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ABSTRACT

The extraction of fundamental frequency (F0) information
from music recordings is a crucial task in the field of mu-
sic information retrieval. The sequence of F0-estimates
over successive time frames (also called F0-trajectory) of-
ten corresponds to a melodic phrase and serves as a rep-
resentation for downstream tasks such as automatic music
transcription and performance analysis. A large number of
algorithms and tools for F0-estimation have been proposed
in the literature and implemented in various programming
languages. However, these heterogeneous implementa-
tions are often not easily comparable and may vary consid-
erably in performance and accuracy, which is problematic
for reproducible research. In this contribution, we intro-
duce libf0, a Python library of reference implementations
that can conveniently be used to apply, compare, and de-
velop F0-estimation algorithms in a reproducible way.

1. INTRODUCTION

Over the last decades, various approaches for the estima-
tion of the fundamental frequency (F0) of an audio sig-
nal have been proposed, ranging from model-based algo-
rithms in time- or frequency-domain to deep learning sys-
tems. Along with the scientific literature, one can find
open-source implementations for many F0-estimation al-
gorithms. For example, the following versions for the four
popular algorithms YIN [1], pYIN [2], Melodia [3], and
SWIPE [4] are available: Python 1 and Matlab 2 for YIN,
Python 3 and Vamp-Plugin 4 for pYIN, C++ 5 and Vamp-
Plugin 6 for Melodia, and Matlab and C 7 for SWIPE. This

1 https://librosa.org/doc/main/generated/
librosa.yin.html

2 http://audition.ens.fr/adc/
3 https://librosa.org/doc/main/generated/

librosa.pyin.html
4 https://code.soundsoftware.ac.uk/projects/

pyin
5 https://essentia.upf.edu/reference/std_

PredominantPitchMelodia.html
6 https://www.upf.edu/web/mtg/melodia
7 https://github.com/kylebgorman/swipe
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creates two challenges for reproducible research. First,
for most existing implementations, the source cannot be
cited or traced back. This is particularly problematic since
we found that different implementations of the same algo-
rithm can vary significantly in performance and accuracy.
Second, studies that require applying several algorithms
jointly, e.g., fusion experiments [5] or comparative studies,
are hard to conduct due to the diversity of programming
languages and sources. In this contribution, we introduce
a Python package called libf0 that contains open-source
implementations of the aforementioned algorithms YIN,
pYIN, a salience-based approach inspired by Melodia, and
SWIPE. Our toolbox offers reproducible baseline imple-
mentations for developing and comparing F0-estimation
algorithms for computational analysis of music recordings.
Furthermore, our toolbox contains example code for visu-
alizing and sonifying F0-trajectories to gain an intuitive
understanding of the estimation results.

2. F0-ALGORITHMS

In the following, we briefly describe the algorithms in-
cluded in libf0. For illustration, we use an excerpt of a
singing voice recording from the publicly available mul-
titrack choral singing dataset “Dagstuhl ChoirSet” [6] as
our running example. The recording was obtained from a
soprano singer using a throat microphone. In Fig. 1, esti-
mated F0-trajectories are shown on a log-frequency spec-
trogram of this excerpt to give a visual reference and high-
light the differences between estimates.

2.1 YIN

One of the most well-known algorithms for F0-estimation
is YIN, which was first introduced in [1]. YIN is a
time-domain algorithm, which produces one F0-estimate
for each time frame. First, using a variant of autocor-
relation, one computes a function referred to as cumula-
tive mean normalized difference function (CMNDF). This
function has local minima at the multiples of the expected
period, whose reciprocal is the F0-estimate. Fig. 1a de-
picts a log-frequency spectrogram superimposed with the
F0-trajectory estimated by YIN for our running example.
Since the algorithm does not enforce continuity of the esti-
mated F0-trajectories, one often obtains highly fluctuating
F0-estimates (e.g., see Fig. 1a at around 6 seconds). In par-
ticular, YIN suffers from confusion of the F0 with higher
harmonics (especially the octave).
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Figure 1. Illustration of different F0-estimation algorithms of libf0. The log-frequency spectrograms (with frequency
values given in cents with reference frequency 55 Hz) are shown only for visualization purposes.

2.2 pYIN

Probabilistic YIN (pYIN), introduced in [2], is a modifi-
cation of the previously described YIN algorithm. It in-
creases the robustness and alleviates the continuity prob-
lems of the YIN algorithm at the cost of increased compu-
tational complexity. First, one applies YIN multiple times
with different thresholds, yielding multiple F0-candidates
per frame. Then, temporal smoothing is achieved by us-
ing a hidden Markov model (HMM) and Viterbi decod-
ing. Furthermore, the HMM smoothing includes frame-
wise decision of whether a frame is voiced or unvoiced
(commonly referred to as voicing detection). Fig. 1b shows
the improved pYIN-trajectory for our running example.

2.3 Salience-Based Approach

This approach is inspired by the Melodia algorithm intro-
duced in [3]. Melodia is a frequency domain algorithm,
which relies on an enhanced time–frequency representa-
tion (also called salience representation) of the audio sig-
nal. First, a short-time Fourier transform (STFT) is com-
puted from the signal, which is refined using the instan-
taneous frequency (IF) (see [3] and [7, Section 8.2.1] for
details). These IF-estimates are binned onto a logarith-
mic frequency axis and harmonic summation is applied to
enhance the magnitude of the expected F0. To compute
the F0-trajectory, our implementation uses a dynamic pro-
gramming approach as described in [7, Section 8.2.1]. The
salience representation for our running example along with
the estimated F0-trajectory is visualized in Fig. 1c.

2.4 SWIPE

SWIPE (Sawtooth Waveform Inspired Pitch Estimator) is
a frequency domain algorithm originally introduced in [4].
The algorithm works in frequency domain and relies on a
correlation with multiple precomputed kernels, each repre-

senting a single F0-candidate. Each kernel is constructed
such that it has local maxima at prime multiples of the F0-
candidate with decreasing amplitude over frequency. The
correlation-maximizing kernel yields the F0-estimate for
a given frame, possibly refined using parabolic interpola-
tion. Fig. 1d shows the F0-trajectory estimated by SWIPE
for our running example. Note that SWIPE, due to its ro-
bust kernels, is able to produce smooth estimates without
an additional temporal smoothing step.

3. USAGE

We included our libf0 toolbox in the Python package in-
dex PyPI, which makes it possible to install libf0 with
the standard Python package manager pip. The GitHub
repository 8 contains an additional a demo notebook
demo_libf0.ipynb, which reproduces the figures in
this paper and allows for exploring the algorithms and dif-
ferent parameter settings interactively. Beyond visualiza-
tions, the notebook provides sinusoidal sonifications of the
estimated F0-trajectories for acoustical evaluation. In con-
junction with publicly available datasets, e.g., as provided
by the mirdata library [8], and evaluation toolboxes such
as mir_eval [9], we hope that libf0 contributes to the re-
producibility of MIR research on F0-estimation and subse-
quent downstream tasks.
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