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ABSTRACT

Denoising Diffusion Probabilistic Models (DDPMs) have
shown great success generating high quality samples in
both discrete and continuous domains [1–3]. How-
ever, Discrete Denoising Diffusion Probabilistic Models
(D3PMs) have not yet been shown to be directly appli-
cable to the domain of Symbolic Music. In this work
we present the direct generation of Polyphonic Symbolic
Music using D3PMs. Our model does not only exhibit
state of the art sample quality, but also allows for var-
ious conditioning methods at sample time without ex-
tra training. As the model is trained to reconstruct ran-
domly masked out tokens, conditioning on an existing
piece of symbolic music is possible. Such condition-
ing scenarios include, but are not limited to, accom-
paniment (one track is provided, accompaniment tracks
are masked out) and infilling/completion (one or multi-
ple tracks with temporal gaps are provided). We provide
our implementation, trained model weights and some se-
lected samples at https://github.com/plassma/
symbolic-music-discrete-diffusion.

1. INTRODUCTION

DDPMs [2,4] are a relatively new class of generative mod-
els, which outperform previous state of the art generative
models in various generation tasks since they were pro-
posed in 2015 [1–3]. DDPMs are inspired by Langevin-
dynamics; they are only naturally defined on continuous
domains [5]. Austin et al. [5] extended DDPMs to discrete
domains and Taylor et al. [2] demonstrated the capabilites
of D3PMs on discrete sequences. Mittal et al. [3] success-
fully applied continuous DDPMs to the domain of sym-
bolic music, albeit indirectly by encoding the sequence of
discrete tokens into a continuous latent space before apply-
ing a continuous DDPM.

In this work we propose a model that is applied directly
to the domain of Symbolic Music.
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2. MODEL AND REPRESENTATION

We use an Absorbing State Discrete Denoising Diffusion
Probabilistic Model [5] similar to the model Taylor et al.
use in [2]. DDPMs learn to create data by training a de-
noising function (typically a neural network) to reverse a
step-wise diffusion process. The diffusion process corrupts
tokens of a fixed length sequence, by replacing them by the
Absorbing State token. This Absorbing State [MASK] is
an artificial token that does not occur in the domain, but
indicates corruption of data. In the forward diffusion pro-
cess, each token either stays in its state, or transitions to
[MASK] with a fixed probability. In a training step, data is
partially masked, and the denoising function is optimized
to reconstruct the original, unmasked sample.

The sampling process on the other hand starts with a
sample consisting of only [MASK] tokens. Given a fully
or partially masked sample as input, the model predicts a
full musical piece. The fewer [MASK] tokens there are
in the input sample, the more reliable the full predicted
musical piece becomes. Thus sampling is performed in
S steps: Instead of using the full predicted piece, only a
small fraction of the masked piece is unmasked in each
step. The partially unmasked sample is then used as input
to condition the next unmasking step.

Tracks of musical pieces are represented as time-
quantized series of discrete tokens, each timestep of fixed
duration represents either pitch, pause or note-off in the
corresponding interval. In the model, for each track, pitch
indices are vector embedded, before a convolutional layer
summarizes sets of 4 adjacent embeddings into one vec-
tor, effectively reducing the sequence length to a quarter
of its original length. The summarized embeddings are
then passed through a stack of transformer blocks, before
being decompressed again using a transpose-convolution.
For each track, a head then predicts the logits of all tokens
in the unmasked sample.

3. EXPERIMENTS

3.1 Dataset and Preprocessing

Like Mittal et al. [3], we use the Lakh MIDI Dataset
(LMD) [6] for all our experiments. We extract 4

4 mono-
phonic melodies and trios with lengths between 16 and 64
bars using Magenta’s MusicVAE [7] pipelines. The trios
consist of a monophonic melody, a monophonic bassline



and a polyphonic drum track. The drum track itself in-
cludes 9 canonical drums, resulting in 512 (29) different
events. In all sequences, all notes’ onsets and durations
were quantized to 16th notes.

Figure 1. SCHmUBERT Architecture
The staves in the upper half represent the model’s cor-
rupted input, question marks symbolize [MASK] tokens.
Actually all depicted notes are formed by a concatena-
tion of 16th notes. The denoising function reconstructs all
notes, but in the sampling process, only some of the un-
covered notes are transferred to Xt−1

3.2 Training

This section briefly outlines the training hyperparameters
for the configuration of the 64 bar melody model which is
sketched in Figure 1.

Diffusion Model timesteps 1024
Optimizer Adam @ lr= 5 ∗ 10−5

Batch size 64
Transformer layers 24

Transformer embedding size 512
Transformer attention heads 8

Total parameters 77M
Train steps 100,000

GPU 4x NVIDIA 2080 Ti
Duration 10h

3.3 Sampling and Evaluation

We trained our model for melodies and trios, for sequence
lengths of 16 and 64 bars. For all configurations, the mod-
els were able to generate realistic, appealing samples with
excellent long-time coherence. Once trained, the model
can be used for unconditional generation, but also allows
for conditional infilling without extra training. Any to-
ken in a musical piece can be replaced by [MASK], al-
lowing for example the interpolation between two pieces.

Another use case is accompaniment generation: given a
melody track and two tracks consisting only of [MASK]
for drum and bass, the trio model can fill the masked tracks.
Although this might be a less common use case, any ar-
bitrary combination of the previous infilling tasks can be
performed. To evaluate long-time coherence in the sam-
pled musical pieces, we use the framewise self-similarity
metrics Mittal et al. describe in [3]:

In a frame of 4 bars (64 tokens), mean and variance of
pitch and duration are calculated, defining two Gaussian
probability density functions (PDFs) for each frame. Us-
ing a hop size of 2 bars, the overlap area OAi between
Gaussian PDFs of adjacent frames is calculated. For each
piece, µOA and σ2

OA are then calculated for pitch and du-
ration. Calculating the same statistics for a ground truth
(training data) enables calculating Consistency and Vari-
ance metrics for our sampled pieces:

Consistency = max(0, 1− | µOA − µGT |
µGT

) (1)

Variance = max(0, 1− | σ2
OA − σ2

GT |
σ2
GT

) (2)

For comparability with Magenta’s Diffusion on Music-
VAE (MDMVAE) latents [3], we used only a subset of
1,000,000 64 bar melodies for training and evaluation.
Like Mittal et al. [3], we masked out the central half of all
tokens in each piece, and evaluated our metrics on batches
of 1,000 pieces.

Setting Unconditional Infilling
Quantity Pitch Duration Pitch Duration
Metric C Var C Var C Var C Var

Train Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Test Data 1.00 0.96 1.00 0.96 1.00 0.96 1.00 0.91

MDMVAE 64 bar 0.99 0.90 0.96 0.92 0.97 0.87 0.97 0.80
Melody 64 bar (ours) 0.99 0.90 0.99 0.94 0.99 0.98 0.99 0.96

Our implementation, trained model weights
and some selected samples are available
at https://github.com/plassma/
symbolic-music-discrete-diffusion.

4. CONCLUSION AND FUTURE WORK

To our knowledge, SCHmUBERT is the first model that
directly and successfully applies D3PMs to symbolic mu-
sic. The proposed model is able to generate appeal-
ing, diverse samples, that match the state-of-the-art qual-
ity in the framewise self-similarity metrics [3]. In infill-
ing, SCHmUBERT clearly outperforms the combination
of MusicVAE and DDPM, which is plausible given that
the DDPM can only use a fraction of the latents of Mu-
sicVAE in Mittal et al. [3]. Additionally, our model can
be used for infilling or accompaniment generation without
extra training. Future research includes the exploration of
the possibility for guided diffusion using (adversarially ro-
bust) classifiers [1]. To finally assess the generation quality
of the model, more hyperparameter tuning is necessary.
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