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ABSTRACT

Most videogame reinforcement learning (RL) research
only deals with the video component of games, even
though humans typically play while experiencing both au-
dio and video. In this paper, we aim to bridge this gap in re-
search, and present two main contributions. First, we pro-
vide methods for extracting, processing, visualizing, and
hearing gameplay audio alongside video. Then, we show
that in Sonic The Hedgehog, agents provided with both au-
dio and video can outperform agents with access to only
video by 6.6% on a joint training task, and 20.4% on a
zero-shot transfer task. We conclude that game audio in-
forms useful decision making, and that audio features are
more easily transferable to unseen test levels than video
features.

1. INTRODUCTION

Although classification and decision making are well stud-
ied areas of machine learning (ML), most research and
practical application of these areas has involved the use
of video or text based data, as opposed to audio. Of the
audio research that exists, only an even smaller subset has
analyzed environmental audio or music as a method of pro-
viding feedback.

This gap in research needs to be addressed since envi-
ronmental and feedback-related audio is critical to achiev-
ing human performance on a number of tasks, especially
when visual or textual clues are not sufficient. Self driving
cars cannot achieve full automation without being able to
react and respond to emergency vehicle sirens in the dis-
tance, or nearby car horns. Emergency responders listen
for fire alarms and calls for help to locate the emergency
when arriving at a scene. The clicking feedback produced
by a mouse, keyboard, or button, confirms to the user that
the hardware or software has received the input. [1].

In this work, we use Sonic The Hedgehog games for the
SEGA Genesis as an environment to understand how RL
agents can incorporate both audio and video observations,
to make decisions with immediate consequence, feedback,
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and long term goal. 1

2. BACKGROUND

2.1 Sonic The Hedgehog

Sonic The Hedgehog is a 2D side scrolling platforming
game. The main idea of the game is to navigate Sonic
through vertical loops, over bottomless pits, off of springs,
while collecting rings. A central game mechanic is that
Sonic can build great speed if his movement is not inter-
rupted by stopping or bumping into obstacles, and this can
then be used to launch him into the air off of ramps, or
through an array of enemies. Each game consists of in-
dividually themed Zones, and each Zone has 1 to 3 Acts.
Going forward, we will refer to each Act as a level.

Rings are placed in groups of 3 or more along the levels.
They give points, and act like a shield. If Sonic is hit by an
enemy or hazard without any rings, he loses a life. But if
Sonic has at least 1 ring, then hitting an enemy or hazard
knocks Sonic backwards and he forfeits up to 20 of his
rings, without losing a life.

Many levels contain sections which are underwater.
Sonic can survive approximately 30 seconds underwater
until he needs to find an air bubble or jump out of the wa-
ter to avoid drowning.

2.2 Related Work

Gotta Learn Fast [2] is a transfer learning benchmark with
Gym Retro [3] on the Sonic games for the SEGA Gene-
sis. It shows that pretraining on 47 train levels before fine
tuning on 11 test levels achieves the best test result when
compared to several other models. They do not perform
any audio-related experiments.

Kim et al. [4] modify the Atari Learning Environment
[5] to support audio queries, and demonstrate that latent
audio/video features increase performance on H.E.R.O and
Amidar on the Atari 2600, and transfer knowledge to ac-
celerate learning in a door puzzle game.

Kaplan et al. [6] show that the additional modality of
natural language suggestions can be used to improve per-
formance on the Atari 2600 games. Ngiam et al. [7] present
a series of tasks for multimodal learning and demon-
strate cross modality feature learning, where better fea-
tures for one modality (e.g., video) can be learned if mul-

1 Link to Github repository with code and gameplay video examples
provided here https://github.com/faraazn/meng
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tiple modalities (e.g., audio and video) are present at fea-
ture learning time. Poria et al. [8] show that a multimodal
system fusing audio, visual, and textual clues outperforms
previous state of the art systems by 20% on a YouTube
sentiment dataset.

Henkel et al. [9] show that RL can be useful in the
music domain by applying it to the score following task.
Various works have used neural network approaches to
acoustic scene classification [10–12] and sound event de-
tection [13–15], achieving state of the art results.

3. RELEVANT MUSIC THEORY

3.1 Western Associations in Music

In Western music theory and culture, there are clear asso-
ciations of consonance, dissonance, and rhythmic patterns
with certain emotions. The major mode is slightly more
consonant, and therefore associated with "happy, merry,
graceful, and playful", while the minor mode is slightly
more dissonant, and associated with "sad, dreamy, and sen-
timental". Firm rhythms are perceived as "vigorous and
dignified", while flowing rhythms are "happy, graceful,
dreamy, and tender". Combining these ideas, complex dis-
sonant harmonies are "exciting, agitating, vigorous, and in-
clined towards sadness", and simple consonant harmonies
are "happy, graceful, serene, and lyrical" [16].

Studies have shown that these associations can largely
be attributed to cultural conditioning, rather than univer-
sal human behavior. Residents of a village in the Amazon
rainforest with no exposure to Western music showed no
preference between consonant and dissonant sounds [17].
We can trace back Western preference for consonance at
least to the early 18th century, when the name "diabolus
in musica", or "the Devil in music" was attributed to the
augmented fourth, the most dissonant interval [18].

3.2 Application to Videogame Sound Effects

Videogame music and sound effects are designed to lever-
age our implicit biases as a means of meeting expectation
and lowering the barrier to entry for learning a new game.
We can better understand this by applying it to the Sonic
games.

It is good for Sonic to collect rings, since they give some
protection before losing a life, award more points, and col-
lecting enough of them result in an extra life. In line with
our understanding of Western preference for simple con-
sonance, the ring sound is a major triad, implying a sense
of positive value for the act of acquiring a ring. It is com-
prised of the notes E5, G5, and C6, which form specifically
a first inversion C major triad (Figure 1).

When Sonic loses rings after being hit by an enemy or
hazard, this is bad because he is prone to losing a life with
an additional hit. In line with our understanding of West-
ern music theory, the corresponding sound is aggressively
dissonant, implying a sense of negative value for the act of
losing rings. This sound is created by rapidly alternating
notes A6 and G6, which form a major second interval.

Figure 1. Drowning Theme and Ring Sound. Top: the
drowning theme consists of dissonant jumps between oc-
tave intervals. Bottom: the three consonant notes of the
ring acquiring sound.

When Sonic has spent too much time underwater with-
out air, and is close to drowning, the drowning theme be-
gins to play. It alternates between octave intervals on C,
and a minor second interval jump to octave intervals on C#
(Figure 1). The jumps lie on a dissonant interval, and the
music gets increasingly loud and fast as Sonic gets closer
to drowning, giving a strong sense of impending doom.

In general, consonance bias is an effective tool for con-
veying positive or negative value of player actions or set-
ting emotional expectation with audio, without needing to
spoon-feed explicit instructions or visual cues.

4. EXPERIMENTAL SETUP

4.1 Reinforcement Learning

Reinforcement learning [19, 20] is an increasingly popular
field of machine learning research. It is a semi supervised
approach to teaching an agent complex sequential decision
making in an environment with potentially sparsely labeled
data or delayed reward.

More concretely, we define an agent that operates under
a policy π with parameters θ, and produces actions given
an observation, πθ : o → A. At time t, the agent takes
an action a ∈ A while in state s ∈ S, transitions to state
s′ ∼ T (s, a, s′), and receives observation o′ ∼ O(o′, s′)
and reward r = R(s, a) ∈ R.

In the Sonic games, we can imagine a scenario where
Sonic is being approached by an enemy. The game state s
tells us the magnitude and direction of the enemy’s veloc-
ity. An observation o of this state might be a single frame
of video which tells us the enemy is close to Sonic. When
the player takes an action a to control Sonic, performing a
spin attack may lead to a transition (s, a, s′) to a new state
s′ where the enemy is defeated. This would result in a new
visual observation o′ of the defeated enemy, and a reward
r of 100 points.

The goal of an RL agent is to maximize the total ex-
pected reward. To optimize our agent parameters θ and
achieve the best performance, we use Proximal Policy Op-
timization (PPO) [21]. PPO is a policy gradient algorithm
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that achieves state of the art results on a number of RL
benchmarks. It builds on former advancements in policy
gradient research [22–24], while also aiming to be fast and
easy to implement. The details of its implementation are
outside of the scope of this work; we used an open source
implementation [25].

4.2 Task Outlines

To quantify the effect of audio on videogame RL, we set
up two different tasks.

1. Joint PPO Training. We train a single agent on 47
of the 58 levels, which we call the training levels.
The agent trains for 30 million time steps, and we
self-evaluate the agent on the training levels every 5
million steps.

2. Zero-shot Transfer. We take the jointly trained agent
from the previous experiment and evaluate it on the
11 test set levels, without any fine tuning. If the
agent learned general techniques for level progres-
sion in task 1, it should be able to perform better
than a random agent, or one following a simple pol-
icy. For each test level, there is at least one training
level from the same Zone.

4.3 Open AI Gym Retro

We used the Open AI Gym Retro framework to set up the
two experiments outlined above. Its API allows us to inter-
face with games by inputting player actions, and receiving
the updated game state, observations, and reward in return.
There are thousands of games available to use with Gym
Retro, including the original Sonic series for the SEGA
Genesis.

However, the Gym Retro (version 0.8.0) package
does not readily expose an API for interacting with the
videogame emulator’s audio. To aid others facing this is-
sue, we have open sourced our codebase, in which we were
able to expose the audio features for training our RL mod-
els, and create various tools for visualization and playback.
This includes tools for both online and offline playback,
audio visualization, and neural network feature heat map-
ping for a given runthrough of a level.

4.4 Environment Setup

For all of our experiments, we use mostly the same base
environment setup as described by Nichol et al. [2]. This
includes usage of save states, episode boundaries, stochas-
tic frame skips, action space reduction, and reward func-
tion. At a high level, this setup overrides the in-game point
system to instead reward Sonic for making new progress to
the right of the screen, and reduces the number of / speed
with which buttons can be pressed, among other things.
Due to computational constraints, we set the horizon of
experience generation to 512 instead of 8192, number of
workers per level to 3 instead of 4, and total train steps to
30 million instead of 400 million. The convolutional neu-
ral network (CNN) architecture we use to process audio
and video observations is given by Figure 2.

Figure 2. CNN architecture for the observation encoder.
The input observation in this example is a grayscale frame
of video, and the same structure is used to encode audio.

4.5 Agent Variants

We create 5 different agent variants to be able to differen-
tiate the effects of incorporating audio.

Agent 1: conceptually the same as the one used in the
Gotta Learn Fast [2] benchmark, albeit with fewer train-
able parameters and shorter training time due to computa-
tional constraints.

Agent 2: we convert video inputs to grayscale and in-
troduce a random start of 16-45 random actions (about 1-3
seconds) which we expect will result in improvements to
generalization.

Agent 3: takes an additional video frame from the pre-
vious time step as input, and therefore also has double the
model size as Agent 2. We hypothesize that Agent 3 may
be able to learn temporal features, and therefore achieve
better results than Agent 2.

Agent 4: only keeps the current grayscale video frame,
but adds audio features. We construct these audio features
by concatenating the past 16 frames, without frame skip-
ping. Since the Gym Retro sample rate is 44100 Hz, this
means we get 735 samples of audio per frame and 47040
samples per observation (about 1 second long). We process
the 1D sequence of samples into a 2D mel spectrogram
with 256 mels, window size 256, and hop length 128, for
a resulting size of 367 by 256 pixels. We construct a new
encoder for this audio with the same CNN architecture as
video, so the overall model size is comparable to Agent 3.

Agent 5: the same as Agent 4 except we create a 2D
mel spectrogram with 256 mels, window size 1024, and
hop length 512, for a resulting size of 92 by 256 pixels.
This spectrogram is 4 times smaller, so the overall model
size is comparable to Agents 1 and 2.

To normalize the spectrogram values, we first convert
from the power to decibel scale, setting the max decibel
range to 80, and then dividing by 80 to put the range of
values between 0 and 1. Separate CNNs are used to process
the video and audio observations, each with hidden size
256, and concatenated together into a final hidden state size
512.

4.6 Baselines

4.6.1 "Hold Right" Baseline

By definition of the reward function defined for us [2],
Sonic accumulates reward as he makes net progress to-

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

478



Agent Video
Frames

Rand.
Start RGB Audio Num

Params
1 1 no yes no 14m
2 1 yes no no 14m
3 2 yes no no 28m
4 1 yes no yes 31m
5 1 yes no yes 18m

Table 1. Agent Variants.

wards the right. We can therefore define a simple yet ef-
fective policy that requires no machine learning: always
make Sonic move right. We evaluate this policy and set it
as a lower bound for the performance we expect our trained
agent to achieve.

4.6.2 Human Baseline

There is an existing human baseline for the Sonic Genesis
games. In this baseline, 4 test subjects practiced on the 47
Sonic training levels for 2 hours, before playing each of the
11 test levels over the course of an hour.

5. RESULTS

5.1 Overview

Table 2 shows us the most important result of this work,
which is that audio+video agents outperform video-only
agents on the joint training task, and achieve higher scores
on the zero-shot transfer task. Agent 5, which is provided
with the current frame of video and past 1 second of audio,
outperforms Agent 3, which is provided with the current
and previous frames of video, no audio, and 55% larger
model size, by 6.6% on the joint task, and 20.4% on the
zero-shot task. This result supports our hypothesis that
Sonic game audio informs sequential decision making, and
extracted audio features are more easily transferable to un-
seen test levels than video features.

The "Final Avg" section contains the primary scores
used to evaluate overall agent performance. Final refers
to the fact that these scores were computed by evaluating
the final saved checkpoints of each agent, rather than aver-
aging over the entire training run.

We add a "Best Ckpts" table, which aggregates the
top per-level mean scores across all corresponding agent
checkpoints. We saved checkpoints every 5 million train
steps. The goal of adding this table is to demonstrate each
agent’s best effort for each level.

Scores for each agent are presented as the mean ± the
first standard deviation taken along the individual level av-
erages. The gameplay figures are overlayed with Score
CAM heat maps [26, 27], and important parts of these fig-
ures are annotated with circles or arrows. Each agent was
trained and evaluated with three different random seeds.

5.2 Video Agent Analysis

Agent 1 is only able to outperform the "hold right" policy
by a small margin. We found that over the course of train-

Agent Joint
Final Avg

Zero-Shot
Final Avg

1 1344.6± 206.4 435.6± 130.0

2 1479.5± 911.3 578.5± 409.7

3 1905.0± 286.9 678.5± 238.3

4 1893.7± 225.3 817.3± 320.2

5 2031.1± 501.9 936.6± 220.8

Agent Joint
Best Ckpts

Zero-Shot
Best Ckpts

1 1780.2± 1708.5 755.1± 1028.1

2 2998.6± 2010.63 1526.8± 1257.4

3 3013.0± 2186.2 1686.9± 1155.1

4 3041.4± 2227.9 1779.2± 1403.1

5 2901.5± 2011.1 1756.9± 1298.3

Baseline Joint
Final Avg

Zero-Shot
Final Avg

Hold Right 1099.1± 1092.8 321.9± 277.5

Human [2] – 7438.2

N. et al. [2] 5083.6 ∼ 1000

Table 2. Performance summary of all 5 agent variants and
3 baselines over both tasks. Note that N. et al. trained with
significantly more computational power.

ing, it tended to overfit to specific levels every few million
train steps.

Agent 2 uses grayscaling instead of RGB, and adds a
random start between 1 and 3 seconds to the Agent 1 setup.
Adding the random start makes it much more difficult for
Agent 2 to try to memorize a high reward path through
each level. This substantially improves scores on the joint
and zero-shot tasks, because increased starting state diver-
sity forces Agent 2 to learn more general features for level
progression. If the agent learns that jumping over spikes
is good in one level (Figure 3), the the lower layers of the
CNN that were used to recognize the spikes will help to
transfer that knowledge to other levels.

Agent 3 builds upon Agent 2 by doubling the hidden
layer size to 512 and increasing the number of video frame
observations from 1 to 2. By including the video frame
from the previous time step, Agent 3 now has the ability to
learn temporal meta-variables, such as relative velocity of
objects on screen. Agent 3 does actually learn to use this
information to determine, for example, when Sonic does
not have enough momentum to go up a steep ramp, and
must backtrack in order to build the momentum needed to
try again (Figure 4). It improves over the Agent 2 joint
train and zero-shot scores by 29% and 17%, and also pro-
vides lower variance results.

5.3 Audio+Video Agent Analysis

Agents 4 and 5 replace the second video frame with a spec-
trogram representing the last 1 second of in-game audio.
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Figure 3. Agent 2 detects various objects during training.
Top: the agent jumps on a spring to launch Sonic over the
pit. Bottom: the agent recognizes that Sonic needs to jump
over the spikes.

Figure 4. Agent 3 uses temporal information to judge its
progression up the ramp. Top: the agent decides it does
not have enough momentum, and begins to backtrack to
the left. Bottom: the Score CAM weighting shows the
agent understands that the screen shifting upwards means
that Sonic has enough momentum to make it up the ramp.

5.3.1 Relative Receptive Field Comparison

Agent 4 constructs a spectrogram with window size 256
and hop length 128, while Agent 5 uses window size 1024
and hop length 512. This leads to spectrogram sizes 368 by
256 pixels and 92 by 256 pixels, respectively. Both convey
the same amount of information, but result in audio CNNs
with different numbers of trainable parameters (Agent 4
has about 14 million more than Agent 5) and different rel-
ative receptive field sizes (Agent 4 has a 4 times smaller
relative receptive field). In other words, Agent 4 learns a
larger number of smaller audio details, and Agent 5 learns
a smaller number of larger ones.

In general, we found that Agent 5 was better able to
learn high level audio features. Agent 4 was more prone
to noise and overfitting because it could only recognize
smaller parts of overall sound effects.

5.3.2 Important Audio Features

Rings are small, keep rotating, and turn into even smaller
stars when grabbed by Sonic, so the act of acquiring them
is not recognized by the agent’s visual CNN component.
The corresponding sound is easy to see in a spectrogram,
so it is readily learned by the audio CNN component. The
same is true for when Sonic loses his rings.

An agent will respond to the ring acquiring sound by
increasing its likelihood of taking the "move right" action,
since rings are generally located along paths that lead to
forward progress in the level. Figure 5 shows an exam-
ple of Agent 5 doing this on a zero-shot run of Hill Top
Zone Act 2. Ironically, losing rings also produces the ef-
fect of increased "move right" likelihood, despite having a
dissonant sound and negative connotation for humans, be-
cause Sonic is granted temporary invincibility after losing
his rings. The agent uses this as an opportunity to get past
the danger that was originally in the way.

Visual indicators that Sonic is about to drown are small
see-through bubbles with numbers that count down and do
not appear every frame. These cues are easily missed by
the visual CNN, and video-only agents do not act on them.
However, our audio+video agents learn to pick up on the
drowning theme and quickly locate an oxygen-restoring
air bubble or exit the water entirely to avoid losing a life
(Figure 6).

Before Sonic gets to the drowning stage, there are pings
that play every 5 seconds Sonic is underwater. In some
levels where prolonged underwater travel is not always re-
quired, such as Angel Island Zone Act 2, Agent 5 exits the
water after hearing the first one of these pings.

Surprisingly, a significant number of sounds highlighted
by the Score CAM algorithm come from the background
musical score, which is not supposed to be feedback-
related. We hypothesize that these learned features are
mainly an artifact of the audio CNN incorrectly attributing
accumulated reward to the part of the score that happened
to be playing at the time. Typically these features do not
seem to have a significant effect on agent actions, but they
can be coincidentally reinforced when the same parts of
the music repeat.
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Figure 5. In Hill Top Zone Act 2, during a zero-shot run,
Agent 5 looks at ring sound as motivation to move right.
Note that the left column shows spectrogram heat maps
from the last second of audio. Top: the agent acquires rings
while holding right and continues to run up a steep cliff.
Bottom: the agent continues to run into the rock blocking
its path until the ring sound is freed from its memory.

Figure 6. Agent 5 avoids drowning. Top: the agent hears
the beginning of the drowning theme. Bottom: the agent
navigates Sonic to the bubble stream on the left, and waits
for a bubble to appear. The model highlights Sonic as
he breathes in the air bubble, confirming the danger has
passed.

5.3.3 Unimportant Audio Features

There are a few sound effects that we expected to be more
important for our training tasks. We thought that the jump
sound effect would be an important temporal indicator of
Sonic’s jump trajectory, i.e. determining if he is rising or
falling. We also expected the sound effect produced by
defeating a enemy to be important for learning to defeat
enemies before getting hit and losing a life.

We conclude that these features were not learned be-
cause in Sonic 2 and Sonic 3&K, a side character follows
Sonic around and produces many of the same sound ef-
fects while autonomously interacting with his local envi-
ronment. This means that the jump sound or defeating a
enemy sound is often not attributed to Sonic, and therefore
loses its predictive power.

Our agents also did not learn to differentiate between
consonant and dissonant sounds, or along any other axis
of Western classical music theory explained earlier. This
was expected, since the sounds in the Sonic games are
not plentiful or diverse enough to be able to learn beyond
simple classification. These theories should play a greater
role if/when a large unsupervised audio model is trained on
massive amounts of Western audio data and fine tuned on
videogame RL tasks, similar to how BERT [28] and GPT-
3 [29] have transformed the field of NLP.

5.3.4 Learned Video Features

None of this detailed audio analysis is to say that our audio
agents have weaker visual components. In fact, Agent 5 is
capable of navigating multiple multi-step visual challenges
with what appears to be limited overfitting. This suggests
that the audio component can be purely supplemental to
the video component, although as mentioned previously,
the agent may confuse itself in compounding ways when it
chooses to assign reward responsibility to the wrong com-
ponent.

6. CONCLUSION

The diverse nature of our learned audio features supports
some of our original hypotheses, namely that environmen-
tal audio can reinforce existing visual ideas, and call at-
tention to cues that are missed by the visual component,
or simply non visual. We can expect that the supplemen-
tary role of our learned audio features, combined with their
natural transfer ability, would extend beyond our work on
Sonic The Hedgehog.

As video games become increasingly realistic, we ex-
pect that agents with the ability to process both audio and
video will be the ones to achieve state of the art results on
RL benchmarks. For future work, it would be interesting
to see how audio features transfer across different games
(say, Sonic and Mario), and how state of the art Atari mod-
els such as Agent 57 [30] might perform when given access
to audio and games with richer audio/video components.

Overall, we hope that this work provides an insight-
ful application to multi-modal videogame reinforcement
learning, and motivates further such research in this field.
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