
FACEJAM.APP: JAVASCRIPT FACIAL EXPRESSIONS FOR MUSICAL
EXPRESSION

Christopher J. Tralie
Ursinus College Math And Computer Science
ctralie@alumni.princeton.edu

Parker Fairchild
Ursinus College Computer Science
pdfairchild8@gmail.com

ABSTRACT

We present www.facejam.app: a system that combines
computer vision, computer graphics, and MIR to auto-
matically animate facial expressions to music. This work
started off as an offline Python script that won "best code"
at the HAMR Hackathon at Deezer in 2018, and we have
extended it to work live in the browser using Javascript
and WebGL. The system automatically detects facial land-
marks in an image using face-api.js [1], and it uses dy-
namic programming beat tracking to move detected eye-
brows up and down to the beat, while also mapping in-
stantaneous power to a "smile" expression. These audio
aspects drive a model face, which is used to warp an arbi-
trary face real time using piecewise affine warps via GLSL
shaders. The system supports animating multiple faces in
an image, and audio can be sourced from uploaded files,
player recordings from a microphone, or 30 second pre-
view clips from the Apple Music. Players can also save
their favorite results automatically to files from the browser
to share on social media. Our fully client side prototype
system is currently live at https://www.facejam.
app.

1. INTRODUCTION

The use of facial expressions to visualize data dates back
at least to Chernoff faces in the ’70s [2]. In our modern
rendition of face expression-based data visualization, we
specifically use facial expressions to visualize rhythm and
energy features over time in musical audio, which we syn-
chronize live to the audio. This makes for a fun music visu-
alizer in which faces come alive and move in sync with the
music. This whimsical application fits in well with current
social media trends with face filters.

In what follows, we explain a basic prototype which is
similar to the one we developed at HAMR in 2018, and
then we follow with some improvements we added in our
new web-based version.

© C. Tralie, and P. Fairchild. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: C. Tralie, and P. Fairchild, “FaceJam.app: Javascript Facial Ex-
pressions for Musical Expression”, in Proc. of the 22nd Int. Society for
Music Information Retrieval Conf., Online, 2021.

Figure 1. A screenshot of www.facejam.app

Beat locations

fa
ci
al

 la
nd

m
ar

ks

Del
au

na
y

tri
an

gu
la

tio
n

Timestamp

Energy

Face Detection
And Triangulation

Facial Animation
 Transfer

superflux

Figure 2. A block diagram of the system.

2. TECHNICAL DETAILS OF THE PIPELINE

Figure 2 shows an overview of our system, which com-
bines computer vision techniques and MIR techniques,
as well as asynchronous programming in Javascript, to
achieve our goal. Our system is implemented fully on the
client side for simplicity and sustainability.

2.1 Audio Features

On the audio side, we compute the instantaneous signal en-
ergy within a sliding over time, which is later mapped to
a smile expression; that is, faces smile more when there’s
more going on in the audio. We also use beat onset times
to separately animate the eyebrows, moving the eyebrows
up closer to an onset. To this end, we use the offline Viterbi

Figure 3. A model face is animated based on music, and
a target face in a user specified image is warped accord-
ingly. This is done via a Deluanay triangulation of facial
landmarks, which is used to transfer facial landmark mo-
tion from a model face to a target face, whereby we setup
a piecewise affine warp of the target face to change its ex-
pression. Note how the landmarks on the target face are po-
sitioned relative to the same triangles as the corresponding
landmarks in the model, which is how we achieve "shape
analogies" from a neutral face to a different expression be-
tween the model and the target.

beat tracking algorithm of Ellis [3] on top of a superflux au-
dio novelty function [4]. This technique requires a tempo
bias as input, which we compute using the combined ACF-
DFT technique of Peeters [5]. We use the results of this
beat tracking to move the eyebrows of a target face up and
down.

2.2 Computer Vision Techniques

On the computer vision side, to enable such facial anima-
tion, we rely on facial landmark detection software to lo-
calize finer geometry of user specified face images [1] (as
seen in Figure 3). As a preprocessing step outside of the
system, we model different expressions, such as the smile
that is currently in our prototype, as a sequence of these
landmarks on a model face. Since the landmarks are noisy,
we use median filtering and Procrustes alignment [6] to
clean up these landmarks before saving them to our model.

Next, we need to to transfer a changing expression on
the model (including both beat-based eyebrow movement
and energy-based partial expressions) to a face detected in
a user supplied image 1 . We compare the moving facial
landmarks in the model with respect to its neutral expres-
sion, and we perform point location inside of a Delaunay
triangulation of the facial landmarks. We then express the
landmarks using barycentric coordinates, which are rela-
tive to the locations of the triangle. To move the landmarks
in the target face in the same relative direction, we apply
these same barycentric coordinates to the triangles in the
target face using the facial landmark coordinates of the tar-
get. Finally, now that we have new landmark locations de-
scribing the motion of the target face, we perform a triangle
by triangle piecewise affine warp to the pixels in the target
face to warp the entire face. Figure 3 shows an example.

1 See [7] for another simple approach to this.

Figure 4. A triangulation is created for multiple faces us-
ing a constrained Delaunay triangulation to connect the
bounding boxes between the faces

3. IMPROVEMENTS FOR THE WEB

The initial prototype for this system was developed for
the Hacking for Audio And Music Research (HAMR)
Hackathon in 2018. We have completely redone the
pipeline from scratch in Javascript and made numerous im-
provements along the way.

Most noticeably, barycentric warps were implemented
in software before, which caused the rendering stage to be
a 3-4x factor slower than real time. In our new system,
we use a WebGL shader to perform the warp on the GPU,
which is far faster than real time. This means that it is now
possible to interactively tune parameters, such as “eyebrow
energy,” or the vertical extent of eyebrow movement as a
function of the beat.

The next bottleneck after the image warping is the trian-
gle point location in pure Javascript. We accelerate this by
assuming that the landmarks stay within the adjacent trian-
gles, and we search those first before reverting to a brute
force search through all triangles 2 .

We also now support multiple faces which are animated
in sync (Figure 4), and we allow flexible inputs for both
images and audio. On a mobile device, a person can easily
take their picture and load it directly into the app.

Furthermore, we now support audio recording, and we
have a built in Apple Music searcher + 30 second song
preview integration to make it easy to choose from a huge
variety of clips. Fortuitously, we find that this 30 second
length is about right to convey a particular tune + face con-
cept.

To move towards settings in which this may be used at
a concert venue for people to synchronize their phones to
live audio, we provide a real time option for beat tracking
by implementing a Bayes filter version (as opposed to an
offline Viterbi method) of the efficient bar pointer model of
[8] (original full state space devised in [9]). As in [10], we
use a state space model restricted to a single beat interval.

Finally, to make it easy to share fun results on social
media, we allow the user to save results to a video. This is
performed client side in the browser using an Emscripten
port of ffmpeg [11].

2 A further acceleration could be to to a breadth-first search through a
half-edge data structure representing the triangulation if there are no hits
in this neighborhood.

4. REFERENCES

[1] V. Mühler, “face-api.js,” https://justadudewhohacks.
github.io/face-api.js/docs/index.html, accessed 2019-
09-09.

[2] H. Chernoff, “The use of faces to represent points in k-
dimensional space graphically,” Journal of the Ameri-
can statistical Association, vol. 68, no. 342, pp. 361–
368, 1973.

[3] D. P. Ellis, “Beat tracking by dynamic programming,”
Journal of New Music Research, vol. 36, no. 1, pp. 51–
60, 2007.

[4] S. Böck and G. Widmer, “Maximum filter vibrato sup-
pression for onset detection,” in Proc. of the 16th Int.
Conf. on Digital Audio Effects (DAFx). Maynooth, Ire-
land, vol. 7, 2013.

[5] G. Peeters, “Template-based estimation of time-
varying tempo,” EURASIP Journal on Advances in Sig-
nal Processing, vol. 2007, pp. 1–14, 2006.

[6] P. H. Schönemann, “A generalized solution of the or-
thogonal procrustes problem,” Psychometrika, vol. 31,
no. 1, pp. 1–10, 1966.

[7] J.-y. Noh and U. Neumann, “Expression cloning,” in
Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, 2001, pp.
277–288.

[8] F. Krebs, S. Böck, and G. Widmer, “An efficient state-
space model for joint tempo and meter tracking.” in
Proc. of the 16th Int. Conf. on Music Information Re-
trieval (ISMIR). Malaga, Spain, 2015, pp. 72–78.

[9] N. Whiteley, A. T. Cemgil, and S. J. Godsill, “Bayesian
modelling of temporal structure in musical audio.” in
Proc. of the 5th Int. Conf. on Music Information Re-
trieval (ISMIR). Victoria, Canada. Citeseer, 2006,
pp. 29–34.

[10] M. Heydari and Z. Duan, “Don’t look back: An online
beat tracking method using rnn and enhanced particle
filtering,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2021, pp. 236–240.

[11] K. Hiiragi, “ffmpeg.js,” https://github.com/Kagami/
ffmpeg.js/, accessed: 2021-08-27.

