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ABSTRACT

Piano is one of the most music popular instruments. Dur-
ing the piano performance, loudness is an important factor
for expressiveness, alongside tempo, changes in dynam-
ics play with expectation, convey various emotions, and
render expressiveness. Due to the polyphonic characteris-
tics and with the goal of better analysing the expressive-
ness of performance of piano with multiple notes playing
simultaneously, it is more useful to find loudness for each
note than looking at accumulated loudness for a single time
frame. Most of the research in this topic uses Non-negative
Matrix Factorization (NMF) techniques to find note level
loudness. In contrast, we propose to use Deep Neural Net-
works (DNNs) conditioned with score information to es-
timate the loudness based on MIDI velocity for each note
performed by piano players. To our best knowledge, this
is a novel research for note level MIDI velocity estimation
by a DNN model in end to end fashion having FiLM con-
ditioning.

1. INTRODUCTION

Loudness is one of the most important aspects of music
performance. It is considered a component of expressive-
ness and it renders changes in the perceived dynamics [1].
There is also research to find a bridge between MIDI ve-
locity and loudness [2] and it is considered as an indicator
for the loudness of performance [3].

There is substantial work done on mapping from au-
dio to MIDI velocity on note level for piano perfor-
mance [4–7]. These researchers applied an NMF method
to separate a piano performance audio to the 88 piano keys
and estimated a MIDI velocity on each note, together with
score information.

We consider this area of research as an extension of ex-
pressiveness modelling and piano performance transcrip-
tion since input audio must be classified to 88 keys of piano
and regressed to the MIDI scale.

In this research, we conducted experiments to estimate
MIDI velocity using a novel end-to-end approach, a DNN
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utilising FiLM layers [8] for conveying score information
into the DNN.

2. METHOD

We employed the piano performance transcription model
previously used to classify the audio into 88 notes [9].
However, this model does not evaluate its estimation of
MIDI velocity accuracy but cares about classification of
audio to each key. We modified the model and the model
architecture for this research is illustrated as figure 1.

In order to take advantage of the classification charac-
teristics of this network, we used Binary Cross Entropy
(BCE) as the loss function. On top of the BCE loss, we
added an l1 loss function to estimate MIDI velocity which
takes l1 distance between the output MIDI velocity from
the model and ground truth MIDI velocity where note on-
sets occur only. The employed loss function 2 is l1 loss
and BCE loss connected by a parameter so that we can
back propagate losses for both classification and regres-
sion. The loss function is defined as following;

Loss = θ ∗ l1 loss+ (1− θ) ∗ bce loss (1)

where θ ∈ [0, 1] is the weight of the convex function and
currently is experimentally set to 0.5.

The l1 loss function in this research is defined as fol-
lows;

l1 loss =

∑
i|V (i)gt − V (i)e|

N
(2)

where i is an index of each data point of notes correspond-
ing MIDI roll as ground truth (gt) and estimation output (e)
within an input frame. N is the number of all data points
in a MIDI roll. The frame for one data point is two sec-
onds and each frame contains 100 segments per second to
represent MIDI roll.

We added a FiLM conditioning in order to insert a score
information. FiLM is a fully connected linear layer to
create parameters for affine transformation on an arbitrary
layer of the DNN which gives an output for inference [8].
This idea has been applied to audio source separation tasks
by adding video and score information from the FiLM net-
work [10]. We employed a FiLM conditioning architecture
from the research. We inserted the FiLM layer for apply-
ing parameters to each convolution block as in the figure
1. In this research the FiLM generator is designed by a
fully connected layer to generate conditioning parameters.



Figure 1. The model architecture for score informed MIDI
velocity estimation

We used the Maestro dataset [11] for training and the
SMD dataset [12] for the testing purposes. The amount of
2.8 GB of data for both audio and MIDI data for 132 ex-
cerpts is selected from the Maestro dataset for correspond-
ing to maestro mini for training. This setup is for speed-
ing up the experiment process and we also did not have
a computation resource to train with the full dataset. The
SMD dataset contains performed notes and its MIDI ve-
locity. We compare solely the note onset frame, i.e. MIDI
velocity on estimated note onset and MIDI velocity at the
same point are compared. Furthermore, we use perfectly
aligned score as input to the film layers. The evaluation is
made by taking the l1 distance of MIDI velocities between
ground truth and inference by the model.

Error =

∑
j |V (j)gt − V (j)inf|

N
(3)

where j is each note onset frame and inf stands for infer-
ence of the model and N is number of notes in a score.
This error equation 3 is taken on each note at where onset
happens in the ground truth MIDI roll, i.e. the inference
output is masked by an onset roll of the ground truth in
order to utilise the given score information.

3. RESULTS

The Table 1 is the preliminary result of this experiment.
As we can see from the table 1, the error of mean value

ranged from 10.83 to 20.07 and the average of the error is
14.23 on the scale of 0-128 of MIDI velocity. This result is
not as good as the NMF model [4]. We expect the accuracy
to improve after training on the whole dataset and post-
processing the results.

Composer Excerpt Mean SD
Bach BWV849-01 13.68 12.58
Bach BWV849-02 16.96 15.63
Bach BWV871-01 17.1 16.78
Bach BWV871-02 14.07 13.72
Bach BWV875-01 19.01 17.23
Bach BWV875-02 16.33 14.4
Beethoven Op027No1-01 11.13 11.13
Beethoven Op027No1-02 12.25 9.08
Beethoven Op027No1-03 12.88 12.57
Beethoven Op031No2-01 16.2 16.34
Beethoven Op031No2-02 17.17 17.72
Beethoven Op031No2-03 16.6 16.94
Brahms Op010No1 11.21 11.94
Brahms Op010No2 11.59 12.92
Chopin Op010-03 11.27 8.81
Chopin Op010-04 12.97 13.42
Chopin Op026No1 13.22 12.31
Chopin Op026No2 12.74 11.1
Chopin Op066 10.83 8.76
Haydn Hob017No4 15.4 15.52
Rachmaninov Op039No1 20.07 19.24
Skryabin Op008No8 10.44 8.13

Table 1. The mean and standard deviation (SD) of esti-
mated MIDI velocity error towards ground truth on note
onset level.

4. CONCLUSION AND FUTURE WORK

In this research, we looked into a novel method to estimate
MIDI velocity by DNN using FiLM conditioning. This
research has wide applications such as performance visu-
alisation, music education, expressiveness markings tran-
scription as in f , p, mf , crescendo, decrescendo, etc.

When it comes to music education applications, this
model allows for visualising students’ performance in
terms of loudness. This gives students an objective way
to see their performance. It also gives benefits to teachers
to check students’ performance in a shorter time compared
to listening to their performance one by one to evaluate. In
this use case, we need to take into account the unaligned
case between MIDI/score and audio, considering not only
tempo misalignment but also wrongly played notes such as
missing notes and extra notes [13, 14].

When it comes to expressiveness marking transcription
problems, we must consider a map between MIDI veloc-
ity to perceptual loudness since dynamic markings are rel-
ative loudness and perceptual to some extent contrary to
MIDI velocity which is directly related to absolute loud-
ness. As a future work, it is important to create a map from
MIDI velocity to the symbolic notations. There have been
several researches to create maps from loudness to sym-
bols of music score [2, 15]. However, this area of research
needs interdisciplinary knowledge by collaborating musi-
cologists since this is relative mapping seeing the context
of loudness of performance.
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