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• Audio Length Cropping
• Mask Strategy
• Prediction Target Layer

3. Pre-training Experiments

1. Introduction

Existing music self-supervised learning models (e.g., 
Jukebox [1]) are expensive to finetune, though the results
are impressive on music information retrieval tasks [2]. 
• Designing MAP-Music2Vec following the principles 

proposed in data2vec [3].
• Less than 2% of the parameters of the Jukebox, and 

therefore, trainable in a single GPU.
• Achieving comparable results to Jukebox.
• The model will be released on Huggingface.

• A teacher model in the same architecture is used to 
provide prediction targets.

• The teacher is updated according to the exponential 
moving average of the student. 

• The student takes the masked input and predicts the 
average of top-K layer outputs of the teacher model, 
which takes the unmasked input.

• The encodes uses a multi-layer 1-D CNN feature 
extractor, and further input these tokens to a 12-layer 
Transformer. 

• We trained Music2Vec models on 1k hours of 30s
music audio, with 8 × NVIDIA A100-40GB GPUs around 
6 days for 400k steps.

2. Methodology
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4. Results

• Following the probing settings in JukeMIR [2], we evaluate tasks 
including music tagging, genre classification, key detection, and 
emotion recognition. 

• MAP-Music2Vec achieves comparable results to Jukebox with less 
than 1/50 parameters. 

• The music recording length is negatively correlated to the Music2Vec 
performances, which suggests that our model relies too much on 
local information.

• The representations of CNN extractor sometimes outperform the 
Transformer layers, especially for key detection. 

• Increasing the training steps, changing the mask span, or changing 
the mask probability does not give performance gain in most tasks.

Table 2: Overall Results of Self-Supervised Models. 

Underline and square boxes indicate the best overall performance and the best setting of Music2Vec, respectively.  ♢ indicates the results are produced 

by the convolutional feature extractor representations. Results of baselines are taken from JukeMIR.

Figure 1: Music2Vec Framework. 
During pre-training: the student model aims to reconstruct the masked music audios by taking 

the contextualised representations provided by the teacher model as a prediction target.

Model
Release

👈

These are probing
results. We could
further fine-tune
Mu s i c 2 V e c t o
a ch i e v e b e t t e r
p e r f o r m a n c e .


