
PANAKO 2.0 - UPDATES FOR AN ACOUSTIC FINGERPRINTING SYSTEM

Joren Six
IPEM, Ghent University, Belgium

ABSTRACT

This work presents updates to Panako, an acoustic finger-
printing system that was introduced at ISMIR 2014. The
notable feature of Panako is that it matches queries even af-
ter a speedup, time-stretch or pitch-shift. It is freely avail-
able and has no problems indexing and querying 100k sea
shanties. The updates presented here improve query per-
formance significantly and allow a wider range of time-
stretch, pitch-shift and speed-up factors: e.g. the top 1 true
positive rate for 20s query that were sped up by 10 per-
cent increased from 18% to 83% from the 2014 version of
Panako to the new version.

The aim of this short write-up is to reintroduce Panako,
evaluate the improvements and highlight two techniques
with wider applicability. The first of the two techniques is
the use of a constant-Q non-stationary Gabor transform: a
fast, reversible, fine-grained spectral transform which can
be used as a front-end for many MIR tasks. The second is
how near-exact hashing is used in combination with a per-
sistent B-Tree to allow some margin of error while main-
taining reasonable query speeds.

1. INTRODUCTION

Acoustic fingerprinting solves the problem to efficently
find short audio fragments in large audio archives. It has
many uses cases [1] ranging from copyright management,
music identification, smart-costume desing [2] to data syn-
chronization [3]. Acoustic fingerprinting that also works
when a query is time-stretched, pitch-shifted or sped up
allows, for example, DJ-set analysis [4–7].

A classical approach [8] is to use combinations of peaks
in a spectral representation as a fingerprint. This feature
has been used in several systems [2,5,8,9]. One of them is
Panako [4], a system that was later found to be conceptu-
ally similar to a patented method [9].

Panako received updates in 2021 after close inspection
of an efficient implementation of a similar algorithm [2]
for embedded systems. The underlying concepts from the
original paper [4] still stand but two changes improve the
system considerably.

c© Joren Six. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Joren Six,
“Panako 2.0 - Updates for an acoustic fingerprinting system”, in Extended
Abstracts for the Late-Breaking Demo Session of the 22nd Int. Society for
Music Information Retrieval Conf., Online, 2021.

2. CHANGES

The first change replaces the frequency transorm from a
classical constant-Q transform [10, 11] to a constant-Q
non-stationary Gabor transform [12]. The latter has is
more efficient and allows a finer frequency resolution at
equal computational cost. See [13] for a detailed compari-
son. The spectral peak detection in Panako improves by the
use of this finer frequency resolution. In Panako, JGabora-
tor is used: a wrapper around the Gaborator library which
implements a constant-Q non-stationary Gabor transform
in C++11.

The second change replaces an exact hash matching
technique by a near-exact hash matching approach. Some
background helps understand this change. The first step
in the Panako algorithm is a transform a one dimensional
waveform into a two dimensional time/frequency grid.
Each fingerprint hash consists of a combination of three
local peaks in this grid. Each peak has a frequency f ,
time t and magnitude m component. Each bin in the
time/frequency grid has a very short duration and a small
frequency dimension. The exact dimensions of these bins
are determined by the spectral transform parameters and
can be small but they remain discrete. This means that
when a query and a match differ by about half the du-
ration of a bin, energy is spread over neighbouring bins.
Since time-frequency coordinates of peak magnitude bins
are used in fingerprint hashes, off-by-one errors are to be
expected, both in time and frequency. A design is needed
to cope with such cases.

For indexing and matching a hash is constructed from
the components mentioned below. A hash combines
fingerprint information into a single integer. The addi-
tional information contains an audio identifier used to
tally matches. Below, the components are ordered from
most to least significant. By only including approximate
frequency information and having the time ratio in the
least significant bytes, range queries become possible.
The last couple of bits can be ignored during a search in
ordered hashes: effecively dealing with off-by-one errors.

|f3 − f2|/4 ; |f2 − f1|/4 ; f̃1
|t3 − t2| > |t2 − t1|

m3 > m2 ; m3 > m1 ; m1 > m2

f3 > f1 ; f3 > f2 ; f1 > f2
(t2 − t1)/(t3 − t1)

This idea of gracefully handling off-by-one errors needs
to be reflected in the matching scheme as well. The finger-
prints extracted from a query are matched with with the

0 20 40 60 80 100
Query time (time index)

0

20

40

60

80

100

Ti
m

e
 (t

im
e

in
de

x)

Thresholded matching strategy

Figure 1. A linear regression from the first matches to the last (the blue range) is used to allow some small margin in which
matches are accepted (green area). This allows off-by-one matches and linear time-stretching or speed modifications.

index. A list of matching prints is returned and needs to
be filtered: hashes might randomly collide or short frag-
ments might match for a very short duration. To filter
true positive matches from false positives the difference
in time (∆t) between each reference and query hash. For
a true match ∆t is either a constant or changes linearly
over time. In the original paper [8] a true positive is only
accepted if ∆t is a fixed constant. Here, we calculate a lin-
ear regression from the first matches to the last and allow
some small margin in which matches are accepted, the blue
range in 1). In this manner off-by-one matches and linear
time-stretching/tempo modifications are supported.

In [5] a different trade-off was made. There, four spec-
tral peaks are combined in a fingerprint which are indexed
in a multi-dimensional R-tree. This allows to execute a
range query. A multidimensional range query in a large
data set is quite a bit more costly than a near-exact hash
query in a single dimension. Effectively, query perfor-
mance is traded for higher retrieval accuracy [5].

When larger archives are indexed, the characteristics of
the key-value store become more and more important. The
key-value store stores a hashes together with some addi-
tional information. The 2021 Panako version stores or-
dered fingerprints using a persistent, compact, high perfor-
mance, B-Tree [14]. Now, LMDB (Lightning Memory-
Mapped Database Manager, http://lmdb.tech) is
used. The speed, small storage overhead and performance
allow more beneficial trade-offs between query perfor-
mance: it facilitates storing more fingerprints per second
of audio or large while still maintaining a similar query
speed.

3. EVALUATION AND CONCLUSION

Panako contains an evaluation script. The scrip takes a
folder with audio files as input and indexes 80% of the
files. The remaining 20% are used to check true nega-
tives. After indexing a number of query files are created.
These are randomly selected 10 and 20 second fragments
which are modified in several ways: time-stretched, pitch
shifted, sped up, filtered, ... The Panako system is pre-
sented with the modified queries and it is checked whether

84 88 92 96 100 104 108 112 116
Query modification factor (%)

0

20

40

60

80

100

To
p

1
tru

e
po

sit
iv

e
ra

te
 (%

)

20 second queries

Time stretch P2021
Pitch shift P2021
Speedup P2021
Speedup P2014
Speedup W2003

Figure 2. True positive rate after several modifications for
Panako 2021 (P2021). A comparison is made with Panako
2014 (P2014, [4]) and Wang 2003 (W2003, [8]).

the expected match is returned. The script then calcu-
lates a range of metrics. Figure 2 contains the most rele-
vant metrics which have been achieved using the Free Mu-
sic Archive [15]. Note that text describes and evaluates
Panako as is in the following commit found on GitHub:
6cf936730131d71c94c562a06a1a791e09b4c520. Figure 2
shows a significant improvement in robustness in modifi-
cations with respect to the Panako 2014 version. Query
speeds are around 40 times real-time both for query as in-
dexing using a single thread on an older CPU (early 2015
macBook pro Dual Core i5). Readers are encouraged to
re-run the evaluation using their specific music data sets.

To conclude: the updated version of Panako has been
introduced. It contains two techniques with wider applica-
bility: the use of a constant-Q non-stationary Gabor trans-
form and a near-exact hashing technique for range queries.
The evaluation of the updated system shows significant
improvements in true positive rates after speed-up, time-
stretching and pitch-shifting while maintaining reasonable
query speeds.

http://lmdb.tech
https://github.com/JorenSix/Panako/tree/6cf936730131d71c94c562a06a1a791e09b4c520

4. REFERENCES

[1] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review
of audio fingerprinting,” The Journal of VLSI Signal
Processing, vol. 41, pp. 271–284, 2005.

[2] J. Six, “Olaf: Overly lightweight acoustic fingerprint-
ing,” 2020.

[3] J. Six and M. Leman, “Synchronizing multimodal
recordings using audio-to-audio alignment,” Journal
on Multimodal User Interfaces, vol. 9, no. 3, pp. 223–
229, Sep 2015.

[4] J. Six and M. Leman, “Panako - A scalable acoustic fin-
gerprinting system handling time-scale and pitch modi-
fication,” in Proceedings of the 15th ISMIR Conference
(ISMIR 2014), 2014, pp. 1–6.

[5] R. Sonnleitner, A. Arzt, and G. Widmer, “Landmark-
based audio fingerprinting for dj mix monitoring.” in
ISMIR, 2016, pp. 185–191.

[6] D. Schwarz and D. Fourer, “Unmixdb: Een dataset
voor het ophalen van dj-mixinformatie,” 2018.

[7] T. Kim, M. Choi, E. Sacks, Y.-H. Yang, and J. Nam,
“A computational analysis of real-world dj mixes using
mix-to-track subsequence alignment,” 2020.

[8] A. L.-C. Wang, “An industrial-strength audio search al-
gorithm,” in Proceedings of the 4th International Sym-
posium on Music Information Retrieval (ISMIR 2003),
2003, pp. 7–13.

[9] A. L.-c. Wang and D. Culbert, “Robust and invariant
audio pattern matching,” US Patent US7 627 477 B,
2003.

[10] J. C. Brown and M. S. Puckette, “An efficient algorithm
for the calculation of a constant q transform,” The Jour-
nal of the Acoustical Society of America, vol. 92, no. 5,
pp. 2698–2701, 1992.

[11] J. C. Brown, “Calculation of a constant q spectral trans-
form,” The Journal of the Acoustical Society of Amer-
ica, vol. 89, no. 1, pp. 425–434, 1991.

[12] Holighaus, Nicki and Dörfler, Monika and Velasco,
Gino Angelo and Grill, Thomas, “A framework for in-
vertible, real-time constant-q transforms,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 21, no. 4, pp. 775–785, 2012.

[13] Velasco, Gino Angelo and Holighaus, Nicki and Dör-
fler, Monika and Grill, Thomas, “Constructing an in-
vertible constant-q transform with non-stationary ga-
bor frames,” Proceedings of DAFX11, Paris, vol. 33,
2011.

[14] D. Comer, “Ubiquitous b-tree,” ACM Computing Sur-
veys (CSUR), vol. 11, no. 2, pp. 121–137, 1979.

[15] M. Defferrard, K. Benzi, P. Vandergheynst, and
X. Bresson, “FMA: a dataset for music analysis,” in
Proceedings of the 18th International Symposium on
Music Information Retrieval (ISMIR 2017), 2017.

	1. Introduction
	2. Changes
	3. Evaluation and conclusion
	4. References

