
L
at

e-
B

re
ak

in
g

/D
em

o
Se

ss
io

n
E

xt
en

de
d

A
bs

tr
ac

t,
IS

M
IR

20
22

C
on

fe
re

nc
e

WESTERN MUSIC NOTATION FOR JAVA: A LIBRARY FOR MUSIC
NOTATION ON THE JVM

Otso Björklund
University of Helsinki

otso.bjorklund@helsinki.fi

ABSTRACT

This paper presents the wmn4j Java library for handling
Western music notation. The central goal of wmn4j is
to provide a simple model of musical scores and an in-
tuitive API that allows efficient access to their contents.
Wmn4j supports fully concurrent and parallel access to all
contents of scores and is intended for implementing large
scale server-side music analysis applications. Wmn4j is li-
censed under the MIT license and is available on Github 1

and Maven Central 2 .

1. INTRODUCTION

Wmn4j is a Java library for analysing and producing west-
ern music notation. The library is focused especially on
computational analysis of symbolically represented music.
Wmn4j is available on Maven central and can be easily
installed as a dependency using the package managers of
different JVM languages. The central goal of wmn4j is to
offer efficient access to the contents of musical scores. The
main use cases for wmn4j are large scale corpus analyses
and server applications for computational music analysis.

Python libraries such as music21 [1] and
partitura 3 offer functionality for analysing mu-
sical scores. While wmn4j has similar use cases as
music21, there are some crucial differences. Wmn4j
targets the Java Virtual Machine (JVM) environment,
which enables wmn4j to be easily used in multiple
languages targeting the JVM. The design of wmn4j makes
it especially suitable for use in functionally oriented
modern JVM languages, such as Clojure 4 and Scala 5 .
Music21 offers a wide range of algorithms and tools
for music analysis. The scope of wmn4j is narrower,
as it mainly aims to provide access to the contents of

1 https://github.com/otsob/wmn4j
2 https://search.maven.org/artifact/org.wmn4j/

wmn4j
3 https://github.com/CPJKU/partitura
4 https://clojure.org
5 https://scala-lang.org

© O. Björklund. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: O. Björk-
lund, “Western Music Notation for Java: A library for music notation on
the JVM”, in Extended Abstracts for the Late-Breaking Demo Session of
the 23rd Int. Society for Music Information Retrieval Conf., Bengaluru,
India, 2022.

scores and contains only few music analysis algorithm
implementations. Partitura is focused on modeling
musical expression in addition to working with symbolic
musical data. Wmn4j is entirely focused on the contents
of music notation and does not aim to support modeling
musical expression.

The above-mentioned Python packages for handling
music notation provide convenient tools for research in
MIR and computational musicology. Wmn4j can be used
for implementing experimental research code, however, its
main goal is to provide a robust and efficient library for
implementing large-scale applications dealing with music
notation as data.

2. FEATURES

Wmn4j currently targets Java 17, the latest long-term sup-
port version, and is designed and implemented with mod-
ern Java in mind. Wmn4j doesn’t aim to provide a com-
prehensive collection of music analysis or information re-
trieval algorithms. Instead, it aims to provide classes and
an API that make efficient implementation of algorithms
easy. Currently wmn4j offers a basic pattern matching al-
gorithm implementation based on [2] which enables find-
ing exact matches of a pattern from polyphonic music. In
order to make wmn4j suitable for larger applications, log-
ging is implemented using SLF4J 6 which allows applica-
tion developers to use any SLF4J compatible logger imple-
mentation with wmn4j.

2.1 The structure of scores in wmn4j

The structure of a score in wmn4j is modelled directly as
a containment hierarchy depicted in Figure 1. The ob-
jects in musical notation are mostly mapped directly to
classes that represent them. The notation elements con-
tained within a measure that have a duration implement
the Durational interface. This is based on the use of
DurationalSymbol in the class hierarchy presented in
[3]. The API of wmn4j is comprehensively documented 7 .

The classes that model the contents of music notation
are immutable, making them inherently thread-safe [4].
All contents of musical scores can thus be accessed con-
currently and in parallel without requiring any additional
synchronization. The classes also guarantee strong invari-
ant conditions, such as durations always having positive

6 https://www.slf4j.org
7 https://otsob.github.io/wmn4j/



Figure 1. Wmn4j score containment hierarchy

values representable as a rational number. All methods in
the score API of wmn4j that may return an empty value
explicitly use Java’s Optional type. Builder classes are
provided for making programmatic creation of scores eas-
ier. The package structure of wmn4j has been designed so
that it can be further split into Java modules if the project
grows larger and only some parts of it need to be used on
platforms with resource constraints.

2.2 Accessing notation elements

Scores are modelled in wmn4j using a simple containment
hierarchy that resembles the tree-structure of MusicXML.
Representing music as a single hierarchy may not be ideal
for all computational music analysis tasks [5]. The ap-
proach taken in wmn4j is to decouple the structure used
to store scores in memory from methods of accessing the
contents. As the data structures used to model a score are
immutable, multiple different views can be built on top of
the same instance of a score without having a need for per-
forming defensive copying to avoid unintented side effects.

The main abstractions wmn4j uses for providing ac-
cess to the contents of scores are iterators, streams 8 , po-
sitions, and selections. The iterators and streams follow
the requirements of the corresponding Java interfaces they
implement. Each Durational notation element has
a unique position in a score. This is modelled by the
Position class, which can also be used to access the
element at a specific position. The Selection class pro-
vides a way to select a range of measures and specific parts
of a score. Using the abstractions wmn4j provides for
accessing the contents of a score, the strictly hierarchical
structure of the Score class does not constrain how con-
tent can be accessed.

2.3 MusicXML input and output

The only file format wmn4j currently supports is Mu-
sicXML [6]. MusicXML files can both be read and writ-

8 https://docs.oracle.com/en/java/javase/17/
docs/api/java.base/java/util/stream/Stream.html

ten, however, the current version of wmn4j does not have
support for all data MusicXML files can contain. The Mu-
sicXML reader in wmn4j uses Java’s streaming XML API,
which enables highly efficient XML input. Even even large
symphonic scores can be efficiently read with a relatively
small memory footprint.

3. USE CASES

The main use cases of wmn4j are in implementing appli-
cations that need to analyze large corpora of music. Mul-
tiple big data frameworks, such as Apache Spark 9 target
the JVM and can be extended using Java. Wmn4j could
thus be used for implementing large-scale musical score
analysis on top of an existing big data framework. Exam-
ple code for running multithreaded analyses on scores with
wmn4j is available on GitHub 10 .

The GraalVM Native Image builder 11 can be used to
compile JVM byte-code into native code in order to avoid
the start-up time of the JVM. Wmn4j supports native build
with little need for additional configuration, and can be
used also for developing command line applications and
serverless microservices that require faster startup. The
mncmd 12 application illustrates how wmn4j can be used
with Clojure and GraalVM’s Native Image builder to im-
plement a command line application for extracting infor-
mation from MusicXML files.

4. FUTURE WORK AND CONCLUSION

The API and feature set of wmn4j is not fully stable yet,
and work on making all information contained within Mu-
sicXML available in wmn4j will be continued. Support
for input and output of MEI [7] may potentially be added
in the future. In order to stabilize wmn4j’s current API,
feedback from actual application development use is still
required. Until then, wmn4j will be versioned under ma-
jor version zero in accordance with semantic versioning
practices.

The various software libraries for operating on music
notation data provide valuable tools for MIR research and
computational musicology. Music21 and partitura
already cover the needs of researchers well in many areas.
The main contribution of wmn4j is providing an efficient
software library with a clear API for developers aiming to
implement large-scale music analysis applications.

5. ACKNOWLEDGEMENTS

The author would like to thank Matias Wargelin for his
significant contributions to the development of wmn4j.

9 https://spark.apache.org
10 https://github.com/otsob/wmn4j-ismir22-lbd
11 https://www.graalvm.org/22.1/

reference-manual/native-image/
12 https://github.com/otsob/mncmd



6. REFERENCES

[1] M. S. Cuthbert and C. Ariza, “Music21: A Toolkit
for Computer-Aided Musicology and Symbolic Music
Data,” in Proceedings of the 11th International Society
for Music Information Retrieval Conference, Utrecht,
Netherlands, 2010, pp. 637–642.

[2] E. Ukkonen, K. Lemström, and V. Mäkinen, “Geo-
metric Algorithms for Transposition Invariant Content-
Based Music Retrieval,” in Proceedings of the 4th
International Conference on Music Information Re-
trieval, Baltimore, Maryland, USA, 2003.

[3] K. Lassfolk, “Music Notation as Objects. An Object-
Oriented Analysis of the Common Western Music No-
tation System,” Dissertation, University of Helsinki,
2004.

[4] J. Bloch, Effective Java™, 2nd ed. USA: Prentice
Hall Press, 2008.

[5] G. A. Wiggins, “Computer-Representation of Music
in the Research Environment,” in Modern Methods
for Musicology: Prospects, Proposals, and Realities,
T. Crawford and L. Gibson, Eds. Ashgate, 2009, pp.
7–22.

[6] M. Good, “MusicXML: An Internet-Friendly Format
for Sheet Music,” in Proceedings of XML, Boston,
United States, 2001.

[7] P. Roland, “The Music Encoding Initiative (MEI),” in
MAX2002. Proceedings of the First International Con-
ference on Musical Application using XML, 2002, p.
55–59.


