
NEURAL DRUM ACCOMPANIMENT GENERATION

Rishabh Dahale1 Vaibhav Talwadker1 Prateek Verma2 Preeti Rao1

1 Department of Electrical Engineering, Indian Institute of Technology Bombay, India
2 Stanford University

dahalerishabh1@iitb.ac.in, talwadkerv@gmail.com, prateekv@stanford.edu, prao@ee.iitb.ac.in

ABSTRACT

Transformer and its variants have demonstrated state-of-
the-art performance on various tasks, including music gen-
eration, and yet existing works have not explored this
model for drum accompaniment generation. In this work, a
transformer model is designed to generate an accompany-
ing symbolic drum pattern conditioned on an input melodic
track. We propose a data representation scheme for sym-
bolic music, in which silences are also considered. It can
be easily scaled to an arbitrary number of instruments, un-
like the popular serialized grid, thus eliminating the need
of sampling. We propose a loss function accounting for
imbalance in the occurrence of the different percussion in-
struments and report performance on the Lakh Pianoroll
dataset via two musically relevant evaluation metrics.

1. INTRODUCTION

Learning-based deep neural networks have been prominent
in recent music generation research [1–8]. However, drum
pattern generation, a subtask of music generation, has at-
tracted relatively less attention with its challenges of incor-
porating aspects of the melody, such as its verse transitions
and repetitions in a setting that combines coherence and
diversity. A number of deep learning methods like RNNs
[1,2], GANs [3], Variational Autoencoder (VAE) [4,6] and
even transformers [5, 9–11] have been applied for the task
of music generation. Although these methods have shown
good results, they use a serialized grid representation to
circumvent the problem of polyphony estimation and sam-
pling. In this work, we have trained a transformer encoder
model, similar to the one trained by [12], for drumbeat gen-
eration in the symbolic domain and proposed a data repre-
sentation that can be easily scaled to an arbitrary number
of instruments. [5] showed that transformers could achieve
compelling results for generating long-duration piano mu-
sic, which we are trying to leverage for drum pattern gen-
eration.

© Rishabh Dahale, Vaibhav Talwadker, Prateek Verma and
Preeti Rao. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Rishabh Dahale, Vaibhav Tal-
wadker, Prateek Verma and Preeti Rao, “Neural Drum Accompaniment
Generation”, in Extended Abstracts for the Late-Breaking Demo Session
of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

2. DATASET

In this work, we have used the Lakh pianoroll dataset
(LPD-5 cleansed) [3] which is derived from Lakh MIDI
dataset [7]. LPD-5 cleansed contains 21,425 songs consist-
ing of 5 tracks: Piano, Guitar, Strings, Bass, and Drums.
Among these five instruments, we choose Piano, Guitar,
Strings, and Bass as the melody line (input) and have gen-
erated drums patterns conditioned on this input. All the
songs are of 4/4 time signature, and each beat is divided
into 24 parts in the dataset.

3. IMPLEMENTATION

3.1 Data Processing

Each beat is downsampled from 24 parts to 8 parts to com-
press the inputs while retaining 98.6% of the drum beats.
Among the 21,425 multitrack songs, 16,832 were used
for training, while 4,603 were used for validation. Non-
overlapping contiguous 12 bar samples were extracted
from all the songs to generate 133,842 12 bar training sam-
ples and 22,794 12 bar testing samples.
Each instrument in melodic track is represented with a 64-
dimensional vector at every time step, of which the first
dimension represents the silence state. This binary value
denotes whether the instrument is playing some note or is
silent for that time step. The remaining 63 dimensions cap-
ture the velocity of MIDI 21 to MIDI 83 pitches at each
timestep as shown in figure 2a. For percussion instrument
representation, we have used a 17-dimensional vector sim-
ilar to the melody vector, i.e., first dimension representing
silence state while other 16 dimensions capture the follow-
ing instruments: snare drum, open hi-hat, close hi-hat, kick
drum, ride cymbal, crash cymbal, low-floor tom, high-floor
tom, high tom, hi-mid tom, low tom, cowbell, pedal hi-hat,
tambourine, cabasa, and maracas. As each percussive in-
strument is not equally used while playing drums, the dis-
tribution of the number of samples is skewed, as shown in
figure 1. These 16 instruments capture 85.3% of all the
percussion strokes.

3.2 Proposed Model
A semantic overview of the proposed architecture is shown
in figure 2b. As the input representation of pianoroll is
highly sparse, it is first passed through a series of embed-
ding layers. A layer of positional encoding follows this
to preserve the sub-beat position of each individual vec-
tor. This layer concatenates the fixed sinusoidal positional
representation proposed by [13] followed by a dense layer

Figure 1. Number of occurrences of each of the selected
Drum instruments

Input
Melody

Embedding Layer

Positional Encoding

Transformer Encoder xN

Dense Layer

Softmax

(b)(a)

Figure 2. (a) Input representation for our model. (b) Our
model for Drum beat generation from given melody input
using the multi head self-attention module

to project the resulting matrix to the original dimension.
These positional embedded vectors are passed through N
layers of transformer encoder. It is finally passed through
a dense layer with softmax activation. For evaluation, we
have used a simple thresholding mechanism for generat-
ing drum beats, i.e., instruments with probability (softmax
output) above a threshold are considered active. Another
method for decoding the output is by sampling from the
distribution as proposed by [14], but such kind of approach
does not ensure the continuity in the predicted drum pat-
tern.

3.3 Loss Function
The output of our model is a matrix indicating the ON/OFF
state of different drum instruments. We used weighted cat-
egorical cross-entropy loss. The ground truth values are
normalized by multiplying with a factor of 1

k [15], where
k ≥ 1 is the number of active instruments in that timestep.
This resulted in significantly improved performance to
handle multi-label predictions over sigmoid + euclidean
loss. As every output state does not have an equal repre-
sentation in the dataset (figure 1), the outputs are weighted
inversely to the occurrence of the instruments. Loss is cal-
culated as the cross-entropy of the modified ground truth
(1k scaling) and weighted softmax activations.

4. EVALUATION METRICS
Our evaluation metrics are designed to compare certain
musically relevant properties of original drum patterns
with the generated ones. We propose following 2 metrics:
Polyphony Correlation (PC): Polyphony is defined as
the number of independent voices being played at a given
moment of time. PC is the Pearson correlation of the
polyphony of the generated track and real drummer across

(a) (b)

Figure 3. (a) PC plot for different thresholds (b)
BRDC plot for different thresholds. Benchmark values of
PC=0.56 and BRDC=0.0143 are shown in both the plots
by the horizontal dashed blue line

time-steps. This metric will help us understand if the
model could learn the correct collective onsets and offsets
of different drum instruments.
Bar Rhythm Density Correlation (BRDC): Rhythm den-
sity (RD) is defined as the fraction of non-silent timesteps
in a given sequence to the total number of timesteps. RD is
calculated for 12 bars individually, and Pearson correlation
of the original drum RD and predicted drum RD is taken.
This metric captures the model learning at fills and impro-
visation positions of the real drummer.
Benchmark values of the above two metrics are calculated
by pairing the original drum pattern with another randomly
chosen drum pattern of another song from the dataset.
With this, we get the PC as 0.56 and BRDC as 0.0143.
The PC is expected to be higher as all the songs belong to
the Rock genre, which emphasizes alternate beats.

5. RESULTS AND FUTURE WORK

We have tuned this model on following parameters N =
4, 5, 6 and dmodel = 256, 512, where N is the number of
transformer encoder layers used and dmodel is the dimen-
sion of the output of the multi-head attention module. To
understand the effect of thresholding of output probabili-
ties on generated drum patterns, we tested our model with
the following thresholds: 0.025, 0.05, 0.075, ..., 0.275, 0.3.
Variation of the PC and BRDC can be seen in figure 3.

The blue horizontal line in figure 3 shows the bench-
mark values of the evaluation metrics as explained above.
All the trained models exhibit a better PC than benchmark
value at a lower threshold. This indicates that our model
could partially learn the drum pattern (collective note on-
sets and offsets) from a given melody. It can also be ver-
ified from the BRDC plot (figure 3b) that all the models
were above the benchmark value by a significant amount,
indicating that the model was able to partially learn the
fills and improvisations done by a real drummer. Sample
results can be found at this link.

In future work, we plan to explore the different sam-
pling methods from the output distribution instead of us-
ing a simple thresholding-based approach. Moreover, we
plan to train another network to grade the quality of the
predicted drum pattern for the melody and incorporate this
grading in the loss function to help our model learn varia-
tions. We also plan to explore RL algorithms to train the
model to help it generate better and realistic drum accom-
paniments.

https://drive.google.com/drive/folders/1Gb0lyfZ_cpoBOEzJLhM2nszwYNXsJYgT?usp=sharing

6. REFERENCES

[1] D. Makris, M. Kaliakatsos-Papakostas, I. Karydis, and
K. L. Kermanidis, “Combining lstm and feed forward
neural networks for conditional rhythm composition,”
in International conference on engineering applica-
tions of neural networks. Springer, 2017, pp. 570–
582.

[2] ——, “Conditional neural sequence learners for gener-
ating drums’ rhythms,” Neural Computing and Appli-
cations, vol. 31, no. 6, pp. 1793–1804, 2019.

[3] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,
“Musegan: Multi-track sequential generative adversar-
ial networks for symbolic music generation and accom-
paniment,” in Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018.

[4] I.-C. Wei, C.-W. Wu, and L. Su, “Generating struc-
tured drum pattern using variational autoencoder and
self-similarity matrix.” in ISMIR, 2019, pp. 847–854.

[5] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,
I. Simon, C. Hawthorne, A. M. Dai, M. D. Hoff-
man, M. Dinculescu, and D. Eck, “Music transformer,”
arXiv preprint arXiv:1809.04281, 2018.

[6] S. Lattner and M. Grachten, “High-level control of
drum track generation using learned patterns of rhyth-
mic interaction,” in 2019 IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics
(WASPAA). IEEE, 2019, pp. 35–39.

[7] C. Raffel, Learning-based methods for comparing se-
quences, with applications to audio-to-midi alignment
and matching. Columbia University, 2016.

[8] N. Jiang, S. Jin, Z. Duan, and C. Zhang, “Rl-duet: On-
line music accompaniment generation using deep rein-
forcement learning,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 34, no. 01, 2020,
pp. 710–718.

[9] T. Nuttall, B. Haki, and S. Jorda, “Transformer neural
networks for automated rhythm generation,” 2021.

[10] Y. Ren, J. He, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu,
“Popmag: Pop music accompaniment generation,” in
Proceedings of the 28th ACM International Conference
on Multimedia, 2020, pp. 1198–1206.

[11] O. Thörn, “Ai drummer-using learning to enhancearti
cial drummer creativity,” 2020.

[12] P. Verma and J. Berger, “Audio transformers:
Transformer architectures for large scale audio un-
derstanding. adieu convolutions,” arXiv preprint
arXiv:2105.00335, 2021.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in neural in-
formation processing systems, 2017, pp. 5998–6008.

[14] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi,
“The curious case of neural text degeneration,” arXiv
preprint arXiv:1904.09751, 2019.

[15] D. Mahajan, R. Girshick, V. Ramanathan, K. He,
M. Paluri, Y. Li, A. Bharambe, and L. Van Der Maaten,
“Exploring the limits of weakly supervised pretrain-
ing,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 181–196.

	1. Introduction
	2. Dataset
	3. Implementation
	3.1. Data Processing
	3.2. Proposed Model
	3.3. Loss Function

	4. Evaluation Metrics
	5. Results and Future Work
	6. References

