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ABSTRACT

In recent years, complex convolutional neural network ar-
chitectures such as the Inception architecture have been
shown to offer significant improvements over previous ar-
chitectures in image classification. So far, little work has
been done applying these architectures to music informa-
tion retrieval tasks, with most models still relying on se-
quential neural network architectures. In this paper, we
adapt the Inception architecture to the specific needs of
harmonic music analysis and use it to create a model (In-
ceptionKeyNet) for the task of key estimation. We then
show that the resulting model can significantly outper-
form state-of-the-art single-task models when trained on
the same datasets. Additionally, we evaluate a broad range
of augmentation methods and find that extending augmen-
tation policies to include a more diverse set of methods fur-
ther improves accuracy. Finally, we train both the proposed
and state-of-the-art single-task models on differently sized
training datasets and different augmentation policies and
compare the differences in generalization performance.

1. INTRODUCTION

Determining the key of a music piece is an essential step
when analyzing its harmonic properties. Besides theoreti-
cal music analysis, this property is used for assessing the
harmonic compatibility of music pieces [1], which is cru-
cial when mixing multiple music pieces, as is often done by
disc jockeys. As the determination of the key requires ex-
pert knowledge, systems for automatic key estimation are
crucial for enabling large-scale analyses and enabling ev-
eryone, regardless of prior knowledge and skill, to harness
key information. This can be especially useful for algo-
rithmically generated mixes/playlists (e.g. Spotify’s Daily
Mix 1 ): by optimizing the ordering of these playlists to
maximize harmonic compatibility, the perceived quality of
these mixes can potentially be improved. We believe that

1 https://newsroom.spotify.com/2018-05-18/
how-your-daily-mix-just-gets-you/
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for informing these decisions, regardless of whether they
are made algorithmically or by a disc-jockey, improving
the performance of key estimation algorithms is crucial to
enable improvements in the creation of those mixes.

2. METHODS

2.1 Audio preprocessing

Before the audio data is put into the neural network
model, it is preprocessed to generate a time-frequency do-
main representation. To obtain this representation, we
use a Constant-Q transform as implemented in the librosa
Python package [2] with 24 bands per octave distributed
over the range from C1 to C8 and downsample to obtain 5
frames per second, the same framerate as used in [3].

2.2 Model

Many state-of-the-art key estimation models (e.g., [3–6])
use sequential convolutional neural networks which work
on a time-frequency representation of the audio sample.
Recent work has shown that more modern image classifi-
cation architectures like Inception [7] and ResNet [8] are
capable of outperforming at least some sequential archi-
tectures such as VGG [9] and AlexNet [10] on the task
of audio classification [11]. Inspired by these findings,
we present a model, which we call InceptionKeyNet. We
base it on Inception V3 [7], as this architecture has shown
the best performance on 2/3 metrics in an evaluation of
audio classification models [11]. Compared to VGG-like
state-of-the-art feature extractors in key estimation models,
the Inception architecture is appealing as it promises much
lower computational cost for similar performance [7]. Fur-
thermore, it also promises to be especially useful in the
context of localization [12], a property that could be ex-
pected to be advantageous for key estimation, as at least
the determination of the key root requires precise localiza-
tion capabilities. Like in the previously mentioned evalua-
tion, we apply some modifications to the model to adapt it
to the task: our primary modification is the removal of the
local pooling layers from the model. This modification is
necessary, as the exact “location” of features in the spec-
trogam on the frequency axis decides the corresponding
pitch, and applying multiple steps of pooling there would
prevent the model from being able to distinguish between
single pitches. We also adjust the stride of all convolution
layers except for the first one to be 1 for the same rea-
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son. Furthermore, we also remove the auxiliary network
as in [11]. Finally, we scale down the number of filters
by 80% (rounding down to the next integer value) of those
from the original model. We do this to reduce the capac-
ity of the model to compensate for the significantly smaller
number of output classes and training samples as compared
to ImageNet [13], the dataset Inception V3 was optimized
for 2 .

2.3 Training method

For training, we split the training samples into 5 folds of
equal size. We train 5 separate model instances for each
round, where each instance uses a different fold for vali-
dation and trains on the samples from the remaining four,
as is typical for cross-validation. To increase variety in the
data, we only give a random 20s snippet of the whole audio
sample to the model during training, as in [3]. We train the
models with the Adam [15] optimizer with a learning rate
of 0.001 and use a batch size of 32, optimizing the categor-
ical cross-entropy between the 24 output classes – one for
each combination of pitch and either major or minor mode
– and the ground truth target. During training, we use a
dropout rate of p = 0.5.

Furthermore, we use early stopping to determine the
end of the training process, stopping the training when the
loss does not improve over 50 epochs. For the resulting
model, the weights from the epoch with minimal valida-
tion loss are used. Those instances are then combined into
an ensemble, where the class probabilities are averaged to
obtain a single prediction, to further improve performance.

2.4 Datasets

Similar to previous works like [3], we utilize various
datasets spanning multiple genres, for both training and
testing. For training, we use the following datasets:
GiantSteps MTG Key: A dataset of 1486 key annotations

[16] generated from user corrections from the Beatport
service in the same way as the GiantSteps Key dataset
[17]. The music pieces are primarily focused on elec-
tronic dance music [3].

McGill Billboard: A dataset of 742 songs from the Amer-
ican Billboard charts between 1958 and 1991 [18] [19].
While the keys are not annotated in the original version,
there exists a version with key annotations for a subset
of 625 songs [20], which we use. Of these, we were able
to obtain audio excerpts for 617 pieces.

For some trainings, we add an additional dataset, created
using data mining. It consists of 3410 additional key anno-
tations (overlaps with other datasets have been excluded)
for which we have audio excerpts available, primarily fo-
cused on popular music pieces, but also including some
classical pieces.

As only the GiantSteps datasets have audio available as
a part of the dataset, we collect 30-second excerpts for
all dataset entries, resulting in up to two such excerpts

2 Multiple other approaches including modifying the stem and leaving
out some mixed blocks were evaluated, too, but the best performance was
achieved when just scaling down the number of filters.
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Figure 1: The architecture of the feature extractor of the
InceptionKeyNet model. i denotes the input of the model
or a section, ck,n,s (or c(k1,k2),n,s) denotes a 2-dimensional
convolution layer with a kernel size of k × k (or k1 × k2),
a stride of s × s and n filters, followed by batch normal-
ization and ReLU activation. If s is not given, it defaults
to 1. j denotes a layer that joins all preceding layers along
their filter axis. d denotes a Spatial Dropout [14] layer
with Dropout probability p. Different output structures o
are presented and evaluated in 3.1.

per entry. If multiple excerpts are available for a single
music piece, we randomly choose the excerpt to use for
each epoch when training. When validating and testing,
we use the longer 120-second excerpt from the GiantSteps
datasets if available, and choose randomly otherwise, en-
suring that the same excerpts are used between tests.
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2.5 Metrics

For evaluating the performance of key classification mod-
els, we use the same score as used in MIREX evaluations
[21], which we refer to as the “MIREX score”. For this,
we use the mir_eval library 3 [22]. When computing the
score, the predictions are divided into the following cate-
gories to consider how close the classification result is to
the ground truth key:
Correct: Predictions where the root and mode are classi-

fied correctly. These predictions give a full point.
Perfect fifth: Predictions where the mode has been classi-

fied correctly, and the predicted root is either a fifth (7
semitones) higher or lower than the ground truth. These
predictions give 0.5 points.

Relative major/minor: Predictions where the major or
minor key relative to the ground truth key have been
classified. These predictions give 0.3 points.

Parallel major/minor: Predictions where the root has
been classified correctly while the mode differs. These
predictions give 0.2 points.

Any predictions that do not fall under any of the previously
listed categories, give no points. These point scores are
then averaged to obtain the overall MIREX score.

3. EXPERIMENTS

3.1 Model Output Structures

While the original Inception architecture is already theoret-
ically capable of processing inputs of arbitrary size when
some minimum dimensions are met, we also evaluate the
output structure used in the AllConv model and a modi-
fied version of it, to find out whether different output ar-
chitectures affect the model performance. We evaluate the
following three different output structures:
Original: The original output structure from the Inception

v3 architecture, which consists of global average pool-
ing, followed by a fully-connected layer with one neuron
for each class and softmax activation [7].

AllConv-A: A 1 × 1 convolution layer with one filter for
each class, followed by global average pooling and soft-
max activation as found in the AllConv model [3].

AllConv-B: Our modified variant of the AllConv-A struc-
ture, where the frequency dimension of the convolution
layer is extended to cover the whole frequency axis from
the previous layer.

Original AllConv-A AllConv-B

0.675

0.700

0.725

M
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e InceptionKeyNet Output Structures

Figure 2: The validation MIREX score achieved with
three different output structures. Blue crosses correspond
with one model, orange dots represent the median scores.

3 The scoring of fifth errors has to be changed to also accept descend-
ing ones to match the scoring used in the latest MIREX evaluations.

The results from the evaluation are shown in figure 2. It
can be seen that while all three output structures show com-
parable average performance, the original output structure
has a significantly higher variance in validation perfor-
mance than the other two variants. Overall, the perfor-
mance achieved by the different folds is the most consistent
with the AllConv-B variant, so we choose to proceed using
it as the model output structure.

3.2 Augmentation Methods

To artificially increase the diversity of the training dataset,
augmentation can be applied to the input data. While
previous works on key estimation models primarily re-
lied on pitch-shifting as the sole augmentation method
(e.g. [3–6]), we evaluate a range of different augmentation
methods to see whether a more diverse set of augmentation
methods can help improve generalization. We evaluate the
following augmentation methods (see figure 3 for visual-
izations of some of these methods):
Pitch-Shifting: A method that has already been used in

previous works on key classification models [3–6]. It
works by shifting all of the sounds in a recording by
a number of semitones and adjusting the target key root
accordingly. For our evaluation, we test symmetric pitch
shifting ranges, which are defined via the hyperparam-
eter ∆fmax ∈ N0, which controls the discrete uniform
distribution X∆f,pitch shift ∼ U{−∆fmax,∆fmax} used
to randomly determine the pitch shift ∆fpitch shift. We
precompute all of the potential pitch-shifted versions
for all training samples ahead-of-time and apply it in
the time-domain using SOX 4 [24] before applying the
Constant-Q transform.

Time-Warping: Based on the time-warping methodology
used in the SpecAugment augmentation policy [25] for
speech recognition models, we create a single-parameter
version of their method: we choose six reference points
along the border of the spectrogram, four at the cor-
ners and one in the center of the time axis on each side.
The center points are then randomly moved along the
time axis by a distance of w, with the spectrogram being
warped accordingly. The augmentation hyperparameter
wmax determines the bounds of the uniform distribution
Xw ∼ U(−wmax, wmax), from which the random val-
ues for w are sampled.

Frequency and Time Masking: Two other augmentation
methods used in the SpecAugment augmentation pol-
icy [25], where a part of the frequency spectrum and a
part of the time axis are omitted. We use two hyperpa-
rameters, fmax and tmax, and choose the width of the
range to be omitted randomly from the uniform distri-
butions Xf ∼ U (0, fmax) and Xt ∼ U (0, tmax). We
then choose two random starting points f0 and t0 and fi-
nally omit the frequency bands in the range [f0, f0 + f ]
the time steps in [t0, t0 + t] from the spectrogram.

4 Pitch-shifting with Rubberband [23] and by shifting the spectrogram
were also tested, but it was found that the models trained with these alter-
native methods showed significantly worse performance.
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Loudness Augmentation: We implement loudness aug-
mentation by generating a factor k, with which all of
the magnitudes in the spectrogram are multiplied. This
factor is sampled from a uniform distribution Xk ∼
U
(
k−1
max, kmax

)
, whose bounds are given via the hyper-

parameter kmax.
Additive Gaussian Noise: Adding noise with a mean

of zero to the input samples is a very straightforward
way of augmentation: we use a Gaussian distribution
X ∼ N (µ = 0, σ2) from which a separate value is sam-
pled randomly and then added to each data point in the
spectrogram, with the noise intensity being controlled
via the hyperparameter σ.

Frequency Filtering: Random frequency filtering, as pre-
viously used in [26], is a method where a random filter
is generated, which amplifies or dampens a range of fre-
quencies. The range of affected frequencies is defined
via a Gaussian function, resulting in the amplitude re-
sponse

A(fst) = max

(
1 +

s

σ
√

2π
× e

(
− (fst−f0,st)

2

2σ2

)
, 0

)
,

with which the values of the spectrogram are multiplied.
We define it in semitone space for simplicity and clamp
the values of the amplitude response at 0 to avoid neg-
ative amplitudes. Each filter is defined via three param-
eters σ, s, and f0, which determine the width, amplifi-
cation and location respectively. These parameters are
randomly sampled from three separate uniform distribu-
tions Xs ∼ U (−smax, smax), Xσ ∼ U (0, σmax) and
Xf0 ∼ U (0, fmax). smax and σmax are given as hy-
perparameters, while fmax is defined as the maximum
frequency represented in the spectrogram.

Generally, the mentioned augmentation methods are ap-
plied at runtime with random parameters, introducing ran-
dom variations into the input data. The one exception to
this is pitch-shifting, where 2∆fmax additional variations
per sample are generated ahead-of-time. These also have
different key root labels, which can help compensating im-
balances in the datasets’ root distribution.

We evaluate these methods by performing a Bayesian
optimization on all of the augmentation hyperparameters,
maximizing the median validation MIREX score over a 5-
fold cross-validation for each evaluated set of hyperparam-
eters. The resulting hyperparameters define our augmenta-
tion policy. Optimizing all of the augmentation method
hyperparameters together as compared to doing so inde-
pendently is important, as different hyperparameter val-
ues for one augmentation method might influence another.
By evaluating all methods simultaneously, we can thus get
more accurate results than with independently optimized
hyperparameters. To get an insight into how each hyperpa-
rameter influences model performance, we look at the fit-
ted Gaussian process from the Bayesian optimization and
compute the conditional probability distribution for that
hyperparameter given that the others are set to “good” val-
ues and did not fail to train. As our condition for a hy-
perparameter value being “good”, we check whether it is
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Figure 3: A visualization of some of the augmentation
methods. The first row shows an entire unmodified spec-
trogram with the reference points for time-warping in their
default position. In the second spectrogram, time-warping
(w = 2.6s) has been applied, and the reference points have
been moved accordingly. The third row shows the warped
spectrogram after frequency-masking (f = 15st) and time-
masking (t = 2.2s) have been applied at random positions,
and the final spectrogram shows the result after applying
frequency filtering (σ = 10st; s = 90).

at most 5% larger or smaller than the optimal value we
obtained during our optimization. This way, we get eval-
uations of the performance of our hyperparameters that do
not depend on exact values for the other hyperparameters.

A number of graphs visualizing the effect, which the
hyperparameters corresponding to the different augmen-
tation methods have on the validation performance, are
shown in figure 4. From this, it is clear that loudness aug-
mentation and additive Gaussian noise negatively affect the
validation performance of our model, while pitch-shifting,
time-warping, frequency-masking, and time-masking can
all help improve performance on unseen samples.

For pitch-shifting, it seems that the chosen evaluation
range from 0st to 12st was too small, and even more ex-
treme values might prove beneficial to model performance.
As we did not evaluate higher values in the full optimiza-
tion process, we confine ourselves to the range as men-
tioned earlier and choose a value of 12st for the augmen-
tation policy. For time-warping, frequency-masking, and
time-masking, optimal values can be observed inside the
evaluated range, although the performance improvement
is significantly smaller than with pitch-shifting (especially
so for frequency masking). For frequency filtering, there
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seems to be a “sweet spot” near the middle of the evaluated
range, where validation performance is increased slightly.

The final optimal values we obtained from the Bayesian
optimization process are shown in table 1.
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Figure 4: Estimated effect on the validation MIREX score
for different augmentation methods. The blue line repre-
sents the mean validation performance for the line graphs.
The frequency filtering parameters are presented as a 2-
dimensional map, where the color corresponds to the mean
validation performance.

Method Parameter Value
Pitch-Shifting ∆fmax 12st
Time-Warping wmax 2.6s
Frequency-Masking fmax 1st
Time-Masking tmax 1.2s
Loudness-Augmentation kmax not applied
Additive Gaussian Noise σ not applied
Random Filtering σmax 36.25st
Random Filtering smax 30

Table 1: The optimal values for each augmentation hy-
perparameter as determined by a Bayesian optimization
process, for which 178 hyperparameter combinations (re-
sulting in 890 separate models with cross-validation) were
evaluated.

4. EVALUATION

In this section, we evaluate the performance of the Incep-
tionKeyNet model and compare it to two existing state-of-
the-art single-task models. For these comparisons, we use
the following datasets:
GiantSteps Key (GS): A dataset of 604 key annotations

generated from user corrections from the Beatport ser-
vice and a range of smaller datasets, with no overlap
with the GiantSteps MTG Key dataset used for train-
ing [17].

KeyFinder (KF): A dataset of 1000 key annotations from
multiple genres. [29]. We were able to obtain audio ex-
cerpts for 833 of the music pieces.

Isophonics (I): Four datasets containing songs by The
Beatles, Queen, Zweieck, and Carole King. [30]. As we
do not have access to the full recordings, we only use
songs where a single key is annotated, resulting in 151
songs by The Beatles, 8 by Queen, 7 by Zweieck, and 2
by Carole King.

RockCorpus (RC): A dataset with annotations for 200 en-
tries from the Rolling Stone “500 Greatest Hits of All
Time” list [31]. As only the key root is given, we use
a method proposed in [3] to obtain mode annotations:
if at least 80% of the annotated tonic chords are of one
mode, that one is selected for the overall key; otherwise,
the sample is excluded. This results in 188 music pieces,
of which we have audio excerpts for 186.

As we are only working with excerpts and do not have ex-
cerpts available for all entries of the various datasets, the
test scores for the KeyFinder, Isophonics and RockCorpus
datasets are not necessarily directly comparable to results
obtained by other publications. To be able to give fair com-
parisons to other models on all datasets, we replicate or
test them on our datasets when comparing different mod-
els. For the GiantSteps Key dataset, the scores are com-
parable with those in other publications, as we have the
original audio files available.

We compare our model with two other single-task mod-
els: the AllConv [3] and the JXC1 5 [5] models. To ob-
tain fair comparisons, we replicate the models using their
respective preprocessing methods as specified in the orig-
inal publications [3, 5]. We then train each model on our
two different training datasets, and using either only pitch-
shifting or our augmentation policy. For more direct com-
parability, we used the same pitch-shifting range from−6st
to +6st for all three models, which results in a range 1st
wider than used in the original publications for the All-
Conv and JXC1 paper. We use the method of stopping
the training described in subsection 2.3 for the AllConv
model, as testing showed better performance than the de-
fault method. Finally, as we use cross-validation ensem-
bles for our own model, we also use them for the AllConv
and JXC1 models to make the comparison as fair as pos-
sible. Introducing ensembles leads to an average absolute
increase in MIREX score of 3.1% and 3.6% for the All-
Conv and JXC1 models respectively. This is significantly

5 We use JXC1 instead of the JXC2 model as the latter requires training
in a multi-task setting, which would go beyond the scope of this paper.
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Model Test MIREX Scores [%]
Architecture Augmentation GS KF I RC Avg

Small Training Dataset (GiantSteps MTG Key and McGill Billboard)
InceptionKeyNet (ours, ensemble, pitch-shift (−6st to +6st) 73.94 71.31 79.23 78.49 73.69
1.7M parameters per model) our policy 75.50 71.94 78.93 78.28 74.46
AllConv [3] (Nf = 20, ensemble, pitch-shift (−6st to +6st) 74.27 67.78 75.83 77.58 71.74
462k parameters per model) our policy 73.38 66.76 75.36 80.70 71.25

JXC1 [5] (ensemble, pitch-shift (−6st to +6st) 72.27 69.11 76.61 75.48 71.54
12.5M parameters per model) our policy 73.66 68.03 72.80 78.49 71.46

Large Training Dataset (GiantSteps MTG Key, McGill Billboard, and our data mining dataset)
InceptionKeyNet (ours, ensemble, pitch-shift (−6st to +6st) 74.35 70.58 80.24 83.92 74.14
1.7M parameters per model) our policy 75.68 70.49 81.61 84.62 74.75
AllConv [3] (Nf = 20, ensemble, pitch-shift (−6st to +6st) 74.44 68.45 77.14 78.76 72.36
462k parameters per model) our policy 73.06 66.15 74.88 80.70 70.81

JXC1 [5] (ensemble, pitch-shift (−6st to +6st) 74.44 69.27 81.85 81.34 73.45
12.5M parameters per model) our policy 74.62 69.40 79.70 81.61 73.39

Reference Models (weights as in the original publication; trained on other datasets)
AllConv [3, 27] (single model) pitch-shift (−4st to +7st) 74.62 63.76 75.83 73.49 69.56

QM Key Detector v5 [28] (single model) - 57.76 6 48.12 64.40 60.48 54.15

Table 2: The results of our evaluation. The models are separated into groups depending on the datasets they have been
trained on. The GS, KF, I, and RC columns show the test MIREX score on each test dataset; the rightmost column shows
the average of those scores, weighted by dataset size. The best test scores in each group of models is marked in bold font.

larger than the increase of 2.0% that the InceptionKeyNet
model shows, which means that any performance lead of
the InceptionKeyNet model would be larger when com-
paring single models. The results from this evaluation are
shown in table 2. As an additional reference, we also in-
clude the performance of the original trained version [27]
of the AllConv model, which shows comparable average
performance to our reproduction when considering the pre-
viously mentioned gain from using ensembles. Further-
more, we also include the performance of the QM Key De-
tector v5 [28] model on our versions of the test datasets,
even though this model shows significantly worse perfor-
mance across all of our test datasets.

It can be seen that when trained on the same datasets,
the InceptionKeyNet model is able to outperform the All-
Conv and JXC1 models, with the difference between it and
the next best model being 2.72% for the small and 1.30%
for the large training dataset. While all models show im-
proved performance when trained on a larger dataset, only
InceptionKeyNet sees increased performance when our
augmentation policy is applied. This suggests that, while
broader augmentation can improve performance in at least
some cases, the parameters possibly have to be tailored to
each model. It can also be seen that the performance ad-
vantage given by the broad augmentation policy decreases
slightly when the amount of training data increases. This
likely means that the broad augmentation policy is partic-
ularly useful when little data is available.

There also seems to be no clear correlation between
model parameter count and performance, which suggests
that the architecture choice probably plays an important

6 We assume that the very slight deviation compared to the value in
[32] is due to different versions of dependencies of sonic-annotator.

role in deciding a models performance.

5. CONCLUSION

This paper presented an adaptation of the Inception V3 [7]
architecture for harmonic music analysis tasks and used
it to create a model for the key estimation task. We pro-
ceeded to evaluate a broad range of augmentation meth-
ods to find a tailored augmentation policy, and finally
evaluated our model and compared it to two state-of-the-
art single-task models, training all of them on the same
datasets to obtain fair comparisons. These comparisons
showed that the InceptionKeyNet model is capable of sig-
nificantly outperforming state-of-the-art single-task mod-
els when trained on the same data with the same augmen-
tation methods, and that further improvements are possible
when applying a broad augmentation policy.

Ultimately, we believe that the main contribution of this
work is showing that there is still potential to outperform
state-of-the-art models in common harmonic music anal-
ysis tasks when deeper neural network architectures and
matching extensive augmentation schemes are used. We
hope for the presented findings to inspire further research
applying similar approaches to other related MIR tasks,
potentially even combining them into multi-task models.
These have shown promising performance in the past, out-
performing their single-task variant in at least one case [5].

The source code to train and run our model, and the sub-
sets of public datasets where we had audio excerpts avail-
able for training, are available online 7

7 https://github.com/stefan-baumann/
inceptionkeynet.
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