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ABSTRACT 

In this paper I present autochord, a bundle of tools for 

automatic chord recognition, comprising of 1) a Python 

library that performs Audio Chord Estimation (ACE), and 

2) a JavaScript app for visualizing and comparing chord 

labels, all open-source and freely available online.1 The 

Python library (hereinafter referred to as autochord.py) 

can generate MIREX-style chord labels 2  which can be 

interpreted and visualized by the app (hereinafter referred 

to as autochord.js). Used together, this toolset functions as 

a full chord recognition app. 

1. INTRODUCTION 

This project was started with two primary goals in mind: 

to build an ACE model using machine learning (ML), and 

to deploy it in an easy-to-use chord recognition web app 

for free public consumption. Furthermore, the app shall 

run purely on client-side i.e., all processing happens only 

in the user’s web browser, hence, no song data or any 

derived features are sent over the Internet. This eliminates 

any concerns with the privacy of the song being processed. 

One tool that proved useful for client-side ML is 

TensorFlow.js (TFJS), a JavaScript port of TensorFlow.3 

The rich stack of TensorFlow tools allow for conversion of 

Python models to be runnable in a TFJS-based web app, 

leading to decide to use TensorFlow for the ACE model. 

The best trained model, however, while working well in 

Python, contains modules that are not portable to TFJS as 

of writing. Hence, the decision to package the model in 

autochord.py, keeping all chord recognition processing in 

Python, and building a simpler app, autochord.js, which 

can display the generated chord labels from autochord.py. 

2. MODEL DEVELOPMENT 

2.1 Training Data 

The chord recognition model was trained on The McGill 

Billboard Project dataset4 [1], particularly using its chroma 

vectors feature set and MIREX-style chord annotations. 

 
1 https://github.com/cjbayron/autochord 
2 https://www.music-ir.org/mirex/wiki/2021:Audio_Chord_Estimation 
3 https://www.tensorflow.org 

This was deemed the favorable dataset due to containing 

popular songs, likely to be what the public would use chord 

recognition apps for, and more importantly, due to 

accessibility of the features to train on, as most song 

datasets online do not release the raw audio (and rightly 

so, due to copyright) or any of its derived features. 

A few checks were done before proceeding to training. 

The dataset features are chroma vectors generated from 

NNLS-Chroma VAMP plugin [2], while the expected input 

to autochord.py are raw audio files. There was a need to 

ensure that the plugin can be run from Python, and that the 

features can be closely reproduced from raw audio to 

refute poor model performance arising from training and 

inference feature mismatch. Fortunately, there exists a 

library for running VAMP plugins from Python. 5  To 

investigate the potential feature mismatch, five songs were 

arbitrarily selected from the dataset. Each of the songs’ 

raw audio was acquired and processed on NNLS-Chroma 

to generate new chroma vectors. Dynamic time warping 

(DTW) [3] was then employed on the normalized vectors 

in round-robin fashion to check similarities between the 

songs. Table 1 shows the total alignment cost for each 

DTW operation. For comparison, each cost was also 

normalized by the length of the warping path.  

 

Song ID 0018 0270 0637 0736 1289 

0018 0.080 0.368 0.280 0.265 0.264 

0270 0.366 0.042 0.334 0.283 0.342 

0637 0.280 0.338 0.031 0.300 0.278 

0736 0.267 0.280 0.300 0.048 0.281 

1289 0.260 0.345 0.274 0.290 0.039 

Table 1. Normalized DTW alignment cost for five 

Billboard songs. Row headers signify new chroma vectors 

for a song ID. Column header signify vectors from dataset. 

Alignment cost for vectors in same song index is 

consistently low, 0.048 on average, while costs for 

different song indices are consistently much higher. This 

was deemed enough to show that feature mismatch will not 

significantly affect inference performance. 

2.2 Chord Recognition Model 

Initially, a multi-layer feedforward neural network was 

trained, which takes each 24-element NNLS-Chroma 

4 https://ddmal.music.mcgill.ca/research 
5 https://github.com/c4dm/vampy-host 
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vector as its input and predicts the chord among 25 classes: 

major/minor triads and no-chord. This simple architecture 

was only able to reach around 50% chord accuracy, after 

which no further tuning was explored. 

To take advantage of the temporal relationships in the 

chroma features, a Bidirectional LSTM-CRF (Bi-LSTM-

CRF) [4] was then used. The final trained model contains 

an LSTM layer with 128 units for each direction and takes 

chroma vector sequences of fixed length 128 as its input, 

pre-padded with zero-valued vectors as needed, and 

outputs for each vector in the sequence, a chord among the 

25 classes previously mentioned. During training, a 

dropout rate of 0.1 was used for the LSTM layer, batch size 

of 64 for the inputs, and Adam [5] was used as optimizer 

with learning rate of 0.001. A randomly sampled set of 100 

songs was used as test set, while the remaining 600+ songs 

was used for training. Chord accuracy was used for model 

selection, while accuracy excluding no-chord labels (“non-

no-chord accuracy”), as well as weighted chord symbol 

recall (WCSR) on root notes and major/minor triads were 

also measured, as shown in Table 2. On a mid-range CPU, 

average inference speed is 0.11s for a 4-minute song. The 

Bi-LSTM-CRF model is uploaded to a public cloud 

service for usage in autochord.py library. 

 

Chord accuracy 67.33 

Non-no-chord accuracy 70.03 

WCSR (root) 74.77 

WCSR (majmin) 70.62 

Table 2. Metrics on 100 songs from Billboard dataset. 

3. PYTHON LIBRARY 

3.1 Setup 

autochord.py is available in PyPI 6  and is installed by 

running: pip install autochord. It has been tested to 

work well on Python 3.6, on a Linux (Ubuntu) machine. 

On first import, the NNLS-Chroma plugin packaged 

along with autochord.py is setup and the chord recognition 

model is downloaded on the target machine. 

3.2 Features 

autochord.py provides a simple API for chord recognition: 

the recognize function which takes in as arguments the 

filename of the song WAV file and an optional LAB file 

where the predicted chord labels are stored in MIREX 

format as shown in following code: 

 
import autochord 

autochord.recognize('song.wav',lab_fn='est.lab') 

 

Under the hood, recognize resamples the input audio to 

44100 Hz, runs NNLS-Chroma to extract chroma features, 

feeds the chroma to the trained Bi-LSTM-CRF model, and 

returns the predictions in a list of tuples, each in the format: 

(start time, end time, chord label). Based on tests on a mid-

 
6 https://pypi.org/project/autochord 
7 https://cjbayron.github.io/autochord 

range CPU, the full prediction time is projected to be 

around 7 seconds for a 4-minute song. 

4. CHORD VISUALIZATION APP 

4.1 Setup 

The autochord.js app is deployed online via GitHub Pages7 

and works as expected on recent versions of Chrome and 

Firefox. 

4.2 Features 

Any MIREX-format LAB file can be used to visualize 

chords in autochord.js. The app requires to load a song 

before a LAB file can be loaded. It displays the song in a 

“seekable” waveform, overlayed with color-coded chord 

labels. Optionally, a second LAB file can be loaded which 

adds another instance of a labelled waveform. This may be 

useful for visual comparison of different labels e.g., 

ground-truth vs. model predictions. Figure 1 shows a 

snippet of the app when two files are loaded. 

 

 

Figure 1. Waveform display of autochord.js app 

5. FUTURE WORK 

Integrating chord estimation and visualization in a single 

app will provide a more user-friendly experience, for 

which there is a need to port all Python processes into 

JavaScript. Primarily, the chord recognition model and 

NNLS-Chroma plugin must be considered. For the model, 

fixing the conversion issue8 seems to be the low-hanging 

fruit, but one may also explore changing the architecture 

or even using tools other than TensorFlow. For the plugin, 

some open-source solutions9 show promise. 

For increasing the accuracy of chord recognition, 

alternative and supplementary techniques e.g., attention-

based models, class weighting, and data augmentation may 

be explored. More significantly, getting access to raw 

audio of datasets and extracting more low-level features 

will likely lead to big improvements, as the NNLS-

Chroma vectors alone may lack the more intricate audio 

features that describe the occurrence of each chord class. 

6. REFERENCES 

[1] J. Burgoyne, J. Wild, and I. Fujinaga, “An Expert 

Ground Truth Set for Audio Chord Recognition and 

8 https://github.com/tensorflow/tfjs/issues/5413 
9 https://github.com/piper-audio/piper-vamp-js 



  

 

Music Analysis”, in Proc. of the 12th International 

Society for Music Information Retrieval Conference, 

ed. A. Klapuri and C. Leider (Miami, FL, 2011), pp. 

633–38 

[2] M. Mauch and S. Dixon, “Approximate Note 

Transcription for the Improved Identification of 

Difficult Chords”, in Proc. Of the 11th International 

Society for Music Information Retrieval Conference, 

ed. J. Downie and R. C. Veltkamp (Utrecht, the 

Netherlands, 2010), pp. 135–40 

[3] M. Mueller, Fundamentals of Music Processing —

Audio, Analysis, Algorithms, Applications.  Springer 

Verlag, 2015 

[4] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-

CRF Models for Sequence Tagging”, in CoRR, 

abs/1508.01991 (2015) 

[5] D. P. Kingma and J. Ba, “Adam: a method for 

stochastic optimization”, in Proceedings of 

International Conference on Learning 

Representations, (2015) 

 


