums, other) and end-to-end state-of-the-art machine learning techniques for feature extraction and emotion modelling (valence and arousal regression). Through a series of computational experiments on a benchmark dataset using source-specialised models trained independently and different fusion strategies, we demonstrate that EmoMucs outperforms state-of-the-art approaches with the advantage of providing insights into the relative contribution of different musical elements to the emotions perceived by listeners.

1. INTRODUCTION

The ability of music to express and induce emotions [15, 21] and act as a powerful tool for mood regulation [28] are well-known and demonstrable. Indeed, research shows that music listening is a commonly used, efficacious, and adaptable device to achieve regulatory goals [31], including coping with negative experiences by alleviating negative moods and feelings [17].

Crucial to this process is selecting the music that can facilitate the listener to achieve a determined mood regulation target, which often is not an easy task. In order to support listeners in this process, emotion-aware music recommendation systems became popular as they offer the possibility to explore large music libraries using affective cues. Indeed, recommending music based on the emotion of the listener at home [10] or background music personalised for the ones present in a restaurant would provide a more personal and enjoyable user experience [14].

At the core of these systems is music emotion recognition (MER), an active field of research in music information retrieval (MIR) for the past twenty years. The automatic prediction of emotions from music is a challenging task due to the subjectivity of the annotations and the lack of considerable data for effectively training supervised models. Song et al. [29] also argued that MER methods tend to perform well for genres such as classical music and film soundtracks, but not yet for popular music [25]. In addition, it is difficult to interpret emotional predictions in terms of musical content, especially for models based on deep neural networks. Although a few approaches exist for interpretable MER [5], the recognition accuracy of these methods is compromised, with the resulting performance loss often referred to as “cost of explainability”.

As different voices within a composition can have a distinct emotional impact [13], our work leverages state-of-the-art deep learning methods for music source separation (MSS) to reduce the complexity of MER when limited training data is available. The proposed architecture (EmoMucs) is based on combining source separation methods with a parallel block of source-specialised models trained independently, subsequently aggregated with a fusion strategy. To benchmark our idea, we evaluated EmoMucs on the popular music with emotional annotations (PMEmo) dataset [38], and compared its performance with two reference deep learning models for MER. Experimental results demonstrate that our method achieves better performance for valence recognition, and comparable ones for arousal, while providing increased interpretability.

The main technical contributions are manifold: (i) we provide an in-depth evaluation of two reference models for MER, (ii) we propose a computational model that achieves an improved performance on the current baselines, under similar experimental conditions, and finally (iii) we show that our model provides no cost of interpretability.

The rest of the paper is structured as follows: Section 2 gives a primer on MER and an overview of related work on content-based methods, whilst Section 3 outlines the base-
Figure 1. An overall architecture illustrating our proposed model, EmoMucs.

2. BACKGROUND AND RELATED WORK

2.1 A primer on music emotion recognition

Prior to introducing content-based methods for MER, we provide the reader with the fundamentals concepts of the task and refer to [3, 16, 34, 35] for a detailed overview.

Induced vs perceived emotions. Perceived emotions refers to the recognition of emotional meaning in music [29]. Induced (or felt) emotions refer to the feelings experienced by the listener whilst listening to music.

Annotation system. The conceptualisation of emotion with its respective emotion taxonomy remains a longstanding issue in MER [29]. There exist numerous emotion models, from miscellaneous [19] to domain specific [36], categorical [11] and dimensional [24], with the latter two being the prevailing ones. Whilst the categorical model focuses on all the emotions evolving from universal innate emotions like happiness, sadness, fear and anger [11], the dimensional model typically comprises an affective two-dimensional valence-arousal space. Valence represents a pleasure-displeasure continuum, whilst arousal outlines the activation-deactivation continuum [24].

Time scale of predictions. Predictions can either be static or dynamic. In the former case, the representative emotion of a song is given by one valence and arousal value [16]. Emotion annotations can also be obtained over time (e.g. second-by-second valence-arousal labels), thus resulting in dynamic predictions [27].

Audio features. Musical compositions consist of a rich array of features such as harmony, tempo, loudness and timbre and these all have an effect on emotion. Previous work in MIR has fuelled around developing informative acoustic features [16]. However, as illustrated in other works [18, 22, 26] and to the best of our knowledge, there exists no dominant single feature for MER.

2.2 Methods for content-based MER

The field of MIR has followed a similar path to other machine learning ones. Prior to the deep learning era, most methods relied on manual audio feature extraction. Huq et al. [12] give an overview on how musical features were traditionally extracted and fed into different architectures such as support vector machines, k-nearest neighbours, random forests, deep belief networks and other regression models. These methods were tested for MER on Russell’s well-established arousal and valence emotion model [24].

These were succeeded with deep learning methods. Such techniques, like binarised and bi-directional long short-term memory recurrent neural networks (LSTM-RNN) and deep belief networks, have also been successfully employed for valence and arousal prediction [33]. Other methods again used LSTM-RNNs for dynamic arousal and valence regression, on the acoustic and psychoacoustic features obtained from songs [6]. Most of these works stemmed from entries in the MediaEval emotion challenge [2]. Multimodality has also been an interest for this research community, where [9] looked into MER based on both the audio signal and the lyrics of a musical track. Again, deep learning methods such as LSTM-RNNs are at the core of the architectures proposed.

An important factor in machine learning has been to build interpretable models, to make them applicable to a wider array of applications. To the best of our knowledge, only a few works have attempted to build an interpretable model for MER. In [37], different model classes were built over the extracted and selected features. These vital features were filtered and wrapped, followed by shrinkage methods. In [5], a deep network based on two-dimensional convolutions is trained to jointly predict “mid-level perceptual features”, related to emotional qualities of music [1], with emotion classes in a categorical annotation space.

Our work focuses on the prediction of induced emotions at a global time scale (static predictions). This is done in a continuous annotation space, as adopting a categorical one would not exhibit the same richness in induced human emotion [35]. The idea of using MSS methods for MER was first investigated in [32]. Our work differs in...
the following: (i) we focus on valence-arousal MER and address the former as a regression task; (ii) our methods rely on state-of-the-art deep learning methods with no need of traditional methods for audio feature extraction; (iii) we investigate different fusion strategies and training approaches, and (iv) we provide an insightful analysis for the interpretability of our models.

3. METHODOLOGY

Our approach is based on the observation that different musical sources in a composition can evoke distinct emotional responses from the listeners [13]. Given a music piece, they can contribute differently to the overall induced emotion. For instance, the bass and the vocal lines of a track can be more informative to predict valence, whereas drums might have more impact on arousal. Nevertheless, our aim here is not to provide a general explanation of the emotional influence of musical parts, as this is often an individualistic property belonging to each track.

Instead, we propose a computational model for MER based on a decomposition of the original audio signal to the possible sources (e.g. vocals, drums, bass) that can be detected from it. By doing so, it will be easier for the model to process the audio stream whilst searching for emotion-related patterns in every single source. The aggregation of the resulting source-specific models within a single architecture would also account for the possible inter-source relationships. This approach can thus be considered as a way to provide prior knowledge to a model in order to reduce the complexity of the learning task when limited data is available – a recurring issue in MER.

Considering the technical challenges in MER, the design of a computational model based on music source separation has the potential to (i) improve the performance of the current solutions with the same amount of training data; (ii) provide a modular architecture which can be further adapted and fine-tuned with respect to each source-specific module, and (iii) quantify the contribution of each source to the final prediction for improved interpretability.

Our model, EmoMucs, achieves this through a multiplexed framework for emotion recognition. The architecture of our model is illustrated in Figure 1, with its building blocks explained in the following subsections.

3.1 Music source separation module

In the final step of music production, the tracks corresponding to each individual instrument are mixed together in a single audio file known as mix-down. Music source separation (MSS) aims at reconstructing the individual sources from a mix-down. A reference categorisation of these sources is the SiSec Mus evaluation campaign [30], which is based on the following classes: (i) vocals, (ii) drums, (iii) bass and (iv) other. Given a mix-down, the goal of a MSS model is to generate a waveform for each of the four original sources.

Most of the approaches for MSS operate on the spectrograms generated by the short-time Fourier transform (STFT). They are trained to produce a mask on the magnitude spectrums for each frame and source [8]. The output audio is then obtained through an inverse STFT on the masked spectrograms, reusing the input mixture phase.

However, a technical limitation of these approaches is the information loss resulting from the mix of sources, which cannot be easily recovered through masking.

For this reason we use Demucs [8], a recent deep learning model for MSS directly operating on the raw input waveform. Instead of relying on a masking approach, Demucs is inspired by models for music generation in the waveform domain. It implements a U-net architecture with a convolutional encoder-decoder, and a bidirectional LSTM between them to increase the number of channels exponentially with depth [7].

Given an audio track, our system starts by feeding it to Demucs. This results into four different source tracks – one for each SiSec Mus class. To ensure comparability of our architecture with the baseline methods for MER, we compute the log-mel spectogram of each source track.

3.2 Source models and fusion strategies

As illustrated in Figure 1, the log-mel spectogram of each source track is then passed to the specific model associated to that source (e.g. the vocal’s spectogram is fed to the vocal model). By disentanglement, each sub-model processes a single voice independently, and learns the corresponding source-specific musical features for emotion recognition. This approach thus provides a high degree of flexibility, as it makes it possible to design the architecture of each sub-model specifically for the corresponding source. Nonetheless, to guarantee a fair comparison of our architecture with the current methods for MER, we use one of our baselines as the architecture for all source models.

The baseline models are based on two common deep learning architectures for MER, illustrated in Figure 2. The first is a one-dimensional convolutional neural network (C1D) that was proposed in [9] as an audio model for multimodal MER. The architecture consists of two one-dimensional convolutional layers followed by max-pooling and batch normalisation. Its resulting feature maps are then passed to two fully-connected layers with dropout masks to improve generalisation. The second baseline comprises a VGG-style network, demonstrated to be effective in several MIR tasks [4]. This musically-engineered model, C2D, consists of 5 two-dimensional convolutional blocks, each separated by max pooling and dropout layers. The two-dimensional pooling operators progressively decrease the size of each feature map, while keeping the same number of kernels (32) after each block. After the convolutional blocks, two-dimensional average pooling is applied to ensure that the resulting feature map is of size 32×1. Following dropout, a single fully-connected layer is then employed to predict arousal and valence.

The architecture of our source models can be either C1D or C2D, resulting in two different implementations of EmoMucs – EmoMucs-C1D and EmoMucs-C2D. To yield a final prediction of valence (V) and arousal (A), the features from the source models are concatenated and passed
to two fully-connected layers with dropout. Assuming C1D is chosen as the architecture for our source models, there are three possible ways to access the features of a source model. This gives three fusion strategies: early (E), mid (M) and late (L), depicted in Figure 2. The first strategy considers the features obtained after the convolutional layers; mid fusion concatenates the features learned after the first fully-connected layers; and the late strategy considers the output of each source model, which correspond to the VA predictions. From the definition of C2D, the mid-level fusion strategy is not possible with this architecture.

3.3 Our training approach
Considering the different role of each source model, there are three main strategies for training EmoMucs: full, freeze and fine-tune. The first approach consists in training the whole network from scratch and propagating the gradient back to the source models from the last fully-connected layer of EmoMucs. In contrast, the last two strategies are based on pre-training each source model separately as a first step. The full network is then trained until the concatenation level, for the freeze mode, or until the first convolutional layer of each source model, for the fine-tune mode. This last choice can be considered as a sort of fine-tuning strategy and should be implemented with small learning rates to avoid the source models to catastrophically forget what they have already learned independently.

4. EXPERIMENTS
Our method is validated using the baseline models C1D and C2D trained on the mix-downs as reference models. These are denoted as C1D-M and C2D-M respectively. The performance of the baselines is then compared with each source model trained independently. In particular, we compare CXD-M with CXD-[V B D O], where V, B, D, O denote the vocals, bass, drum, and other sources respectively, and X is a placeholder for 1, 2. This allows to verify how informative each source model is, and whether one of them outperforms the correspondent mix-down baseline.

Secondly, we experiment with the different fusion and training strategies of EmoMucs using all the source models. Similarly to the previous case, the performances of EmoMucs with either C1D or C2D architectures for its source models (denoted as EmoMucs-C1D and EmoMucs-C2D) are compared to C1D-M and C2D-M.

We evaluate the accuracy of the valence-arousal predictions with the root-mean-squared error (RMSE) and the R^2 score. The latter is the coefficient of determination, with the best score being 1 when the variability of the target data is fully captured by the regressor. Conversely, a score equal to 0 corresponds to a model always predicting the expected value of the target. To avoid biasing our evaluations on a single test set, each run employs nested cross-validation with 5 splits for the outer and inner folds.

4.1 Dataset
As mentioned in [25, 29], the current methods for MER perform well for genres such as classical music and film soundtracks, but their performances are still poor for popular music. For this reason, we chose the popular music with emotional annotations (PMEmo) dataset [38] for our experiments. This collection contains valence-arousal induced emotions for 794 songs, annotated by 457 subjects, and also provides: song metadata, music chorus clips in MP3 format and pre-computed audio features.

For our experiments, we consider the static valence-arousal annotations. As our model needs raw-audio data to feed Demucs and generate the separated sources from a given mix-down, we use 20-second randomly selected clips from each chorus. For 59 tracks with duration shorter than 20 seconds, we apply zero padding at the end of the clip to ensure fixed-size input. On average, the padding operation is used to compensate for 4.35 seconds. The arousal and valence annotations are scaled to the $[-1, 1]$ interval for improving the stability of the model. We choose not to augment the dataset as such strategy can potentially affect the emotional impact of music on listeners.

4.2 Implementation details
We use Librosa 0.7.2 [20] for computing the log-mel spectrograms from the tracks, with a fast Fourier transform (FFT) window size of 512, 256 samples between successive frames and 96 Mel bands. Our models are implemented in PyTorch [23], and the source code to replicate these experiments is available at github.com/jonnybluesman/emomucs.

4.3 Experimental results
The results of our experiments are reported in Tables 1 and 2. From Table 1, we notice that the C2D architecture is
more accurate than C1D in all scenarios. In addition, the former baseline is also a more parsimonious model, due to the less number of parameters. All the baselines trained on the mix-down are considerably better than the source models considered independently. For both the architectures, we find that the drums model is the best between the source models at predicting valence, whereas the bass model is the worst for arousal. The performance disagreement for the source models using different architectures (e.g. C1D-V and C2D-V) suggests that the convolutional architecture plays a crucial role for the type of musical features that can be learned.

<table>
<thead>
<tr>
<th>Baseline</th>
<th># params</th>
<th>Input</th>
<th>V</th>
<th>A</th>
<th>V</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1D</td>
<td>86354</td>
<td>M</td>
<td>.2600</td>
<td>.2444</td>
<td>.3489</td>
<td>.5573</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>.3048</td>
<td>.3214</td>
<td>.1131</td>
<td>.2426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>.2890</td>
<td>.3311</td>
<td>.2029</td>
<td>.1963</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>.2710</td>
<td>.2961</td>
<td>.3000</td>
<td>.3572</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>.2723</td>
<td>.2936</td>
<td>.2925</td>
<td>.3679</td>
</tr>
<tr>
<td>C2D</td>
<td>37698</td>
<td>M</td>
<td>.2466</td>
<td>.2285</td>
<td>.4143</td>
<td>.6100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>.2701</td>
<td>.2750</td>
<td>.3039</td>
<td>.4455</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>.2762</td>
<td>.2924</td>
<td>.2718</td>
<td>.3732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>.2587</td>
<td>.2855</td>
<td>.3613</td>
<td>.4024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>.2633</td>
<td>.2748</td>
<td>.3381</td>
<td>.4462</td>
</tr>
</tbody>
</table>

Table 1. Evaluation of the baseline models trained on the mix-down (C1D-M, C2D-M) together with the corresponding source models. V, B, D, O denote vocals, bass, drums and other and they refer to the source models. Bold text highlights the best results for each baseline model. For both cases, the mix-down model achieves the best results.

As can be seen from Table 2, combining all source models in a single network has a crucial impact on the performance of the model. We conjecture that this is achieved by the architecture of EmoMucs, which makes it possible to account for all the possible inter-source relationships. In particular, EmoMucs-C1D with mid-level feature fusion and freeze mode training achieves a R^2 score of 0.4332 for valence, which is a considerable increase compared to 0.3489 for C1D. This is also reflected with a decrease of the RMSE for valence, accounting for 0.2428 instead of 0.26. Considering that the valence-arousal annotations are scaled to the $[-1, 1]$ interval, we divide these values by 2 for a more intuitive interpretation of the error. Hence, 0.2428 and 0.26 can be considered as errors of 12.14% and 13% in the annotation interval. Analogously, EmoMucs C2D with late fusion and freeze mode training achieves valence $R^2 = 0.4814$ and RMSE $= 0.2320$ (11.6%), instead of $R^2 = 0.4143$ and RMSE $= 0.2466$ (12.33%) for the C2D baseline. On the other hand, the arousal predictions of EmoMucs are comparable to those of the baselines.

4.4 Interpretability

As the architecture of EmoMucs is based on a concatenation of features learned by each source model at a specific layer, it is possible to trace the contribution of each voice as well as those emerging from their interrelated connections. This form of interpretability is architecturally supported by our deep neural network, and it comes at no performance loss. This contrasts the work of Chowdhury et al. [5], who measured the “cost of explainibility” of their model by trading accuracy for interpretability.

A simple way to interpret EmoMucs is to isolate the performance of each model independently, as done in Table 1. It is also compelling to analyse the regression accuracy for each track in the dataset and visualise them together with the target annotations in the valence-arousal space. In Figure 3, this is done separately for valence and arousal by associating each target data point with a colour related to its best source model (the one with lowest valence and arousal RMSE for that target). If source models specialise in certain regions of the annotation space, e.g. drums and high arousal, we would expect them to form clusters in the annotation space. However, this hypothesis is rejected as Figure 3 does not suggest any clear specialisation of the source models in the annotation space. This supports our previous observation that each track has intrinsic features related to its emotional impact. For instance, two distinct tracks with very similar annotations can have a considerably different emotional influence from their sources.

Figure 4 reports the performance (R^2 score for valence
and arousal) of EmoMucs-C2D using late fusion and freeze training mode for different combinations of source models. The best performance is achieved when using all sources (V-B-D-O). The contribution of source models varies with their combination. When using two sources, the combination of the bass and the other models gives better performance in the valence space, but for the arousal space an improved result is achieved when combining vocals with other. When three sources are considered, the combination of drums, bass and other achieves the best R^2 for valence, whereas, for arousal, excluding bass gives comparable results to EmoMucs-C2D with all the sources.

5. CONCLUSIONS

The task of computational music emotion recognition (MER) is particularly challenging due to several factors such as subjectivity within annotations, scarcity of labelled data for training supervised models, and inadequate data augmentation strategies. There is common belief that the current models perform well for classical music and film soundtracks, but their performances are still poor for popular music. To the best of our knowledge, improving the interpretability of MER models jeopardises their performance, thus introducing a “cost of explainability”.

In this paper we introduced EmoMucs, a deep learning architecture for MER based on music source separation. First, our method separates the audio signal into different sources associated to vocals, drums, bass and other voices of the mix-downs. Different sub-models are then used to process each source independently, with their features being aggregated according to a fusion strategy.

We evaluated EmoMucs on the popular music with emotional annotations (PMEmo) dataset, and compared its performance with two common deep learning models for MER trained on the mix-downs. Our results demonstrate that EmoMucs outperforms the baseline models for valence, and achieves comparable performance for arousal, while providing increased interpretability.

Our work achieves the following: (i) improved performance of the current solutions with the same amount of training data; (ii) a modular architecture which can be further adapted and fine-tuned with respect to each source-specific module, and (iii) a quantified contribution of each source to the final prediction for more interpretability.

The implementation of EmoMucs considered in our experiment is designed to prioritise the comparability of our approach to other baselines. In our future endeavours, we plan on optimising the architecture and hyper-parameters of each source model in order to specialise their design to the corresponding sources. Additionally, a study based on the analysis of the activations of the fusion layer would provide more detailed insights regarding the contribution of each source-model, thereby increasing the interpretability of our method and its potential applications.

6. REFERENCES

