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ABSTRACT

Optical Music Recognition (OMR) and Automatic Music
Transcription (AMT) stand for the research fields which
aim at obtaining a structured digital representation of the
music content present in either a sheet music image or
an acoustic recording, respectively. While these fields
have historically evolved separately, the fact that both tasks
share the same output representation poses the question of
whether they could be combined in a multimodal frame-
work that exploits the individual transcription advantages
depicted by each modality in a synergistic manner. To as-
sess this hypothesis, this work presents a proof-of-concept
research piece that combines the predictions given by end-
to-end AMT and OMR systems over a corpus of mono-
phonic music pieces considering a local alignment ap-
proach. The results obtained, while showing a narrow im-
provement with respect to the best individual modality, val-
idate our initial premise.

1. INTRODUCTION

The attainment of structured digital representations of mu-
sic sources, typically known as transcription, remains as
one of the key, yet challenging, tasks in the Music Infor-
mation Retrieval (MIR) field [1]. Under this transcription
framework, two particular research lines stand out within
the MIR community: on the one hand, when tackling mu-
sic scores, Optical Music Recognition (OMR) is the field
that investigates how to computationally read music nota-
tion from these documents and to store them in a digital
structured format [2]; on the other hand, when consider-
ing acoustic music signals, Automatic Music Transcription
(AMT) represents the field that researches on the design
of computational algorithms to transcribe them into some
form of structured digital music notation [3].

Nevertheless, despite pursuing the same goal, these two
fields have historically worked in a disjoint manner due
to the different nature of the source data, either scores or
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acoustic pieces. However, what if, assuming that we have
both a score and a recording of a performance of a mu-
sic composition, the individual OMR and AMT systems
be combined to obtain a digital transcription of the piece
which benefits from the advantages of each method?

In this work, we aim at exploring, as a proof of concept,
whether the transcription results of a multimodal combi-
nation of sheet scores and acoustic performances of music
pieces improves those of the stand-alone modalities. For
that, we consider a fusion policy based on the combination
of the most probable hypotheses depicted by each source
of data (prediction-level fusion) for monophonic composi-
tions considering end-to-end OMR and AMT systems.

2. METHODOLOGY

We shall now describe the end-to-end neural architecture
considered for both the OMR and AMT processes as well
as the prediction-level fusion policy proposed.

2.1 End-to-end base recognition systems

Concerning the end-to-end neural architectures, we have
considered a Convolutional Recurrent Neural Network
(CRNN) scheme [4] together with the Connectionist Tem-
poral Classification (CTC) training algorithm [5]. This net-
work is formed by an initial block of convolutional lay-
ers devised to learn the adequate features for the particular
recognition task followed by another group of recurrent
stages which model the temporal/spatial dependencies of
those features.

As commented, the network is trained using the CTC
training function as it allows training the CRNN scheme
using unsegmented sequential data. In a practical sense,
this method only requires the different input signals to
the scheme and their associated sequences of characters
drawn from vocabulary Σ as its expected output, with-
out any specific input-output alignment. It must be men-
tioned that CTC requires the inclusion of an additional
“blank” symbol within the set of considered symbols, i.e.,
Σ′ = Σ ∪ {blank} due to its particular training procedure.
This symbol is used for enabling the detection of consecu-
tive repeated elements.

Since CTC assumes that the architecture contains a
fully-connected network of |Σ′| outputs with a softmax ac-
tivation, the actual output is a posteriogram with a num-
ber of frames given by the recurrent stage with |Σ′| to-
kens each. Most commonly the final prediction is obtained



out of this posteriogram using a greedy approach which
retrieves the most probable symbol per step and a poste-
rior squash function which merges consecutive repeated
symbols and removes the blank label. In our case, we
slightly modify this decoding approach for allowing the
multimodal fusion of both sources of information.

2.2 Fusion policy

The proposed policy takes as starting point the posteri-
ograms of the two recognition modalities, OMR and AMT.
For each posteriogram, a greedy decoding policy is applied
to each of them for obtaining their most probable symbols
per frame together with their per-symbol probabilities.

After that, the CTC squash function merges consecutive
symbols for each modality with the particularity of deriv-
ing the per-symbol probability by averaging the individual
probability values of the merged symbols. For example,
when any of the models obtains a sequence in which it pre-
dicts the same symbol for 4 consecutive frames, the algo-
rithm combines them and computes the average probabili-
ties of these involved frames. Note that the blank symbols
estimated by CTC are also removed.

Given that the resulting sequences for each modality
may not match in terms of length, it is necessary to align
both estimations for properly merging them. In this regard,
we make use of the Smith-Waterman (SW) local alignment
algorithm [6] which performs a search for the most similar
regions between pairs of sequences.

Eventually, the final estimation is obtained from these
two aligned sequences following these premises: (i) if both
sequences match on a token, it is included in the resulting
estimation; (ii) if the sequences disagree on a token, the
one with the highest probability is included in the estima-
tion; (iii) if one of the sequences poses a blank symbol,
that of the other sequence is included in the estimation.

3. EXPERIMENTATION

For the evaluation of our approach, we considered the
Camera-based Printed Images of Music Staves (Camera-
PrIMuS) database [7]. This corpus contains 87,678 real
music staves of monophonic incipits 1 extracted from the
Répertoire International des Sources Musicales (RISM).
For each incipit, different representations are provided: an
image with the rendered score (both plain and with artifi-
cial distortions), several encoding formats for the symbol
information, and a MIDI file of the content.

Regarding the particular type of data used by each
recognition model, the OMR system takes as input the arti-
ficially distorted staff image of the incipit scaled to a height
of 64 pixels, maintaining the aspect ratio. Regarding the
AMT model, an audio file is synthesized from the MIDI
file for each incipit with the FluidSynth software 2 and a
piano timbre considering a sampling rate of 22,050 Hz;
then a time-frequency representation is obtained by means

1 Short sequence of notes, typically the first measures of the piece,
used for indexing and identifying a melody or musical work.

2 https://www.fluidsynth.org/

of the Constant-Q Transform with a hop length of 512 sam-
ples, 120 bins, and 24 bins per octave. This result is em-
bedded as an image whose height is scaled to 256 pixels,
maintaining the aspect ratio.

Table 1 summarizes the details of the data considered
for each modality and partition after data curation and bal-
ancing processes.

Table 1. Number of incipits considered for each modality
and partition. In preliminary experimentation, the OMR
system remarkably outperformed the AMT one, thus we
reduced the training set of the OMR system not to eclipse
the possible contribution of AMT to the combined result.

Modality Train Validation Test

OMR (Image) 802 4,457 4,457
AMT (Audio) 13,371 4,457 4,457

Regarding the performance evaluation, we considered
the Symbol Error Rate (Sym-ER) as in other neural-based
transcription systems. This measure is defined as the aver-
age number of elementary editing operations (insertions,
deletions, or substitutions) necessary to match the pre-
dicted sequence with the ground truth one, normalized by
the length of the latter.

The results obtained with the experimental set-up con-
sidered for the AMT and OMR systems as well as the pre-
sented fusion policy are depicted in Table 2. It must be
pointed out that these results constitute the ones achieved
after optimizing the alignment parameters of the SW algo-
rithm on the validation partition.

Table 2. Symbol Error Rate result for the OMR, AMT, and
fusion policy for the test partition considered.

Metric OMR AMT Fusion

Sym-ER (%) 14.29 27.53 12.95

As it can be observed, the stand-alone OMR method
consistently outperforms the AMT one, achieving the for-
mer system a Sym-ER figure approximately 13% lower
than that of the latter. In this context, one could argue
that combining the outputs of these two systems may re-
port an improvement due to being the OMR system con-
siderably more robust than the AMT one. Nevertheless,
the fusion method is able to decrease the error rate ob-
tained by the best transcription model when the alignment
method is properly adjusted. More precisely, the fusion
method achieves a Sym-ER 1.4% lower than that of the
OMR model, i.e. the error is reduced over 9.4%.

Finally, it must be highlighted that the improvement
over a 9.4% of the Sym-ER metric supports the ini-
tial hypothesis that the multimodal combination of OMR
and AMT technologies may enhance that of stand-alone
systems, being, hence, worthwhile studying this new
paradigm for transcription tasks. Note that this work con-
stitutes a proof-of-concept research piece meant to validate
the commented hypothesis.

https://www.fluidsynth.org/
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