
AUTOMATIC BASS LINE TRANSCRIPTION FOR ELECTRONIC MUSIC

R. Oğuz Araz
Music Technology Group
Universitat Pompeu Fabra
oguza97@gmail.com

ABSTRACT

Current bass line transcription systems either require a sep-
arate bass line track or attempt to transcribe the bass line
directly from mixed multi track recordings. In the absence
of separate bass line tracks, their performances are lim-
ited to the success of polyphonic transcription algorithms,
which notoriously perform worse than their monophonic
counterparts. In this work, we re-formulate the bass line
transcription task and design a system that can transcribe
and reconstruct bass lines for helping with the music pro-
duction process. We use our domain knowledge on elec-
tronic music and develop a python library for performing
monophonic chorus bass line transcriptions. Taking a poly-
phonic recording, our system can find a beat-synchronized
chorus section, source-separate its bass line, perform tran-
scription and output a bass line reconstruction MIDI file.
The transcribed bass lines are locked tightly to the beat
grid with an 1/32th (1/128th note in the common time) beat
onset resolution, which can capture rich bass line grooves.
Using this batch processing integrated python library, we
test the performance on a collection of Tech House music
tracks and evaluate the outputs by visually inspecting their
spectrograms and listening to the bass line MIDI recon-
structions.

1. INTRODUCTION

Fundamental frequency (F0) estimation systems yield
frame-wise time-frequency pairs that carry the pitch in-
formation [1]. For applications such as F0 sonification
or pitch track visualization, this frame-wise representation
can be used directly. Whereas, for creating symbolic repre-
sentations or MIDI files that can reconstruct the transcribed
instruments - MIDI reconstructions, the outputs require
further processing: they should be described in reference
to the beat grid and be quantized both in time and in fre-
quency. In addition, for tasks that require the transcription
of only certain sections of a composition, for example the
chorus, the pitch track should be segmented structurally.
A more fundamental problem arises from the narrow fre-
quency intervals between the pitches of the sub-bass fre-

© R. O. Araz. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: R. O. Araz,
“Automatic Bass Line Transcription for Electronic Music”, in Extended
Abstracts for the Late-Breaking Demo Session of the 22nd Int. Society for
Music Information Retrieval Conf., Online, 2021.

Figure 1. System Diagram

quency region, making it a hard task to transcribe the bass
lines of electronic music for both humans and algorithms.

In order to deal with these problems, we design the au-
tomatic bass line transcriber (ABLT). ABLT transcribes
the chorus bass line with estimating the beat grid, detect-
ing chorus sections, separating the bass line from the rest
of the instruments and using an F0 estimator with a cus-
tom quantization method. System inputs and outputs are
displayed in Figure 1. The system can be accessed from its
repository 1 .

2. SYSTEM COMPONENTS

ABLT consists of an extractor system that isolates the cho-
rus bass line and a transcription system that is tailored for
transcribing the frequency range between 32.7 and 130.81
Hz (from C1 to C3). We put such a frequency limit since
this range carries the bass line fundamental frequencies
and is mostly free from other instruments in electronic mu-
sic tracks [2].

2.1 The Bass Line Extraction

Here we describe how we isolate the chorus bass line.

2.1.1 Beat Detector

In order to describe the onset and offset events in refer-
ence to the metrical structure, we start with estimating the
beat positions. To this end, we use the state-of-the-art beat
detection algorithm provided in the madmom library [3].
The estimated positions are used in estimating the BPM
and forming the beat grid which also contains the divisions
and the bars.

1 https://github.com/raraz15/automatic_bass_
line_transcriber



2.1.2 Chorus Detector

A bass line evolves throughout the composition, hence dif-
ferent sections can contain varying phrases. Therefore, we
develop an algorithm that detects the main phrase’s loca-
tion in time. We use the chorus section since it is made up
from the main musical phrases. We introduce an energy-
based chorus detector that estimates where a chorus exists
in the beat grid. We search for drops since it is common to
many electronic music genres for a chorus to be marked by
a drop, following immediately a breakdown section. We
monitor the bass frequency energy movement throughout
the beat grid to detect drops.

2.1.3 Source Separator

The chorus section contains multiple instruments, there-
fore we separate the bass line from the rest using the source
separation model, Demucs [4]. After the bass line is sep-
arated, we use a low-pass filter to get rid of the unwanted
artifacts. We cut-off at note C3 and normalize the filtered
bass line.

2.2 The Bass Line Transcriber

In this section we describe the transcription process of the
isolated chorus bass line that results in time-frequency and
beat-note pairs.

2.2.1 F0 Estimation

We look for F0 estimators that can both resolve the small-
est frequency interval of 1.95 Hz of the sub-bass pitches
and the shortest possible duration of a 1/4th beat bass
notes. Moreover, we require a 1/32th beat onset resolu-
tion to capture expressive grooves. Under these opposing
constraints, we observed that spectrogram-based estima-
tors fail. Therefore, we focus on waveform based esti-
mators and choose the pYIN algorithm which searches for
possible correlations in the waveform [1].

Our choice of pYIN is motivated by its computation
speed and operation range of frequencies which includes
the sub-bass frequency range. Moreover, comparing pYIN
with the state-of-the-art CREPE F0 estimation network,
we observed that pYIN performs better. This was ex-
pected due to the lack of sub-bass frequency examples in
the CREPE training set [5]. Using the open-source librosa
pYIN implementation, we search for hop and frame sizes
to achieve the best time, frequency and onset resolution [6].

In order to estimate the F0 of a signal using auto-
correlation methods, an estimation window of length equal
to the maximum expected period is required, without ex-
ceeding the expected minimum period by large [7]. There-
fore, the C1 pitch with the longest period sets the minimum
possible window length of 30.58 ms. We look for window
sizes that are multiples of this duration and compare their
time and frequency resolutions. After experimenting with
a number of window lengths, we choose a length equal to
a single such period. Given the hard nature of the bass line
transcription task, we consider the time resolution perfor-
mance of this length adequate, which could also resolve
the sub-bass frequency pitches reasonably well.

Figure 2. MIDI Reconstruction Example

We search for hop lengths that are proportional to the
beat length, and obtain a beat quantized pitch track. After
experimenting with various hop sizes, we observed that the
most accurate transcriptions resulted from a hop length of
1/32th beats, which also captures rich groove information.
We set the hop size to a 1/32th beat, and obtain a theoret-
ical 1/32th beat onset resolution [8]. After applying a 5%
confidence level threshold to the F0 estimate, which allows
us to filter the parts where the algorithm was not sure of its
predictions, we obtain the pitch track.

2.2.2 Pitch Track Quantizer

We draw disjoint epsilon balls (intervals) around the fre-
quencies of the 440 Hz tuned scale. If a given frequency is
inside any of these balls, we quantize it to that note and if
not, we replace it with silence, indicated by 0 Hz. This ap-
proach helps in correcting the F0 estimation mistakes dur-
ing silence regions, and solving the round-off errors during
the logarithmic pitch conversion.

Due to their non-steady state nature, F0 estimation be-
comes challenging in the note onset and offset regions.
Therefore, we develop a quantization algorithm to correct
possible errors. We use the quarter-beat positions to seg-
ment the voiced regions of the bass line. Each voiced re-
gion starts with an onset, continues with quarter beats and
ends with an offset. Using majority voting, the segments
between two successive quarter-beats are quantized uni-
formly, independent from the rest. The onset segment is
quantized as such, and compared with the majority vote of
the following segment. If this comparison fails, we take
the following segment’s vote for the onset segment. The
same procedure is applied to the offset segment using its
preceding segment.

2.2.3 MIDI Conversion

The obtained note transcriptions from the quantization pro-
cess are converted to MIDI notes. During the conversion
process the velocity value of each MIDI note is taken as
120 to simplify the conversion. Using the outputted MIDI
file, the chorus bass line can be instantly reconstructed us-
ing any DAW choice. An example of a reconstructed MIDI
file is given in Figure 2.

3. FURTHER WORK

We plan to improve the chorus detector to use melodic
information and integrate velocity estimation to the tran-
scriber. As the F0 estimation and source separation algo-
rithms are improved, they will be integrated.



4. ACKNOWLEDGEMENTS

This project was done as a Bachelor’s senior design project
at Koç University, Istanbul/Turkey. It could come to life
with the helps of Utku Demir, who equipped me with
the necessary programming skills and tools, and Furkan
Yesiler who guided me during the course of the project and
writing its paper.

5. REFERENCES

[1] M. Mauch and S. Dixon, “Pyin: A fundamental fre-
quency estimator using probabilistic threshold distri-
butions,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 659–663.

[2] J. Salamon, J. Serrà, and E. Gómez, “Tonal represen-
tations for music retrieval: From version identifica-
tion to query-by-humming,” International Journal of
Multimedia Information Retrieval, special issue on Hy-
brid Music Information Retrieval, vol. 2, pp. 45–58, 03
2013.

[3] S. Böck, F. Korzeniowski, J. Schlüter, F. Krebs, and
G. Widmer, “madmom: a new Python Audio and Mu-
sic Signal Processing Library,” in Proceedings of the
24th ACM International Conference on Multimedia,
Amsterdam, The Netherlands, 2016, pp. 1174–1178.

[4] A. Defossez, N. Usunier, L. Bottou, and F. Bach,
“Music source separation in the waveform domain,”
2020. [Online]. Available: https://openreview.net/
forum?id=HJx7uJStPH

[5] J. W. Kim, J. Salamon, P. Q. Li, and J. P. Bello, “Crepe:
A convolutional representation for pitch estimation,”
2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 161–165,
2018.

[6] B. McFee, A. Metsai, M. McVicar, S. Balke,
C. Thomé, C. Raffel, F. Zalkow, A. Malek, Dana,
K. Lee, O. Nieto, D. Ellis, J. Mason, E. Battenberg,
S. Seyfarth, R. Yamamoto, viktorandreevichmorozov,
K. Choi, J. Moore, R. Bittner, S. Hidaka, Z. Wei,
nullmightybofo, D. Hereñú, F.-R. Stöter, P. Friesch,
A. Weiss, M. Vollrath, T. Kim, and Thassilo,
“librosa/librosa: 0.8.1rc2,” May 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4792298

[7] R. L. Rabiner and R. W. Schafer, Theory and Appli-
cations of Digital Speech Processing. Upper Saddle
River, NJ 07458: Pearson, 2011.

[8] E. Scheirer and B. Vercoe, “Extracting expressive per-
formance information from recorded music,” Master’s
thesis, Massachusetts Institute of Technology, Cam-
bridge, United States, 1999.


