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ABSTRACT

Audio-to-lyrics alignment has become an increasingly
active research task in MIR, supported by the emer-
gence of several open-source datasets of audio recordings
with word-level lyrics annotations. However, there are
still a number of open problems, such as a lack of ro-
bustness in the face of severe duration mismatches be-
tween audio and lyrics representation; a certain degree of
language-specificity caused by acoustic differences across
languages; and the fact that most successful methods in the
field are not suited to work in real-time. Real-time lyrics
alignment (tracking) would have many useful applications,
such as fully automated subtitle display in live concerts
and opera. In this work, we describe the first real-time-
capable audio-to-lyrics alignment pipeline that is able to
robustly track the lyrics of different languages, without ad-
ditional language information. The proposed model pre-
dicts, for each audio frame, a probability vector over (Eu-
ropean) phoneme classes, using a very small temporal con-
text, and aligns this vector with a phoneme posteriogram
matrix computed beforehand from another recording of the
same work, which serves as a reference and a proxy to the
written-out lyrics. We evaluate our system’s tracking ac-
curacy on the challenging genre of classical opera. Finally,
robustness to out-of-training languages is demonstrated in
an experiment on Jingju (Beijing opera).

1. INTRODUCTION

Audio-to-lyrics alignment aims at synchronizing an audio
recording with its corresponding lyrics, in order to retrieve
the position of spoken or sung textual units in the record-
ing. The task has been widely researched in the context
of speech data [1, 2], and recently there has also been very
promising work on polyphonic music [3–6], even on multi-
lingual alignment in a single framework [7]. Robust align-
ment methods would be useful for applications such as
automatic karaoke captioning [8], music or video cutting
based on the lyrics, or automatic subtitling in music videos.
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Other tasks in Music Information Retrieval (MIR), such as
cover detection or score following, could also benefit.

All proposed audio-to-lyrics alignment methods are
composed of an acoustic model, classifying each audio
frame into a set of textual units, and an alignment proce-
dure to obtain the desired lyrics timings. Previous works
in the field [6, 7] use source separation systems as a pre-
processing step to extract the singing vocals beforehand,
even if in [5], the authors mention that the vocal extraction
algorithms can add artifacts in the vocals. In [5], the au-
thors improved their aligners by modeling vowel durations
in their lexicons [9], which permits taking into account cer-
tain pronunciation aspects. Also, in [6], the alignment is
done in several passes, to first spot keyword positions in
the audio, and then consider several smaller alignments in
between the keywords.

The challenging question of real-time audio-to-lyrics
alignment remains open and has not yet been tackled in
the literature. This type of application would have great
value, especially in live concerts and operas where fully
automated subtitle displays could directly help the audi-
ence in following the live story. However, due to the archi-
tecture of existing acoustic models, the types of alignment
algorithms conventionally used, and the additional steps
detailed above, previous methods are not suited to work in
real-time.

In this work, we propose a first audio-to-lyrics align-
ment pipeline that can operate in real-time, 1 in a language-
independent way. Instead of using a pronunciation dictio-
nary to translate the lyrics into phonemes, we propose to
use another recording of the target piece as a reference
and proxy to the lyrics. 2 This method has been widely
used in the domain of score following, for robust tracking
during live orchestra [10] or opera [11] performances. To
this end, we first design an acoustic model that predicts a
frame-wise probability distribution over a pre-defined set
of phonemes. Each prediction is based on a very limited
temporal window, using a future context of 280 ms which
defines the delay of our system. Then, saving all the pre-
dictions in a posteriogram matrix, we perform an OnLine
Time Warping (OLTW) alignment between this (incremen-

1 We will not actually measure runtimes in this paper; the important
aspect of our method is that it solves the problem in an on-line fashion,
without access to future information, and that we can quantify its theoret-
ical latency, based on how it processes the input data.

2 Of course, this will only be practicable in certain domains, where
reference recordings are available.
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tally computed) posteriogram and the one from another
performance that has been generated beforehand.

In this paper, after presenting acoustic models and
alignment strategies of existing works in Section 2, we will
present our on-line alignment system in Section 3. The ro-
bustness and accuracy of our tracker will be evaluated on
two distinct datasets of ‘art’ music (opera) to be described
in Section 4. Results and a discussion will be given in Sec-
tion 5. Finally, our conclusions and open questions will be
presented in Section 6.

2. RELATED WORK

Audio-to-lyrics alignment is an active research topic that
is constantly stimulated by a yearly musical challenge 3

and the appearance of new open-source training datasets
such as DALI [12] or DAMP [13]. Recent works follow
a common pipeline. First, an acoustic model is trained to
extract from the audio signal a ‘posteriogram’ that repre-
sents the frame-wise probability distribution over textual
units through time. On the lyrics side, the text is first trans-
lated into a sequence of textual units that correspond to the
classes of the trained acoustic model. Finally, an align-
ment algorithm is applied between the posteriogram and
the lyrics’ representation, to retrieve textual unit timings
in the audio. In this section, we present existing acoustic
models, detail the alignment process, and show their limi-
tations to operate in real-time.

2.1 Acoustic Model

Acoustic models are Deep Neural Networks whose task
is to classify audio inputs into a sequence of probabilities
over a set of predefined textual units representing the lyrics
present in the audio. They are trained with datasets that
include a multi-modal mapping between lyrics and audio.
Due to the difficulty (or near impossibility) of obtaining
ground truth frame-level annotations, acoustic models are
generally trained with weak annotations, at the sentence
or word level, where the precise alignment between audio
frames and lyrics remains unknown. Inspired by Speech
Recognition [14], models can be trained in different ways.
A first strategy, used in [5, 6], fits a Gaussian Mixture
Model Hidden Markov Model (GMM-HMM) that force-
aligns the lyrics with the audio to generate phone labels
at the frame level. Then, the acoustic model is trained at
the sequence level with the Lattice-Free-Maximum Mutual
Information (LF-MMI) loss function [15], considering the
output of the GMM-HMM as ground truth. [6] combine
this objective with the Cross-Entropy (CE) loss to train the
model at the frame level. Another strategy, used in [4, 7],
aims at directly aligning the audio with the lyrics, using the
Connectionist Temporal Classification (CTC) loss [16].

Acoustic models classify each audio frame into a set of
textual units, which are intermediate lyrics representations.
In [4], the lyrics are represented as a sequence of charac-
ters, whereas [5–7] use a phoneme representation. In the

3 https://www.music-ir.org/mirex/wiki/2020:
Automatic_Lyrics-to-Audio_Alignment_Results

case of a single multilingual acoustic model, using a char-
acter representation is delicate. Even within one language,
a letter can be pronounced differently depending on the
context, which can confuse the acoustic model that tries
to classify audio frames into letters. The phoneme rep-
resentation is more consistent across different languages
and provides better performance since it is not language-
specific. In [7], the authors report better results in using
phonemes as the intermediate representation.

Acoustic models can employ different network archi-
tectures. Existing architectures have been designed to take
advantage of future information to improve the prediction
at each time step, which limits their use to offline applica-
tions. In [4], the authors build a Wave-U-Net that takes as
input windows of raw audio and encodes the information
at different scales. [5, 6] employ a combination of Con-
volutional Neural Networks and Time Delay Neural Net-
work [17] (TDNN-F) layers to model long temporal con-
text. [6] add CNN layers at the beginning of their model
to speed up the training, and a multi-head attention layer
at the end to help focusing on different parts of the input
for each prediction. Each layer is also responsible to ex-
tend the scope of input frames that have a direct influence
on the output frame prediction, that is, its Receptive Field
(RF). From the descriptions of these model architectures,
we derive RF values higher than 1.5s 4 , which is not suit-
able for a real-time application. Finally, the authors in [7]
use a Bidirectional Long Short-Term Memory (BLSTM) to
model the temporal dependencies, which combines back-
ward and forward information about the sequence for every
prediction. Another downside of this architecture is that it
is much slower to train [18].

2.2 Alignment

In the next step, an alignment algorithm is applied between
the posteriogram generated by the acoustic model and the
lyrics. To compare the two modalities, the lyrics must
first be translated into a sequence of textual units match-
ing with the classes of the trained acoustic model. This is
generally done by using open-source pronunciation dictio-
naries such as CMUdict 5 , for English only, or Phonem-
izer 6 , which covers several languages. Then, considering
the posteriogram as our observation sequence and the tar-
get lyrics, Viterbi-based forced alignment is applied to find
the most probable path in the posteriogram that generates
the lyrics. In [19], the author compares two trackers, one
based on Dynamic Time Warping (DTW) between pos-
teriograms and binary posteriograms generated from the
lyrics; and one based on the Viterbi algorithm between the
decoded lyrics from the posteriograms and their ground
truth. The author reports that the first approach, analogous

4 This rough calculation is only based on the respective stack of
TDNN layers and is much higher in practice. For a full descrip-
tion of their architectures, we refer the reader to the scripts avail-
able at respectively https://github.com/chitralekha18/
AutoLyrixAlign and https://github.com/emirdemirel/
ALTA.

5 https://github.com/cmusphinx/cmudict
6 https://github.com/bootphon/phonemizer
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to the audio-to-midi alignment task, does not perform as
well as the Viterbi-based method.

The alignment used in all the above works suffers from
two main limitations. First, the alignment algorithm works
on the full audio recording and the entire lyrics, which does
not permit real-time or on-line application. Second, the
phoneme-based approaches that yield the best alignment
accuracies [7] are dependent on text-to-phoneme tools to
translate the lyrics into a phoneme sequence, according to
the corresponding language. This limits the scope to lan-
guages that are covered by these tools.

3. PROPOSED SYSTEM

Our proposed on-line audio-to-lyrics alignment system is
illustrated in Figure 1. It is composed of an acoustic model
that classifies in real-time each audio frame into a set of
predefined phonemes. Then, instead of using the lyrics se-
quence for the alignment, we use a posteriogram matrix
that is computed beforehand from another recording of the
same work, which serves as a reference and a proxy to the
written-out lyrics. Finally, we apply an OLTW alignment
algorithm to align the two posteriograms, which permits
to retrieve the position of the lyrics in the live recording
with the help of manual lyrics annotations affixed to the
reference.

3.1 Acoustic Model

For our acoustic model, we select the CP-ResNet [20]
architecture that has already proven to perform well in
Acoustic Scene Classification [21] and in Emotion and
Theme Recognition in Music [22]. Based on the ResNet
architecture, the model stacks convolutional layers with
additional residual connections between layers. The CP-
ResNet is designed in such a way that the maximum time
receptive field (RF) is controlled by a hyper-parameter ρt
that defines the architecture of the model. For our experi-
ments, we fix ρt = 6, and our network architecture is given
in Table 1. The RF of the model can be recursively calcu-
lated with stride and kernel size of each layer (see equation
(1) in [20]). The corresponding RF is equal to 57 frames.
This means that each output vector is dependent on 57 in-
put frames centered around its time position, defining the
latency of our model to 28 frames. The architecture of the
deep network is specified in Table 1.

The acoustic model takes as input 80 Mel-Frequency
Cepstral Coefficients (MFCC) features extracted from the
audio signal, with a sampling rate of 16 kHz, and computed
with a window size of 20 ms and a hop size of 10 ms. It
corresponds to a model latency equal to 280 ms, which we

Layer Filters Kernel Stride Pad

Conv2d+BN+ReLU 64 5×5 2,2 1,1
Conv2d+BN+ReLU 64 3×3 1,1 1,1
Conv2d+BN+ReLU 64 1×1 1,1 1,1

MaxPool2d 1 2×2 2,2 0
Conv2d+BN+ReLU (x6) 64 3×3 1,1 1,1
Conv2d+BN+ReLU (x2) 128 3×1 1,1 1,0
Conv2d+BN+ReLU (x2) 128 1×1 1,1 0,0

Conv2d+BN+ReLU 60 1×1 1,1 0,0
LogSoftmax - - - -

Table 1. CP-Resnet with ρt = 6.

consider acceptable for real-time applications such as, e.g.,
opera subtitling.

The model outputs a vector every 40 ms. The vector is
of length 60 and includes 57 phonemes representing the
union of all phonemes present in the English, German,
French, Spanish and Italian languages, the space token,
the instrumental token, and the mandatory blank token for
CTC training. The five languages correspond to the most
dominant languages present in the DALI dataset [12], with
a bias towards English: the dataset includes 225 hours of
English songs, 20 hours of German, 10 hours of French,
10 hours of Spanish, and 10 hours of Italian, for a total
of 275 hours with hierarchical annotations at the sentence,
word, or note level. The dataset only covers Western musi-
cal genres. The choice of phoneme representation has been
motivated by the multilingual aspect of our work, permit-
ting to train a single model on different languages. The
instrumental token proves to be useful to label audio in-
puts that do not contain singing voice, especially during
silence or instrumental passages.

The model is trained on the DALI 1.0 [12] dataset with
a CTC objective, which permits us to train a model with
weak annotations between audio and lyrics. Each song in
the dataset is cut into windows of 20 seconds with a hop
size of 10 seconds, which limits the size of the input au-
dio feature sequence to a maximum length of 2000 frames.
Due to the real-time constraints, we do not extract the vo-
cals from the audio mixture but we train our model with
original mixtures of singing vocals and polyphonic music.
The corresponding labels of each window are extracted
with the word-level annotations provided by the dataset.
Each word starting and ending in the corresponding time
interval is part of the target annotation sequence of the cor-
responding audio window. Then, the character sequence is
transformed into a phoneme sequence using Phonemizer,
specifying the correct language (which is known at train-
ing time). Empty sequences are classified with the instru-
mental token. During training, the weights of the model
are tuned to maximize the probability of getting the cor-
rect label sequence (or all derivative sequences that have
inserted repetitions or blank symbols), given the input fea-
ture sequence.
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3.2 Alignment

The real-time alignment is realized between two audio per-
formances of the same work, both containing the same
sung lyrics. One performance, the target, corresponds to
the live performance we want to align to the lyrics. The
other performance, the reference, serves as a proxy to the
written-out lyrics. This strategy has two main advantages.
First, it is not dependent on a text-to-phoneme tool any-
more. The pronunciation of the lyrics is contained in the
reference recording and thus, can be decoded by the acous-
tic model. Even if the language of the target song is not
included in the training set, the acoustic model maps both
reference and target into the European phoneme set used
during training. Also, the duration of the phoneme units
is implicitly included in the reference recording, which
means we do not need complex, explicit duration modeling
techniques [9]. As a consequence, we can expect the refer-
ence posteriogram to be more similar to the posteriogram
of the target recording we want to align to the lyrics. How-
ever, the reference has to be linked to the lyrics beforehand,
generally with manual annotations at the word or sentence
level – but this really only depends on the requirements of
the specific application.

We use the OLTW [23] algorithm to align reference and
target posteriograms, skipping blank tokens in both ref-
erence and target sequence. The reference posteriogram
is generated beforehand, feeding only the reference audio
feature sequence to the acoustic model. Then, we generate
in real-time, also with our acoustic model, the probabil-
ity vectors representing the target posteriogram. For each
new vector, we calculate its cosine distance with a range of
8000 posteriogram vectors, centered around the expected
position in the reference posteriogram. This corresponds
to a context of 320 seconds. Then, we calculate recursively
the global cost, applying the standard DTW formula (equa-
tion (4.5) in [24]). The index representing the minimum of
the global cost represents the current time position in the
reference posteriogram.

4. DATA DESCRIPTION

In this work, we select opera recordings to evaluate our
system, for three reasons. First, live opera would be a di-
rect beneficiary of this tracking method, which would sup-
port a fully automatic subtitle display in the opera house
(or in a live streaming application). Secondly, opera lyrics
are challenging to track. Indeed, the genre of classical mu-
sic has been considered by far as the least intelligible genre
among eleven other genres [25]. Thus, evaluating our sys-
tem on opera data is a good robustness indicator. Finally,
opera is a musical genre that consistently produces identi-
cal works in several copies, with the change of the entire
set of artists. Popular datasets in audio-to-lyrics alignment
such as Hansen [26], Mauch [27] and Jamendo [4] do not
include duplicate entries. The two opera datasets currently
in our possession are described in Table 2.

The first is a subset of the Italian opera Don Giovanni by
W.A.Mozart that covers all the recitativo sections. These

Opera Name Duration # Annot.

Don Giovanni Ref_Karajan 0:30:03 639
Targ_Fischer 0:34:58 639
Targ_Manacorda 0:30:40 639

Jingju Ref_Jingju 1:53:53 3,975
Targ_Jingju 3:22:03 9,567

Table 2. Description of Don Giovanni and Jingju datasets.

have been manually annotated with bar lines, making it
possible for us to test the lyrics tracker by measuring how
precisely it aligns target and reference at bar boundaries.
Recitatives, an essential opera component of that period,
have recently been in the focus of opera score following
research [11], but trackers remain brittle. This is due to
the liberty that singers can take in terms of timing, singing
style, etc., and the fact that musical accompaniment is of-
ten improvised and played by different instruments in dif-
ferent recordings. Thus, it would be helpful to be able to
follow the performance based on the content of the sung
lyrics. As reference and proxy to the lyrics, we use a CD
recording conducted by Herbert von Karajan in 1985. The
two live targets are performances that were recorded at the
Vienna State Opera in 2018 and 2019 and conducted, re-
spectively, by Ádam Fischer and Antonello Manacorda,
with completely different casts of singers. For each perfor-
mance, the complete subsections comprising the recitativo
sections only, contain 639 manual bar-level annotations for
a duration of approximately 30 minutes.

The second dataset we will use is a subset of the Jingju
(Beijing Opera) A Capella Singing Audio Dataset [28,29].
It has been recorded in a teacher/student manner, collecting
a capella recordings from professional singers and singing
students, which permits to get pairs of recordings. It is
composed of two opera role types, dan and laosheng, and
includes 20 different reference melodic lines of each role
type with corresponding syllable-level annotations. The
dataset has initially been recorded to evaluate the singing
quality of the students compared to professional singers.
This implies that the recordings sometimes contain mis-
takes in the lyrics, and breaks in between sentences. For
each reference line, we count between 1 and 10 target ver-
sions that serve as target in our experiments.

5. EXPERIMENTS AND DISCUSSION

5.1 Acoustic Model Training

For our experiments, we train two distinct acoustic mod-
els, based on different training subsets of DALI dataset 7 .
The first model, 5lang, includes songs from five languages,
namely English, German, French, Spanish, and Italian.
The second model, english, uses only English data, the
most represented language in the dataset. The different

7 We also tried to train a third acoustic model only on Italian data,
which is the target language of the “Don Giovanni” opera. However, all
alignments diverged. We believe that this is mainly due to the low amount
of training Italian data, 10.8 h, in the DALI dataset, which is significantly
lower than the other proposed languages.
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Dataset Train songs (duration) Valid. songs (duration)

5lang 4027 (259.4 h) 149 (9.4 h)
english 3257 (210.8 h) 39 (2.6 h)

Table 3. Acoustic Model training and validation datasets.

train and validation splits were made publicly available
by [7] 8 and are described in Table 3. Each acoustic model
is trained with the CTC loss, a learning rate of 10−4, and
the ADAM optimizer.

5.2 Evaluation Metrics

As mentioned above, we evaluate our lyrics trackers by
quantifying the precision of the alignment between target
and reference that they produce. The granularity of our
ground truth annotations is at the bar level for Don Gio-
vanni and at the syllable level for the Jingju dataset. We
use the standard evaluation metrics from the field of score
following [30]. For each alignment, we report the mean
tracking error, in seconds, between timestamp annotations
and times detected by our aligner. We also report the pro-
portion of annotations that are detected with an error less
than 1s.

5.3 Lyrics Tracking in Opera

To evaluate our system, we compare its performance with
other following techniques working in real-time. To this
end, we select the State-Of-The-Art (SOTA) live opera
tracker that has recently proved to be robust to track, from
beginning to end, complete live “Don Giovanni” perfor-
mances [11, 31]. The opera tracker applies an OLTW al-
gorithm to align reference and live target audio. Instead
of using posteriograms as input to the OLTW algorithm,
it takes audio features that are directly computed from the
audio recordings. For the study, we compute two types
of features that will serve as tracking baselines and inputs
to our alignment algorithm. The first feature, baseline,
has been inspired from music tracking systems performing
on orchestral performances [32]. The feature calculates
120 MFCCs, but discards the first 20, and is computed
at a sampling rate of 44.1 kHz, a window size of 20 ms,
and a hop size of 10 ms. The second feature, recitative,
was designed specifically with recitatives in mind [31]. It
was tuned to perform best on the recitative subset of the
Fischer recording and was shown to generalize well to the
recitative subset of Manacorda. The feature is composed of
25 MFCCs extracted from Linear Predictive Coefficients
(LPC) that aim at extracting the phoneme information from
the audio. It is computed at a sampling rate of 1500 Hz,
with the same previous window size and hop size.

The results are given in Table 4. Looking at Don Gio-
vanni / Fischer, we see that both new models, using our
5lang and english acoustic models, outperform the SOTA
opera tracker based on baseline and recitative features,

8 https://github.com/deezer/
MultilingualLyricsToAudioAlignment

Opera Name Feature Mean(ms) ≤ 1s

DG Targ_Fischer baseline 1,915 66.1%
recitative 955 76.5%
5lang 846 80.5%
english 818 80.5%

Targ_Manacorda baseline 1,503 62.0%
recitative 1,023 69.7%
5lang 824 77.6%
english 963 76.1%

Jingju Targ_Jingju baseline 2,943 61.5%
recitative 3,878 60.0%
5lang 964 87.5%
english 810 89.0%

Table 4. Tracking error on Don Giovanni (DG) and Jingju
opera sub-datasets

the latter of which had been optimized specifically on this
dataset. The mean error has been reduced by at least
100 ms and 80.5% of the bars now show an error below 1s.
A similar picture emerges with DG / Manacorda, where the
mean error goes to 824 ms for the best 5lang model, and
where the 1s threshold improves by 8 percentage points,
relative to the recitative feature tracker. It is also impor-
tant to note that the results of recitative and baseline were
obtained in combination with a dedicated silence detector
which halts the tracking process when there are obvious
pauses. The two new trackers simply use the posteriograms
generated by the acoustic models and still improve track-
ing accuracy.

Secondly, our two models 5lang and english also per-
form best, by a large margin, on the Jingju opera sub-
dataset. The baseline and recitative features were designed
to extract pitch contours, focusing at different parts of the
frequency range. They turn out to be inefficient at track-
ing Beijing Opera a capella recordings. On that task, the
english model achieves the best performance, with a track-
ing accuracy of 810 ms and 89.0% of the syllables being
detected below 1s of error.

5.4 Robustness to Different Languages

Comparing the results, we see that alignment accuracies
are very similar across the two corpora, even though they
contain singing signals in two very different languages,
Italian and Chinese. The two acoustic models were not
trained on Chinese recordings, 9 a language that includes
new phonemes that do not appear in the phoneme set built
from the five European languages present in DALI. Using
phoneme posteriograms as a joint intermediate representa-
tion of the lyrics and of the live input thus seems to be a
remarkably robust choice for multilingual tracking.

Finally, the best results seem to alternate between the
5lang and english acoustic models in the different sub-
datasets. Based on the conclusions of [7], we expected
the 5lang model to perform best. However, and especially
on the Jingju tracking experiment, english yields some-

9 and indeed, Don Giovanni’s language – Italian – was also not repre-
sented in the english acoustic model’s training data.
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times better performance. This may be explained by the
fact that the mapping into the European phoneme set is by
construction incorrect, since the Chinese language is not
in the training dataset. We expect that training our acoustic
model with additional Chinese data would boost the per-
formance.

6. CONCLUSION

We have presented an on-line audio-to-lyrics alignment
method that is capable of operating in a real-time scenario.
It involves an acoustic model, built from a ResNet archi-
tecture, that classifies each audio frame into a vector rep-
resenting the probability distribution over a predefined set
of phonemes, with a delay of 280 ms. In a second step,
a real-time capable alignment algorithm (On-Line Time
Warping) aligns the emerging sequence of vectors to a pos-
teriogram matrix that has been extracted beforehand from
a reference performance of the same work, via our acous-
tic model. In experiments, we showed that our method is
robust and reasonably precise in tracking the lyrics in a
musical genre where the sung lyrics are known to be hard
to understand, and a genre that was not part of the acoustic
model training dataset. Additionally, we also showed ro-
bustness across languages, even if these are not included in
the acoustic model training data. Our results suggest that
it might be fruitful to investigate combinations of our sys-
tem with existing music trackers in the more general task
of opera score following.

Moreover, even if our study focused on the specific
genre of opera (and on two very specific subsets of it), the
method should be directly applicable to other music gen-
res and other languages. The acoustic model was trained
on Western musical genres and consequently, we expect
it to work even better on those genres. As future work,
we plan to evaluate our system on available Western mu-
sic datasets containing pairs of recordings, such as Cov-
ers80 [33], where lyrics are not necessarily identical and
where song structures may differ, and to use offline lyrics
alignment systems to obtain reference annotations.
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