
CONTEXT-AWARE GENERATION OF MELODIC MIDI LOOPS

Nikolay Glazyrin
Yandex Music

nglazyrin@gmail.com

ABSTRACT

In this paper we describe a method of generation of sym-
bolic melody loops to fit in an existing set of melodic, har-
monic and bass loops. Two main contributions are the way
of representing MIDI data in textual form and the post-
processing procedure for selecting best candidates among
a potentially infinite set of generated melodies. Due to the
proposed representation a generative model can be condi-
tioned on music style and music intensity. Overall perfor-
mance of our method has been evaluated with the help of a
professional music producer.

1. INTRODUCTION

The vast field of computer-assisted music generation is get-
ting increasing amount of attention in recent years. An ex-
tensive overview of tasks and approaches emerging within
that field can be found in [1]. In this paper we focus on
the task of generating 8-bar symbolic melody loops to en-
hance an existing collection of loops used for assembling
a potentially endless stream of music in real time.

2. PROBLEM

Existing generative music services, such as Mubert 1 or
Endel 2 , are focused on creating a stream of music that
does not try to really please the listener, but rather to put
them in a desired state or mood. Such music must have a
certain degree of overall quality and diversity so as to not
distract the listener and not being too monotonic within a
listening session and from session to session.

Building musical streams from loops constitutes a com-
promise between the amount of human labor and the qual-
ity and diversity of the result. Creation of a number of
quality loops requires less effort from a professional musi-
cian than production of several complete tracks. A music
generation system can then arrange and mix those loops in
various ways thus providing the diversity.

From our preliminary experiments we found that lis-
teners tend to memorize the melodies they’ve heard while

1 https://mubert.com/
2 https://endel.io/

© N. Glazyrin. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: N. Glazyrin,
“Context-aware generation of melodic MIDI loops”, in Extended Ab-
stracts for the Late-Breaking Demo Session of the 22nd Int. Society for
Music Information Retrieval Conf., Online, 2021.

keeping less attention to other parts of music, such as bass
and harmony. So given the existing collection of human
generated loops, where each loop is available in both MIDI
and audio formats, we want to add more melodies while
maintaining their quality and stylistic coherency.

In the considered collection loops are grouped into
projects. Each loop is associated with an "instrument"
(e.g. bass, drums, harmony, melody), and within a project
any combination of loops of different instruments is al-
lowed. A project has associated key, style (one of hiphop,
rock, pop, electronic) and intensity (an integer value from
1 to 4). Projects with higher intensity have faster tempo,
more notes in loops and more aggressive sound. All
this information needs to considered when generating new
melodies. We only want to generate MIDI notes, and leave
the choice of timbre up to a professional musician.

3. METHOD

Transformer-based models became a de facto standard for
working with various types of data, primarily texts. We
have experimented with a number of text generation mod-
els from HuggingFace Transformers [2] library 3 . The best
results were obtained using Reformer [3].

For training we use triplets (bass loop, harmony loop,
melody loop) encoded in textual form as described in sec-
tion 3.1, the order of instruments is always the same. Each
triplet’s loops are chosen from one project. The trained
model is then able to generate new texts or continue ex-
isting ones. During the inference an encoded representa-
tion of bass and harmony loops and the header token for
melody are given to the input. To generate a new melody,
the model is asked to continue the input sequence.

The representation is designed so that each word is
fixed, independent of adjacent words, and the vocabulary
is small. Therefore we have used a word-level tokenizer,
so that each word in the encoded representation is directly
translated to a single token and vice versa.

3.1 Music Encoding

The encoding format was partially inspired by [4] and [5].
It is designed to minimize the possibility of incorrect to-
ken sequences, e.g. start token without corresponding stop
token. See Figure 1 for an example of encoding. An in-
put has the header token piece and two tokens that rep-
resent music style (e.g. electronic) and intensity (e.g.
intensity2) of the project that hosts given loops. These

3 https://github.com/huggingface/transformers



piece electronic intensity2 loop bass
bar q0 p4 o4 d2 v64 bar q8 p4 o4 d1 v56
bar q0 p4 o4 d1 v60 ... end_loop loop ...

Figure 1. Example encoding.

two kinds of tokens are always given to the input and act as
a condition on model’s output. Each loop is then encoded
between loop and end_loop tokens.

Within each loop first token encodes the instrument
(bass here), following tokens encode its notes separated
into bars using bar tokens.

Each note is encoded as a tuple of 5 tokens: (position,
pitch, octave, duration, velocity). Position tokens are in
range q0–q15 and encode the start position of the note
within a bar quantized to 1/16. Duration tokens are in
range d0–d24 and encode the quantized duration of the
note from 1/32 to 8 bars with step size doubled at 1/16,
8/16, 1, 2 and 4 bars, so that the resolution is higher for
shorter notes. Velocity values are quantized to multiples of
4, and the corresponding tokens are chosen from {v0, v4,
v8, ..., v128}.

Pitches of notes belonging to the scale of current
project’s key are represented as p1 (tonic) to p7. Off-scale
notes are then encoded as p8 to p12 starting from the one
closest to tonic. This way the encoded representation be-
comes invariant to key and mode (major or minor). The
octave for each note is calculated as if tonic of the current
key was the first note in its MIDI octave instead of C. The
corresponding token is chosen from the range o0–o8.

The resulting model vocabulary has size of 116 tokens,
including special ones required only for training.

3.2 Training

Compared to original Reformer, we have decreased the
number of hidden layers to 6 and the number of attention
heads to 8. The resulting model has 3.6M trainable pa-
rameters. It was trained for 200 epochs using a relatively
small dataset of nearly 14000 encoded triplets consisting
of MIDI loops created by professional music producers.

3.3 Postprocessing

A number of heuristics were adopted to select best candi-
dates among the model outputs.

First of all, we have noticed that the model tends to oc-
casionally shift the whole generated melody by 1/16 for-
ward or backward relatively to downbeats. This becomes
especially noticeable with longer notes. To compensate for
that, we shift the notes with duration of at least 1/4 starting
1/16 apart from beat positions to those corresponding beat
positions. Then we clip the generated melodies to 8 bars
and discard melodies shorter than 3 bars.

A number of metrics are then calculated over result-
ing melodies. They originate from the MusPy [6] li-
brary 4 , except for the one called max_notes_in_a_row,

4 https://github.com/salu133445/muspy

Metric Desired values
n_pitch_classes_used ≥ 2
pitch_in_scale_rate 1
pitch_entropy > 1
polyphony_rate ≤ 0.5
max_notes_in_a_row ≤ 2

Table 1. Metrics used to filter unsuitable melodies.

Figure 2. Fraction of unchanged notes by intensity (above)
and style (below)

which is calculated as the number of notes having the same
pitch and starting one after another with no breaks in be-
tween. Table 1 summarizes these metrics and correspond-
ing threshold values.

For each input we sample 20 candidate melodies that
have all metrics within the desired range.

4. RESULTS AND DISCUSSION

Using the model described above, additional melodies in
MIDI format have been generated for 63 projects having
different styles and intensities. These melodies have been
assessed in context of the corresponding project by a pro-
fessional music producer, who was allowed to accept a
melody as is, accept after modifying some notes or discard.

In total 70% of generated loops have been accepted.
Within the accepted loops 71% of notes have been left un-
changed. As can be seen from Figure 2, the fraction of
unchanged notes is quite high for all different intensities
and styles, which means that the model is able to control
its output given the tokens for style and intensity in the be-
ginning of the input sequence.

Desired metric values listed in Table 1 are selected to
filter out some the cases unwanted in our scenario, such as
when the model gets stuck on a particular note or a pair of
notes, or when the generated melody is made up of mul-
tiple notes playing in parallel. But the final judgment on
generated melodies is intentionally left to a human expert.

The encoding method presented here can easily be mod-
ified to generate scores for other types of instruments, e.g.
bass. But the set of metrics and their thresholds need to be
modified accordingly.



5. REFERENCES

[1] S. Ji, J. Luo, and X. Yang, “A comprehensive survey
on deep music generation: Multi-level representations,
algorithms, evaluations, and future directions,” CoRR,
vol. abs/2011.06801, 2020. [Online]. Available: https:
//arxiv.org/abs/2011.06801

[2] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite,
J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush, “Transformers: State-of-
the-art natural language processing,” in Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations.
Online: Association for Computational Linguistics,
Oct. 2020, pp. 38–45. [Online]. Available: https:
//www.aclweb.org/anthology/2020.emnlp-demos.6

[3] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The
efficient transformer,” in International Conference on
Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=rkgNKkHtvB

[4] J. Ens and P. Pasquier, “Mmm : Exploring conditional
multi-track music generation with the transformer,”
2020.

[5] Y.-S. Huang and y.-h. Yang, “Pop music transformer:
Beat-based modeling and generation of expressive pop
piano compositions,” in MM ’20: Proceedings of the
28th ACM International Conference on Multimedia, 10
2020, pp. 1180–1188.

[6] H.-W. Dong, K. Chen, J. McAuley, and T. Berg-
Kirkpatrick, “Muspy: A toolkit for symbolic music
generation,” in Proceedings of the 21st International
Society for Music Information Retrieval Conference
(ISMIR), 2020.


