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ABSTRACT

In our previous work [1], we introduced a framework for
the unsupervised transcription of solo acoustic guitar per-
formances. The approach extends the technique used in
DrummerNet [2], in which a transcription network is fed
into a fixed synthesis network and is trained via recon-
struction loss. Our initial tests to apply this technique to
the problem of guitar transcription performed poorly, so in
this work, we focus on improving the transcription part of
the previously proposed framework. Here we compare the
capabilities and limitations of two different transcription
network structures for the task of polyphonic guitar tran-
scription. To verify the plausibility the network structure in
the unsupervised case, we investigate the task in the super-
vised setting, utilizing the limited labeled guitar data avail-
able in the GuitarSet dataset [3]. We find that the 2D CNN
(Convolutional Neural Network) operating on input spec-
trograms from [4] is better suited to the guitar transcription
task than the U-Net architecture based on 1D convolutions
on raw audio used in [2]. In future work, we will lever-
age our insights regarding transcription network structure
to improve upon our original unsupervised model.

1. INTRODUCTION

The guitar is a popular instrument among both professional
and amateur musicians. While an experienced musician
may be able to learn to perform a piece by simply listening
to it, many guitarists seek out sheet music to learn via mu-
sic notation. Because the process of creating sheet music
from a recording can be time-consuming and requires ex-
pertise, we are interested in systems that can automate this
task. Existing approaches to automatic guitar transcription
require access to labeled training data, but unfortunately,
existing datasets are limited in size and diversity. [5–9]
Thus, we are interested in pursuing an unsupervised gui-
tar transcription framework.

Our previous work introduced a scheme for unsuper-
vised guitar transcription inspired by DrummerNet a re-
cent, promising unsupervised approach to drum transcrip-
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Figure 1. An overview of the two network architectures
compared for the task of polyphonic guitar transcription.
The 1D U-Net proved useful for drum transcription in [2],
and the 2D CNN was used to predict note onsets in [4].

tion by Choi et al [2]. Their network consisted of a train-
able transcription module and a fixed synthesis module.
The transcription module takes in audio and predicts a note
transcription, and then the synthesis module resynthesizes
audio from the predicted transcription. The network is
trained to minimize the difference between the original au-
dio and the audio reconstructed by the synthesizer. As a re-
sult, the network learns to produce accurate transcriptions.

Our initial attempts to extend this technique to the task
of automatic guitar transcription performed poorly for the
task of transcribing real-world guitar performances. In this
work, we address the transcription part of the network, per-
forming preliminary experiments to compare different pos-
sible network architectures in a supervised setting.

2. NETWORK ARCHITECTURES

Figure 1 provides an overview of the two network vari-
ations we explore for the task of polyphonic guitar tran-
scription: a 1D U-Net used for drum transcription in [2]
(which we used in our initial prototype) and a 2D CNN
used for piano transcription in [4].



2.1 1D U-Net

The input to the U-Net is a 2-second clip of audio with
a sampling rate of 16kHz. After an initial convolutional
layer with 128 channels, the encoder consists of ten 50-
channel convolutional layers interleaved with max-pooling
layers of size 2. The decoder consists of six 50-channel
convolutional layers interleaved with bi-linear interpola-
tion layers of size 2. All convolutions have a kernel size of
3x3. Since we have 10 downsampling layers in the encoder
and only 6 upsampling layers in the decoder, the output has
one-sixteenth the sampling rate of the input.

Next, there is a set of 3 Gated-Recurrent Unit lay-
ers (GRUs), for sequence modelling. The first recurrent
layer uses 100 channels and operates bi-directionally along
the time axis to model temporal relations both forward
and backward in time. The second recurrent layer uses
50-channels and is uni-directional, for modelling tempo-
ral dependency. Finally, the third recurrent layer is uni-
directional, uses 44 channels (one for each pitch playable
on the acoustic guitar), and operates along the pitch axis to
model the dependencies between pitches on the guitar.

Finally, there is a Sparsemax activation along both axes.
Sparsemax is an activation function that produces the spar-
sity in time and pitch that we expect given the physical
limitations of a guitar performance (limited playing speed,
and a maximum of 6 notes at a time). The output is a 1kHz
signal with impulses representing onsets for each of the 44
guitar pitches.

2.2 2D CNN

The 2D CNN takes as input mel-scaled spectrograms with
229 frequency bins a hop size of 512 samples, and a sample
rate of 16kHz. These mel spectrograms are compressed
using a logarithm function.

The inputs are processed by a series of 2 3x3 convolu-
tional layers each with 12 filters. Each of these is followed
by a Rectified Linear Unit activation (ReLU). Next there
is a max pooling of dimension 2 along the frequency bin
axis only–the number of frames in each representation re-
mains constant. This is followed by a 3x3 convolutional
layer with size 24 and ending in a ReLU. Next, there is
a fully connected layer with an output size of 44 for each
frame. This represents the 44 playable pitches on a stan-
dard acoustic guitar. This model terminates with a sigmoid
activation.

The output representation is a framewise onset predic-
tion for each of the 44 guitar pitches. The frame rate
matches that of the input, approximately 32 frames per sec-
ond.

3. EXPERIMENT

We utilize the GuitarSet dataset [3] to train and test the
two transcription architectures. GuitarSet includes perfor-
mances from 6 different guitarists, so we build a train set
using 5 of the guitarists and hold out the 6th for testing,
as in [10]. All training and testing audio is segmented into
2-second clips. The training set consists of 4730 clips, and

the test set contains 946 clips. We use a sample rate of
16kHz.

Using the note onset times and pitch labels included in
the GuitarSet annotations, we create training labels in the
appropriate formats for the two network variations. We
train with a batch size of 32 using a binary cross entropy
loss, and the 2D CNN makes use of batch normalization
and dropout during training.

We compute precision, recall and f-measure for note
transcription using mir-eval [11]. As per the mir-eval stan-
dard, predicted notes are considered correct if the onsets
are within 50ms and the pitches are with 1 quarter tone of
the target. These metrics are computed for each 2-second
clip and then averaged over the entire testing dataset.

4. RESULTS AND DISCUSSION

Model Precision Recall F-measure
1D U-Net 0.05 ± 0.02 0.56 ± 0.23 0.08 ± 0.04
2D CNN 0.84 ± 0.16 0.76 ± 0.19 0.78 ± 0.16

Table 1. The results from our experiments comparing the
1D U-Net and 2D CNN models. The means and standard
deviations across the testing dataset are reported for all
metrics.

The results from our preliminary experiments are shown
in table 1. We found that the 2D CNN greatly outper-
formed the 1D U-Net in all metrics. In observing the U-
Net’s failure, it is important to note that the recall score
is much larger than precision, indicating a large num-
ber of false positives. In the output transcriptions from
this model, we observed excessive “pitch-streaking” where
multiple pitches are detected simultaneously at each note
onset. The DrummerNet’s sparsemax activation layer does
not insure single note detections as effectively for guitar
signals.

Another reason for the U-Net’s overall failure may be
the many more parameters it has than the 2D CNN, which
can provide training challenges given the limited amount
of guitar data available. Additionally, while the U-Net is
a more sophisticated model with mechanisms for incorpo-
rating details on multiple scales, it has the disadvantage of
processing raw audio. The U-Net model may have been
successful for the task of drum transcription since there
were only 3 classes (kick, snare, hi hat) which are visually
distinct in the time domain. However, with the task of gui-
tar transcription there are 44 classes, for the 44 different
pitches, and nearby pitches can appear to be very similar
to one another in the time domain. The 44 pitch classes are
perhaps more visually distinct in spectrogram representa-
tions. The mel spectrogram preprocessing pipeline in the
2D CNN is an advantage of this model.

In the future, we will leverage the insights from these
preliminary comparison experiments to improve the tran-
scription module within our unsupervised guitar transcrip-
tion framework.
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