BURSTINESS AND HIERARCHY IN TONAL CLASSICAL MUSIC
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ABSTRACT

A musical work is, in general, a coherent whole that is
more than the sum of its individual notes. We are inter-
ested in the emergent coherent behavior that arises from
the combination of the sounds made by the individual
pitches, focusing on the temporal aspect. We consider each
pitch activation as an event, and examine the distribution of
the interevent times, the time between the deactivation and
consecutive activation of the same pitch. The interevent
times in a sample of 428 works by four canonical Western
composers obey heavy-tailed distributions, and these dis-
tributions can be attributed not to the pitch durations them-
selves but to the order in which pitches are activated. Our
results imply that the generative process in music is neither
random nor regular, and suggest the presence of hierarchy
in pitch activations. We present our initial attempt in cre-
ating a hierarchical generative model of music, inspired by
the similarities between our findings and Schenkerian anal-
ysis.

1. INTRODUCTION

Consider a sequence of events in time. Some examples are
the arrival of trains in a station, the calls made by a person,
or in our study, the activation of pitches in a musical piece.
The patterns of the event occurrence can be characterized
by the time between events, also called the “interevent
time”. If the events are regular, then the interevent time
is constant. If the events are random, the interevent times
will be uncorrelated and follow an exponential distribu-
tion. However, in the case of a bursty sequence of events,
most events happen close to each other in time, while some
events are spaced far apart from each other. This creates
clusters of events or “bursts”, and the interevent time dis-
tribution is heavy-tailed, usually following a power law [1].
These indicate that in contrast to random events, the events
in a bursty sequence do not happen independently and sug-
gest a long-range correlation over time, possibly induced
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by a hierarchy in the sequence of events [2—4]. If music ex-
hibits bursty behavior, burstiness may be used to develop a
data-driven approach to find hierarchical structure in mu-
sic, as posited by researchers such as Schenker [5], Lerdahl
and Jackendoff [6], Krumhansl [7], and Narmour [8].

2. METHODOLOGY

We use the chordify function of the Python package
music21 [9] to split a piece into a series of vertical slices,
where each slice corresponds to a change in the texture by
adding or subtracting a pitch. By chordifying MIDI files
from KernScores, we extract the activation sequence of
each pitch from 428 pieces by Bach, Beethoven, Mozart
and Chopin, chosen as prominent composers of their times
and with a substantial contribution to the KernScores cor-
pus. Using the quarter note as our unit of time, we ob-
tain the times between pitch deactivation (“off”” in MIDI)
to pitch reactivation (“on” in MIDI) for each pitch. These
constitute our interevent times (IETs), with the events be-
ing pitch activations. We fit the IET distributions to various
functions (exponential, lognormal, stretched exponential,
and truncated power law) using the algorithm presented by
Clauset et al. [10, 11] and select the distribution that gives
the best fit. To identify the ingredients that are essential
for the IET distributions, we modify the original piece in
different ways: (a) ordinaltime, where the slices are
made to have equal duration, effectively disregarding note
duration; (b) ordinalpp, similar to ordinaltime but
with consecutive activations considered as one and the note
duration set to O (the IET is effectively the pitch inter-
onset interval); (c) topnote_ordinaltime, an ap-
proximation of the melodic line in ordinaltime, and
(d) randomnote88, where the note durations are re-
tained but the pitches in each slice are replaced with a ran-
dom selection from the 88 pitches of a piano, thus destroy-
ing tonality in the piece.

3. RESULTS

The IET distributions of the original piece
as well as ordinaltime, ordinalpp and
topnote_ordinaltime were mostly heavy-tailed
indicating bursty behavior (see Figure 1), with only 4
out of the 428 pieces exhibiting exponentially distributed
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Figure 1. Complementary cumulative distribution func-
tions of the interevent time distributions normalized by
their means for four different pieces, with the composer
and the piece title indicated in the legend. The distributions
for the original piece and the variants ordinaltime,
ordinalpp and topnote_ordinaltime are differ-
entiated by the marker symbols, while randomnote88
is shown using dashed lines. Note that all the curves de-
noted by symbols obey a similar shape distinct from that
of the dashed curves.

IETs. In contrast, 415 of randomnote88 pieces had
either exponential distributions or stretched exponential
distributions, with the mean exponent in stretched expo-
nential distributions of 0.96. Further, the IET distributions
of different pieces obey similar shapes despite having been
from different composers and different eras. These find-
ings show that pitch activations are bursty and correlated,
and that there are commonalities in the activation patterns
of pitches in various pieces of classical tonal music.
Further, the distribution of the IETs divided by the mean
are similar for the original piece and ordinaltime,
ordinalpp and topnote_ordinaltime, indicating
that the note duration doesn’t contribute to burstiness.
However, the rules of melody and harmony, which are
absent in randomnote88, do. We note here some
similarities to Schenkerian analysis, where note durations
are disregarded and only the sequence of pitches is
considered [5, 12]. We also note that the burstiness we
observed is not in relation to the general rhythm of the
piece but to the time between deactivation and activation
of the same pitch.

4. THE MODEL

Bursty behavior can be explained by a number of mech-
anisms, including hierarchy. Given the similarities of our
results to aspects of Schenkerian analysis, we attempt to
explain burstiness in music using a hierarchical generative
model.

We initialize our model with a starting sequence of
pitches of length Ny. Starting from the first two elements
of the sequence, we splice every pair of adjacent pitches
(P;, P;41) and insert one new pitch. The inserted pitch
is selected from the set of pitches in the original melody
that succeed P; and precede P;;; with a probability that
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Figure 2. Complementary cumulative distribution func-
tions of the interevent time distributions normalized by
their means for four different pieces, with the composer
and the piece title indicated in the legend. The distributions
for topnote_ordinaltime and the model (Ny = 1)
results are shown.

is proportional to the sum of the number of times it suc-
ceeded P; and the number of times it preceded P; ;. We
iterate until the desired length of the sequence is reached.
If Np = 1, a pitch that succeeds the lone sequence ele-
ment in the melody will be placed after it with a probabil-
ity proportional to the number of times the candidate pitch
succeeded the lone sequence element. Once there are two
pitches in the sequence, the iterations proceed as normal.
The order of splicing and insertions denotes the hierarchy,
as the pitches that were inserted later can be thought of as
embellishments to the preceding pitches.

The model generates heavy-tailed distributions (see
Figure 2) that are due to the inherent correlations in
the sequence of pitches, which is incorporated in the
model in the insertion procedure. ~We note however
that although the qualitative results are similar, there are
quantitative discrepancies in the model results and the
topnote_ordinaltime distributions. In particular,
we get more longer interevent times with the model results
than the original pieces.

S. CONCLUSION

Canonical Western classical composers representing
Baroque through Romantic eras are found to exhibit bursty
behavior that depends only on the sequence of notes and
not their durations, indicating correlations in pitch activa-
tions. Noting the similarities of our results with some as-
pects of cognitive theories of musical hierarchies, we con-
struct a hierarchical model based on iterative embellish-
ments to recreate the bursty behavior obtained. Although
our model exhibits burstiness, it gives longer interevent
times than the original pieces. We hope to improve our
model by allowing transitions outside those used in the ac-
tual piece.
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