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ABSTRACT

Modern deep learning models provide increasingly more
accurate predictions for common MIR tasks, however, the
models’ confidence scores associated with each prediction
are often left unchecked. This potential mismatch between
prediction confidence and empirical accuracy makes it dif-
ficult to account for uncertainties in these models’ predic-
tions. Controlling uncertainty is crucial if MIR models’
prediction confidences are to be interpreted as probabili-
ties, and doing so can help a model produce more meaning-
ful predictions when faced with ambiguity. To properly ac-
count for model uncertainties, prediction confidence scores
should be calibrated to better reflect the true chance of it
being correct. We propose a simple and efficient post-hoc
probability calibration process using Temperature Scaling.
We demonstrate the effect of this calibration process on the
Rock Corpus for key and chord estimation.

1. INTRODUCTION AND DEFINITIONS

Modern deep neural-network models have been able to
achieve impressive accuracy on many music information
retrieval (MIR) tasks [1–3]. However, typical models don’t
properly account for uncertainties in their predictions, and
result in a mismatch between the model’s reported confi-
dence and its empirical accuracy [4]. Calibrated predic-
tion confidence is necessary for incorporating model out-
puts into probabilistic models.

Deep MIR models usually produce a confidence score p̂
associated with a prediction ŷ by applying a softmax func-
tion to the network output layer z ∈ RK , where

p̂ = σSM (z) , ŷ = argmax
k

p̂(k), p̂ = max
k

p̂(k)

and the softmax function σSM is defined as

σSM(z) =
exp(z)∑K

k=1 exp(z
(k))

Consider a K-class classifier h(x) = (ŷ, p̂) with input
feature x, class prediction ŷ ∈ {1, . . . ,K}, and predic-
tion confidence p̂ ∈ [0, 1]. To have calibrated confidence
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Figure 1. Reliability Diagram (left) and confidence his-
togram (right) of the CREMA root predictor on its test set.

scores means that p̂ should represent how often the classi-
fier produces a correct prediction ŷ = y for inputs x from
(x, y) ∼ D. Formally, perfect calibration is defined as

P (ŷ = y|X = x) = p̂(x) (1)

which equates the accuracy of the model with the model
confidence score with regard to the same input. We esti-
mate the left hand side of Eqn (1) using the average model
accuracy over members of a dataset (xi, yi)Ni=1 ∼ D.

While perfect calibration is often impossible to achieve,
we can measure how reliable a model is by estimating
the gap between the left hand side and right hand side of
Eqn (1). We can do that by looking at the confidence his-
togram (figure 1, right). If we group inputs xi by which
histogram bin p̂(xi) falls into, we can calculate both the
empirical accuracy and average confidence of that group,
which estimates the left and right-hand-side of equation (1)
respectively.

A reliability diagram (figure 1, left) plots the empirical
accuracy as a function of confidence, and shows how well
calibrated a model is [5, 6]. If a model is perfectly cali-
brated, then the reliability diagram should resemble iden-
tity function; any mis-calibration would result in a gap be-
tween empirical accuracy and confidence.

Another more compact metric of calibration is the Ex-
pected Calibration Error (ECE), which is a scalar summary
of the reliability diagram [7]. It measures the expected ab-
solute difference between prediction confidence and accu-
racy and is defined as the average of the accuracy confi-
dence gap (dashed boxes in figure 1), weighted by the num-
ber of points landing in the corresponding bin (Figure 1
right).



2. CALIBRATION TECHNIQUE

The goal of probability calibration is to produce a cali-
brated confidence q̂, based on observations. Many tech-
niques for calibrating prediction confidence exist for multi-
class models [7–9]. We choose temperature scaling due to
its effectiveness on a wide range of tasks and simplicity in
implementation [4]. Temperature calibration uses a single
parameter β > 0 to scale the logit vector z, and produces
the calibrated confidence:

q̂ = max
k

q̂(k) = max
k

σSM (β · z)(k) (2)

Since β is always positive, temperature scaling does not
change argmaxk σSM (β · z)(k), which is the model’s
original prediction ŷ.

While the original formulation of Guo et al. [4] requires
direct access to the model logits z, we propose using log p̂
as a proxy for z where p̂ = σSM(z) is the vector of class
likelihoods. This allows us to apply the calibration process
post-hoc on trained models, where logits are not readily
accessible. Letting z = log p̂, we observe:

q̂ = σSM (β log p̂) = σSM
(
log p̂β

)
=

p̂β∑
k (p̂

β)
(k)

(3)

This provides a straightforward recipe for obtaining cal-
ibrated probability for each class after the calibration con-
stant β has been determined on a calibration set: simply
raise the model softmax output to β and normalize.

The choice of β is optimized with respect to the cross
entropy between the calibrated distribution p̂(x) and a la-
beled calibration set, (xi, yi)Ni=1 ∼ D.

β∗ = argmin
β
− 1

N

N∑
i=1

log

(
p̂β
)(yi)∑

k (p̂
β)

(k)
(4)

This is a convex optimization problem over a single
variable β, and can be readily solved by most numerical
optimization toolkits.

3. EXPERIMENTS AND RESULTS

We tested the effect of temperature calibration on two pop-
ular deep MIR models: CREMA’s Chord root estimator [3]
and MADMOM’s Key estimator [10]. We used CREMA’s
test set as the calibration set for the chord root estima-
tor, and both the GiantSteps Key [11] and the Billboard
dataset [12] as the calibration set for the key estimator.
Entries in GiantSteps Key and Billboard that have mod-
ulations or labels outside of MADMOM’s key vocabulary
are discarded. Both the GiantSteps Key and Billboard set
are obtained via MirData [13]. Since MADMOM is de-
signed to produce a single key for each excerpt, songs in
the Rock Corpus are broken up into segments of single key
before being analyzed by the key model. Segments that are
shorter than 5 seconds are discarded.

After calibration, we combine the estimated chord root
and key centers to produce an estimate of which scale de-
gree the chord is rooted upon, what we call relative roots.
(a chord root of G in the key of D has relative root of IV.)
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Figure 2. Shifts in reliability gaps (top) and confidence
histograms (bottom) for applying calibration to the key es-
timator (left) or the chord estimator (right) individually.

Key
Root

H U C A

H 23.66% 11.44% 6.18% 13.65%
U 10.16% 4.55% 7.07% 6.74%
C 13.03% 2.21% 3.64% 5.99%
A 17.00% 4.78% 1.59% 0%

Table 1. Expected Calibration Error (ECE) of the realtive
root analysis produced by using one of four outputs (C: cal-
ibrated, U: un-calibrated, H: hard decisions, A: annotation)
for either the key or the chord root model.

We show the effect of calibrating the constituent esti-
mators on the resulting combined analysis via an ablation
study, using either the calibrated output, the un-calibrated
output, the hard decision, or the annotation (oracle) for the
key and chord root predictors respectively to produce 15
relative root analyses (and 1 annotation) of the Rock Cor-
pus, with their ECEs recorded in Table 1.

By minimizing the objective function Eqn (4) over
the respective calibration sets using the bounded Brent’s
method [14] in the scipy.optimize package [15], we
found that β∗ = 0.79 for CREMA, and β∗ = 1.25 for
MADMOM. Figure 2 shows the individual effect of cali-
brating either the key or the chord model on the reliabil-
ity of their respective tasks. Both models show an im-
provement in ECE: from 4.78% to 1.59% for CREMA
(Table 1 last row), and from 6.74% to 5.99% for MAD-
MOM (Table 1 last column).

It is curious that while calibrating the root model im-
proved ECE when paired with deterministic key predic-
tions (row 1 and 4 of Table 1), they didn’t help when paired
with probabilistic key outputs (row 2 and 3). Nevertheless,
the analysis using calibrated outputs outperforms the anal-
ysis using hard decisions (diagonal of Table 1).

4. CONCLUSION AND FUTURE WORK

By calibrating the output of two deep MIR models,
we demonstrate the potential of temperature calibration,
which effectively improves the reliability of the analysis in
general. Given the simplicity in the calibration technique
and its ease of implementation, it can be readily incorpo-
rated into an MIR pipeline.
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