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ABSTRACT

Voice segregation, melody line identification and other
tasks of identifying the horizontal elements of music have
been developed independently, although their purposes are
similar. In this paper, we propose a unified framework to
solve the voice segregation and melody line identification
tasks of symbolic music data. To achieve this, a neural
network model is trained to learn note-to-note affinity val-
ues directly from their contextual notes, in order to repre-
sent a music piece as a weighted undirected graph, with the
affinity values being the edge weights. Individual voices or
streams are then obtained with spectral clustering over the
learned graph. Conditioned on minimal prior knowledge,
the framework can achieve state-of-the-art performance on
both tasks, and further demonstrates strong advantages on
simulated real-world symbolic music data with missing
notes and asynchronous chord notes.

1. INTRODUCTION

Identifying the horizontal elements of music (e.g., melody,
accompaniment, voice, stream, and counterpoint) is crucial
for understanding musical data. As a mandatory step in
music transcription [1] and generation [2, 3], this problem
has been widely discussed; related tasks include melody
extraction [4] and multi-pitch streaming [5, 6] for audio
music data and voice segregation [7] and melody line iden-
tification [8] for symbolic music data. In this paper, we will
focus on the case of symbolic music data.

It should be noted that the afore-mentioned tasks are
rarely considered under a unified framework, but are
solved individually according to the music texture of the
input music. For example, voice segregation is only for
polyphony, the texture with multiple independent melody
lines; while melody line identification is only for ho-
mophony, the texture with one predominant melody line
plus an accompaniment. The input music piece with hy-
brid or unknown texture cannot be discussed under these
frameworks. Besides, most of these frameworks still heav-
ily rely on further information of the input (e.g., number of

© Yo-Wei Hsiao, Li Su. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Yo-Wei Hsiao, Li Su, “Learning note-to-note affinity for voice segre-
gation and melody line identification of symbolic music data”, in Proc.
of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

voices, whether each voice is monophonic, whether chord
notes are perfectly synchronized) and strictly follow some
predefined rules (e.g., avoiding voice crossing), and turn
out to be inflexible to real-world performance data with
missing notes or asynchronous chord notes.

In this paper, we propose a unified horizontal element
extraction framework which works with minimal con-
straints on musical textures and pre-defined rules. The
major idea is to let the model learn the configuration of
voice directly from the training data, and learn the note-
to-note affinity for arbitrary pairs of notes within a musical
segment from their shared contextual notes: the model out-
puts 1 if a pair of notes are in the same horizontal elements,
while 0 if they are not. Then, based on the learned affinity
values, a clustering algorithm is used to estimate the num-
ber of horizontal elements, and to partition the notes which
are linked with high affinity values into one element. Fi-
nally, these elements extracted from different musical seg-
ment can be merged without any perceptual or musical as-
sumptions by applying the minimal overlapping principle
proposed in this paper.

To verify our ideas, the same framework is applied on
multiple tasks with various conditions, including 1) the
polyphony voice segregation task with unknown number
of voices, missing notes and asynchronous chord notes for
simulating real-world performance, and 2) the melody line
identification task of homophonic music. The framework
achieves state-of-the-art performance on both tasks and
shows strong advantages on simulated real-world cases.
Furthermore, we demonstrate the potential of using the
graph constructed with the learned note-to-note affinity as
a tool in computational analysis of general music data.

2. RELATED WORK

2.1 Voices, streams, and their perceptual rules

A voice or a stream is a horizontal music structure which
is perceived as single sonority by humans. A voice is a se-
quence of monophonic and non-overlapped musical tones
in polyphony texture, such as the S, A, T, and B in a 4-part
chorale. On the other hand, a stream can be either a mono-
phonic voice or a multi-tone sonority fused by several mu-
sical lines, such as the predominant melody line and ac-
companiment in homophonic texture. A monophonic note
sequence may also contain multiple voices. The percep-
tion of voice or stream in music is highly subjective. The
voice analysis for the very same music piece might end up
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with diverse results [9]. With abuse of terminology, the
terms of voice, stream, and horizontal element are used in-
terchangeably in the paper.

A number of perceptual rules have been proposed for
voice segregation and melody identification tasks [10].
The pitch proximity and temporal continuity rules suggest
that the temporal and pitch distance between two neighbor-
ing notes in a voice should be minimized, and large leaps or
rests should be avoided [11]. The new stream rule suggests
that the number of streams in a music piece should be min-
imized. The voice collision rule states that common tones
shared between different voices should be avoided. The
voice crossing suggests that two voices do not cross each
other even when their pitch ranges overlap significantly.

2.2 Prior art

Voice segregation and melody line identification methods
can be categorized into three classes. First, the rule-based
methods, such as local optimization [12], contig map-
ping [13–16], graph-based method [17], complexity-based
method [18], and the voice integration and segregation al-
gorithm (VISA) [19] utilize heuristics or perceptual prin-
ciples as constraints for tracing voices. These methods
do not strictly designate the role of each stream (e.g., one
stream should be melody and the other should be accom-
paniment), and therefore can be applied to the data hav-
ing arbitrary configurations of streams without labels [20].
The major limitation of these methods is that they are less
flexible dealing with real-world performance data.

Second, the data-driven methods introduce either clas-
sifiers to predict the voice or stream labels of each note
from annotated data [7, 21–23], or regression models to
predict the ratings over all the mappings from notes to
voices for each chord [24, 25]. Representative examples
include the convolutional neural network (CNN) model
which predict the position of melody notes on a piano
roll [26], or a feedforward neural network to classify voice
indices from note-level features [27]. Different from the
rule-based methods, data-driven methods are based on su-
pervised learning. Therefore, the output dimension of the
model is usually restricted by the label classes in the train-
ing data. This issue can be solved with neural greedy
search such as [28], which implicitly indicated the impor-
tance of learning note-to-note affinity.

Besides the rule-based and data-driven approaches,
most of the methods are hybrid ones which incorporate
both perceptual rules and supervised learning in voice seg-
regation and melody line identification. For example, in
the hidden Markov model (HMM)-based voice segregation
method, the probability of note transition is defined ac-
cording to the perceptual principles, while the pitch score
and gap score in probability function can be tuned to fit
the training data [29]. In the classification-based methods,
hand-crafted input features which consider the perceptual
principles have been proposed in various ways [21,24,27].
Some of these features can be used only when the number
of voice, the metric positions and other note attributes of
the input music are known.

3. PROPOSED METHOD

We represent a symbolic music piece as a undirected
weighted graph G = (V, E). Each vertex vi ∈ V repre-
sents a note in MIDI, and each weighted edge wij ∈ E
corresponds to the affinity between two notes vi and vj .
We assume wij = 1 if vi and vj are in the same voice or
melodic line, while wij = 0 if they are situated in different
parts. The task of voice segregation is then equivalent to
the task of learning wij from the training data having the
binary-valued wij as the ground truth label.

Denote the affinity matrix of G as W , and |V| the ver-
tex count of G. Then, we have W ∈ {0, 1}|V|×|V|, and
wij is the (i, j)th element of W . To learn W , we adopt a
CNN model which takes the information carried by a pair
of notes (vi, vj) as inputs, and outputs an affinity value
ŵij ∈ [0, 1] which minimizes the binary cross-entropy
(BCE) between ŵij and wij . Once the predicted affin-
ity matrix Ŵ is obtained, the task of voice segregation
is simplified into a clustering problem. With the help of
spectral clustering algorithm, G is partitioned into multiple
subgraphs, each of which represents a voice.

3.1 Data representation

For simplicity, the vertex vi directly represents the con-
tent of the ith note: each note event vi := [pi, oi, di]

T is a
3-dimensional vector composed of its pitch (in MIDI num-
ber), onset time, and duration (both in second); see Fig-
ures 1a and 1b. The order index i of each note is obtained
by sorting all the note events with the following rules: 1)
notes are sorted by its onset time in ascending order; 2)
if multiple notes have the same onset time, they are then
sorted by their pitch in ascending order; and 3) if multiple
notes happen to have identical onset time and pitch value,
they are sorted by their duration in descending order. The
adopted data representation of each vi, denoted as xi, is
simply constructed by vi and its neighbouring notes. More
specifically, xi is defined as

xi := [v̄i−M,i, v̄i−M+1,i, ..., v̄i+M−1,i, v̄i+M,i]
T
, (1)

and we have xi ∈ R(2M+1)×3. It should be noted that
v̄j,i is the content of the jth note event with its onset time
expressed relative to the ith note, i.e. v̄j,i := [pj , oj −
oi, dj ]. This operation makes the onset time information in
each xi be centered at the same temporal position. For v̄j,i
with j ≤ 0 or j > |V|, the note sequence is zero-padded
(i.e., add virtual notes with its MIDI pitch, onset time and
duration being all zeros) such that the (M + 1)th row of xi
is v̄i,i, as shown in Figure 1c.

The idea behind the above data representation is that it
simulates human behavior. When given tasks like voice
segregation, humans do not plainly judge the affinity of a
pair of notes merely by their own pitch and position, but
by the local musical context lying in the structure. The
hyperparameterM determines the context window, and we
set M = 60 notes in this paper.

In the setup of affinity learning, the training data is then
the pairs of the data representation given a binary label
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(a) The score

(b) Note events (c) The matrix

Figure 1: An example of data representation for M = 2.

wij ∈ {0, 1}. A training sample (xi, xj) is labeled as
wij = 1 if vi and vj are in the same voice, whereas (xi, xj)
is labeled as wij = 0 if they are not.

3.2 Model training

We employ a multi-layer deep 1-D CNN f(X) to classify
whether xi and xj are in the same musical stream. More
specifically, given Xij ∈ R(2M+1)×6 the concatenation of
two matrices xi and xj , we have ŵij = f(Xij) so as to
minimize BCE(wij , ŵij). The architecture of the CNN
contains six 1D convolution layers, with the kernel size of
each layer being [32, 16, 16, 8, 8, 4], and the number of
each kernel being [32, 32, 64, 64, 128, 128]. The output
of the final convolution layer is flattened and mapped to an
output logit using a fully connected layer.

For a music piece with |V| notes, there are totally
|V|(|V| − 1)/2 pairs of notes that can be used for train-
ing. However, taking all the pairs for training is computa-
tionally intensive, and unnecessary from the perspective of
music perception. When people listen to music, it is im-
practical to have them distinguish whether a pair of notes
several bars apart belong to the same voice. Instead, listen-
ers tend to focus on a restricted time interval and identify a
voice from others according to the relationship among the
notes in the interval. Therefore, we choose all of the pairs
(xi, xj) with |i− j| ≤ N for training, where the hyperpa-
rameter N represents the maximum distance of two notes.
In this paper, we set N = 30 notes according to our study.

3.3 Voice extraction with graph clustering

We employ spectral clustering [30, 31], one of the most
widely used graph-based clustering techniques, to separate
the voices or streams according to the learned affinity ma-
trix Ŵ ∈ R|V|×|V| for the music data graph G. However, it
should be noted that the model f(Xij) outputs ŵij (i.e. the
estimated value between vi and vj) only for |i − j| ≤ N ;
other ŵij are still unknown. Therefore, the following as-
signment processes are adopted to adjust the affinity ma-

trix:
ŵij := 1 if ŵij > 0.5

ŵij := ε1 if ŵij ≤ 0.5

ŵij := ε2 if ŵij is unknown

(2)

where := is the assignment operator. We assume ε1 <
ε2 < 1 in order to represent the uncertainty of the affinity
for distant note pairs (i.e. with |i − j| > N ). Therefore,
in this paper we set ε1 = 10−6 and ε2 = 10−3. Our study
showed that these discretized values give stable eigende-
composition in the spectral clustering process and perform
better than directly using predicted values.

It should be noted that performing spectral clustering
over the whole music piece is unfeasible, as the eigen-
decomposition of a large affinity matrix tends to be highly
unstable, an unfavorable effect in spectral clustering. To
address this issue, we divide a musical piece into multiple
overlapping segments and perform spectral clustering for
each segment. Each of the segments contains S consecu-
tive note events and each pair of consecutive segments are
overlapped by O note events, where 0 ≤ O < S.

For Ŵi, which denotes the affinity matrix of the ith seg-
ment, the normalized graph Laplacian Li for spectral clus-
tering is represented as

Li = I −D− 1
2 ŴiD

1
2 , (3)

where I is the identity matrix, and the degree matrix D
is a diagonal matrix, whose ith diagonal element dii :=∑

j ŵij is the sum of the affinity measure between vj and
vi for all vj which are connected with vi. Given the Lapla-
cian L, a matrix Z = [z1, z2, ..., zk] ∈ Rn×k is formed by
stacking the top-k largest eigenvectors zi of L, and the k
subsets is obtained by applying the k-means algorithm to
the rows of Z [31].

3.4 Estimating the number of clusters

The number of clusters, or the number of estimated voices
or streams, k, is a pre-determined parameter in the spec-
tral clustering process. For the melody line identification
task, k is simply 2. For the voice segregation task, we as-
sume that k is unknown and needs to be estimated. An
intuitive estimation is to set k as the maximal number of
synchronous note events occurring in a piece [13]. How-
ever, this method may not be suitable for voices or streams
having overlapped notes, such as human-performed MIDI
or homophonic music data.

To address the issue, the eigengap of Laplacian L is
employed to predict k of each segment. Let {λi}Ni=1 be the
eigenvalues of L sorted in descending order. According to
graph theories, the number of clusters k of the graph can be
estimated by the kth eigenvalue having the most significant
eigengap of L [32]. To implement this, we calculate the
top-10 largest eigenvalues of each Li, and find the index ki
satisfying that the difference between λki

and λki+1 is the
largest one. To simplify our discussion, we assume that the
number of voices of the whole music piece is a constant,
meaning that each voice in a piece contributes at least one
note in any segment of the piece. The number of voices, k,
is therefore obtained by the mode of ki over all segments.
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3.5 Segment merging

After we apply spectral clustering to Ŵi, note events in
the ith segment are partitioned into k segregated voices (or
streams). Let Ci = {Sij}kj=1 denote the ith segment with
voice labeling, where Sij denotes the jth voice obtained
from the spectral clustering result of the ith segment. We
consider two methods to merge the segmented voices into
complete ones. The first method, called the pitch proxim-
ity method, is performed straightforwardly by sorting the
segmented voices Sij according to their average pitch for
each i, and connecting the segmented voices with the same
sorting index. Being stable and perceptually plausible, the
pitch proximity method however assumes the prior knowl-
edge of part-crossing rule (i.e. voices tend not to cross with
respect to pitch) [11], which is no longer valid in the situa-
tions such as voice crossing nearby the end of a segment.

The second method, coined as the minimal overlapping
method, is a newly proposed method which does not rely
on any perceptual rules. In a nutshell, this method attempts
to find a one-to-one mapping for voices from two adja-
cent segments (Ci, Ci+1) to attain a newly merged segment
C∗ = {S∗j}kj=1 such that

• a voice in the new segment S∗j is merged from two
voices, Sim and S(i+1)n, 1 ≤ m,n ≤ k, if and only
if they are overlapped (connectivity condition);

• each note in either Ci or Ci+1 should be in S∗j for
some j and therefore in C∗ (consistency condition);

• the total number of notes which belong to multi-
ple merged voices of {S∗j}kj=1 should be minimized
(minimal redundancy condition).

These conditions are implemented with the following
procedures. First, we list all the possible merged voices
satisfying the connectivity condition, denoted as Σ1 :=
{Sij ∪ S(i+1)l | Sij ∩ S(i+1)l 6= ∅}. A merged segment
C∗ with these merged voices is constructed by choosing k
elements from Σ1. Denote all candidates of such k chosen
elements as

(
Σ1

k

)
. Given a fixed-valued k and the consis-

tency condition, we narrow down the set of candidates to
Σ2 := {

(
Σ1

k

)
| {
⋃k

j=1 S∗j} = Ci ∪ Ci+1}. To apply the
minimal redundancy condition, we begin with calculating
the number of notes existing in multiple voices (#NMV)
for an arbitrary merged segment C′∗, which is defined as

#NMV :=
k∑

j=i+1

k−1∑
i=1

|S ′∗i ∩ S ′∗j |, (4)

where S ′∗i,S ′∗j ∈ C′∗. Then, we pick the segment C∗ with
the smallest #NMV among all possible merged segments
in Σ2 to be our final choice. Finally, because we require
that a note should be classified to one voice strictly in our
study, we remove notes existing in multiple voices from a
random voice to ensure C∗ behaves like an ideal segment.

Once a larger segment is obtained, it works like a crys-
tal nucleus. It will continue growing its size by merging
with another adjacent segment when we feed them into the
algorithm. In the end, there would be only one merged sec-
tion left, which is then the final result. We set the size of

the segment to S = 40 notes. The overlap size is set to
O = 0 for the pitch proximity method, and O = 30 notes
for the minimal overlapping method.

4. DATASETS

Three major datasets are used to evaluate our method.
For voice segregation, we use the Bach Chorales Dataset
(BCD) collected from IMSLP.org, which originally con-
tains 364 four-voice chorales composed by Johann Sebas-
tian Bach. To test the robustness of the models, the dataset
is augmented with voice dropping, note dropping, and on-
set/offset shifting. As a result, the dataset includes the orig-
inal four-voice pieces, 2,184 two-voice pieces 1,456 three-
voice pieces, and 364 four-voice pieces with onset/offset
shifting, all of which are augmented with three different
note dropping rates (see the data augmentation process de-
scribed as below). For melody extraction, we use two
datasets, Mozart Piano Sonatas (MPS) [26] and Ameri-
cans Folks (AF) [8]. MPS consists of 38 movements from
Mozart’s piano sonatas, and their melody lines were anno-
tated by a professional pianist. AF is the subset of “Big
Dataset,” 1 and contains 1,262 folk songs in MIDI for-
mat. Every folk song contains a Soprano track, which is
picked as the melody line. For AF, we crop the piece so
that the melody line consistently exists among note events,
and merge all the other note events that do not belong to
the melody into a single accompaniment voice.

To further enhance the generalization ability of the
model, the following data augmentation techniques are ap-
plied for the training data:

1. Tempo scaling: the tempo of each piece is by 2i

times faster (or slower), where i is uniformly sam-
pled from the interval [−1, 1].

2. Key shifting: each piece is transposed by n
semitones, for n being uniformly sampled from
{−6,−5, ...5, 6}.

3. Note dropping: a piece has an equal chance for drop-
ping 0%, 5%, or 10% of its notes.

4. Voice dropping: the voices in a Bach 4-part chorales
are randomly dropped with rates p(c), c ∈ {0, 1, 2},
where p(c) donates the probability of dropping c
voices. In our setting, we set p(0) = 0.6, p(1) =
0.3, and p(2) = 0.1. Note that for the melody line
identification task, voice dropping is not used be-
cause there are only two voices (i.e. melody and
accompaniment) in the training data and no more
voices can be further dropped.

5. Onset and offset shifting: the onset and offset time of
a note event are stretched or shrunk by (1 + r) times
of its duration, respectively; r is a sample from the
truncated normal distribution [33], whose PDF is set
to f(r;µ = 0, σ = 0.15, a = −0.15, b = 0.15);
see [33] for detailed implementation.

1 https://www.reddit.com/r/datasets/comments/3akhxy/the_
largest_midi_collection_on_the_internet/
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Voices Original (4-voice) 2-voice 3-voice Onset-offset
Drop rate 0% 5% 10% 0% 5% 10% 0% 5% 10% 0% 5% 10%
Skyline 95.76 88.63 82.23 98.87 96.32 93.71 97.45 92.25 87.62 26.26 26.82 27.49
VoSA 97.03 95.42 93.77 99.06 98.67 98.29 98.08 97.22 96.27 - - -
HMM 97.79 96.10 93.50 99.28 98.99 98.44 98.59 97.75 96.29 67.43 68.95 67.75
Ours (Min) 97.40 96.33 95.04 99.03 98.74 98.44 98.28 97.64 97.02 95.56 94.44 92.70
Ours (Pitch) 97.43 96.26 94.99 99.03 98.75 98.46 98.30 97.66 97.03 96.62 94.43 92.84

Table 1: Frame-level accuracy for voice segregation (in %) on BCD.

Data Model P R F1

MPS

Skyline 88.49 93.91 91.09
CNN 93.00 89.69 91.22
Ours (Min) 91.30 92.04 91.60
Ours (Pitch) 95.80 95.53 95.64

AF

Skyline 73.33 74.40 73.74
CNN 69.00 89.61 77.27
Ours (Min) 78.19 82.10 79.09
Ours (Pitch) 85.10 85.04 84.77

Table 2: Results (in %) for melody identification

Finally, to facilitate the experiment process, we assume
that one note belongs to only one voice. In the voice seg-
regation task, if there exist identical note events in differ-
ent voices, we assign it to one voice randomly and remove
others. As for the the same situation in the melody line
identification task, the note is assigned to the melody part.

5. EVALUATION AND DISCUSSION

The proposed neural networks are implemented with Ten-
sorflow 2.0. We adopt Adam optimization [34] and the
learning rate is set to 10−3. All experiments are run with
one NVIDIA GTX1060 GPU. The training time for every
1M pairs of notes is approximately one minute. Source
codes are available at our website 2 .

Four baseline methods are considered. For voice seg-
regation, we consider the skyline algorithm [26, 28], the
VoSA algorithm [13] (which is re-implemented by our-
selves), and the HMM-based voice segregation methods
[29]. For melody line identification, the skyline algorithm
and the state-of-the-art CNN-based melody extractor [26]
are considered. These methods are compared with our pro-
posed methods with two segment merging modes, which
are denoted by Pitch (the pitch proximity method) and Min
(the minimal overlapping method).

Several metrics are reported in this section. For the
performance of neural networks, the first evaluation met-
ric we consider is simply the pairwise accuracy, the ac-
curacy of the binary prediction (i.e. voice connection of
note pairs) of our 1D-CNN model. For voice segregation,
we use frame-level accuracy, the ratio of correctly pre-
dicted frames to the total frames, to present the results. For
melody line identification, the frame-level precision (P),
recall (R), and F1-score (F1) are used [26].

2 https://github.com/Wiilly07/musical-stream-segregation

5.1 Results

To evaluate the performance of our system, we performed
9-fold cross-validation on BCD under all the conditions
mentioned in Section 4. We split each fold on MIDI files
to ensure that all the note pairs from the same music piece
are in the same fold. All the augmentation methods were
also applied to the training data. The training and vali-
dation pairwise-accuracy of the 1D-CNN are 95.41% and
96.81%, respectively. Among all the validation data (in-
cluding augmented data), our system can correctly predict
the cluster number k over 99.8% (12865/12888) by eigen-
gap. The result of voice segregation is shown in Table
1. First, for zero note drop and zero onset/offset shift-
ing, HMM remains as the most superior method. How-
ever, the proposed methods prevails as the note dropping
rate increases; for example, Ours (Min) outperforms HMM
by 1.54 percentage points in 4-voice and 10% note drop-
ping rate. In addition, in the case of onset-offset shifting,
the proposed systems outperform all the others by at least
25 percentage points. These findings highlight the advan-
tage of the proposed model on high tolerance to noisy data.
Furthermore, the differences of performance between Ours
(Min) and Ours (Pitch) are very small (within 0.1% for
most of the cases), suggesting that the proposed method
can work without imposing perceptual rules.

Similarly, in the task of melody line identification,
we also performed 9-fold cross-validation on MPS and
AF dataset, respectively. Only the first three data aug-
mentation methods in Section 4 were applied in training.
The training and validation pairwise accuracy values are
98.28% and 93.96% for MPS, and 91.87% and 88.43%
for AF, respectively. From Table 2, we observe that our
method with minimal overlapping is on par with the CNN
baseline [26] on both MPS and AF. 3 When pitch proxim-
ity is applied, the proposed method outperforms others by
at least 4 percentage points in F1-score.

5.2 Discussion

To investigate the behaviors of our proposed framework,
we conduct voice segregation and melody line identifica-
tion for unseen types of data using the models we trained.
Figure 2 takes the first six bars of the first movement of
Beethoven’s Sonata No. 28 as an example. Figure 2b and
2c show the graphs constructed with the note-to-note affin-
ity inferred by the BCD and AF models, respectively. Both

3 The CNN-based model for evaluating MPS is directly provided from
[26]. We retrained a model using the source code to evaluate AF.
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(a) The sheet music

(b) The result of voice segregation by the model trained in BCD

(c) The result of melody extraction predicted by the model trained in AF

Figure 2: Results on the first 6 bars of Beethoven Sonata No. 28 Mov. 1. Dashed lines in the piano rolls represent the
edges with affinities ŵij > 0.5 of the learned graph. The links between distant notes are omitted for better visualization.

graphs exhibit the “interpretation” from the two models.
For the BCD model, notes tend to be linked in the hor-
izontal direction and long-distance links are enforced to
construct the voices. By contrast, the AF model prefers to
establish vertical links in lower pitches (e.g., accompani-
ment), while enforcing horizontal links in higher pitches
(e.g., melody). It is intriguing to see in Figure 2c that al-
though the note A5 in the third bar is linked with several
accompaniment notes, A5 is still classified as melody be-
cause of the even more abundant links to melody notes.

According to the directions of note stems, four voices
can be identified from Figure 2a. The eigengap of the
graph generated by the BCD model does give an estima-
tion of k = 4, which is consistent with such a common
interpretation. By comparing Figures 2a and 2b, most in-
terpretation of the BCD model are consistent with the score
sheet except some interesting exceptions. For example,
in the first bar, the BCD model assigns B3 and E4′ of
the second voice (denoted as E4–B3–F#4–G#4–E4′–A4)
to the third voice, while D#3, D\3, and C#3 in the third
voice (E3–D#3–D\3–C#3) are assigned to the fourth voice.
That means, the model treats the second voice as pseudo-
polyphony and manages to derive two valid voices from
it. An explanation of this phenomenon is that the BCD
model learns the principles of counterpoint and tends to
have more large leaps for lower voices. It can be found
that the notes in the fourth voice from the BCD model are
highly overlapped, although perceiving them as a voice is

indeed possible for human, if the duration information is
ignored. The characteristics of the training data may also
provide another explanation of this phenomenon; the den-
sity of notes in the fourth voice of this excerpt is sparser
than the density of bass notes in BCD. Therefore, the
model tends to build more links between the lowest note
E2 and its contextual notes, and merges all of them into
the same stream.

6. CONCLUSION

In this paper, we have presented a new, generalizable, and
straightforward framework to learn note-to-note affinity
for symbolic music data. The framework, taking only note
attributes as training features, can outperform several state-
of-the-art horizontal element extraction methods in various
musical textures and in real-world scenarios. The graph
representation induced from the framework can also serve
as a tool for in-depth music analysis on the relationship
among the notes if the label configuration describing the
training data of interest is given. The major limitation of
this work is that it has not considered the case of varying
number of voices (e.g., voices shrinking or expansion) in
the music data, which can however be well solved with
a modified segment merging process and more accurate
prediction on the eigengaps within segments. Adopting
more advanced neural networks and statistical methods to
achieve this goal is left as our future work.
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