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ABSTRACT

Automatic Music Transcription (AMT), in particular the

problem of automatically extracting notes from audio, has

seen much recent progress via the training of neural net-

work models on musical audio recordings paired with

aligned ground-truth note labels. However, progress is cur-

rently limited by the difficulty of obtaining such note la-

bels for natural audio recordings at scale. In this paper, we

take advantage of the fact that for monophonic music, the

transcription problem is much easier and largely solved via

modern pitch-tracking methods. Specifically, we show that

we are able to combine recordings of real monophonic mu-

sic (and their transcriptions) into artificial and musically-

incoherent mixtures, greatly increasing the scale of labeled

training data. By pretraining on these mixtures, we can use

a larger neural network model and significantly improve

upon the state of the art in multi-instrument polyphonic

transcription. We demonstrate this improvement across a

variety of datasets and in a “zero-shot” setting where the

model has not been trained on any data from the evalua-

tion domain.

1. INTRODUCTION

The variety of sounds that can appear in a musical record-

ing is effectively infinite. Numerous instruments, articu-

lation styles, dynamics, recording conditions, synthesizer

parameters, processing effects, and more can all interact to

produce the enormous space of sounds that can be heard in

recorded music. This diversity of sound is a challenge for

Automatic Music Transcription (AMT), the task of extract-

ing a symbolic representation from a musical recording. In

this paper we focus on the specific task of automatically

extracting a symbolic representation consisting of musical

notes. For each note we would like to infer its pitch, ab-

solute timing of its onset and offset in seconds, and the
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instrument that played the note. We do not attempt to infer

a musical score with time signatures, key signatures, etc.,

merely a sequence of notes with absolute timestamps that

can be represented as MIDI [1].

Most recent progress in AMT has been driven by neural

networks trained on musical recordings paired with their

note transcriptions. However, this progress is currently

bottlenecked by the limited number of existing ground

truth transcriptions, which is in turn bottlenecked by the

difficulty of creating note transcriptions that are precisely

aligned with audio. Creating ground truth transcriptions

manually is possible only for trained musicians, and is a

notoriously tedious process. Furthermore, trained musi-

cians rarely annotate the timing of note events to the preci-

sion needed for training AMT systems.

Besides being limited in number, existing transcribed

recordings are also limited in character, as only a few

methods are able to produce such aligned data efficiently:

Capture a musical performance using an instrument

equipped with sensors, e.g. a Disklavier [2] or guitar

equipped with hexaphonic pickup [3]. This yields highly

accurate ground-truth transcriptions but is difficult to scale

across many instruments due to the difficulty of needing

to equip each instrument with specialized sensors. In ad-

dition, data created in this way is likely to be limited to

a small number of recording environments, as it is easier

to invite multiple performers to record in a single loca-

tion than to create many sensor-equipped instruments, dis-

tribute them to performers, and ask the performers to share

recordings with captured transcriptions.

Synthesize a sequence of notes using a software synthe-

sizer [4, 5]. While this technique produces high-quality

audio-label alignment, the space of sounds that can be gen-

erated by a synthesizer only partially covers the space of

instrument sounds an AMT system is expected to tran-

scribe. In particular, for instruments such as violin and sax-

ophone where the sound of each note and transition is me-

diated by a large number of control parameters (typically

“provided” by a human performer via body positioning),

we do not yet have good methods for generating music that

matches the realism and diversity of human performances.

Align an audio recording and its corresponding symbolic

score using dynamic time warping [6]. This technique
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Figure 1. Overview of our dataset generation pipeline. Monophonic recordings are gathered from an audio/video corpus.

Each training example selects 1-8 20 second clips, and then takes random ∼2 second crops from each clip for MIDI pitch

detection. The resulting audio clips are mixed and MIDI clips are merged to form a polyphonic mixture for training.

has the advantage of being applicable to pre-existing au-

dio recordings where a score is available. However, the re-

sulting labels often end up poorly aligned due to dynamic

time warping errors or when the recording does not exactly

match the provided score.

In this paper, we demonstrate a new technique for creat-

ing training data for AMT models: transcribing in-the-wild

monophonic (i.e. one note playing at a time) recordings

and mixing the audio and transcriptions together as train-

ing data for a neural network. Monophonic recordings are

much easier to transcribe due to the existence of highly

accurate pitch trackers such as CREPE [7]. This technique

does not suffer from any of the limitations described above;

it can be applied to any monophonic audio clip, and the au-

dio and note labels are accurately aligned.

By generating a large number of polyphonic mixes of

transcribed monophonic recordings, we are able to greatly

increase both the quantity and diversity of data used to train

multi-instrument polyphonic transcription models. An im-

portant part of scaling our transcription data is that we mix

recordings without regard to whether or not they “go to-

gether”; the mixtures are rhythmically and harmonically

incoherent. Nonetheless, using these recordings allows us

to train larger and better models that surpass the existing

state of the art in multi-instrument AMT.

2. RELATED WORK

2.1 Automatic Music Transcription

The field of automatic music transcription (AMT) has a

rich history in MIR, but has been advancing rapidly in re-

cent years as AMT models begin to take advantage of deep

learning models and large-scale datasets. For example, the

Onsets & Frames model by Hawthorne et al. [2] uses a

deep convolutional and recurrent neural network to jointly

predict note onsets and frames (subsequently treated as an

adversarial task by Kim & Bello [8]); Kelz et al. [9] use

a convolutional network to model ADSR envelopes in pi-

ano transcription; Manilow et al. [10] perform simultane-

ous transcription and source separation with a multiheaded

network; Cheuk et al. [11] use semi-supervised learning

to improve transcription on low-resource datasets and later

explore the effect of adding a spectrogram reconstruction

loss [12], and recently Maman & Bermano [13] demon-

strate the use of synthetic data and iterative alignment to

enable training on weakly-aligned scores.

The unsupervised pretraining of large neural sequence

architectures has been critical to scaling performance in

natural language processing (NLP) [14], computer vi-

sion [15], and automatic speech recognition (ASR) [16],

but the dynamics of pretraining are only beginning to

be empirically well-understood [17–19]. Recently some

AMT systems have adopted the same sequence architec-

tures used in NLP (e.g. MT3 [20]), but using pretraining

in combination with these architectures for AMT is a rela-

tively unexplored area. While in this paper we only exam-

ine the effects of large scale pretraining on MT3, the data

strategies presented are orthogonal to these improvements

in model architectures and can ideally work in concert to

create better overall AMT systems.

2.2 Dataset Mixing and Labeling Heuristics

Heuristically-labeled and randomly-mixed data have been

used to improve large deep learning models in other tasks

and domains. For example, data augmentation strate-

gies that combine existing labeled examples are com-

mon in computer vision [21–23]; such strategies have

been shown to reduce memorization of corrupt labels [21],
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Figure 2. Overview of pitch tracking pipeline. HMM parameters are described in Section 3.3.

improve prediction and robustness on out-of-distribution

data [21, 24], stabilize training of generative models [21],

and reduce supervised models’ overconfidence on samples

outside the training distribution [25]. In the domain of

AMT, Callender et al. [26] use data mixing to recombine

random crops of drum audio samples and find that it im-

proves a drum transcription model.

Heuristic techniques have also been used for labeling

data and training MIR models. For example, Salamon et

al. [27] use an analysis-synthesis framework for f0 an-

notation where the model predictions are synthesized and

mixed back into the input audio, and show that this pro-

duces results that are statistically indistinguishable from

models trained on the manually-annotated mixes. Maman

and Bermano [13] use dynamic time warping to generate

music transcription labels from synthesized audio. In ASR,

Fonseca et al. [28] show that unsupervised representation

learning (via contrastive learning) can rival state-of-the-art

models without expensive human-labeled datasets for au-

dio scene separation. Furthermore, training with incoher-

ently mixed single-instrument recordings, as we do here, is

a widespread technique used for training music source sep-

aration systems [5, 29–32]. However, we are unaware of

any systems that use heuristically-labeled and randomly-

mixed data to scale AMT systems.

3. MODEL AND TRAINING PROCESS

3.1 Model Architecture

For all experiments, we use an encoder-decoder Trans-

former [33] architecture. Our model and training process

is almost identical to that of Gardner et al. [20], with two

main exceptions. First, while we use the T5.1.1 1 [14]

“Small” architecture used in [20] for some experiments,

for others we use the larger T5.1.1 “Base” model.

Second, we pretrain our model on a large dataset con-

sisting of mixes of automatically-transcribed monophonic

recordings drawn from an Internet-scale pool of videos;

this is the main contribution of the current work. In our

experiments, we vary the number of pretraining and fine-

1 https://github.com/google-research/

text-to-text-transfer-transformer/blob/main/

released_checkpoints.md#t511

tuning steps for the model as shown in Table 1. We

share our code publicly at https://github.com/

magenta/mt3, along with a checkpoint pretrained on

our dataset of monophonic mixes.

3.2 Data Representation

We use the exact input and output representation of Gard-

ner et al. [20]: log-Mel spectrograms as input and a MIDI-

like output vocabulary containing time, pitch, note on/off,

instrument, “tie” section token, and drum tokens. This out-

put vocabulary is capable of representing arbitrary multi-

instrument polyphonic MIDI. As in Gardner et al. [20],

we ignore note velocities as they are not present in most

ground-truth transcriptions.

Again following Gardner et al., we split the input au-

dio (and target labels at training time) into segments of

2.048 seconds (256 spectrogram frames at a hop size of

8 ms) [34]. At inference time, we transcribe each seg-

ment independently and concatenate their transcriptions.

We also use the “tie” representation of Gardner et al. which

requires the model to declare all notes that are active at the

beginning of each segment. At inference time, if the model

fails to declare a note that was active in the previous seg-

ment, we turn off the note.

3.3 Monophonic Detection and Transcription

We process a dataset of music recordings obtained in the

wild to (a) detect clips that are likely to be monophonic,

and (b) transcribe those clips into sequences of notes.

While our heuristic process is far from the ideal approach

to monophonic transcription, its main benefit is that it is

simple and easy to apply to an Internet-scale data corpus.

Our process of creating a set of transcription labels

from unlabeled audio data is illustrated in Figure 2, and

proceeds as follows. First, we split each recording into

non-overlapping 20-second segments. Then, we use the

CREPE [7] pitch tracker to extract f0 and confidence val-

ues from each segment at a frame rate of 100 Hz. If any

of the four 5-second sub-segments has fewer than 20% of

its confidence values above 0.95, we discard the entire seg-

ment. We do not run Viterbi smoothing on the f0 values.

We then model the sequence of f0 and confidence val-

ues with a hidden Markov model, where the hidden state
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Model Size # Pretrain Steps # Finetune Steps MAESTRO Cerberus4 GuitarSet MusicNet Slakh URMP

small (MT3) 0 1M .82 .76 .78 .34 .55 .50
base (MT3) 0 1M .85 .78 .78 .26 .61 .51
small (ours) 1M 100k .84 .81 .82 .35 .59 .73
base (ours) 500k 100k .87 .83 .82 .38 .66 .78

base (ours) vs. small (MT3) (∆% Rel.) +6.0% +9.2% +5.1% +12% +20% +56%

Table 1. Onset+Offset+Program F1 scores on different datasets, taking into account pitch, instrument, onset time, and

offset time. Numbers in the first row are taken directly from Gardner et al. [20] and represent the previous state of the art.

Numbers in the second row are from using the existing MT3 training procedure and data with a larger capacity model. The

next two lines show the effect of our pretraining procedure. Pretraining on monophonic mixes yields some benefit even for

the “Small” model, but does even better when model size is increased to “Base”. Using a “Base” model without pretraining

does considerably worse than with pretraining.

Model MAESTRO Cerberus4 GuitarSet MusicNet Slakh2100 URMP

Frame F1

small (MT3) .86 .87 .89 .68 .79 .83

base (ours) .90 .91 .91 .73 .85 .92

Onset F1

small (MT3) .95 .92 .90 .50 .76 .77

base (ours) .97 .95 .91 .56 .83 .90

Onset+Offset+Program F1

small (MT3) .82 .76 .78 .34 .55 .50

base (ours) .87 .83 .82 .38 .66 .78

Table 2. Transcription improvement over MT3 for Frame, Onset, and Onset+Offset+Program F1.

is a MIDI pitch value (0-127) or rest. (Note that we do

not model onsets separately.) The transition distribution

models the probability of a state change, set to expect two

state changes per second or probability 0.04 of changing

at any frame. The f0 observations are modeled as a Gaus-

sian distribution centered at the corresponding MIDI note

frequency, with a standard deviation of 0.2 semitones. We

use a mixture of 3 Gaussians to model octave errors, with

probability 0.025 of an octave error occurring in either di-

rection, respectively. We model P (r|c) independently of

f0, where r is the rest state and c is the CREPE confidence

value. We treat cv as the probability a frame is not a rest,

where we empirically determine v = 7.5.

We use the forward algorithm to compute P (f0, c) and

discard the audio segment if the log-likelihood per frame is

less than 0.3. This is useful for filtering out vocal record-

ings or other monophonic audio that is not well modeled

by a sequence of discrete notes using the equal-tempered

Western scale. Then, we use the Viterbi algorithm to infer

the maximum-likelihood sequence of notes.

The above process and parameters were determined em-

pirically on a small amount of unlabeled audio from our in-

the-wild dataset. We believe that this process could be re-

placed by a more rigorous monophonic transcription model

such as the one in Wu et al. [35]; however, we find that our

process provides sufficiently strong results in practice to

benefit AMT training. We plan to release our source code

publicly, including our monophonic detection and tran-

scription code. While we are unable to share our dataset,

we believe that our results can likely be replicated on any

large corpus of in-the-wild musical audio.

4. EXPERIMENTS

Our experiments measure how our pretraining method af-

fects the accuracy of a Transformer-based transcription

model. This section describes our experimental process,

from data gathering to model training and evaluation.

4.1 Gathering Monophonic Recordings

We downloaded 10M audio recordings from an online au-

dio/video sharing site, filtering based on metadata in an

attempt to restrict ourselves to solo non-vocal musical per-

formances on pitched instruments (i.e. not drums). We

then split each recording into non-overlapping 20-second

chunks and apply the monophonic detection and transcrip-

tion process described in Section 3.3. Only about 1% of

the chunks are detected as monophonic; we believe this is

because most of the solo recordings are of performances

on polyphonic instruments such as piano or guitar. Still,

we choose not to exclude these instruments entirely as they

are occasionally performed monophonically.

We also attempt to use the associated metadata to iden-

tify the instrument in each recording, which we use as in-

strument labels in the training examples. Table 3 shows

the number of training clips identified as each instrument;

we use the instrument vocabulary of Gardner et al. [20],

originating in Manilow et al. [5]. In early experiments,
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Instrument # Clips

Violin 327,914

Flute/Piccolo 96,507

Tenor Sax 71,737

Acoustic Guitar 59,231

Electric Guitar 58,037

Clarinet 53,513

Trumpet 52,695

Cello 23,856

Viola 22,027

Sopr./Alto Sax 18,784

Piano 18,626

Trombone 14,969

French Horn 7,135

Instrument # Clips

Oboe 3,234

Bass Guitar 2,264

Electric Piano 2,059

Tuba 1,526

Harp 1,233

Bassoon 1,114

Xylophone 897

Double Bass 751

Baritone Sax 317

Synth 288

Voice 123

Organ 99

Table 3. Number of labeled segments for each instrument

in our dataset after filtering as shown in Figure 2.

we found that these metadata-based instrument labels only

led to a minor improvement in the model’s performance,

so even in the case where metadata is unavailable we still

expect our overall approach to work.

After the entire data gathering process, we are left with

~5,000 hours of automatically-transcribed monophonic

music recordings. This is 3 times more than all of our fine-

tuning and evaluation datasets combined, 20 times more

if we exclude synthetic audio, and over 100 times more

if we exclude synthetic audio and piano. Furthermore, by

mixing together random segments of monophonic audio at

training time, we increase the effective dataset size so sub-

stantially that the model is unlikely to ever see the same

combination of source recordings twice during training.

4.2 Pretraining

We pretrain an encoder-decoder Transformer [33] model as

described in Section 3.1 on mixes of up to 8 monophonic

recordings and their corresponding note labels. The pro-

cess that generates each training example is as follows:

1. Choose the number of tracks k for the mix uniformly

at random from 1-8.

2. Take the next k 20-second clips.

3. From each clip, choose a 2.048-second segment uni-

formly at random.

4. Mix the audio from the k clips together by summa-

tion, then peak normalize.

5. Combine the note labels from the k transcriptions

into a single stream. If each transcription has already

been serialized, we can perform a merge to ensure

the note labels end up in the correct temporal order.

The much larger training datasets generated by our

heuristic labeling enables us to scale the model size that

we use, allowing us to potentially leverage the scaling

benefits of large Transformer models [17]. To that end,

we test two different sizes of model from T5 [14]: the

T5.1.1 “Small” model used in MT3, and the relatively

larger “Base” model. When using the smaller “Small”

T5.1.1 model, we train for 1M steps. While pretraining

the “Small” model continues to improve up to 1M steps,

we found that 500k pretraining steps works best for the

“Base” model; this is in line with prior research which has

suggested that larger pretrained models are more suscepti-

ble to diverging or overfitting [17].

Our first experiment is modeled after the one proposed

in Gardner et al. [20], where we train on a combination of

multiple datasets and then evaluate on a held-out portion

of each dataset. Our goal with this experiment is to mea-

sure the effect of pretraining on a collection of standard

transcription datasets, using standard transcription metrics.

Following Gardner et al., we evaluate on 6 datasets:

MAESTRO [2]: a dataset of 1276 classical piano perfor-

mances with MIDI captured via Disklavier.

Slakh [5]: a dataset of 2100 synthesized songs from the

Lakh MIDI Dataset [36]. We train on 10 random subsets

of tracks from each song, and evaluate on full mixes.

Cerberus4 [10]: a subset of the instruments in Slakh,

where mixes consist of exactly 4 tracks: guitar, piano, bass,

and drums.

GuitarSet [3]: a dataset of 360 guitar recordings, tran-

scribed using a hexaphonic pickup.

MusicNet [6]: a dataset of 330 classical music recordings,

with MIDI files aligned by dynamic time warping.

URMP [37]: a dataset of 44 classical music recordings

with instruments independently recorded and transcribed.

We measure transcription performance using the F1

metric over notes (Onset+Offset+Program), where in order

for two notes to “match” they must have the same pitch and

instrument and be close enough in onset time and offset

time. We use the default tolerances in the mir_eval [38]

library: onset times must be within 50 ms to match, and

offset times must be within the larger of 50 ms or 20% of

the note’s true duration.

Our results are shown in Table 1. When using a “Small”

model, pretraining provides a small increase in F1 score

across all datasets. A further advantage of pretraining is

that it lets us scale up to a “Base” model, which provides

a more significant boost. Note that using a “Base” model

without pretraining does not provide the same performance

improvement, likely because the existing datasets are sim-

ply too small for the model to take advantage of its in-

creased capacity. Table 2 compares our best model to MT3

across all F1 metrics and shows that pretraining on mono-

phonic mixtures leads to substantial improvements in the

state-of-the-art. It’s worth noting that MusicNet is now

known to have many misalignements, that are likely the

cause of the lower scores [13].
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Model Size # Pretrain Steps # Finetune Steps MAESTRO Cerberus4 GuitarSet MusicNet Slakh URMP

small (ours) 1M 0 .04 .00 .13 .03 .00 .19
base (ours) 500k 0 .03 .00 .12 .03 .00 .22

small (MT3) 0 525k .28 .07 .19 .14 .02 .17
base (ours) 500k 1000 .39 .11 .29 .17 .06 .33

Table 4. Onset+Offset+Program F1 scores (considering pitch, instrument, and onset/offset times) using the LODO method-

ology, where each dataset in turn is held out from training and used only for evaluation. The first two rows use no finetuning,

the third row is taken directly from Gardner et al. [20], and the fourth row uses a model pretrained on monophonic mixes

and finetuned for only 1000 steps. LODO scores are lower for all datasets, but pretraining provides a considerable boost.

This evaluation is somewhat unfair to Slakh as it contains instruments that do not appear in the other datasets.

Model MAESTRO Cerberus4 GuitarSet MusicNet Slakh2100 URMP

Frame F1

small (MT3) .60 .55 .58 .53 .55 .76

base (ours) .65 .57 .69 .62 .64 .82

Onset F1

small (MT3) .28 .21 .78 .18 .14 .23

base (ours) .83 .54 .71 .48 .45 .54

Onset+Offset+Program F1

small (MT3) .28 .07 .19 .14 .02 .17

base (ours) .39 .11 .29 .17 .06 .33

Table 5. Zero-shot transcription improvement over MT3 for Frame, Onset, and Onset+Offset+Program F1.

4.3 Zero-Shot Experiments

While standard in AMT, the methodology of the previ-

ous experiment is unsatisfactory in that for most real ap-

plications, we want to be able to automatically transcribe

recordings from musical domains that were not present in

our training data; splitting a homogeneously-constructed

dataset into “training” and “test” partitions is not sufficient.

This “out-of-domain” or “zero-shot” transfer is considered

an extremely challenging task in AMT [13, 20]. We sim-

ulate the zero-shot condition with a leave-one-dataset-out

(LODO) methodology, similar to the experiment described

in the appendix of Gardner et al. [20].

For each of the five evaluation datasets or “folds” (since

Slakh and Cerberus overlap we combine them into a sin-

gle fold), we train a model on four of the folds and test

on the other fold. This ensures that the model has not

seen any data from the test domain during training, a

much more difficult task as the model must be robust to

a wider range of instrument timbres and recording con-

ditions. Under LODO evaluation, Gardner et al. report

an Onset+Offset+Program F1 score of less than 0.3 for all

datasets, and less than 0.2 for all non-MAESTRO datasets.

Our results for the LODO evaluation are shown in Ta-

bles 4 and 5. Although our LODO F1 scores are lower than

in the supervised case due to the difficulty of the task, pre-

training on monophonic mixes increases the F1 score for

all datasets. This is unsurprising, as our pretraining data

exposes the model to a much wider range of instrument

sounds and recording conditions. Possibly more surpris-

ing is that the pretrained model does very poorly without

further finetuning on existing datasets (first two rows of

Table 4); we have no satisfying explanation for this phe-

nomenon and leave it to future work.

5. CONCLUSION

We have shown that we can take advantage of the relative

ease of monophonic music transcription to improve upon

the state of the art in multi-instrumental polyphonic music

transcription by obtaining a large number of monophonic

recordings, heuristically transcribing them, and mixing

several of them together at a time as pretraining exam-

ples for a neural network model. This yields improvements

across many datasets, in both standard and zero-shot multi-

task settings. Notably, this pretraining boosts performance

of downstream transcription models despite the fact that

the pretraining audio is musically “incoherent”, consisting

of randomly-mixed monophonic audio tracks without re-

gard to key, tempo, style, composition, or instrumentation.

Our work provides the first evidence that Internet-scale

pretraining can be used to improve Transformer-based

AMT models, and we do so with a simple set of heuris-

tics that is straightforward to implement and fast to exe-

cute. While the benefits of large-scale pretraining for large

Transformer models are well-known, the benefits of pre-

training have yet to arrive to the AMT community, despite

the wide availability of unlabeled audio data relative to the

amount of audio with transcription-quality labels. We hope

that the methods presented here, along with the accom-

panying open-source checkpoints and code, enable further

advances in using large-scale audio data for scaling AMT

models beyond the scope of existing supervised datasets.
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