
THE MUSIC PERFORMANCE MARKUP FORMAT AND ECOSYSTEM

Axel Berndt
Center of Music and Film Informatics

Ostwestfalen-Lippe University of Applied Sciences and Arts
Detmold University of Music
axel.berndt@th-owl.de

ABSTRACT

Music Performance Markup (MPM) is a new XML format
that offers a model-based, systematic approach to describ-
ing and analysing musical performances. Its foundation is
a set of mathematical models that capture the characteris-
tics of performance features such as tempo, rubato, dynam-
ics, articulations, and metrical accentuations. After a brief
introduction to MPM, this paper will put the focus on the
infrastructure of documentations, software tools and ongo-
ing development activities around the format.

1. MOTIVATION

The performance of a musical piece transforms the musi-
cal raw material (typically a symbolic representation such
as Common Western Music Notation) into a sounding out-
put or equivalent audio signal. One and the same piece of
music can be performed in many different ways. Playing
the raw material exactly as notated is one special kind of
performance, often referred to as “robotic” or “machine-
like”. Human musicians’ performances typically involve
more complex transformations that only partly derive from
the notation. Those are subject to active research in musi-
cology, in particular in the fields of performance research,
Historically Informed Performance Practice, and Music In-
formation Retrieval.

Typical questions are: How can the connection between
audio document and musical score be drawn? How can
the musical realization of a performer be described and put
in relation to printed performance instructions and the per-
formances of other musicians? Especially in the light of
the musical culture of the past century, which has been
strongly coined by audio media, this research field gains
in importance and demands more and more urgently for
suitable tools. Yet there is still a lack of a common, open
data standard that would allow systematic and comprehen-
sive access to the phenomena of music performance and
facilitate the publication and re-use of research results in
the variety of application and research contexts.

Based on several years of prior basic research and
model development, the Music Performance Markup

© A. Berndt. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: A. Berndt,
“The Music Performance Markup Format and Ecosystem”, in Proc. of the
22nd Int. Society for Music Information Retrieval Conf., Online, 2021.

(MPM) format was developed to address this problem.
MPM enables several novel research designs. E.g., the
“simulation” or “reconstruction” of a performance allows
the experimental testing of auditory impressions and hy-
potheses about how a performance was precisely made and
by which expressive means a certain effect was achieved.

However, in order for MPM to become an accepted and
useful tool in the communities, we have made further ef-
forts beyond the mere definition of the format. An ecosys-
tem of software tools, guidelines, sample encodings and tu-
torials was developed of which this paper will report, thus,
providing an overview and good entry point for new users.

2. DESCRIBING MUSICAL PERFORMANCES

How can a musical performance be described? The de-
scription of acoustic phenomena on a colloquial level is
problematic in scientific discourse. A subjective listening
impression may be described as a “strong ritardando from
measure x to measure y”, but lacks the necessary precision
in several respects, particularly in terms of initial and fi-
nal tempo, initial and final timing position, and the specific
course of the tempo transition. Another performer may
play a ritardando at the same musical position that is just as
strong but completely different in its execution and effect.
On the other hand, a precise tempo curve may be derived
from timing measurements in the audio data. This would
usually render a very noisy tempo curve, because it is the
sum of several timing features (tempo, rubato, asynchrony,
agogic accents, and unsystematic elements often referred
to as human imprecision) and measurement imprecision.

These two opposing perspectives can be found in all
the formats used in music description and performance re-
search. Accordingly, they can be roughly divided into (1)
measurement series formats and (2) symbolic formats.

The most extreme form of a measurement series for-
mat is certainly the audio recording itself. Without a con-
siderable effort of analysis, however, abstract performance
concepts such as tempo, rubato, dynamics, etc. cannot be
inferred from it. This is therefore a low-level represen-
tation, which by itself does not provide any information
about higher-level structures in the series of measurements.

The first step in inferring volume and tempo character-
istics is audio signal analysis. Note onset positions are de-
termined algorithmically or manually, inter-onset intervals
are measured, spectra are evaluated, amplitude curves are

50



generalized to envelopes, peak and sustain levels of indi-
vidual tones are measured, etc. Examples of such analy-
ses and the resulting complex series of measurements can
be found in performance research publications [1]. A tool
widely used in empirical performance research is the Sonic
Visualiser [2]. The resulting measurement series are of-
ten stored in CSV (Comma-Separated Values) format [3].
An extensive data collection in this format is the Mazurk-
aBL dataset with roughly 2000 sound recordings, anno-
tated with loudness and tempo information [4]. The CSV
format is often used for comparing analysis algorithms,
such as in MIREX [5, 6].

For more complex data structures that can no longer be
represented in CSV, the JSON format is a popular alter-
native [7]. It is easy to process, human readable and is
frequently used to relate measurement series to each other,
such as in audio-to-audio and audio-to-score alignment [8].

In contrast to the very detailed data of measurement se-
ries formats, which provide no immediate information on
high-level structures, are the symbolic formats. They de-
scribe the abstract structures, but leave out any specific de-
tail. Although they enable efficient communication about
music, listening impressions and performance concepts,
which for the most part suffices everyday use, they lack the
aforementioned precision required in scholarly discourse.
To take up the above example: When does a ritardando
become a “strong” ritardando? The degree of abstraction
becomes particularly striking when a computer generates
music playback directly from the score and the result is
described as “mechanical”.

Symbolic formats are used mostly to encode music no-
tation. Most notation software and Digital Audio Worksta-
tions (DAWs) use proprietary formats that are optimized
for their particular needs. Open formats are MusicXML
[9], ABC [10], and Lilypond [11]. In addition, specialized
formats such as Humdrum [12] and MEI [13] have become
established in musicology and music editing [14].

Compared to other symbolic formats, the Standard
MIDI File format [15, 16] has a special position. It rep-
resents musical information as control messages. Each
note is represented by a NoteOn-NoteOff pair. The vol-
ume of notes is specified by numerical values which are
interpreted by synthesizers and converted into actual am-
plitude values. Temporal indications are made on a tempo-
independent grid similar to the musical time measure and
are converted into physical time values (milliseconds) only
in connection with tempo messages. Also other parameters
of musical expression (tonality, mixing, DSP effects etc.)
can be implemented as a series of controller messages.
However, meta-structures in those domains are not repre-
sented, so that MIDI clearly corresponds to a measurement
series format in this respect and is also practically used for
such purposes. An example for this is CrestMusePEDB,
a database of several hundred piano performances [17].
Such recordings are typically made with MIDI-fied instru-
ments. The relatively low numerical resolution of MIDI’s
8 and 7-bit numerical values and the fact that volume and
controller values are interpreted differently by each syn-

thesizer [18] are two main criticisms of the format, which
is nevertheless indispensable in today’s practice.

MEI and Humdrum, too, can be extended into hybrids,
as proposed by Devaney and Gauvin [19]. This is achieved
by augmenting the symbolic data by measurement data,
e.g. timestamps for notes. However, these measurements
are not decoded and linked to corresponding larger struc-
tures leaving the gap between both perspectives open.

The essential achievement of MPM is to combine low-
level and high-level perspective. Here, the high-level de-
scription serves to systematically break down the complex
interplay of various performance concepts and features,
which manifests itself in such detailed measurement se-
ries. This descriptive approach opens up new perspectives
for a broader, scientific discourse on music performance.

3. A BRIEF INTRODUCTION TO MPM

MPM is designed as a tandem partner or complement for
symbolic music formats such as MIDI, MusicXML and
MEI. While these encode the score to be interpreted, MPM
describes its musical performance. MPM chooses a model-
based approach for this. Each description primitive is
based on a mathematical model that emulates its corre-
sponding performance feature. For a detailed introduction
to these models see [20]. Currently, the corpus of models
defined in MPM and supported by fundamental research
comprises the following feature types:

Timing: tempo (incl. discrete and continuous tempo
changes), rubato, asynchrony, random/unsystematic
deviations from exact timing,

Dynamics: macro dynamics (incl. discrete and continu-
ous dynamics changes), metrical accentuations, ran-
dom/unsystematic deviations from exact dynamics,

Articulation: with absolute and relative effects on tone
duration, loudness, tuning and timing (e.g. agogic
accents) as well as random/unsystematic fluctua-
tions of duration and tuning.

These models enable MPM to bridge the previously de-
scribed gap between the two opposed approaches (mea-
surement series versus symbolic representation) as they
disambiguate the high-level concepts by explicit map-
pings. Conversely, they can also be used for resynthesis.

MPM allows to define several performances for one and
the same piece of music. In the basic structure of such a
performance a first peculiarity of MPM’s conception be-
comes apparent. Performance instructions can be defined
globally for all parts and locally for a single part. If local
and global information of the same domain compete, the
local dominate. This makes it possible to describe poly-
phonic performances in which, e.g., a solo instrument has
its own freedom of expression while the accompanying or-
chestra follows the global instructions of a conductor.

Both, the global and part environment, subdivide into
header and dated information. The header contains style
definitions, i.e. lookup tables to map literals (“Allegro”,

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

51



<?xml version="1.0" encoding="UTF-8"?>
<mpm xmlns="http://www.cemfi.de/mpm/ns/1.0">
<performance name="a performance"

pulsesPerQuarter="720">
<global>
<header>
<tempoStyles>
<styleDef name="famous conductor">

<tempoDef name="Allegro"
value="133.0"/>

<tempoDef name="Adagio"
value="67.4"/>

</styleDef>
</tempoStyles>

</header>
<dated>
<tempoMap>
<style date="0.0"

name.ref="famous conductor"/>
<tempo date="0.0" bpm="Allegro"

transition.to="Adagio"
meanTempoAt="0.7"
beatLength="0.25"/>

<tempo date="28800" bpm="87.45"
beatLength="0.25"/>

</tempoMap>
<dynamicsMap>
<dynamics date="0.0" volume="80.0"/>

</dynamicsMap>
</dated>

</global>
<part name="Solo Violin" number="1"

midi.channel="0" midi.port="0">
<header/>
<dated>
<dynamicsMap>
<dynamics date="0.0" volume="92.0"/>

</dynamicsMap>
</dated>

</part>
</performance>

</mpm>

Listing 1: A short MPM code example.

“mf”, “staccato” etc.) to numeric values. The dated envi-
ronment, on the other hand, is the place where performance
instructions are specified and assigned to metrical positions
(corr. MIDI ticks) and musical elements (e.g. articulations
to notes via XML IDs). These instructions are organized in
sequential lists, so-called maps, one for each feature type
(e.g. tempoMap, dynamicsMap, rubatoMap, metricalAc-
centuatioMap). Listing 1 demonstrates this structure. The
parameterization of the style definitions and performance
instructions derives from their underlying mathematical
models and translate to attributes in the XML encoding.

To give an impression of one of MPM’s feature models,
the code example involves a tempo slowdown from “Al-
legro” to “Adagio”. The course of tempo curves is mod-
elled with power functions in the interval [0.0, 1.0]. At-
tribute “meanTempoAt” specifies the relative position be-
tween start and end date of the transition where the curve
passes the mean tempo, in this case after 70% of the time
frame (0.7). Detailed documentation of all features, syntax
and models is given on the official website. 1

For music editions, MPM is a tool for the philological

1 https://axelberndt.github.io/MPM/, last access: July
2021.

registration and critical examination. This also leads di-
rectly to use cases in library and archiving contexts. For the
analysis of individual performances, the model-based ap-
proach of MPM provides feature classes that enable an ab-
stracted and differentiated review. MPM does not primar-
ily serve a purely positivistic quantification of music. Cou-
pled with the possibilities of applying the modeled perfor-
mances to symbolic music data to output them as expres-
sive MIDI and audio, it offers, in the sense of transforma-
tive digital intermedia studies [21] a tool for a hermeneu-
tic approach to performance analysis. As an experimental
tool, it can serve to (re)construct performances that have
not survived as audio documents but in textual form, e.g.
in music-practical treatises and performance scores. Be-
yond a purely scientific use, this also shows potential for
application in digital music production.

The model-based description approach of MPM also
motivates new research questions that could not be sys-
tematically addressed so far. For instance, the sharp dif-
ferentiation of timing, dynamics, and articulation into sev-
eral subcategories and their description by means of math-
ematical models had led to questioning the common un-
derstanding of inégalité (the unequal playing of notes of
equal value) as a pure timing feature [22, 23], which is
of relevance for Historically Informed Performance Prac-
tice. Studies based on the models were eventually able
to demonstrate a multifaceted interplay of micro-timing
shifts, accentuation, and changes in tone duration [24].
Further research questions address, e.g., playing inaccu-
racies beyond classical timekeeping and synchronization
studies (incl. variations in loudness, intonation, and artic-
ulation), the interaction of an ensemble depending on ex-
terior conditions (such as acoustics and mutual visibility),
and related questions of timbre research. In addition, anal-
yses on larger corpora of performances can lead to new and
more differentiated insights into music-historical change
processes and formative characteristics of individual per-
formers and schools.

4. DEVELOPING AN ESCOSYSTEM FOR MPM

The primary application areas of MPM are musicologi-
cal edition and performance research as well as computer-
aided music production. The development of tools for the
creation, analysis, presentation and further use involve also
computer science and especially MIR are further applica-
tion areas. When designing the ecosystem around MPM,
the goal was to reduce the barriers to adoption and produc-
tive use of MPM as much as possible.

4.1 Supporting Work in XML Editors

In the domain of digital music editing, working with XML
code and dedicated editors such as Oxygen XML is com-
mon practice and requires a detailed format documentation
and guidelines. This work is supported by convenience
tools, namely code completion and live validation. Both
require an appropriately comprehensive schema definition.
The MPM schema including its documentation was speci-

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

52



Figure 1. Screenshot of the meicoApp. From the MEI data (left, green) MSM (dark blue) and MPM (light blue) are
exported. The MPM here contains one performance, “MEI export performance”, from which the MSM can be rendered
“to Expressive MIDI” (top, yellow). The MIDI data is rendered to audio (top right, red). At the bottom right, two external
soundfonts are included, the left one is activated.

fied in the TEI ODD 2 meta-language, which can be com-
piled into several other schema languages, such as RNG,
XSD and DTD. This provides a maximum compatibility
with all commonly used XML parsers. In addition to the
purely syntactic validation, several Schematron rules en-
able content-based validation. Typical errors, such as miss-
ing references, value range violations, and invalid value
combinations, are detected during validation and commu-
nicated by meaningful warning and error messages.

The documentation is supplemented by several sample
encodings, i.e. example projects with which users can ex-
periment. A continuous integration and custom-developed
transformer translate updates to the MPM schema immedi-
ately into the website (documentation and guidelines) and
release assets (incl. an RNG and XSD compilation). The
format is published under the open source licenses BSD-2
and CC-BY-4.0 and is open to future extensions from the
communities.

4.2 Software Development Tools

The basis for efficient software development for a data for-
mat and its integration into existing software is the Appli-
cation Programming Interface (API). The API enables con-
venient data access and processing (e.g. by means of prede-
fined data structures and functionality for parsing, creating,
processing and storing) without the application developers
having to implement the underlying XML processing or
mathematical models themselves. Thus, the API also rep-
resents a reference implementation. The MPM API was

2 https://wiki.tei-c.org/index.php/ODD, last access:
July 2021.

implemented in Java as part of the converter framework
meico 3 [25]. Meico is an established conversion tool in
the music encoding community and comes with some fea-
tures that mesh well with MPM-related functionality.

In particular, meico offers the currently most compre-
hensive MEI-to-MIDI export. Therefore, it utilizes a pro-
prietary intermediate format, Musical Sequence Markup
(MSM). Its basic structure (global/part, header/dated) par-
allels that of MPM. In MSM all note information (without
performance data) is represented. Meico’s MEI-to-MSM
export was extended to convert all performance instruc-
tions to MPM data. MIDI data can also be converted to
MSM. Thus, via MSM, MPM can already be used in tan-
dem with MEI, MIDI and MSM itself.

Furthermore, a full-featured performance rendering en-
gine has been integrated into the MPM API. This al-
lows the MPM performances to be applied to MSM-
encoded scores and rendered into expressive MIDI se-
quences. These can then be played directly in meico, ex-
ported as MIDI files and converted to audio (WAV, MP3).
For MIDI playback and MIDI-to-audio rendering, third-
party soundfonts (SF2, DLS) can be used or MIDI play-
back can be passed on to an external MIDI port. Thus,
further processing (e.g. by external synthesizers) and mu-
sic production in a DAW are immediately feasible.

However, meico is not only a programming library, but
also provides two application programs in the form of the
meicoApp. The command line application is integrated by
some users into their XML editor as an external call (e.g.
for proof-listening of music encodings) and is also used

3 https://github.com/cemfi/meico, last access: July 2021.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

53



in scripting environments (e.g. in Python programs). The
graphical application is used as a stand-alone tool and of-
fers more interaction possibilities as well as more versatile
conversion paths, see figure 1. The meico library is also
the core component of the following software tool.

4.3 Graphical Editor and Analysis Tool

For end users, work with MPM should not be restricted to
XML editors, even if this is principally always possible.
Rather, productive authoring and analysis work is to be fa-
cilitated by an efficient, graphical user interface. This mo-
tivated the development of the MPM Toolbox application.
We followed a rather traditional user interface engineering
process. First, paper mockups were used to try out differ-
ent interface approaches and play through usage scenarios.
This was complemented by experiences and feedback from
a workshop with musicologists and editors during Edirom
Summer School 2020. This resulted in the following ob-
servations and corresponding design decisions.

1. A schematic representation of the MPM data must
be present for navigation purposes, and it must also
be fully interactive. But the visual focus is on the
graphical score.

2. The MSM data, i.e. the pure note information, is
needed for matching time indications, voice assign-
ments and references, so it must also be represented.
However, since the focus is on work in the perfor-
mance domain, the MSM does not need to be inter-
active, nor should it take up much display space.

3. The interaction is to be focused on the score display.
This is where new performance instructions are cre-
ated and performance instructions that already exist
in the MPM are positioned. This is done in two dif-
ferent application contexts, (a) the free creation of
performances (creative use case) and (b) the analy-
sis of performance scores, i.e. the interpretation of
signs in the autograph (analytical use case).

4. Not all attributes of performance instructions can
and should be visualized in the score, as this quickly
overloads the display space and impairs readability.
Consequently, dedicated editor dialogs are needed
for creating and editing them, which may employ
their own visualizations to illustrate the values set.

5. The visual placement of performance instructions in
the score is of limited value with respect to their as-
signment to musical parts and temporal placement.
For instance, an instruction may clearly precede a
note, but apply only from that note on.

In accordance with the first two points, the MSM and MPM
data were each implemented in a tree visualization, placed
fairly slim on the left and right border of the application
window. These interface widgets can be both minimized
and detached from the layout, allowing users to freely
place them and arrange their workspace. The MPM tree
is fully interactive. So it is possible to do all work directly

in it. For some types of information, such as style defini-
tions, there is no visual representation in the musical no-
tation practice anyway. These can only be located in the
MPM tree.

The third point presented a particular challenge. While
a generated score image would suffice for the creative use
case (3a), the analytical use case (3b) involves working
with a preexisting score image. In addition, the initial plan
was only to generate the score image from MEI data using
the Verovio music engraving software [26], which practi-
cally excludes some other input sources which MPM Tool-
box should also support. Therefore, it was decided that
the score image will be imported as image data (currently
supported are JPG, GIF, PNG, BMP, and PDF). Those can
be generated from all other formats with widely available
tools and converters. Thus, the MPM Toolbox satisfies
both use cases (3a and b) equally. A built-in score ren-
dering solution may, nonetheless, be added later on.

For interaction in the image space, it is necessary to
know the positions of notes and performance instructions
and to link them to the MSM and MPM data. This is
an opportunity to incorporate Optical Music Recognition
(OMR) techniques. Depending on the condition of the au-
tograph (clean print versus handwritten manuscripts with
many additional markings), the recognition performance
will be of different quality. Therefore, it must always be
possible to perform or correct this work manually. Con-
sequently, this manual linking was implemented with an
efficient input procedure. It automatically iterates over the
notes (MSM) and plays them while the user marks their
position in the score image; the same for MPM. An OMR
solution remains open as a future extension or third party
contribution.

The linking of the note and performance information in
the image space creates a point cloud. If, in the further
course, performance instructions are created or linked in
the image space, these can be set in relation to the sur-
rounding elements and added to the point cloud. In do-
ing so, voice assignment and time position are read from
the surrounding linked elements and set as default values.
This eliminates the need for additional user input in most
cases. According to point 5, however, this can nonetheless
be changed in the editor dialog.

On large and complex score page, such a point cloud
can become very extensive. During interactions in the
score, the points located in the local environment of the
cursor must regularly be determined. To ensure smooth
interaction, the point cloud must be organized in an effi-
cient data structure. For this purpose, different standard
approaches (such as BSP Trees and Quadtrees) were ana-
lyzed. A peculiarity of the application context here is that
interactions mostly take place in a local environment, are
not scattered “chaotically” across the music sheet, but of-
ten even follow the musical sequence. The next interaction
is very likely to occur near the position of the previous.
An efficient data structure for this type of interaction is the
Orthant Neighborhood Graph [27], which was eventually
implemented in the MPM Toolbox.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

54



Figure 2. Screenshot of the MPM Toolbox. The green note overlays link notes to pixel positions. The blue squares link
performance instructions. In the dynamics editor dialog the course of a crescendo is specified.

According to point 4, it is not practical to display all the
information of the performance instructions directly in the
score, since it is usually printed very compactly anyway
and the remaining space is important for readability. For
this reason, the annotations created with MPM Toolbox
are implemented as semi-transparent and compact over-
lays. The detailed settings of the performance instructions
are done in separate editor dialogs. Each of these dialogs
not only provides the respective input options and visual-
izations, but also actively ensures that the input is valid,
i.e. validates against the MPM schema. Numerous smaller
convenience functions support the user in this process.

Of course, the created performances can also be listened
to via the built-in player widget, sent to an external MIDI
port (synthesizer, DAW) and exported as expressive MIDI
and audio file. The player widget further allows the play-
back of audio recordings. Both, performance rendering
and audio recording can even be played synchronously.
This feature serves the purpose of listening analysis. A
performance description can be iteratively developed and
adjusted to approximate the listening impressions of the
audio recording.

Figure 2 shows a screenshot of MPM Toolbox’s graph-
ical user interface. Source code and executable release as-
sets are published under the GNU GPL 3.0 license. 4

4 https://github.com/axelberndt/MPM-Toolbox, last
access: July 2021.

5. SUMMARY AND NEXT STEPS

MPM allows for the creation of highly detailed music per-
formances. The format is accompanied by a comprehen-
sive schema definition, documentation and sample encod-
ings. An API, including converter and performance render-
ing engine, provides the basis for efficient software devel-
opment around MPM. For example, the API is already in
use as a generator for expressive music performances. For
productive authoring and analysis work apart from XML
editors, the graphical editor software MPM Toolbox was
developed.

As a supplement to the MPM documentation, as well as
a practical introduction to working with MPM Toolbox, a
tutorial project is currently being conceived. In addition,
MPM Toolbox will be supplemented by a comprehensive
module for performance analyses in audio recordings. Op-
tions for interoparability with Sonic Visualizer are being
investigated, e.g. import of onset detection data.

We offer introductory workshops for users and collect
feedback on possible enhancements from the community
regarding new performance features for MPM as well as
its tools. The MPM project is open source and welcomes
suggestions and contributions from the communities.

Acknowledgements: The author wishes to thank Tilo
Hähnel, Benjamin W. Bohl, Simon Waloschek, and Peter
Stadler for their support and contributions. This project is
funded by the Fritz Thyssen Foundation.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

55



6. REFERENCES

[1] H. von Loesch and S. Weinzierl, Eds., Gemessene
Interpretation: Computergestützte Aufführungsanalyse
im Kreuzverhör der Disziplinen, Staatliches Institut für
Musikforschung Preußischer Kulturbesitz. Mainz,
Germany: Schott, 2011.

[2] C. Cannam, C. Landone, M. B. Sandler, and J. P. Bello,
“The Sonic Visualiser: A Visualisation Platform for
Semantic Descriptors from Musical Signals,” in 7th Int.
Society for Music Information Retrieval Conf. (ISMIR),
2006.

[3] Y. Shafranovich, “Common Format and MIME Type
for Comma-Separated Values (CSV) Files,” RFC 4180
(Informational), Oct. 2005.

[4] K. Kosta, O. F. Bandtlow, and E. Chew, “MazurkaBL:
Score-aligned loudness, beat, expressive markings data
for 2000 chopin mazurka recordings,” in Proc. of the
4th Int. Conf. on Technologies for Music Notation and
Representation (TENOR), Montréal, Canada, 2018, pp.
85–94.

[5] J. S. Downie, K. West, A. F. Ehmann, and E. Vincent,
“The 2005 Music Information retrieval Evaluation Ex-
change (MIREX 2005): Preliminary Overview,” in Int.
Society for Music Information Retrieval Conf. (ISMIR),
2005, pp. 320–323.

[6] J. S. Downie, “The music information retrieval evalua-
tion exchange (2005–2007): A window into music in-
formation retrieval research,” Acoustical Science and
Technology, vol. 29, no. 4, pp. 247–255, 2008.

[7] T. Bray, “The JavaScript Object Notation (JSON) Data
Interchange Format,” Internet Engineering Task Force
(IETF), Tech. Rep., Dec. 2017, rFC 8259.

[8] S. Waloschek and A. Hadjakos, “Driftin’ down the
scale: Dynamic time warping in the presence of pitch
drift and transpositions,” in Proc. of the 19th Int. So-
ciety for Music Information Retrieval Conf. (ISMIR).
Paris, France: Int. Society for Music Information Re-
trieval, Sept. 2018.

[9] M. Good, “MusicXML specification,”
https://github.com/w3c/musicxml [last access: May
2021], Dec. 2017.

[10] C. Walshaw, “The ABC Music Notation,”
http://abcnotation.com/, last access: May 2021,
2017.

[11] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, A
System for Automated Music Engraving,” in Proc. of
the XIV Colloquium on Musical Informatics (XIV CIM
2003), Firenze, Italy, May 2003, pp. 167–171.

[12] D. Huron, “Music Information Processing using the
Humdrum Toolkit: Concepts, Examples, and Lessons,”
Computer Music Journal, vol. 26, no. 2, pp. 11–26,
2002.

[13] A. Hankinson, R. P., and I. Fujinaga, “The Music
Encoding Initiative as a Document-Encoding Frame-
work,” in Int. Society for Music Information Retrieval
Conf. (ISMIR). Miami, Florida, USA: Int. Society for
Music Information Retrieval, Oct. 2011, pp. 293–298.

[14] A. Hadjakos, J. Iffland, R. Keil, A. Oberhoff, and
J. Veit, “Challenges for Annotation Concepts in Mu-
sic,” Int. Journal of Humanities and Arts Computing,
vol. 11, no. 2, pp. 255–275, 2017.

[15] R. A. Moog, “MIDI: Musical Instrument Digital In-
terface,” Journal of the Audio Engineering Society
(JAES), vol. 34, no. 5, pp. 394–404, 1986.

[16] MIDI Manufacturers Association, “The Complete
MIDI 1.0 Detailed Specification. v. 96.1,” MIDI Manu-
facturers Association, La Habra, CA, Tech. Rep., 1996.

[17] M. Hashida, E. Nakamura, and H. Katayose, “Con-
structing PEDB 2nd Edition: A Music Performance
Database with Phrase Information,” in 14th Sound and
Music Computing Conf. (SMC-17). Espoo, Finland:
Aalto University, July 2017, pp. 359–364.

[18] R. B. Dannenberg, “The Interpretation of MIDI Veloc-
ity,” in Proc. of the Int. Computer Music Conf. (ICMC).
Tulane University, New Orleans, USA: International
Computer Music Association, Nov. 2006, pp. 193–196.

[19] J. Devaney and H. L. Gauvin, “Encoding music per-
formance data in Humdrum and MEI,” Int. Journal on
Digital Libraries, pp. 1–11, Oct. 2017.

[20] A. Berndt, “Formalizing Expressive Music Perfor-
mance Phenomena,” in Works in Audio and Music
Technology, A. Berndt, Ed. Dresden, Germany: TUD-
press, Sept. 2015, ch. 4, pp. 97–128.

[21] O. Eide, Media Boundaries and Conceptual Mod-
elling: Between Texts and Maps. New York, NY:
Palgrave MacMillan, 2015.

[22] J. J. Quantz, Versuch einer Anweisung, die Flöte
traversière zu spielen. Bärenreiter, 1752, Reprint
(1997), H. Augsbach.

[23] S. E. Hefling, Rhythmic Alteration in Seventeenth- and
Eighteenth-Century Music. Notes Inégales and Over-
dotting. New York, NY: Schirmer Books, 1993.

[24] A. Berndt and T. Hähnel, “Studying Music Perfor-
mance and Perception via Interaction,” in Works in Au-
dio and Music Technology, A. Berndt, Ed. Dresden,
Germany: TUDpress, Sept. 2015, ch. 5, pp. 129–153.

[25] A. Berndt, S. Waloschek, and A. Hadjakos, “Meico:
A Converter Framework for Bridging the Gap between
Digital Music Editions and its Applications,” in Audio
Mostly 2018: 13th Conf. on Interaction with Sound—
Sound in Immersion and Emotion, Glyndŵr University.
Wrexham, North Wales, UK: ACM, Sept. 2018.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

56



[26] L. Pugin, R. Zitellini, and P. Roland, “Verovio: A Li-
brary For Engraving MEI Music Notation Into SVG,”
in Proc. of the 15th Int. Society for Music Information
Retrieval Conf. (ISMIR). Taipei, Taiwan: Int. Society
for Music Information Retrieval, Oct. 2014.

[27] T. Germer and T. Strothotte, “The Orthant Neighbor-
hood Graph: A Decentralized Spatial Data Structure
for Dynamic Point Sets,” Communications in Com-
puter and Information Science, vol. 21, pp. 41–55, 01
2009.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

57


