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ABSTRACT

Recent machine learning technology have made it pos-
sible to automatically create a variety of new music. And
many approaches have been proposed to control musical
attributes such as pitch and rhythm of the generated mu-
sic. However, most of them focus only on monophonic
music. In this study, we apply the deep music transfor-
mation model [1], which can control the musical attributes
of monophonic music, to polyphonic music. We employ
Performance Encoding [2], which can efficiently describe
polyphonic music, as the input to the model. To evaluate
the proposed method, we performed music transformation
using a polyphonic music dataset.

1. INTRODUCTION

Creating music is difficult for many people because it re-
quires music theory and a lot of experience. In such sit-
uation, music generation models using machine learning
make it possible to create various kinds of music automat-
ically and easily. Therefore, these models can help begin-
ners in music creation. One of them is a model that trans-
forms the input music into the desired music by changing
some parameters. This is very useful because it allows you
to create music as if you were a composer. However, there
are some problems with such music transformation mod-
els. One of them is that there are few models that can trans-
form polyphonic music. Since most popular music is poly-
phonic, it is important to be able to transform polyphonic
music. In this study, we employ data in a format that can
represent polyphonic music into an existing transformation
method that can control musical attributes in monophonic
music. Then, we evaluate whether we can achieve the same
control as in the case of monophonic music.

2. RELATED WORKS

2.1 Attribute-Aware Music Transformation

Kawai et al. proposed a method to enable attribute-aware
music transformation from any set of musical annotations
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[1]. It uses a model that consists of a Variational Auto
Encoder and an adversarial Classifier-Discriminator. The
Classifier-Discriminator predicts the music attributes from
the latent space. Through adversarial learning, the music
attributes in the latent space of the generative model are
abstracted. These features are then reintroduced as con-
ditioning to the decoder to control the generation. This
method does not require complex derivative implementa-
tions and can be used for any form of music attribute. In
this paper, we use this method as a music transformation
model.

2.2 Performance Encoding

Polyphonic music has no fixed number of notes at the same
time, so it contains more information than monophonic
music. This makes it difficult to convert polyphonic mu-
sic into data well. Performance Encoding [2] is a method
of serializing the polyphonic musical performance into a
sequence of one hot encoded events. This data represen-
tation can represent data with high temporal resolution as
short sequences, and can be used in various MIDI files. In
this paper, we employ this data format because it can deal
with polyphonic music without complex implementation.

3. METHODS

3.1 Date Representation

The input MIDI file are encoded into a sequence of events
from the following set of vocabulary: 128 NOTE_ON
events represent the beginning of a note corresponding
to 128 MIDI pitches, 128 NOTE_OFF events to stop the
started note, 100 TIME_SHIFT events representing 10ms
to 1000ms in 10ms increments, and 32 SET_VELOCITY
events with 128 MIDI velocities quantized to 32 bins.

3.2 Music Attributes

Music attributes are musically meaningful values that can
be computed from music samples. For example, the to-
tal value of notes, the variance of pitches, and so on. The
music attributes calculated from each sample are normal-
ized to have zero mean and unit variance. This value is
used as the music attribute label a. This a is input to the
decoder as a conditioning. For training the discriminator,
we quantize the music attribute label a to the class label
b ∈ {1, 2, ...,K}. This K is set to 8 from [1]. This class
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Figure 1. Overview of our model used in this work.

label b is adjusted to make sure that each class contains the
same number of data.

3.3 Model Architecture

Figure 1 shows an overview of our model we will use. The
input is a sequence of one-hot vectors from the sequence
of events described in Section 3.1. The encoder outputs
the mean and variance of the latent vactor z from the in-
put event sequences. It consists of a single layer bidirec-
tional Gated Recurrent Unit (GRU) and linear layers that
calculates the mean and variance of the latent vector z from
GRU output. The decoder reconstructs the output of step
t from the output of the previous step t − 1, the music at-
tributes a, and the latent vector z. It consists of a two-layer
GRU. Classifier-Discriminator predicts to which class la-
bel b the latent variable z belongs. It consists of two linear
layers, with tanh in the first layer and a sigmoid function
in the second layer as the activation function.

4. EXPERIMENTS

4.1 Dataset

In our experiment, we used 10 years of MIDI data taken
from the performance data of Piano-e-Competition 1 .
From each music sample, we extracted a segment of four
beats at the granularity of a quarter note, with a maximum
sequence length of 100. As a result, a total of 171,833 se-
quences in this dataset are split into training/validation/test
sets in a ratio of 80/10/10.

4.2 Baseline

We compare the proposed model in this paper with GLSR-
VAE [3] as a baseline. This model removes the Classifier-
Discriminator from the proposed model and adds a regu-
larization term to the loss function. The music attribute
is controlled by changing one dimension of the latent vec-
tor z, which is mapped to the attribute by a regularization
term. We adopted it as a baseline because [4] has suc-
cessfully generated polyphonic music by inputting the data
representation of Performance Encoding to the model with
the mechanism of GLSR-VAE.

1 Piano-e-Competition dataset (competition history):
http://www.piano-e-competition.com/

GLSR Ours
accuracy 0.92 0.79

Table 1. Reconstruction accuracy

attribute GLSR Ours
rhythm density 0.75 0.30

Table 2. Spearman’s correlation coefficient

4.3 Evaluation

To evaluate the performance of the model, we calculate
the reconstruction accuracy and Spearman’s ranked corre-
lation coefficient. Spearman’s correlation coefficient eval-
uates whether the change in the input musical attribute la-
bel a corresponds linearly to the change in the musical at-
tribute calculated from the output. For the present evalua-
tion, we use rhythm density as the musical attribute to be
controlled. It is calculated by dividing the number of on-
sets in each sequence by the sequence length. Music with
a high rhythm density has a sequence of fine notes, while
music with a low rhythm density has a wider interval be-
tween each note.

4.4 Results

First, we performed the transformation without changing
the music attribute labels. The computed reconstruction
accuracy is shown in Table 1. The results show that the
baseline is better in terms of reconstruction accuracy. We
think this is because the baseline controls only one dimen-
sion, so there are fewer restrictions on the latent vectors
than in the proposed method where all latent vectors are
affected by the Classifier-Discriminator. Next, the trans-
formation was performed while changing the input musical
attribute labels. Table 2 shows the Spearman’s correlation
coefficients calculated between the input musical attribute
labels and the rhythm densities calculated from the output.
The results show that the baseline has more linear control
over the music attributes, and the proposed method does
not sufficiently separate the music attributes. In this ex-
periment, we used the same setup [1] that was used in the
monophonic experiments. Therefore, it may not have been
optimized for this polyphonic music setting, and we will
continue to experiment with it.

5. CONCLUSION

In this paper, we proposed music transformation model
that can control music attributes for polyphonic music. In
the future, we would like to optimize not only the input
data but also the structure of the model for polyphonic mu-
sic.
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