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ABSTRACT

Over the past few years, deep Artificial Neural Networks
(ANNs) have become more popular due to their great suc-
cess in various tasks. However, their improvements made
them more capable but less interpretable. To overcome
this issue, some introspection techniques have been pro-
posed. According to the fact that ANNs are inspired by
human brains, we adapt techniques from cognitive neuro-
science to easier interpret them. Our approach first com-
putes characteristic network responses for groups of input
examples, for example, relating to a specific error. We then
use these to compare network responses between different
groups. To this end, we compute representational simi-
larity and we visualize the activations as topographic ac-
tivation maps. In this work, we present a graphical user
interface called CogXAI ANNalyzer to easily apply our
techniques to trained ANNs and to interpret their results.
Further, we demonstrate our tool using an audio ANN for
speech recognition.

1. INTRODUCTION

Recent improvements in the field of Artificial Neural Net-
works (ANNs) made them popular, but hard to interpret.
This is attributed to the complex architectures with more
layers and neurons. ANNs are applied in a wide variety
of domains, therefore, the decisions made by the network
need to be trustworthy for various stakeholders. Explain-
able artificial intelligence (XAI) tackles this issue by de-
veloping techniques for interpreting ANN decisions [1, 2].

Considering the similarity between ANN and the brain,
we follow the idea of analyzing and visualizing ANNs in-
spired by research that has been done in cognitive neuro-
science. In this work, we introduce the CogXAI ANNa-
lyzer toolbox, which we designed to apply neuroscience-
inspired XAI techniques that we developed [3, 4] and to
make it possible for interested users to analyze their own
trained model. The CogXAI ANNalyzer toolbox currently
supports fully-connected and convolutional neural layers
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and as an example, we show the output of our tool for an
exemplary speech recognition model.

2. RELATED WORK

Model introspection refers to analyzing and visualizing the
internals of an ANN. Due to the fact that ANNs have a
black-box nature, research in this field has proposed sev-
eral methods in recent years [5, 6]. Yet, these methods are
mostly suitable for computer vision tasks as the data is vi-
sually interpretable for a human [1, 2, 7].

Feature Visualization is a common technique to inves-
tigate model internals in the input space. A direct visual-
ization of weights or activations of the network is mostly
not interpretable. Therefore, feature visualization opti-
mizes an input such that it maximally activates some neu-
ron or feature map of the network. The obtained input pat-
tern is then assumed to be the feature that is detected by
the respective feature map or neuron [5, 8, 9].

Saliency Maps highlight the relevant input regions for a
prediction made by a neural network as a heat map super-
imposed on the input [10]. There are various techniques
for quantifying the relevance. For example, relevance is
computed as the gradient of the output with respect to the
input values [8], by propagating the prediction backward in
a network using a decomposition approach [7] or by com-
bining gradient and activation information [2].

Analyzing Dataset Representations can help to gen-
erally understand an ANN by investigating how the model
represents different classes using many data examples.
Common approaches include using linear classifiers on
hidden layers [11,12] and statistical analyses [13–15]. Fur-
ther, there also are several graphical interfaces to investi-
gate representations and learned features [16–19].

3. METHOD

Our analysis approach uses Neuron Activation Profiles
(NAPs) as a characterization of network activity. The first
step to obtain NAPs is to chosse a dataset, a model and
layers and compute the layer activations and (sensitivity-
based [8]) saliency maps. We use the gradients to align the
inputs or activations such that the most prediction-relevant
position is located at their center position. This allows us
to average the activations over groups of inputs to obtain
group-characteristic activations. For better comparability
of the groups, we normalize the averages by subtracting



Figure 1. An overview of the visualization result in the CogXAI ANNalyzer toolbox

the average activation across all examples. Optionally, at
the end, we mask prediction-irrelevant information by mul-
tiplying each group-average with the [0,1]-scaled averaged
saliency maps. This way, we obtain NAPs for all groups
and selected layers. Details on how to compute NAPs can
be found in our previous publication [3].

For visualizing NAPs, we adapt how brain activity is
commonly shown as topographic activation maps in neu-
roscience. To this end, we perform a dimensionality re-
duction of the NAPs, such that the neurons or feature maps
in a layer are layouted by their activation similarity. Using
this layout, we color the respective position in the two-
dimensional projection by the NAP-value and interpolate
empty spaces. This approach of visualizing NAPs (or acti-
vations) as topographic maps is described in more detail in
our previous work [4]

The CogXAI ANNalyzer tool provides an interface for
performing NAP analysis and visualizing the results as to-
pographic activation maps.

4. USING COGXAI ANNALYZER

We developed a web-based application to compute and vi-
sualize NAPs for any dataset and trained model that are
compatible. Currently, it supports models with convolu-
tional and fully-connected layers that are implemented in
the TensorFlow 1 framework. We implemented A REST
API using the Flask framework in Python, used Vue.js for
user interface and MongoDB for data storage.

We use the TIMIT dataset [20], which is a corpus of
speech recordings of 630 speakers with 8 dialects of Amer-

1 https://www.tensorflow.org/

ican English. Each of the 630 speakers recorded 10 out
of 2345 unique sentences with a non-uniform distribu-
tion of sentences. All data are preprocessed to mel-scaled
log power spectrograms using a FFT window size of 512
(32 ms) and hop size of 128 (8 ms) at 16 kHz and project-
ing the FFT bins to 128 mel-frequency bins.

As model, we use a variation of Wav2Letter (W2L).
W2L is a 1D-convolutional architecture which includes 11
layers and is trained by using the Connectionist Temporal
Classification (CTC) loss for letter prediction. Our W2L-
based model predicts phonemes and uses 62 output units
in the output layer. The phoneme prediction task can re-
quire fewer layer as it is an easier task than letter predic-
tion. Therefore, we use only five convolutional layers and
the output layer for phoneme prediction.

With our toolbox, we compute NAPs using the
phoneme targets as groups, in all convolutional layers be-
fore and after applying the activation function, respec-
tively. Then, we visualize the result with similarity rep-
resentation and as topographic maps. Figure 1 shows the
results in the visualization view of the CogXAI ANNa-
lyzer. For each phoneme (row) and each layer (column),
this view shows the NAP values as topographic maps and a
clustermap as a visual representation of the phoneme sim-
ilarities according to the NAPs. In the input layer (first
column), NAPs indicate important characteristic of input
data for each phoneme. As NAPs values are normalized,
they shows whether the activation is higher (red) or lower
(blue) in comparison to the global average. Furthermore,
according to the topographic maps visualization of NAP
values, we can see which phonemes share the same active
regions.
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