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ABSTRACT

Gamaka (note ornamentation) is an essential element of
Carnatic music. Earlier works in computer-generated
gamakas focused on developing mathematical models of
each gamaka, which fails to capture the intricate changes
in pitch and thus does not sound natural. To address this
challenge, this work approaches the synthesis of gamaka
for kalpitha swaras (composed notes) in Carnatic music
using a data-driven system. The model uses masked la-
tent space representation in an auto-encoder architecture
with features extracted using convolutional layers. It takes
as input, the pitch contour extracted from symbolic data to
generate a pitch contour with gamaka information embed-
ded in it. The model is successful in synthesizing gamaka
with nuances that closely follow the ground truth.

1. INTRODUCTION AND RELATED WORK

Carnatic Music is a system commonly associated with the
southern part of India. The music form uses micro-tonal
variations, where swaras (musical notes) of phrases are
performed with ornamentation called ‘gamakas’ [1]. In
Carnatic music, the gamakas are integral parts of asserting
a raga [2]. In this work, we concentrate on tempo-based
Kalpitha Swaras (Composed Notes).

Automatically synthesizing gamakas given plain notes
has various applications in fields such as Robotic Musi-
cianship, Music Education, virtual instruments, and others.

The main contributions of this work are, a dataset of
note annotated Varnams in different tempos detailed in sec-
tion 2.1 and GamakaNet - A novel Masked Latent Space
architecture to generate gamaka given kalpitha swaras (in
MIDI [3]) in the equal temperament scale.

Ashtamoorthy et al. [4] concentrated on rule-based
gamaka generation with flute synthesis which required the
gamakas to be manually provided. The Gaayaka software
[5] could synthesize automatic gamakas using a custom
musical representation. However, the work is not scalable
since each raga requires a definition file that explicitly pro-
vides a mathematical model of gamaka for each note tran-
sition. Sasindran et. al [6] use wavelets to model a subset
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of gamaka types. This approach also requires manual spec-
ification of gamakas. MellisAi [7] employs a data-driven
approach, which features an LSTM-based architecture to
model music generation while using mathematical models
to generate the gamakas.

2. METHODOLOGY

2.1 Dataset

We recorded 5 concert instrumentalists with at least 15
years of experience in Carnatic music. The instruments in-
clude violin, keyboard, and veena - an Indian plucked lute.
These instruments were chosen so as to make fundamen-
tal frequency (f0) tracking and annotating easier. Varnams
are compositions with a concrete structure without devia-
tions between different teaching lineages. We recorded 2
varnams in raga Abhogi and Kalyani. These ragas have
largely varied sets of notes. Each varnam was performed
in 3 different tempos - 80, 120, and 160 beats per minute
(BPM) to account for 30 recordings in total. All the sam-
ples are 16-bit recorded at 44.1KHz. The recordings are
monophonic without a Tanpura [8] accompaniment to min-
imize errors in f0 tracking. Each recording was manually
annotated with the intended MIDI notes We used pYIN [9]
and CREPE [10] for f0 tracking. We plan to make this
dataset available to the research community.

2.2 Data Pre-processing

The MIDI notes were converted into f0 contour and nor-
malized for octave and the tonic of the instrument and
performance respectively. The resulting data is centered
around 1.0 with 0.0 representing un-voiced regions. We
performed zero-phase low pass filtering to remove high-
frequency noise in f0 tracking. We augmented the data by
varying the tempos from [−14,+14] BPM from the orig-
inal. We then block the data with a size of 200 with 80%
overlap and concatenate the raga-id as one-hot vector.

2.3 Architecture design

We designed an auto-encoder architecture with a masked
latent space representation to model different gamakas that
are tied to different notes and ragas.

By using a masked latent representation, we were able
to isolate the key features that distinguish the gamakas of
each raga while at the same time, retaining and sharing
the common features using the skip connections [11] and



shared weights of the encoder and decoder between differ-
ent ragas. Skip connections also aided in the training to
converge faster. There are N masked latent vectors that
correspond to N ragas in the dataset. Only the vector that
corresponds to the raga is unmasked during training and in-
ference. The encoder has 6 convolutional layers with skip
connections after every other layer with ReLU activations.
The decoder is identical but with transposed convolutions
instead. Dropout and batch normalization layers were used
to regularize during training.

2.4 Training

We pre-trained the model on just the pitch contour data
from the recordings (i.e. treating it as a denoising problem)
so as to condition all the layers. We further pre-trained our
model on the pitch contour data from the saraga dataset
[12] for raga Abhogi and Kalyani.

For training, the input data is the pitch contour obtained
from the MIDI annotations and the target is the pitch con-
tour extracted from the recordings. 20% data was split be-
fore pre-processing for validation and testing. We trained
the model for 2000 epochs, optimizing using Stochastic
Gradient Descent (SGD) with a starting learning rate of
0.001 and a momentum of 0.99. We used the Mean Abso-
lute and Squared Error (MASE) as the loss function which
is MSE + MAE. Since MAE is stronger with values < 1
and MSE is stronger otherwise, it helped the model learn
both domains equally and converge faster. We used Early
stopping and LR scheduler to optimize training.

3. RESULTS AND DISCUSSION

Figure 1. Pitch contour of phrase DMGRSRG

Figure 1 shows an excerpt of phrase in Abhogi 1 . It can
be seen that the generated pitch contour closely matches
the target.

3.1 Latent Space Visualization

Figure 2 shows the latent space of GamakaNet. We used
Principal Component Analysis (PCA) [14] to project the
latent vector into 3d space.

The latent vectors learn distinguishable information for
the two ragas. Blue points being spread out could be be-
cause Kalyani is a melakartha raga [15] with a lot more
gamaka variations while Abhogi is a pentatonic raga.

3.2 Tempo dependent gamaka

Figure 3 shows the generated pitch contours in 3 tem-
pos. The values are shifted and re-sampled for readability.

1 See [13] for Carnatic music notations

Figure 2. Latent Space vectors of Abhogi and Kalyani

Figure 3. Pitch contour generated in 3 different tempos

We notice the complexity of gamakas getting lower as the
tempo increases which is similar to how a musician would
handle gamakas at different tempos.

3.3 Music Synthesis

The audio samples are synthesized using a sine wave. The
equation for the phase ϕ from interpolated f0 values at nth
sample is given by

dϕ(n) = −n dω (1)

=⇒ ϕ(n) = ϕ(n− 1)− 2πn(fn − fn−1) (2)

where ω is the angular frequency.
When analyzing the generated plots as shown in fig-

ure 1, we notice that the synthesized pitch contours align
closely in the middle of the frame and deviate from the
expected value towards the edges. This might be because
full context is available to the center parts of the frame and
towards the ends, only partial information about the past /
future values is available to the model. To overcome this
issue, we used the overlap-add approach as used in popu-
lar algorithms like fast convolution [16] when combining
synthesized frames.

4. FUTURE WORK

In this work, we explored a data-driven approach to
gamaka synthesis for kalpitha swaras in Carnatic music.
The system receives MIDI scores and synthesizes pitch
contour for the given notes with gamaka information em-
bedded in it.

We plan to conduct listening test with performance
scoring on a held-out test set along with the Turing test
[17]. We will invite 10 experienced Carnatic musicians to
listen to the audio samples 2 synthesized from the synth
detailed in section 3.3. We included the Tanpura in all the
samples for completeness and pitch reference. We will use
a Likert scale [18] for the scoring. The baseline for our
tests will be the Gaayaka software mentioned in section 1.

2 https://tinyurl.com/knyr4re9
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