

AUTOCHORD: AUTOMATIC CHORD RECOGNITION

LIBRARY AND CHORD VISUALIZATION APP

 Christopher John Bayron

Independent

Manila, Philippines
cjdbayron@gmail.com

ABSTRACT

In this paper I present autochord, a bundle of tools for

automatic chord recognition, comprising of 1) a Python

library that performs Audio Chord Estimation (ACE), and

2) a JavaScript app for visualizing and comparing chord

labels, all open-source and freely available online.1 The

Python library (hereinafter referred to as autochord.py)

can generate MIREX-style chord labels 2 which can be

interpreted and visualized by the app (hereinafter referred

to as autochord.js). Used together, this toolset functions as

a full chord recognition app.

1. INTRODUCTION

This project was started with two primary goals in mind:

to build an ACE model using machine learning (ML), and

to deploy it in an easy-to-use chord recognition web app

for free public consumption. Furthermore, the app shall

run purely on client-side i.e., all processing happens only

in the user’s web browser, hence, no song data or any

derived features are sent over the Internet. This eliminates

any concerns with the privacy of the song being processed.

One tool that proved useful for client-side ML is

TensorFlow.js (TFJS), a JavaScript port of TensorFlow.3

The rich stack of TensorFlow tools allow for conversion of

Python models to be runnable in a TFJS-based web app,

leading to decide to use TensorFlow for the ACE model.

The best trained model, however, while working well in

Python, contains modules that are not portable to TFJS as

of writing. Hence, the decision to package the model in

autochord.py, keeping all chord recognition processing in

Python, and building a simpler app, autochord.js, which

can display the generated chord labels from autochord.py.

2. MODEL DEVELOPMENT

2.1 Training Data

The chord recognition model was trained on The McGill

Billboard Project dataset4 [1], particularly using its chroma

vectors feature set and MIREX-style chord annotations.

1 https://github.com/cjbayron/autochord
2 https://www.music-ir.org/mirex/wiki/2021:Audio_Chord_Estimation
3 https://www.tensorflow.org

This was deemed the favorable dataset due to containing

popular songs, likely to be what the public would use chord

recognition apps for, and more importantly, due to

accessibility of the features to train on, as most song

datasets online do not release the raw audio (and rightly

so, due to copyright) or any of its derived features.

A few checks were done before proceeding to training.

The dataset features are chroma vectors generated from

NNLS-Chroma VAMP plugin [2], while the expected input

to autochord.py are raw audio files. There was a need to

ensure that the plugin can be run from Python, and that the

features can be closely reproduced from raw audio to

refute poor model performance arising from training and

inference feature mismatch. Fortunately, there exists a

library for running VAMP plugins from Python. 5 To

investigate the potential feature mismatch, five songs were

arbitrarily selected from the dataset. Each of the songs’

raw audio was acquired and processed on NNLS-Chroma

to generate new chroma vectors. Dynamic time warping

(DTW) [3] was then employed on the normalized vectors

in round-robin fashion to check similarities between the

songs. Table 1 shows the total alignment cost for each

DTW operation. For comparison, each cost was also

normalized by the length of the warping path.

Song ID 0018 0270 0637 0736 1289

0018 0.080 0.368 0.280 0.265 0.264

0270 0.366 0.042 0.334 0.283 0.342

0637 0.280 0.338 0.031 0.300 0.278

0736 0.267 0.280 0.300 0.048 0.281

1289 0.260 0.345 0.274 0.290 0.039

Table 1. Normalized DTW alignment cost for five

Billboard songs. Row headers signify new chroma vectors

for a song ID. Column header signify vectors from dataset.

Alignment cost for vectors in same song index is

consistently low, 0.048 on average, while costs for

different song indices are consistently much higher. This

was deemed enough to show that feature mismatch will not

significantly affect inference performance.

2.2 Chord Recognition Model

Initially, a multi-layer feedforward neural network was

trained, which takes each 24-element NNLS-Chroma

4 https://ddmal.music.mcgill.ca/research
5 https://github.com/c4dm/vampy-host

 © C. Bayron. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: C.
Bayron, “autochord: Automatic Chord Recognition Library and Chord

Visualization App”, in Extended Abstracts for the Late-Breaking Demo

Session of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

, in Extended Abstracts for the Late-Breaking Demo Session of the 22nd

Int. Society for Music Information Retrieval Conf., Online, 2021.

vector as its input and predicts the chord among 25 classes:

major/minor triads and no-chord. This simple architecture

was only able to reach around 50% chord accuracy, after

which no further tuning was explored.

To take advantage of the temporal relationships in the

chroma features, a Bidirectional LSTM-CRF (Bi-LSTM-

CRF) [4] was then used. The final trained model contains

an LSTM layer with 128 units for each direction and takes

chroma vector sequences of fixed length 128 as its input,

pre-padded with zero-valued vectors as needed, and

outputs for each vector in the sequence, a chord among the

25 classes previously mentioned. During training, a

dropout rate of 0.1 was used for the LSTM layer, batch size

of 64 for the inputs, and Adam [5] was used as optimizer

with learning rate of 0.001. A randomly sampled set of 100

songs was used as test set, while the remaining 600+ songs

was used for training. Chord accuracy was used for model

selection, while accuracy excluding no-chord labels (“non-

no-chord accuracy”), as well as weighted chord symbol

recall (WCSR) on root notes and major/minor triads were

also measured, as shown in Table 2. On a mid-range CPU,

average inference speed is 0.11s for a 4-minute song. The

Bi-LSTM-CRF model is uploaded to a public cloud

service for usage in autochord.py library.

Chord accuracy 67.33

Non-no-chord accuracy 70.03

WCSR (root) 74.77

WCSR (majmin) 70.62

Table 2. Metrics on 100 songs from Billboard dataset.

3. PYTHON LIBRARY

3.1 Setup

autochord.py is available in PyPI 6 and is installed by

running: pip install autochord. It has been tested to

work well on Python 3.6, on a Linux (Ubuntu) machine.

On first import, the NNLS-Chroma plugin packaged

along with autochord.py is setup and the chord recognition

model is downloaded on the target machine.

3.2 Features

autochord.py provides a simple API for chord recognition:

the recognize function which takes in as arguments the

filename of the song WAV file and an optional LAB file

where the predicted chord labels are stored in MIREX

format as shown in following code:

import autochord

autochord.recognize('song.wav',lab_fn='est.lab')

Under the hood, recognize resamples the input audio to

44100 Hz, runs NNLS-Chroma to extract chroma features,

feeds the chroma to the trained Bi-LSTM-CRF model, and

returns the predictions in a list of tuples, each in the format:

(start time, end time, chord label). Based on tests on a mid-

6 https://pypi.org/project/autochord
7 https://cjbayron.github.io/autochord

range CPU, the full prediction time is projected to be

around 7 seconds for a 4-minute song.

4. CHORD VISUALIZATION APP

4.1 Setup

The autochord.js app is deployed online via GitHub Pages7

and works as expected on recent versions of Chrome and

Firefox.

4.2 Features

Any MIREX-format LAB file can be used to visualize

chords in autochord.js. The app requires to load a song

before a LAB file can be loaded. It displays the song in a

“seekable” waveform, overlayed with color-coded chord

labels. Optionally, a second LAB file can be loaded which

adds another instance of a labelled waveform. This may be

useful for visual comparison of different labels e.g.,

ground-truth vs. model predictions. Figure 1 shows a

snippet of the app when two files are loaded.

Figure 1. Waveform display of autochord.js app

5. FUTURE WORK

Integrating chord estimation and visualization in a single

app will provide a more user-friendly experience, for

which there is a need to port all Python processes into

JavaScript. Primarily, the chord recognition model and

NNLS-Chroma plugin must be considered. For the model,

fixing the conversion issue8 seems to be the low-hanging

fruit, but one may also explore changing the architecture

or even using tools other than TensorFlow. For the plugin,

some open-source solutions9 show promise.

For increasing the accuracy of chord recognition,

alternative and supplementary techniques e.g., attention-

based models, class weighting, and data augmentation may

be explored. More significantly, getting access to raw

audio of datasets and extracting more low-level features

will likely lead to big improvements, as the NNLS-

Chroma vectors alone may lack the more intricate audio

features that describe the occurrence of each chord class.

6. REFERENCES

[1] J. Burgoyne, J. Wild, and I. Fujinaga, “An Expert

Ground Truth Set for Audio Chord Recognition and

8 https://github.com/tensorflow/tfjs/issues/5413
9 https://github.com/piper-audio/piper-vamp-js

Music Analysis”, in Proc. of the 12th International

Society for Music Information Retrieval Conference,

ed. A. Klapuri and C. Leider (Miami, FL, 2011), pp.

633–38

[2] M. Mauch and S. Dixon, “Approximate Note

Transcription for the Improved Identification of

Difficult Chords”, in Proc. Of the 11th International

Society for Music Information Retrieval Conference,

ed. J. Downie and R. C. Veltkamp (Utrecht, the

Netherlands, 2010), pp. 135–40

[3] M. Mueller, Fundamentals of Music Processing —

Audio, Analysis, Algorithms, Applications. Springer

Verlag, 2015

[4] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-

CRF Models for Sequence Tagging”, in CoRR,

abs/1508.01991 (2015)

[5] D. P. Kingma and J. Ba, “Adam: a method for

stochastic optimization”, in Proceedings of

International Conference on Learning

Representations, (2015)

