
NEURAL WAVESHAPING SYNTHESIS

Ben Hayes, Charalampos Saitis, George Fazekas

Centre for Digital Music, Queen Mary University of London

{b.j.hayes, c.saitis, g.fazekas}@qmul.ac.uk

ABSTRACT

We present the Neural Waveshaping Unit (NEWT): a

novel, lightweight, fully causal approach to neural audio

synthesis which operates directly in the waveform domain,

with an accompanying optimisation (FastNEWT) for ef-

ficient CPU inference. The NEWT uses time-distributed

multilayer perceptrons with periodic activations to implic-

itly learn nonlinear transfer functions that encode the char-

acteristics of a target timbre. Once trained, a NEWT can

produce complex timbral evolutions by simple affine trans-

formations of its input and output signals. We paired the

NEWT with a differentiable noise synthesiser and reverb

and found it capable of generating realistic musical instru-

ment performances with only 260k total model parameters,

conditioned on F0 and loudness features. We compared

our method to state-of-the-art benchmarks with a multi-

stimulus listening test and the Fréchet Audio Distance and

found it performed competitively across the tested tim-

bral domains. Our method significantly outperformed the

benchmarks in terms of generation speed, and achieved

real-time performance on a consumer CPU, both with and

without FastNEWT, suggesting it is a viable basis for fu-

ture creative sound design tools.

1. INTRODUCTION

Synthesisers are indispensable tools in modern music cre-

ation. Over the last six decades, their evolving sonic af-

fordances have defined uncountable musical aesthetics and

cultures, enabling composers, sound designers, and musi-

cians to interact with human auditory perception in previ-

ously impossible ways.

The recent proliferation of deep neural networks as

audio synthesisers is further expanding the capabilities

of these tools: realistic instrument performances can be

synthesised from simple, low dimensional control signals

[1–3]; the timbre of one instrument can be convincingly

transferred to another [1, 3–5]; instruments can be mor-

phed and interpolated along nonlinear manifolds [6,7]; and

sounds can be manipulated using high level descriptors of

perceptual characteristics [7–9]. Yet despite their impres-

sive abilities, these systems have not been widely adopted

in music creation workflows.

© Ben Hayes, Charalampos Saitis, George Fazekas. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: Ben Hayes, Charalampos Saitis, George

Fazekas, “Neural Waveshaping Synthesis”, in Proc. of the 22nd Int. So-

ciety for Music Information Retrieval Conf., Online, 2021.

We argue that this is largely a pragmatic issue. Modern

music production centres around the digital audio worksta-

tion (DAW), with software instruments and signal proces-

sors represented as real-time plugins. These allow users to

dynamically manipulate and audition sounds, responsively

tweaking parameters as they listen or record. Neural audio

synthesisers do not currently integrate elegantly with this

environment, as they rely on deep neural networks with

millions of parameters, and are often incapable of func-

tioning in real-time on a CPU.

In this work we move towards integrating the benefits

of neural audio synthesis into creative workflows with a

novel, lightweight architecture built on the principles of

digital waveshaping synthesis [10]. Our model implicity

learns a bank of continuous differentiable waveshapers,

which are applied to an exciter signal. A control mod-

ule learns to generate time-varying timbres by dynamically

shifting and scaling the learnt waveshaper’s input and out-

put. As the waveshapers encode information about the tar-

get timbre, our model can synthesise convincing audio us-

ing an order of magnitude fewer parameters than the cur-

rent state-of-the-art methods.

This paper is laid out as follows. In section 2 we discuss

related work on neural audio synthesis and waveshaping.

Section 3 introduces our architecture, and we outline our

training methodology in section 4. In section 5 we present

and discuss evaluations of our model in comparison to the

current state of the art methods [1,3]. Finally, we conclude

with suggestions for future work in section 6. We provide

full source code 1 and encourage readers to listen to the

audio examples in the online supplement 2 .

2. RELATED WORK

2.1 Neural Audio Synthesis

Audio synthesis with deep neural networks has received

considerable attention in recent years. Autoregressive

models such as WaveNet [11] and SampleRNN [12] de-

fined a class of data-driven, general-purpose vocoder,

which was subsequently expanded on with further prob-

abilistic approaches, including flow-based models [13–15]

and generative adversarial networks [16–19]. These mod-

els allow realistic synthesis of speech, and applications to

musical audio [6,20,21] have yielded similarly impressive

results. A parallel stream of research has focused on con-

trollable musical audio synthesis [1–3, 7, 8, 22], in which

1 https://github.com/ben-hayes/

neural-waveshaping-synthesis
2 https://ben-hayes.github.io/projects/nws/

254

models are designed to provide control affordances that

may be of practical use. Such controls have included MIDI

scores [2, 22], semantic or acoustical descriptors of timbre

[7, 8], and F0/loudness signals [1, 3]. The representations

of timbre learnt by these models have also been observed

to show similarities to human timbre perception [23].

A recent category of model, [1, 3, 24] unified under the

conceptual umbrella of differentiable digital signal pro-

cessing (DDSP) [1], has enabled low-dimensional, inter-

pretable control through strong inductive biases to audio

synthesis. Whereas generalised neural vocoders must learn

from scratch to produce the features that typify audio sig-

nals, such as periodicity and harmonicity, DDSP methods

utilise signal processing components designed to produce

signals exhibiting such features. These components are ex-

pressed as differentiable operations directly in the compu-

tation graph, effectively constraining a model’s outputs to

a subspace defined by the processor’s capabilities.

DDSP methods fall into two groups: those where the

network generates control signals for a processor, and

those where the network is trained to be a signal proces-

sor itself. The DDSP autoencoder [1] falls into the first

category as it generates control signals for a spectral mod-

elling synthesiser [25]. The neural source-filter (NSF) ap-

proach [3,24,26] is in the second category. It learns a non-

linear filter that transforms a sinusoidal exciter to a target

signal, guided by a control embedding generated by a sep-

arate encoder. In other words: the control module “plays”

the filter network.

The NSF filter network transforms its input through am-

plitude distortion, as each activation function acts as a non-

linear waveshaper. A given layer’s ability to generate a

target spectrum is thus bounded by the distortion charac-

teristics of its activation function. For this reason, neu-

ral source-filter models are typically very deep: Wang et

al.’s simplified architecture [24] requires 50 dilated convo-

lutional layers, and Michelashvili & Wolf’s musical instru-

ment model [3] consists of 120 dilated convolutional layers

– 30 for each of its four serial generators.

Our method avoids the need for such depth by learning

continuous representations of detailed waveshaping func-

tions as small multilayer perceptrons. These functions

are optimised such that their amplitude distortion charac-

teristics allow them to produce spectral profiles appropri-

ate to the target timbre. This allows our model to accu-

rately transform an exciter signal considerably more effi-

ciently, whilst still exploiting the benefits of the network-

as-synthesiser approach.

2.2 Digital Waveshaping Synthesis

In waveshaping synthesis [10], timbres are generated using

the amplitude distortion properties of a nonlinear shaping

function f : R 7→ R, which is memoryless and shift invari-

ant. Due to its nonlinearity, f is able to introduce new fre-

quency components to a signal [27]. When a pure sinusoid

cosωn is used as the input to f , only pure harmonics are

introduced to the signal. An exciter signal with multiple

frequency components, conversely, would result in inter-

modulation distortion, generating components at frequen-

cies aω1 ± bω2, ∀a, b ∈ Z
+, for input frequencies ω1 and

ω2. This would result in inharmonic components if ω1 and

ω2 are not harmonically related.

The shaping function f is designed to produce a spe-

cific spectral profile when excited with cosωn. This is

achieved as a weighted sum of Chebyshev polynomials

of the first kind, which possess the property that the kth

polynomial Tk directly transforms a sinusoid to its kth har-

monic: Tk(cosωn) = cosωkn. With a function specified

in this way, we can define a simple discrete time waveshap-

ing synthesiser

x[n] = N [n]f(a[n] cosωn), (1)

where a[n] is the distortion index and N [n] is a normal-

ising coefficient. As the frequency components generated

by a nonlinear function vary with input amplitude, varying

the distortion index over time allows us to generate evolv-

ing timbres, whilst the normalising coefficient allows us to

decouple the frequency content and overall amplitude en-

velope of the signal.

3. NEURAL WAVESHAPING SYNTHESIS

Our model acts as a harmonic-plus-noise synthesiser [25].

This architecture separately generates periodic and aperi-

odic components and exploits an inductive bias towards

harmonic signals. Fig. 1 illustrates the overall architec-

ture of our model.

3.1 Control Encoder

We condition our model on framewise control signals ex-

tracted from the target audio with a hop size of 128. We

project these to a 128-dimensional control embedding z

using a causal gated recurrent unit (GRU) of hidden size

128 followed by a time distributed dense layer of the same

size. We leave the exploration of the performance of alter-

native sequence models to future work.

3.2 NEWT: Neural Waveshaping Unit

The shaping function f of a waveshaping synthesiser can

be fit to only a single instantaneous harmonic spectrum.

The spectral evolution afforded by the distortion index a[n]
is thus usually unrelated to the target timbre. This is a

limitation of the Chebyshev polynomial method of shap-

ing function design. Here, we propose to instead learn a

shaping function fθ parameterised by a multilayer percep-

tron (MLP). As demonstrated in recent work on implicit

neural representations [28, 29], MLPs with sinusoidal ac-

tivations dramatically outperform ReLU MLPs in learning

continuous representations of detailed functions with arbi-

trary support. We therefore use sinusoidal activations in

fθ, which enables useful shaping functions to be learnt by

very compact networks. Here, we use 64 parallel shaper

MLPs, each with 4 layers, with a hidden size of 8 neurons.

To enable our model to fully exploit the distortion char-

acteristics of fθ, we replace the distortion index a[n] and

normalising coefficient N [n] with affine transforms before

and after the shaping function. The parameters of these

transforms, denoted αa and βa for the distortion index

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

255

GRU Linear

Harmonic
Oscillator

Bank
LinearF0

Loudness

Control Encoder

Harmonic Exciter NEWT Bank Reverb

White
NoiseMLP Pad &

WindowIDFT

Filtered Noise Synthesiser

IR

NEWTNEWT

Figure 1. The full architecture of our neural audio synthesiser. All linear layers and MLPs are time distributed. Convolution

is denoted ∗ and applied by multiplication in the frequency domain. Blocks with dashed outlines operate at the same coarse

time steps as the control signal, whilst those with solid outlines operate at audio rate.

Sinusoidal
MLP

MLP

Distortion
index

Normalising
coe�cient

Shaping
function

Upsample

Neural Waveshaping Unit (NEWT)

Figure 2. A block diagram depicting the structure of

the neural waveshaping unit (NEWT). Blocks with dashed

outlines operate at control signal time steps, whilst solid

blocks operate at audio rate.

and αN and βN for the normalising coefficient, are gener-

ated by a separate MLP (depth 4, width 128, ReLU activa-

tions with layer normalisation [30]) which takes z as input,

and then upsampled to audio rate. The output of a single

NEWT in response to exciter signal y[n] is thus given by:

x[n] = αNfθ(αay[n] + βa) + βN . (2)

In this way, the NEWT disentangles two tasks: it learns

a synthesiser parameterised by (αa, αN , βa, βN), and it

learns to “play” that synthesiser in response to a control

signal z. Fig. 2 illustrates the structure of the NEWT. In

practice, we use multiple such units in parallel. We can im-

plement this efficiently using grouped 1-dimensional con-

volutions with a kernel size of 1 — essentially a bank of

parallel time-distributed dense layers.

3.3 FastNEWT

The NEWT is an efficient approach to generating time-

varying timbres, but its reliance on grouped 1-dimensional

convolutions best suits it to GPU inference. Many use-

cases for our model do not guarantee the availability of a

GPU, and so efficient CPU inference is of crucial impor-

tance. For this reason, we propose an optimisation called

the FastNEWT: as each learnable shaping function simply

maps R 7→ R, it can be replaced by a lookup table of

arbitrary resolution. Forward passes through fθ are then

simply replaced with the O(1) operation of reading values

from an array and calculating an interpolation.

To produce a FastNEWT, we sample fθ across a closed

interval. The sampling resolution and interval are tunable

parameters of this operation, and represent a trade-off be-

tween memory cost and reconstruction quality. Here, we

opt for a lookup table of 4096 samples over the interval

[−3, 3], using a naïve implementation with linear interpo-

lation. Like the rest of our model, this is implemented

using PyTorch operations, and so we treat this as an up-

per bound on the computational cost of the FastNEWT. In

practice, an implementation in a language with low level

memory access would confer performance improvements.

3.4 Harmonic Exciter

To reduce the resolution required of the shaping functions,

we produce our exciter with a harmonic oscillator bank

generating up to 101 harmonics, truncated at the Nyquist

frequency. The outputs of this oscillator bank are passed

through a time distributed linear layer, acting as a mixer

which provides each NEWT channel with a weighted mix-

ture of harmonics. Thus, the ith output channel of the ex-

citer module is given by:

yi[n] =
K
∑

k=1

A(kω)wik cos kωn+ bi, (3)

where the antialiasing mask A(kω) is 1 if −π < kω < π

and 0 otherwise.

3.5 Noise Synthesiser

In spectral modelling synthesis [25], audio signals are de-

composed into a harmonic portion and a residual portion.

The residual portion is typically modelled by filtered noise,

with filter coefficients varying over time according to the

spectrum of the residual. Here, we use an MLP (depth 4,

hidden size 128, ReLU activations with layer normalisa-

tion) to generate 256-tap FIR filter magnitude responses

conditioned on z. We apply a differentiable window-

design method like that used in the DDSP model [1] to

apply the filters to a white noise signal. First, we take the

inverse DFT of these magnitude responses, then shift them

to causal form, and apply a Hann window to the impulse

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

256

response. We then apply the filters to a white noise signal

by multiplication in the frequency domain.

3.6 Learnable Reverb

To model room acoustics, we apply a differentiable convo-

lutional reverb to the signal. We use an impulse response

c[n] of length 2 seconds, initialised as follows:

c[n]

{

∼ N (0; 1e-6), if n > 1,

= 0, if n = 0.
(4)

c[n] is trainable for n ≥ 1, whilst the 0th value is fixed

at 0. The reverberated signal (c ∗ x)[n] is computed by

multiplication in the frequency domain, and the output of

the reverb is summed with the dry signal.

4. EXPERIMENTS

Our model can be trained directly through maximum like-

lihood estimation with minibatch gradient descent. Here

we detail the training procedure used in our experiments.

4.1 Loss

We trained our model using the multi-resolution STFT loss

from [18]. A single scale of the loss is defined as the ex-

pectation of the sum of two terms. The first is the spectral

convergence Lsc (Eqn. 5) and the second is log magnitude

distance Lm (Eqn. 6), defined as:

Lsc(x, x̂) =
‖|STFTm(x)| − |STFTm(x̂)|‖

F

‖|STFTm(x)|‖
F

(5)

and

Lm(x, x̂) =
1

m
‖log |STFTm(x)| − log |STFTm(x̂)|‖

1
(6)

respectively, where ‖·‖F is the Frobenius norm, ‖·‖
1

is

the L1 norm, and STFTm gives the short-time Fourier

transform with analysis window of length m for m ∈
{512, 1024, 2048}. We used the implementation of this

loss provided in the auraloss library [31].

4.2 Data

We collated monophonic audio files from three instruments

(violin, trumpet, & flute) from across the University of

Rochester Music Performance (URMP) dataset [32], and

for each instrument applied the following preprocessing.

We normalised amplitude across each instrument subset,

made all audio monophonic by retaining the left channel,

and resampled to 16kHz. We extracted F0 and confidence

signals using the full CREPE model [33] with a hop size

of 128 samples. We extracted A-weighted loudness using

the procedure laid out in [21] using a window of 1024 sam-

ples and a hop size of 128 samples. We divided audio and

control signals into 4 second segments, and discarded any

segment with a mean pitch confidence < 0.85. Finally,

control signals were standardised to zero mean and unit

variance. Each instrument subset was then split into 80%

training, 10% validation, and 10% test subsets.

Model Parameters

HTP 5.6M

DDSP-full 6M

DDSP-tiny 280k*

NWS 266k

* The paper reports 240k [1], but the official implementation
contains a model with 280k parameters.

Table 1. Trainable parameter counts of models under com-

parison.

4.3 Training

We trained our models with the Adam optimiser using an

initial learning rate of 1e-3. The learning rate was expo-

nentially decayed every 10k steps by a factor of 0.9. We

clipped gradients to a maximum norm of 2.0. All models

were trained for 120k iterations with a batch size of 8.

5. EVALUATION & DISCUSSON

To evaluate the performance of our model across different

timbres, we trained a neural waveshaping model for each

instrument subset. We denote these models NWS, specify-

ing the instrument where relevant. After training, we cre-

ated optimised models with FastNEWT, denoted NWS-FN,

and included these in our experiments also.

5.1 Benchmarks

We evaluated our models in comparison to two state of the

art methods: DDSP [1] and Hierarchical Timbre Painting

(referred to from here as HTP) [3]. We trained these on the

same data splits as our model, preprocessed in accordance

with each benchmark’s requirements.

Two DDSP architectures were used as benchmarks: the

“full” model, originally used to train a violin synthesiser,

and the “tiny” model described in the paper’s appendices.

Both were trained for 30k iterations as recommended in

the supplementary materials. We denote these DDSP-full

and DDSP-tiny, respectively. HTP comprises four distinct

Parallel WaveGAN [18] generators operating at increasing

timescales. We trained each for 120k iterations, as recom-

mended in the original paper. Table 1 lists the total train-

able parameter counts of all models under comparison.

5.2 Fréchet Audio Distance

The Fréchet Audio Distance (FAD) is a metric originally

designed for evaluating music enhancement algorithms

[34], which correlates well with perceptual ratings of audio

quality. It is computed by fitting multivariate Gaussians to

embeddings generated by a pretrained VGGish model [35].

This process is performed for both the set under evaluation,

yielding Ne(µe,Σe), and a set of “background” audio sam-

ples which represent desirable audio characteristics, yield-

ing Nb(µb,Σb). The FAD is then given by the Fréchet

distance between these distributions:

F (Nb,Ne) = ‖µb − µe‖2 + tr(Σb +Σe − 2
√
ΣbΣe). (7)

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

257

Fréchet Audio Distance

Model Flute Trumpet Violin

Test Data 0.463 0.327 0.096

HTP 6.970 14.848 2.529

DDSP-full 3.091 1.391 1.062

DDSP-tiny 3.673 5.301 2.454

NWS 2.704 2.158 5.101

NWS-FN 2.717 2.163 5.091

Table 2. Fréchet Audio Distance scores for all models us-

ing background embeddings computed across each instru-

ment’s full dataset. Bold type indicates the best perfor-

mance in a column and italics the second best.

Thus, a lower FAD score indicates greater similarity to the

background samples in terms of the features captured by

the VGGish embedding. Here, we used the FAD to evalu-

ate the overall similarity of our model’s output to the tar-

get instrument. We computed our background embedding

distribution Nb from each instrument’s full dataset, whilst

the evaluation embedding distributions Ne were computed

using audio resynthesised from the corresponding test set.

FAD scores for our model, all benchmarks, and the test

datasets themselves are presented in Table 2.

In general, the closely matched scores of the NWS

and NWS-FN models indicate that, across instruments, the

FastNEWT optimisation has a minimal effect on this met-

ric of audio quality. On trumpet and flute, our models con-

sistently outperform HTP and DDSP-tiny, and also out-

perform DDSP-full on flute. On violin, conversely, both

DDSP models are the best performers, with HTP achiev-

ing a similar score to DDSP-tiny.

5.3 Listening Test

Our model and benchmarks can be considered as highly

specified audio codecs. We therefore applied a listening

test inspired by the MUSHRA (MUltiple Stimuli with Hid-

den Reference and Anchor) standard [36], which is used to

assess the perceptual quality of audio codecs. We used

the webMUSHRA framework [37], adapted to incorpo-

rate a headphone screening test [38]. For each instru-

ment, we selected two stimuli from the test set represent-

ing distinct register and articulation, giving six total tri-

als. In each trial, we used the original recording as the

reference and produced the anchor by applying a 1kHz

low pass filter. We recruited 19 participants from a pool

of audio researchers, musicians, and audio engineers. We

excluded the responses of one participant, who rated the

anchor above the reference in greater than 15% of trials.

Responses for each trial are plotted in Fig. 3. In gen-

eral, NWS and NWS-FN performed similarly across trials,

suggesting that FastNEWT has little, if any, impact on the

perceptual quality of the synthesised audio. Across flute

and trumpet trials our models were rated similarly to the

benchmarks. In the first violin trial, our models’ ratings

were similar to those of DDSP-tiny, whilst in the second

they were lowest overall. These ratings are concordant

with FAD scores: our model performs competitively on

Real-time Factor

GPU CPU

Model Mean 90th Pctl. Mean 90th Pctl.

HTP 0.105 0.106 2.203 2.252

DDSP-full 0.038 0.047 0.363 0.395

DDSP-tiny 0.032 0.039 0.215 0.223

NWS 0.004 0.004 0.194 0.208

NWS-FN 0.003 0.003 0.074 0.076

Table 3. Real-time time factor computed by synthesising

four seconds of audio in a single forward pass. Statistics

computed over 100 runs. Bold indicates the best perfor-

mance in a column and italics the second best.

trumpet and flute whilst struggling somewhat with violin.

To examine the influence of melodic stimuli on partic-

ipants’ ratings, we performed Wilcoxon’s signed-rank test

between scores given for each instrument’s two stimuli, for

each synthesis model. For example, scores given to DDSP-

full for stimulus Flute 1 were compared to scores given to

DDSP-full for Flute 2. Out of fifteen tests, significant dif-

ferences (p < .001) were observed in two: between trum-

pet stimuli for both DDSP-full and HTP. No other signifi-

cant effects were observed (α = 0.05).

To examine the effect of synthesis model, we performed

Friedman’s rank sum test on ratings from each trial. For

flute stimuli, no significant effects were found. Signifi-

cant effects were observed for both trumpet stimuli, al-

though Kendall’s W suggested only weak agreement be-

tween raters (Trumpet 1: Q = 27.45, p < 0.001,W =
0.38; Trumpet 2: Q = 14.18, p < 0.01,W = 0.20) . Both

violin stimuli also resulted in significant effects with mod-

erate agreement between raters (Violin 1: Q = 42.28, p <

0.001,W = 0.59; Violin 2: Q = 37.95, p < 0.001,W =
0.53). Post-hoc analysis was performed within each trial

using Wilcoxon’s signed-rank test with Bonferroni p-value

correction. Significant differences (corrected threshold

p < .005) were observed for Trumpet 1, Violin 1, and Vi-

olin 2. These are illustrated as brackets in Fig. 3.

5.4 Real-time Performance

We evaluated the real-time performance of our model in

two scenarios. In both cases we took measurements on

a GPU (Tesla P100-PCIe 16GB) and a CPU (Intel i5

1038NG7 2.0GHz) and used the real-time factor (RTF) as

a metric. The RTF is defined as

RTF :=
tp

ti
, (8)

where ti is the temporal duration of the input and tp is the

time taken to process that input and return an output. Real-

time performance thus requires RTF < 1. In all tests we

computed RTF statistics over 100 measurements.

The first scenario models applications where an output

is expected immediately after streaming an input. To test

this, we computed the RTF on four second inputs. We re-

port the mean and 90th percentile in Table 3. On the GPU,

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

258

Flute 1 Flute 2 Trumpet 1 Trumpet 2 Violin 1 Violin 2

0

25

50

75

100

S
c
o
re

Model

Anchor

DDSP−full

DDSP−tiny

HTP

NWS

NWS−FN

Reference

Figure 3. Boxplots of ratings given to each synthesis model during each trial in our listening test. Brackets indicate

significant (corrected p < .005) differences in pairwise Wilcoxon signed-rank tests with Bonferroni correction.

0.01

0.10

1.00

10.00

256 512 1024 2048 4096 8192 16384 32768

Buffer size in samples

R
e
a
l−

ti
m

e
 f
a
c
to

r

Model
DDSP−full DDSP−tiny HTP

NWS−FN NWS

Device cpu gpu

Figure 4. A plot of the mean real-time factor against buffer

size across all benchmarks. Mean computed over 100 runs

per model per device per buffer size.

NWS and NWS-FN outperformed all benchmarks, includ-

ing DDSP-tiny. On the CPU, NWS still outperformed all

other models, albeit by a narrower margin. The benefit of

the FastNEWT optimisation was clearer on CPU: NWS-

FN had a mean RTF 2.9× lower than the best perform-

ing benchmark. On both platforms, HTP was significantly

slower, likely due to its much greater depth.

The second scenario assumes applications where im-

mediate response to input is expected, such as in a soft-

ware instrument. Here, samples are processed in blocks

to ensure that sufficient audio is delivered to the DAC in

time for playback. We computed the RTF for each buffer

size in B := {2n | n ∈ Z, 8 ≤ n < 16}. The means

of these runs are plotted in Fig. 4. Again, NWS and

NWS-FN outperformed all benchmarks on both CPU and

GPU, sitting comfortably below the real-time threshold of

1.0 at all tested buffer sizes. HTP did not achieve real-

time performance at any buffer size on the CPU, and only

did so for buffer sizes over 2048 on the GPU. DDSP-

full, similarly, was unable to achieve realtime performance

for buffer sizes of 2048 or lower on GPU or CPU, while

DDSP-tiny sat on the threshold at this buffer size. It should

be noted that a third-party, stripped down implementation

of the DDSP model was recently released, which is capa-

ble of real-time inference when the convolutional reverb

module is removed 3 .

6. CONCLUSION

In this paper, we presented the NEWT: a neural network

structure for audio synthesis based on the principles of

waveshaping [10]. We also present full source code, pre-

trained checkpoints, and an online supplement containing

audio examples. Our architecture is lightweight, causal,

and comfortably achieves real-time performance on both

GPU and CPU, with efficiency further improved by the

FastNEWT optimisation. It produces convincing audio di-

rectly in the waveform domain without the need for hier-

archical or adversarial training. Our model is also capable

of many-to-one timbre transfer by extracting F0 and loud-

ness control signals from the source audio. Examples of

this technique are provided in the online supplement.

In evaluation with a multi-stimulus listening test and

the Fréchet audio distance our model performed compet-

itively with state-of-the-art methods with over 20× more

parameters on trumpet and flute timbres, whilst perform-

ing similarly to a comparably sized DDSP benchmark on

violin timbres. Due to the use of a harmonic exciter in our

architecture and the scope of our experimentation, further

work is necessary to ascertain to what degree the NEWT

itself contributes to our model’s performance. Therefore,

in future work we will perform a full ablation study and a

quantitative analysis of the degree to which a trained model

makes use of the NEWT’s waveshaping capabilities. In the

meantime, the online supplement demonstrates through vi-

sualisations of learnt shaping functions, affine parameters

(αa, βa, αN , βN), and audio taken directly from the out-

put of the NEWT, that the NEWTs in our model do indeed

perform waveshaping on the exciter signal.

We suspect the lower scores on violin timbres were due

to the greater proportion of signal energy in higher har-

monics in these sounds. The NEWT may thus been un-

able to learn shapers capable of producing these harmon-

ics without introducing aliasing artefacts. Using sinusoidal

MLPs with greater capacity inside the NEWT may allow

more detailed shaping functions to be learnt, whilst retain-

ing efficient inference with FastNEWT. Future work will

investigate this and other differentiable antialiasing strate-

gies, including adaptive oversampling [39]. We will also

explore extending our model to multi-timbre synthesis.

3 https://github.com/acids-ircam/ddsp_pytorch

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

259

7. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers at ISMIR

for their thoughtful comments. We would also like to thank

our colleague Cyrus Vahidi for many engaging and insight-

ful discussions on neural audio synthesis. This work was

supported by UK Research and Innovation [grant number

EP/S022694/1].

8. REFERENCES

[1] J. Engel, L. H. Hantrakul, C. Gu, and A. Roberts,

“DDSP: Differentiable Digital Signal Processing,” in

8th International Conference on Learning Representa-

tions, Addis Ababa, Ethiopia, 2020.

[2] J. W. Kim, R. Bittner, A. Kumar, and J. P. Bello, “Neu-

ral Music Synthesis for Flexible Timbre Control,” in

ICASSP 2019 - 2019 IEEE International Conference

on Acoustics, Speech and Signal Processing, Brighton,

United Kingdom, 2019, pp. 176–180.

[3] M. M. Michelashvili and L. Wolf, “Hierarchical

Timbre-painting and Articulation Generation,” in Pro-

ceedings of the 21th International Society for Music

Information Retrieval Conference, Oct. 2020.

[4] S. Huang, Q. Li, C. Anil, S. Oore, and R. B. Grosse,

“TimbreTron A WaveNet(CycleGAN(CQT(Audio)))

Pipeline for Musical Timbre Transfer,” in 7th Interna-

tional Conference on Learning Representations, New

Orleans, LA, USA, 2019, p. 17.

[5] D. K. Jain, A. Kumar, L. Cai, S. Singhal, and V. Ku-

mar, “ATT: Attention-based Timbre Transfer,” in 2020

International Joint Conference on Neural Networks

(IJCNN). Glasgow, United Kingdom: IEEE, Jul.

2020, pp. 1–6.

[6] J. Engel, C. Resnick, A. Roberts, S. Dieleman,

M. Norouzi, D. Eck, and K. Simonyan, “Neural au-

dio synthesis of musical notes with WaveNet autoen-

coders,” in Proceedings of the 34th International Con-

ference on Machine Learning - Volume 70, Sydney,

Australia, Aug. 2017, pp. 1068–1077.

[7] P. Esling, A. Chemla, and A. Bitton, “Bridging audio

analysis, perception and synthesis with perceptually-

regularized variational timbre spaces,” in Proceedings

of the 19th International Society for Music Information

Retrieval Conference, Paris, France, 2018, pp. 175–

181.

[8] P. Esling, N. Masuda, A. Bardet, R. Despres, and

A. Chemla-Romeu-Santos, “Flow Synthesizer: Uni-

versal Audio Synthesizer Control with Normalizing

Flows,” Applied Sciences, vol. 10, no. 1, p. 302, 2020.

[9] J. Nistal, S. Lattner, and G. Richard, “DrumGAN: Syn-

thesis of Drum Sounds With Timbral Feature Condi-

tioning Using Generative Adversarial Networks,” in

Proceedings of the 21th International Society for Mu-

sic Information Retrieval Conference, Montréal, Aug.

2020.

[10] M. Le Brun, “Digital Waveshaping Synthesis,” Journal

of the Audio Engineering Society, vol. 27, no. 4, pp.

250–266, Apr. 1979.

[11] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan,

O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and

K. Kavukcuoglu, “WaveNet: A Generative Model for

Raw Audio,” arXiv:1609.03499 [cs], Sep. 2016, arXiv:

1609.03499.

[12] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain,

J. Sotelo, A. Courville, and Y. Bengio, “SampleRNN:

An Unconditional End-to-End Neural Audio Genera-

tion Model,” in 5th International Conference on Learn-

ing Representations, Toulon, France, 2017.

[13] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow:

A Flow-based Generative Network for Speech Synthe-

sis,” in ICASSP 2019 - 2019 IEEE International Con-

ference on Acoustics, Speech and Signal Processing

(ICASSP). Brighton, United Kingdom: IEEE, May

2019, pp. 3617–3621.

[14] W. Song, G. Xu, Z. Zhang, C. Zhang, X. He, and

B. Zhou, “Efficient WaveGlow: An Improved Wave-

Glow Vocoder with Enhanced Speed,” in Interspeech

2020. ISCA, Oct. 2020, pp. 225–229.

[15] A. v. d. Oord, Y. Li, I. Babuschkin, K. Simonyan,

O. Vinyals, K. Kavukcuoglu, G. v. d. Driessche,

E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande,

D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalch-

brenner, H. Zen, A. Graves, H. King, T. Walters,

D. Belov, and D. Hassabis, “Parallel WaveNet: Fast

High-Fidelity Speech Synthesis,” arXiv:1711.10433

[cs], Nov. 2017, arXiv: 1711.10433.

[16] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z.

Teoh, J. Sotelo, A. de Brébisson, Y. Bengio, and A. C.

Courville, “MelGAN: Generative adversarial networks

for conditional waveform synthesis,” in Advances in

Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. dAlché Buc, E. Fox,

and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,

2019.

[17] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Genera-

tive adversarial networks for efficient and high fidelity

speech synthesis,” in Advances in Neural Informa-

tion Processing Systems, H. Larochelle, M. Ranzato,

R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33.

Curran Associates, Inc., 2020, pp. 17 022–17 033.

[18] R. Yamamoto, E. Song, and J.-M. Kim, “Paral-

lel Wavegan: A Fast Waveform Generation Model

Based on Generative Adversarial Networks with Multi-

Resolution Spectrogram,” in ICASSP 2020 - 2020

IEEE International Conference on Acoustics, Speech

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

260

and Signal Processing (ICASSP). Barcelona, Spain:

IEEE, May 2020, pp. 6199–6203.

[19] C. Donahue, J. McAuley, and M. Puckette, “Adversar-

ial Audio Synthesis,” in 7th International Conference

on Learning Representations, New Orleans, LA, USA,

2019, p. 16.

[20] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Don-

ahue, and A. Roberts, “GANSynth: Adversarial Neu-

ral Audio Synthesis,” in 7th International Conference

on Learning Representations, New Orleans, LA, USA,

2019, p. 17.

[21] L. Hantrakul, J. Engel, A. Roberts, and C. Gu, “Fast

and Flexible Neural Audio Synthesis,” in Proceedings

of the 20th International Society for Music Information

Retrieval Conference, Delft, The Netherlands, 2019,

pp. 524–530.

[22] N. Jonason, B. L. T. Sturm, and C. Thome, “The

control-synthesis approach for making expressive and

controllable neural music synthesizers,” in Proceed-

ings of the 2020 AI Music Creativity Conference, 2020,

p. 9.

[23] B. Hayes, L. Brosnahan, C. Saitis, and G. Fazekas,

“Perceptual Similarities in Neural Timbre Embed-

dings,” in DMRN+15: Digital Music Research Net-

work One-day Workshop 2020, London, UK, 2020.

[24] X. Wang, S. Takaki, and J. Yamagishi, “Neural Source-

Filter Waveform Models for Statistical Parametric

Speech Synthesis,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 28, pp. 402–

415, 2020.

[25] X. Serra and J. Smith, “Spectral Modeling Synthesis:

A Sound Analysis/Synthesis System Based on a De-

terministic Plus Stochastic Decomposition,” Computer

Music Journal, vol. 14, no. 4, pp. 12–24, 1990.

[26] Y. Zhao, X. Wang, L. Juvela, and J. Yamagishi, “Trans-

ferring Neural Speech Waveform Synthesizers to Mu-

sical Instrument Sounds Generation,” in ICASSP 2020

- 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). Barcelona,

Spain: IEEE, May 2020, pp. 6269–6273.

[27] J. D. Reiss and A. P. McPherson, “Overdrive, Distor-

tion, and Fuzz,” in Audio effects: theory, implementa-

tion and application. Boca Raton London New York:

CRC Press, Taylor & Francis Group, 2015, pp. 167–

188, oCLC: 931666647.

[28] V. Sitzmann, J. N. P. Martel, A. W. Bergman,

D. B. Lindell, and G. Wetzstein, “Implicit Neu-

ral Representations with Periodic Activation Func-

tions,” arXiv:2006.09661 [cs, eess], Jun. 2020, arXiv:

2006.09661.

[29] D. W. Romero, A. Kuzina, E. J. Bekkers, J. M.

Tomczak, and M. Hoogendoorn, “CKConv: Con-

tinuous Kernel Convolution For Sequential Data,”

arXiv:2102.02611 [cs], Feb. 2021, arXiv: 2102.02611.

[30] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normal-

ization,” arXiv:1607.06450 [cs, stat], Jul. 2016, arXiv:

1607.06450.

[31] C. J. Steinmetz and J. D. Reiss, “auraloss: Audio fo-

cused loss functions in PyTorch,” in Digital music re-

search network one-day workshop (DMRN+15), 2020.

[32] B. Li, X. Liu, K. Dinesh, Z. Duan, and G. Sharma,

“Creating a Multitrack Classical Music Performance

Dataset for Multimodal Music Analysis: Challenges,

Insights, and Applications,” IEEE Transactions on

Multimedia, vol. 21, no. 2, pp. 522–535, Feb. 2019.

[33] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe:

A Convolutional Representation for Pitch Estimation,”

in 2018 IEEE International Conference on Acoustics,

Speech, and Signal Processing, ICASSP 2018 - Pro-

ceedings. Institute of Electrical and Electronics Engi-

neers Inc., Sep. 2018, pp. 161–165.

[34] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi,

“Fréchet Audio Distance: A Reference-Free Metric for

Evaluating Music Enhancement Algorithms,” in Inter-

speech 2019. ISCA, Sep. 2019, pp. 2350–2354.

[35] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gem-

meke, A. Jansen, R. C. Moore, M. Plakal, D. Platt,

R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and

K. Wilson, “CNN architectures for large-scale audio

classification,” in 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP).

New Orleans, LA: IEEE, Mar. 2017, pp. 131–135.

[36] I.-R. BS.1534-3, “Method for the subjective assess-

ment of intermediate quality level of audio systems,”

ITU-R, Tech. Rep., 2015.

[37] M. Schoeffler, S. Bartoschek, F.-R. Stöter, M. Roess,

S. Westphal, B. Edler, and J. Herre, “webMUSHRA —

A Comprehensive Framework for Web-based Listen-

ing Tests,” Journal of Open Research Software, vol. 6,

p. 8, Feb. 2018.

[38] A. E. Milne, R. Bianco, K. C. Poole, S. Zhao, A. J.

Oxenham, A. J. Billig, and M. Chait, “An online head-

phone screening test based on dichotic pitch,” Behavior

Research Methods, Dec. 2020.

[39] B. De Man and J. D. Reiss, “Adaptive control of am-

plitude distortion effects,” in Audio engineering society

conference: 53rd international conference: Semantic

audio, Jan. 2014.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

261

