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ABSTRACT

In this paper we present novel pulse clarity metrics based
on different sections of a state-of-the-art beat tracking
model. Said model consists of two sections: a recurrent
neural network that estimates beat probabilities for audio
and a dynamic Bayesian network (DBN) that determines
beat moments from the neural network’s output. We ob-
tained pulse clarity metrics by analyzing periodical be-
havior from neuron activation values and we interpreted
the probability distribution computed by the DBN as the
model’s certainty. To analyze whether the inner workings
of the model provide new insight into pulse clarity, we
also proposed reference metrics using the output of both
networks. We evaluated the pulse clarity metrics over a
wide range of stimulus types such as songs and mono-tonal
rhythms, obtaining comparable results to previous models.
These results suggest that adapting a model from a related
task is feasible for the pulse clarity problem. Additionally,
results of the evaluation of pulse clarity models on multi-
ple datasets showed that, with some variability, both ours
and previous work generalized well beyond their original
training datasets.

1. INTRODUCTION

In music, the pulse refers to the underlying regular rhyth-
mic pattern in a song, usually expressed by listeners by
tapping their foot. In western notation, the pulse takes on
an especially relevant role, given that location and duration
of rhythmic events are described with respect to it. Listen-
ers can extract a pulse from the acoustic surface and infer
a meter structure that may enable them to adjust their own
behaviour to it (e.g. dance accordingly to a song) [1].

The strength with which the feeling of the pulse
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emerges in a listener is not necessarily the same for all mu-
sic. The concept of pulse clarity refers to such subjective
experience. As the pulse is relevant for temporal organiza-
tion, pulse clarity facilitates a listener’s understanding of a
song, affecting the musical experience. Musical cognition
experiments have used pulse clarity as a high-level musi-
cal feature, usually correlating it to human responses. For
example, it has been related with degree and variability of
movement [2, 3], as well as with specific neural responses
to different musical stimuli [4]. Pulse clarity has been seen
to be influenced by different rhythmic structure character-
istics (e.g. syncopation), as it affects participant’s beat tap-
ping variability [5–7].

In the mentioned experiments, pulse clarity is estimated
from the musical input using the model from Lartillot et
al. [8]. In their work, the authors present various descrip-
tors for audio recordings based on the analysis of an onset
detection curve and the periodicities it presents. The model
consists of the best descriptor, which was selected based
on experimental results where participants rated the pulse
clarity of movie soundtrack excerpts. Miguel et al. [9] pro-
posed another pulse clarity model for symbolic represen-
tations of rhythmic passages. Said model outputs a beat
congruence score over time which is interpreted as a pulse
clarity metric. The model’s score was evaluated by com-
paring it to human beat tapping variability data over songs
and achieved comparable results to the Lartillot et al. [8]
model.

A closely related problem in the Music Information Re-
trieval discipline is the beat tracking task, which consists of
determining the pulse moments for a musical excerpt [10].
This task has a long and varied history of models, with
most recent and proficient ones making use of novel tech-
niques such as deep learning. Since pulse clarity can be
thought of as the difficulty of performing beat tracking,
our work proposes a transfer learning approach using data
from beat tracking models to estimate pulse clarity in mu-
sical excerpts [11]. Here we develop a methodology for
interpreting the beat tracking deep learning architecture
presented by Krebs et al. [12] and Bock et al. [13] which
has proved its effectiveness on the beat tracking task. This
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family of models was selected because of its state-of-the-
art performance and its use of a dynamic Bayesian net-
work, which estimates probabilities of different beat inter-
pretations. We theorized these estimations to be useful to
approximate pulse clarity.

In this exploratory analysis, we propose a series of pulse
clarity metrics based on different sections from the archi-
tecture. We evaluated the proposed pulse clarity metrics
by calculating the Spearman rank correlation coefficient
against pulse clarity interpretations from three empirical
datasets: the movie soundtrack excerpts used in [8], where
pulse clarity was self reported, the musical excerpts from
the MIREX Beat tracking train dataset, where pulse clar-
ity was calculated from variability in the tapping data, and
the rhythmic passages from Miguel et al. [14] where pulse
clarity was both reported by participants and calculated
from the tapping data. We also present results for the Lar-
tillot et al. [8] and Miguel et al. [9] models over the datasets
as reference. Evaluation results show that there is relevant
information for the pulse clarity problem in the associated
beat tracking task as our metrics performed as well as pre-
vious pulse clarity models.

In the next section the general architecture from Krebs
et al. [12] and Bock et al. [13] is presented, as well as
the corresponding developed interpretations. The evalua-
tion section describes the datasets in detail, explains how
pulse clarity was estimated from tapping data and shows
the evaluation methodology and the obtained results. We
conclude by arguing that, based on our results, repurposing
a related task model is reasonable for pulse clarity estima-
tion and suggest further evaluation of the existing models.

2. PULSE CLARITY MODEL

In this section we briefly review the model architectures
presented by Krebs et al. [12] and Bock et al. [13] for the
beat tracking task, highlighting the key features relevant
for the pulse clarity metrics we derived. We then describe
each metric proposed, categorized by which aspects of the
beat tracking model were considered for its definition.

2.1 Beat tracking model

The beat tracking architecture consists of three steps: audio
preprocessing, estimation of beat probability for a given
audio frame, and selecting beat moments given the beat
probabilities. Bock et al. [13] presents a modification to
the original architecture from Krebs et al. [12] to also take
into account downbeat tracking. As these are fairly sim-
ilar in respect to their architecture, all metrics developed
are implemented from both the beat and downbeat mod-
els. Here we describe the downbeat model from Bock et
al. [13] (as it is implemented by the authors in the madmom
package [15], version 0.16.1) and clarify the significant
differences between the two models when necessary.

In the audio preprocessing stage, different magnitude
spectrograms are computed from the audio signal. These
in turn are used as the input for a neural network ensem-
ble. Each network in the ensemble is a recurrent neu-

Figure 1. Example 4/4 bar with the position, tempo and
meter state space variables associated.

ral network (RNN) that estimates the beat probability of
an audio frame. These RNN have three hidden recurrent
bidirectional layers, each with 25 long-short term memory
(LSTM) cells [16]. The network’s output consists of three
neurons with a softmax activation function, representing
the probability distribution over the beat, downbeat and no
beat classes for a given audio frame. In the case of the
Krebs et al. model, the probability distribution represents
only the beat and no beat classes. The final beat activa-
tion function of the ensemble is computed as the average
between each individual network’s output.

Lastly, a dynamic Bayesian network (DBN) is used to
determine the sets of beat and downbeat moments, given
the probabilities output by the RNN ensemble. Concep-
tually, the sequence of audio frames is associated with a
Markov chain of latent variables and the output of the RNN
is used as the observations. The latent variables state space
consists of a set of possible bar positions, tempi and time
signatures - only the first two variables are considered in
the Krebs et al. [12] model. Using the Viterbi algorithm,
the most probable sequence of variables is determined and
from it the sets of beats and downbeats moments are ex-
tracted.

2.2 Dynamic Bayesian Network based metrics

Compared to a deep learning architecture, the Bayesian dy-
namic network has a clearer interpretation. This is most
notable by the use of a state space and transition model
that encodes knowledge of the task at hand. In the analyzed
model, the state space S of the DBN encodes the position
within the bar (φ), the tempo (φ̇) and the time signature
for each audio frame (3/4, 4/4). In Figure 1 we depict how
these variables are related to an example 4/4 bar.

In a DBN, scores proportional to the probability of the
most likely state sequences are calculated using the Viterbi
algorithm. We define Ds as the scores for full sequences
(analyzing the entire input) for each possible ending state
s. From this distribution we make two possible interpreta-
tions of pulse clarity. The first one considers the probabil-
ity estimate of the most probable state, max(Ds), which
we interpret as the level of confidence with which the last
variable is determined. We name this metric Viterbi max.
The second aims to capture the uncertainty over Ds by
computing its entropy: H(Ds). We call this metric Viterbi
entropy. As entropy is lower for a more concentrated dis-
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Figure 2. Average cell state activation for the last layer
neurons in a 5 second excerpt of a song, contrasted with
the beat activation function of the network. Orange colors
are positive values, while blue colors are negative.

tribution, a low value for this metric can be interpreted as
a clearer decision made by the DBN.

2.3 Recurrent network based metrics

We decided to further explore whether the activations of
the recurrent neural networks could be used to estimate
pulse clarity. In this section of the architecture, we lacked
a clear interpretation of the inner states of the deep learn-
ing model. Yet, given that the pulse of a song is an inher-
ently periodical pattern, we hypothesized the RNN would
present periodical activations at different levels of the net-
work. When observing the network activations, these pat-
terns were present in the form of activation peaks. With
this in mind, we analyzed these activations from three dif-
ferent points of view, considering only a single trained net-
work from the ensemble for simplicity.

Firstly, we considered the cell state values, which act
as an "internal memory" of the LSTM cells, for each au-
dio frame. Specifically, for each frame, the mean cell state
activation of the 50 neurons in the last hidden layer is com-
puted, separating the positive and negative values into sep-
arate series. Then, for each series, a peak picking process
is performed, where the width for every peak is obtained.
Averaging these widths results in the Cell state precision
metric. In Figure 2 we can observe how the peak values of
the average cell state activations for the last layer neurons
tend to align to the final output of the network. The av-
erage width was interpreted as the confidence with which
the network determines the beat probability for a frame:
the wider a peak is, the lower the certainty.

Now focusing on capturing periodicity at a higher level,
we turn to consider the cell activations (the output of the
LSTM’s) through time. Figure 3 shows the output se-
ries for a subset of neurons, in which periodical activation
patterns can be interpreted for each neuron independently.
This behavior motivated looking into possible periodicities
between the output series of different cells and each cell
with itself.

In the case of considering different series, for each pair
of neurons i, j, the maximum absolute correlation between
the output series oi, oj value is computed, considering all
possible lags. We define the neurons cross correlation as

Figure 3. Sample output values of the forward layers neu-
rons for a 5 second excerpt of a song.

the sum of each of these values, as depicted in Equation 1.
With this metric we aim to determine the degree of coordi-
nation between neurons.

NCC =
∑
oi 6=oj

max
lag∈[0,|oi|]

∣∣corr(oi, oj , lag)∣∣ (1)

When considering each series against itself, we define
autocorrelation periodicity as the average of the max-
imum autocorrelation values for each cell (Equation 2).
These maximum autocorrelation values are obtained con-
sidering only lags representing periodicities between 40
and 330 BPM. Each autocorrelation value is divided by the
size of the signal overlap, considering the lag. Compared
to the neuron’s cross correlation metric, the autocorrelation
periodicity is less strict, as it only tries to capture if every
neuron’s output has a periodic pattern with itself.

ACP =
1

N

N∑
i

max
lag∈L

Ai,lag

overlap(oi, lag)
(2)

Where:
Ai,lag =

∣∣corr(oi, oi, lag)∣∣
overlap(oi, lag) = |oi| − lag
L = [40bpm, 330bpm]

(3)

2.4 Output-based metrics

As the intention was to determine if there was relevant in-
formation from within the model for the pulse clarity task,
we chose to develop reference metrics based on the output
both from the RNN and the DBN. Subsequently, we ana-
lyze if the metrics derived from the inner workings of the
networks surpass the performance of the output-based met-
rics. Using the beat activation function output by the RNN,
two interpretations of pulse clarity were computed. First,
we consider the average probability for beat moments as an
indication of the overall certainty of the output. The peak
average is obtained by applying a peak picking process
to the beat probability signal and then averaging the peak
probabilities. Second, using the previous calculated peaks
as beat moments, we define the RNN entropy as the en-
tropy of the inter-beat interval distribution. This concept is
the same as the one used in the calculations of tapping vari-
ability presented in the Evaluation section. Analogously,
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using the beat moments outputted by the DBN, we com-
pute the DBN entropy as the entropy over the inter-beat
interval distribution.

3. EVALUATION

In this section we evaluate the performance of the proposed
metrics. We will present the considered datasets in detail,
which vary in their type of stimuli and annotations and,
as such, we clarify the pulse clarity interpretations of the
annotated data specific to each one. Then the evaluation
process is described, in which for each pulse clarity met-
ric the absolute Spearman rank correlation coefficient is
computed against each dataset. Using this coefficient as a
performance score, a ranking of metrics is obtained.

3.1 Datasets

Three datasets were used for evaluation, which we named
the MIREX, rhythms and soundtracks datasets. The
MIREX dataset [17] has its origins in the beat tracking task,
developed for the evaluation of models, with the intent to
compile difficult-to-track musical excerpts. It consists of
30-second excerpts of 20 varied style songs. These ex-
cerpts have a stable tempo and present a varied distribution
of tempi values. 40 beat annotations are available for each
song.

The rhythms dataset was developed with the purpose
of capturing the subjective pulse experience. To this end,
we carried out an experiment were participants listened
to 33 rhyhtmic passages of varying rhythmic complexity
and were instructed to tap to a self selected beat. Partici-
pants were allowed to stop tapping if the beat was not clear
enough or change their selected beat mid-trial. After each
trial, participants rated how difficult the tapping task was
with values between 1 (easy) and 5 (hard). The stimuli
consisted of 11 rhythms from [14], 7 from [15], 5 were
isochronous beats at 150, 200, 250, 500, 800 ms inter-beat
intervals and 10 were new. 7 of the new stimuli were pre-
sented in increasing complexity order at the beginning of
the experiment to familiarize the participants with the task.
All other stimuli were randomized. With the exception
of the isochronous stimuli, presentation inter-beat intervals
varied between 450 and 550 ms avoiding having the same
IBI in two consecutive trials. Each stimulus consisted of
repeating a short rhythm the number of times required to
last a minimum of 24 seconds. From 35 total participants,
30 remained after filtering participants that were deemed to
not understand the concept of beat. They were selected as
participants who replicated the stimulus instead of defin-
ing a beat in more than three trials. 6 participants were
female, and 26 were male. Overall average age was 28.27
(sd = 7.94) and overall mean musical training was 4.85
years (sd = 3.90). For our evaluation, we will not consider
the 5 isochronous stimuli in the dataset as these were not
intended to evaluate rhythmic complexity.

Lastly, we use the soundtracks (ST) dataset used in [8],
which is composed of 100 five-second excerpts of movie
soundtracks, selected to cover a wide range of pulse clar-

ity scenarios. From these, 15 excerpts were discarded as
some metrics couldn’t be computed for them because they
provided too few beat events. Each track was rated by 25
musically trained participants in its beat clarity on a scale
from 1 to 9, labeled from “unclear” to “clear”. The mean
clarity score is provided in the dataset [18].

Tracks in the MIREX and rhythms datasets have more
than one annotation for each track. To obtain a single value
for each track and category, the empiric pulse clarity value
for a track is considered as the mean response of the sub-
jects. Previously, pulse clarity values (tapping variability
and self-reported) were z-standardized within participants.

As there are various types of annotations, we consider
different interpretations of pulse clarity for each dataset.
For the rhythms dataset we consider the answers to the
tapping difficulty question and in the soundtracks dataset
we use the “pulse clarity” reported answers. For both the
MIREX and Experimental datasets, human tapping anno-
tations are available. These consist of a list of moments
in time where the person felt the underlying pulse. Using
this information, we propose a tapping variability metric,
“inter-tap-interval entropy” (ITI-E), to act as a proxy for
pulse clarity. The computation is as follows: first the dif-
ference between subsequent taps is obtained. These differ-
ences are considered samples from the underlying subject’s
inter-tap interval distribution. A Gaussian kernel density
estimator with a bandwidth of 5ms is fitted over the sam-
ples and 400 equidistant points considered from the range
of 8 and 320 BPM are evaluated to obtain the density es-
timation. Lastly, the entropy over the density estimation
is calculated as a means to capture its variability. In trials
where less than five taps were produced, the metric was not
considered reliable. For these cases, it was considered the
participant had an unclear pulse precept and decided not
to tap. The entropy value was replaced with the maximum
entropy found for the participant. This methodology was
verified by correlating the obtained values for the rhythms
dataset and the reported tapping difficulty answers, obtain-
ing an r coefficient of 0.81 with p < 0.001.

Calculating the entropy over the distribution as opposed
to an approach based on standard deviation calculation was
chosen because we consider the possibility that the distri-
bution could be multi-modal, meaning that a subject tapped
to two or more possible interpretations of the pulse in the
same stimulus. In said case, the standard deviation would
result in high variability, when in fact it could be argued
that the tapping was precise for more than one pulse inter-
pretation.

3.2 Model selection

For the evaluation of the proposed metrics we classify them
in categories and select the best scoring metric in each
one. The categories considered were DBN metrics, RNN
metrics, output metrics and comparison metrics. This last
one is comprised of the pulse clarity model proposed by
Lartillot in [8] (mirpulseclarity function from MIR-
Toolbox 1.7.2 [19] with parameters for model=1), the
congruency score from the THT model presented in [9]
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MIREX Rythms ST Avg

ITI-E Conf ITI-E PC

Comp 0.550† 0.783 0.690 0.570 0.648

DBN 0.412‡ 0.912 0.775 0.860 0.740
Out 0.791 0.858 0.769 0.388† 0.701

RNN 0.632 0.627 0.621 0.372† 0.563

Table 1. Test set scores for each category in every dataset.
The selected metrics in the training process were: THT-
congruency (Comp), Viterbi max (beat version) (DBN),
DBN entropy (beat version) (Out), cell state precision
(RNN). All correlations have p-values below 0.001, except
for those with † where 0.05 > p > 0.001, and ‡ where
0.1 > p > 0.05.

and an additional interpretation of it called THT entropy,
which is the same as DBN entropy but using the beat mo-
ments outputted by the THT model. These categories al-
low the evaluation of the two main questions this work
proposed. The first one being if the interpretations made
of the beat tracking model are comparable to the previous
pulse clarity models. Furthermore it is of interest to know
if the metrics derived from internal behaviour surpass the
ones obtained by interpreting the output of the deep learn-
ing model.

We separate the data into train and test subsets to select
the best metric per category. The train set is obtained by
randomly selecting half of the soundtracks dataset. Select-
ing train data only from this dataset is motivated by the fact
that the other two have few stimuli and partitioning them
would increase the probability of losing representability in
the subsets. In the training process we selected one met-
ric from each category as the one that scored consistently
higher when considering the correlation on 10 subsets of
80% of the training data. In Table 1, we report the test set
scores for each metric selected in the training process.

From Table 1 we can observe that there is not a best
model overall. Nonetheless it is remarkable that in two of
the three datasets the DBN metrics section has the highest
score, achieving r values over 0.77 with the Viterbi Max
metric (2nd row on Table 1). Averaging all test set scores,
this metric performed best. Comparing against the Com-
parison section, no proposed metric provides better results
over all datasets. When comparing the metrics from the
inner behaviour of the model versus those calculated using
the output, neither the RNN or DBN categories surpass the
Output metric selected in all datasets. This category was
the second with highest average score with the DBN en-
tropy metric, providing similar results to the Viterbi max
metric.

4. CONCLUSIONS

In this paper we showed possible interpretations of pulse
clarity from the inner workings of a beat tracking model.
The developed metrics achieved comparable results with

respect to previous works over distinct datasets, showing
that there is relevant information in the analyzed beat track-
ing models. Specifically, the intuitive DBN based metrics
performed considerably better compared to the RNN met-
rics. Nevertheless, when comparing the inner calculations
of the model with simple transformations of the model’s
output, the inner calculations did not consistently yield bet-
ter results. This indicates that, although useful, inspecting
the inner behavior of the model may not be strictly neces-
sary.

We evaluated the pulse clarity models on very differ-
ent stimulus types: songs, rhythms and movie soundtracks.
Results showed that both the developed and comparison
models performed well on all datasets, even on those that
had different types of stimulus than their original training
data. This indicates that models can generalize well from
one type of stimulus to another. Yet, some variability was
present across datasets, inviting further evaluation of pulse
clarity models on a broader spectrum of musical stimuli.

The pulse clarity metrics obtained from the beat track-
ing model presented correlations comparable with those of
previous work. Given a more extensive dataset, with more
musical styles and exploring more dimensions of pulse
clarity, relevant pulse clarity predictors can be obtained.
These would provide new tools for the musical psychol-
ogy community. Overall, we propose that developments in
models for music perception tasks can be repurposed for
related tasks.

5. OPEN PRACTICES STATEMENT

A reference implementation written in Python is publicly
available at https://github.com/nPironio/
maipc, including all the metrics presented in this work.
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