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ABSTRACT

A vocoder is a conditional audio generation model that

converts acoustic features such as mel-spectrograms into

waveforms. Taking inspiration from Differentiable Digi-

tal Signal Processing (DDSP), we propose a new vocoder

named SawSing for singing voices. SawSing synthesizes

the harmonic part of singing voices by filtering a saw-

tooth source signal with a linear time-variant finite im-

pulse response filter whose coefficients are estimated from

the input mel-spectrogram by a neural network. As this

approach enforces phase continuity, SawSing can gener-

ate singing voices without the phase-discontinuity glitch

of many existing vocoders. Moreover, the source-filter as-

sumption provides an inductive bias that allows SawSing to

be trained on a small amount of data. Our evaluation shows

that SawSing converges much faster and outperforms state-

of-the-art generative adversarial network- and diffusion-

based vocoders in a resource-limited scenario with only 3

training recordings and a 3-hour training time.*

1. INTRODUCTION

Singing voice synthesis (SVS) aims to generate human-

like singing voices from musical scores with lyrics [1±9].

State-of-the-art (SOTA) voice synthesis techniques involve

two stages: acoustic feature modeling from musical scores

and audio sample reconstruction via a so-called ªvocoder.º

A neural vocoder takes an acoustic feature such as mel-

spectrogram as input and outputs a waveform using deep

learning networks [10±22]. However, phase discontinu-

ities within partials often occur due to the difficulty of

reconstructing realistic phase information from a mel-

spectrogram. This may lead to a short-duration broadband

transient perceived as ªglitchº or ªvoice tremor,º which is

more audible during long utterances commonly found in

singing [18], as exemplified in Figure 1.
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Figure 1: The magnitude spectrograms of a long utter-

ance of an original recording (‘ground truth’) and those

reconstructed by two widely-used neural vocoders, Paral-

lel WaveGAN (PWG) [14] and HiFi-GAN [15], and the

proposed SawSing. Each vocoder is trained on 3 hours of

recordings from a female singer until convergence. We see

glitches in the results of PWG and HiFi-GAN.

Differentiable Digital Signal Processing (DDSP) [23]

introduces a new paradigm for neural audio synthesis. It

incorporates classical digital signal processing (DSP) syn-

thesizers and effects as differentiable functions within a

neural network (NN), and combines the expressiveness of

an NN with the interpretability of classical DSP. The use

of phase-continuous oscillators is a potential solution to the

phase problem from which regular neural vocoders suffer,

and the strong inductive bias of this approach may obvi-

ate the need of large training data. Furthermore, DDSP

has already succeeded in achieving sound synthesis of, and

timbre transfer between, monophonic instruments [23±30].

These motivate us to explore whether the DDSP approach

can be applied to build a singing vocoder.

This paper proposes SawSing, a DDSP-based singing

vocoder which reconstructs a monophonic singing voice

from a mel-spectrogram. The architecture of SawSing sim-

ilarly consists of an NN and classical DSP components;

unlike DDSP, its DSP portion is a subtractive harmonic

synthesizer which filters a sawtooth waveform containing

all possible harmonic partials, plus a subtractive noise syn-

thesizer which filters uniform noise. The sawtooth signal

enforces phase continuity within partials, thereby avoiding

the glitches. Moreover, the partials of a sawtooth signal are

guaranteed to be in phase, so it also enforces the phase co-

herence between partials, intrinsic to human voices. The

function of the NN, on the other hand, is to infer from

the mel-spectrogram the fundamental frequency (f0) of the

sawtooth signal and the filter coefficients of the harmonic

and noise synthesizers for each time frame.
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In our experiments, we use data from two singers (each

three hours) of the MPop600 Mandarin singing corpus

[31]. We compare the performance of SawSing with the

neural source-filter (NSF) model [12], two existing DDSP-

based synthesizers, the original additive-based DDSP [23]

and the differentiable wavetable synthesizer [27], and a

few famous neural vocoders, i.e., two generative adversar-

ial network (GAN)-based models [5, 14] and a diffusion-

based model [21]. We consider both a regular scenario

where the vocoders are trained for days using the 3-hour

dataset, and a resource-limited scenario with constraints

on training data and training time. Our experiments show

that SawSing converges much faster and outperforms the

other vocoders in the resource-limited scenario.

The main contribution of the paper is two-fold. First, we

show that despite differences between instrumental sounds

and singing voices [32], the classic idea of subtractive

synthesis [33, 34] can be applied to singing voices using

the DDSP approach.1 Second, we provide empirical ev-

idences showing that DDSP-based vocoders can compare

favorably with sophisticated, SOTA neural vocoders. Fur-

thermore, since DDSP-based vocoders are lightweight and

training-efficient, they have the potential to be used in cre-

ative and real-time scenarios of singing expression with

limited training data of a target singing voice [36, 37].

We open source our code at https://github.

com/YatingMusic/ddsp-singing-vocoders/.

For audio examples, visit our demo webpage https:

//ddspvocoder.github.io/ismir-demo/.

2. BACKGROUND

Neural vocoders often aim to reconstruct a waveform y ∈
R

1×T from an input mel-spectrogram X ∈ R
M×N :

y = fvocoder(X) , (1)

where M,N, T denote respectively the number of mel fil-

ter banks, spectral frames, and time-domain samples. The

conversion from X to y can be done, for example, by up-

sampling X multiple times through transposed convolu-

tions until the length of the output sequence matches the

temporal resolution of the raw waveform [13, 15]. As

usual reconstruction loss functions such as mean-square

errors cannot reflect the perceptual quality of the recon-

struction, GAN-based approaches [13±15] learn discrimi-

nators to better guide the learning process of the generator

(i.e., fvocoder). Newer diffusion-based approaches [20, 21]

avoid the use of discriminators and learn to convert white

Gaussian noises z ∈ R
1×T (i.e., of the same length as

y) into structured waveform y through a denoising-like

Markov chain, using X as a condition. The mapping pro-

cess between X and y of such neural vocoders appears to

be a black box that is hard to interpret. However, given

sufficient training data (e.g., recordings amounting to 24

hours [15, 20, 21, 38] or 80 hours [18]) and training time

1We note that the use of a sawtooth waveform in DDSP-based models
has been attempted for speech synthesis [35] and instrumental synthesizer
sound matching [26], but its application to singing vocoder is new.

(e.g., days), SOTA neural vocoders can reconstruct the

waveforms with high fidelity.

The majority of neural vocoders, however, have been

originally developed for speech. When the rate of utter-

ances is fast, as is common in speech, the glitches result-

ing from the phase discontinuities within partials may be

perceptually masked by the natural transients of the voice.

However, during singing, where long utterances are com-

mon, these discontinuities are more audible.

To improve the performance of GAN-based vocoders

for singing voices, the idea of incorporating the f0 infor-

mation has been explored recently. PeriodNet [16] uses

f0 to create sine excitation as input to Parallel WaveGAN

(PWG) [14] to model the periodic part of human voices.

Guo et al. [17] further filter such an f0-driven excitation

signal with a linear time-variant finite impulse response

(LTV-FIR) filter whose coefficients are estimated from the

input mel-spectrogram, and use the resulting ªharmonic

signalº as input to PWG and MelGAN [13]. SingGAN

[18] uses more complicated ªadaptive feature learningº

layers to incorporate the f0. These models were shown to

outperform older GAN-based vocoders such as PWG and

MelGAN in listening tests, but no evaluations against the

newest GAN-based vocoder HiFi-GAN [15] and diffusion-

based vocoders were reported. Moreover, their evaluation

did not consider resource-limited scenarios.

We propose in this paper a radically different approach

that uses traditional DSP synthesizers (instead of upsam-

pling convolutions) as the backbone for fvocoder. While

the ideas in DDSP have flourished and been applied to syn-

thesizing not only instrumental sounds [23±27], but also

audio effects [39±43], their application to singing synthe-

sis remains under-explored. The only exception, to our

knowledge, is the preliminary work presented by Alonso

and Erkut [44], which employed exactly the same additive

synthesizer as the original DDSP paper [23]. However,

they did not compare the performance of their vocoder

with any other vocoders. Our work extends theirs by us-

ing a subtractive harmonic synthesizer instead, with com-

prehensive performance evaluations against SOTA neural

vocoders such as HiFi-GAN and FastDiff [21].

We note that, while a DDSP-based vocoder may solve

the glitch problems by inducing continuous phase hypothe-

sis using a harmonic synthesizer, this hypothesis may con-

strain the model learning ability. Experiments reported in

this paper are needed to study its performance.

Publicly-available training corpora for singing tend to

be much smaller than those for speech [31, 45] (often ≤10

hours). Therefore, besides tackling the glitch problem, our

premise is that SawSing can learn faster than prevalent

neural vocoders without a large training corpus, due to its

strong inductive bias. Moreover, the success of SawSing

may pave the way for the exploration of other advanced

DSP components for singing synthesis in the future.

3. ORIGINAL DDSP-ADD SYNTHESIZER

The idea of DDSP is to use DSP synthesizers to synthesize

the target audio, with the parameters of the synthesizers Φ
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inferred from the mel-spectrogram with an NN. Namely,

y = fDSP(Φ) , Φ = fNN(X) . (2)

The original DDSP model [23], referred to as DDSP-Add

below, adopts the harmonic-plus-noise model for synthe-

sis [46] and decomposes a monophonic sound into a pe-

riodic (harmonic) component yh and a stochastic (noise)

component yn, i.e., y = yh + yn, and reconstructs them

separately with an additive harmonic oscillator (thus the

name ª-Addº) and a subtractive noise synthesizer. 2 The

former computes yh as a weighted sum of K sinusoids

corresponding to the f0 and its integer multiples up to the

Nyquist frequency (for anti-aliasing), for t ∈ [1, T ]:

yDDSP-Add
h (t) = A(t)

K∑

k=1

ck(t) sin(ϕk(t)) , (3)

where A(t) is the global amplitude corresponding to the

time step t, ck(t) is the amplitude of the k-th harmonic

satisfying
∑K

k=1
ck(t) = 1, ck(t) ≥ 0, and the instanta-

neous phase ϕk(t) is computed by integrating the instanta-

neous frequency kf0(t), i.e., ϕk(t) = 2π
∑t

τ=0
kf0(τ) +

ϕ0,k, with ϕ0,k initial phase, set to zero. The parameters

A, ck, f0 are estimated by fNN for each frame i ∈ [1, N ]
and then upsampled to the time-domain with linear inter-

polation. On the other hand, yn is obtained by convolving a

uniform noise signal ζ ranging from −1 to 1 (with the same

length as a frame) with an LTV-FIR filter ψn(i) ∈ R
Ln es-

timated per frame:

ȳn(i) = ζ ∗ ψn(i) . (4)

The final yn is obtained by overlap-adding sequence of

segments ȳn(i) for the frames i = 1 . . . N . Jointly, the

parameters Φ := {A(i), {ck(i)}
K
k=1

, f0(i), ψn(i)}
N
i=1

are

estimated from the mel-spectrogram X per frame by fNN,

which is a small network with few parameters.

Engel et al. [23] showed that DDSP-Add can synthe-

size realistic violin sounds with only 13 minutes of expres-

sive solo violin performances as training data. Alonso and

Erkut [44] employed DDSP-Add for singing synthesis, but

with limited performance evaluation.

4. PROPOSED SAWSING VOCODER

Under the same harmonic-plus-noise signal model [46],

SawSing modifies the the harmonic synthesizer of DDSP-

Add [23] with two ideas. First, given the f0 estimated from

X, SawSing approximates yh by a sawtooth signal, which

contains an equal number of even and odd harmonics with

decaying magnitudes, dropping the coefficients A and ck:

ỹh
SawSing

(t) =

K∑

k=1

1

k
sin(ϕk(t)) . (5)

2The terms ªadditiveº and ªsubtractiveº are used to describe how a
signal is synthesized. An additive synthesizer generates sounds by com-
bining multiple sources such as oscillators or wavetables, while a subtrac-
tive synthesizer creates sounds by using filters to shape a source signal,
typically with rich harmonics, such as a square or sawtooth wave [46].

Second, ỹh is treated as the ªexcitation signalº and shaped

into the desirable yh by means of an LTV-FIR filter

ψh(i) ∈ R
Lh (that is different from ψn(i)). To apply the

filter, we extract the segment of ỹh corresponding to the

same frame i and multiply its short-time Fourier Trans-

form (STFT) element-wise with the STFT of ψh(i) in the

frequency domain, before converting it back to the time do-

main with the inverse STFT and overlap-adding. SawSing

uses the same subtractive noise synthesizer as DDSP-Add.

Therefore, the parameters to be estimated from X by fNN

are ΦSawSing := {f0(i), ψh(i), ψn(i)}
N
i=1

.

We observe that to compute yh, DDSP-Add learns NN

to attenuate each of the k source harmonics individually

(i.e., with ck), while SawSing entails a source-filter model

[12], using the f0-constrained sawtooth signal in Eqn. (5)

as the excitation source and a time-varying filter ψh(i) de-

cided by the NN for spectral filtering. The filter coeffi-

cients correspond to formants produced by the vocal folds

and do not correlate with f0.

Besides differences in the harmonic synthesizer, Saw-

Sing also uses a different loss function from DDSP-

Add. For monophonic instrumental sounds, Engel et al.

[23] showed it effective to use the multi-resolution STFT

(MSSTFT) loss as the reconstruction loss for training. This

loss considers the difference between the magnitude spec-

trograms of the target and synthesized audio, denoted as

Sj and Ŝj below, for J different resolutions.

lMSSTFT =

J∑

j=1

∥Sj − Ŝj∥1 + ∥ log(Sj)− log(Ŝj)∥1 . (6)

For singing voices, however, we found that MSSTFT loss

alone cannot train adequately. We introduce an additional

f0-related loss term to facilitate learning:

lf0 = ∥ log(f0)− log(f̂0)∥1 , (7)

where the target f0 (f0) and the estimated one (f̂0) are both

extracted by the WORLD vocoder [47]. Thus, our Sawsing

loss function becomes ltotal = lMSSTFT + lf0 . Moreover, we

found that training is unstable unless the gradients between

fDSP and the head of fNN for f0 prediction are detached.

4.1 Implementation Details

First, we resampled the audio recordings to 24 kHz and

quantized them to 16 bits. Next we cropped the recordings

into 2-second excerpts (i.e., T = 48k) and extracted 80-

band mel-spectrograms from each (M = 80), with a Hann

window of 1024 samples for STFT and a hop size of 240

samples (i.e., 10ms). Accordingly, we set N = 200.

We used filter length Lh = 256 for the harmonic syn-

thesizer for SawSing, and filter length Ln = 80 for the

subtractive noise synthesizers. We used at most K = 150
sinusoids for SawSing. To avoid sound clipping, we ap-

plied a global scaling factor of 0.4 to the sawtooth signal

in Eqn. (5) to ensure that the range of the summed sinu-

soids always lies in [−1, 1].
We chose a lite version of the Conformer architecture

for fNN [48], for its well-demonstrated effectiveness in
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capturing both local and global information in a sequence

of acoustic features in speech tasks. It consists of a pre-net

(shallow 1D convolution with ReLU activation and group

normalization), a self-attention stack (3 layers), a convo-

lution stack (2 layers) with post layer normalization, and

a final linear layer whose output dimension is equal to the

number of synthesis coefficients. We used the Adam opti-

mizer with 0.002 learning rate.

While the original DDSP-Add paper [23] uses J = 6
for MSSTFT, we found setting J = 4 to be sufficient in our

implementation. Specifically, we used four different FFT

sizes (128, 256, 512, 1024) with 75% overlapping among

adjacent frames. While it is possible to introduce a scaling

factor to control the balance between lMSSTFT and lf0 , we

found doing so does not markedly improve the result.

5. EXPERIMENTAL SETUP

5.1 Baselines

Our evaluation considers in total six baselines. The first

three explicitly employ f0, while the last three do not.

First, we adopted two existing DDSP-based vocoders,

the original additive-based DDSP (DDSP-Add) [23, 44]

and the differentiable wavetable synthesizer (DWTS) [27].

DWTS replaces the fixed sinusoids in the additive har-

monic synthesizer of DDSP-Add by K ′ learnable (rather

than pre-defined) one-cycle waveforms (ªthe wavetablesº)

wk ∈ R
B , k ∈ [1,K ′], to gain flexibility to model

a wider variety of sounds (but only tested on instru-

mental sounds in [27]). Mathematically, yDWTS
h (t) =

A(t)
∑K′

k=1
ck(t)σ(wk, ϕπ(t)), where σ is an indexing

function that returns a sample of wk according to the in-

stantaneous modulo phase ϕπ(t) computed from f0(t). For

fair comparison, we used the same Conformer-like archi-

tecture for the fNN for DDSP-Add, DWTS, and SawSing,

and the same noise synthesizer. Moreover, while the orig-

inal DDSP-Add used only lMSSTFT, thus we used ltotal =
lMSSTFT + lf0 for all three in our implementation. Like

SawSing, we set K = 150 for DDSP-Add. DWTS only

needs small K ′ as the wavetables are learnable; we set

K ′ = 20, with wavetable length being B = 512.

We also employed the neural source-filter (NSF) wave-

form model [12], which was proposed before the notion

ªDDSPº was coined [23]. Unlike SawSing, NSF uses un-

weighted sinusoids (i.e.,
∑K

k=1
sin(ϕk(t))) as the source

signal, and uses stacked dilated-convolution blocks instead

of a simple LTV-FIR filter. We adapted the open-source

code from the original authors to implement NSF, as well

as the following three baselines.

For GAN-based neural vocoders, we used PWG [14]

and HiFi-GAN [15], both of which were developed for

speech, not singing.3 PWG is a non-autoregressive ver-

sion of WaveNet [10] that learns to transform a random

noise into target audio with 30 layers of dilated residual

convolution blocks, conditioning on the mel-spectrogram.

3While we did not consider SingGAN [18] in the evaluation for lack
of open source code, we should have included PeriodNet [16] for it seems
easy to implement. Unfortunately we are aware of PeriodNet too late.

For HiFi-GAN, we used the most powerful ªV1º configu-

ration [15], which converts a mel-spectrogram into a wave-

form directly via 12 residual blocks. It uses a sophisticated

multi-receptive field fusion module in the generator, and

multiple multi-scale and multi-period discriminators [15].

An increasing number of diffusion-based vocoders have

been proposed in the past two years for speech [19±22].

We adopt as a baseline the FastDiff model [21], which has

been shown to beat HiFi-GAN V1 [15] and diffusion-based

models WaveGrad [19] and DiffWave [20] in the mean-

opinion-score (MOS) of vocoded speech in listening tests.

However, while a noise schedule predictor has been de-

vised to reduce the sampling steps of the denoising Markov

chain, the inference time of FastDiff is still around 10 times

slower than HiFi-GAN, according to [21].

None of these baselines have been trained on MPop600,

which is a relatively new dataset. Therefore, we trained all

these models from scratch with the MPop600 data.

5.2 Dataset & Scenarios

Our data is from MPop600 [31], a set of accompaniment-

free Mandarin singing recordings with manual annotation

of word-level audio-lyrics alignment. Each recording cov-

ers the first verse and first chorus of a song. We used the

data from a female singer (named f1) and a male singer

(m1); each has 150 recordings. For each singer, we re-

served 3 recordings (totalling 3.4±3.6 minutes in length)

as the test set for subjective evaluation, 24 or 21 recordings

(around 27±28 minutes) as the validation set for objective

evaluation, and used the rest (around 3 hours) as the train-

ing set. We trained vocoders for m1 and f1 independently.

To study the training efficiency of different approaches,

we considered the following two scenarios. We used the

same validation and test sets for both scenarios.

(a) Regular [3h data, well-trained]: we used the full train-

ing data to train the vocoders for each singer for up to

2.5 days (i.e., when the training loss of most vocoders

converged), and picked the epoch that reaches the low-

est validation loss for each vocoder independently. We

note that the amount of training time in this ªregularº

scenario is smaller than those seen in speech vocoders

[38], posing challenges for all the considered models.

(b) Resource-limited [3min data, 3h training]: in a rather

extreme case, we randomly picked 3 recordings from

the training set (that collectively cover every phoneme

at least once) per singer (3.2±3.4 minutes) for training,

using always the epoch at 3-hour training time.

For fair comparison, we train the vocoders of different ap-

proaches using a dedicated NVIDIA GeForce RTX 3090

GPU each, fixing the batch size to 16 excerpts.

6. OBJECTIVE EVALUATION

For objective evaluation, we reported the MSSTFT and the

mean absolute error (MAE) in f0, as well as the Fréchet

audio distance (FAD) [49] between the validation data and

the reconstructed ones by the vocoders. FAD measures the
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MSSTFT ↓ MAE-f0 (cent) ↓ FAD ↓
Model Para- RTF Female Male Female Male Female Male

meters (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

FastDiff [21] 15.3M 0.017 14.5 17.9 11.1 16.9 31 110 48 131 2.29 7.40 3.53 10.0

HiFi-GAN [15] 13.9M 0.004 7.13 16.7 7.82 18.9 34 247 34 433 0.59 3.50 0.51 10.5

PWG [14] 1.5M 0.007 7.39 13.0 7.83 14.8 35 129 29 126 0.36 6.15 2.56 6.29

NSF [12] 1.2M 0.006 7.51 10.9 10.2 13.4 37 50 30 82 0.49 3.73 2.08 4.83

DDSP-Add [44] 0.5M 0.003 7.61 9.29 8.37 12.1 28 70 24 80 0.56 0.92 1.06 2.09

DWTS [27] 0.5M 0.019 7.72 9.75 8.83 13.0 28 127 24 662 0.60 2.98 0.36 8.58

SawSing 0.5M 0.003 6.93 8.79 7.76 11.7 32 76 30 80 0.12 0.38 0.22 0.59

Table 1: Objective evaluation results of three existing neural vocoders (the first three), three existing DDSP-based vocoders

(middle) and the proposed SawSing vocoder, trained on either a female or a male singer, in either (a) regular scenario [3h

data, well-trained] or (b) resource-limited scenario [3min data, 3h training]. RTF stands for real-time factor (the inference

time in seconds for a one-second excerpt). In each column, we highlight the best result in bold, the second best underlined.

(i) female (ii) male

Figure 2: The MSSTFT loss on the validation set of dif-

ferent vocoders in the 3-hour data & well-trained scenario.

similarity of the real data distribution and generated data

distribution in an embedding space computed by a pre-

trained VGGish-based audio classifier, and may as such

better reflect the perceptual quality of the generated audio.

Figure 2 shows the validation MSSTFT loss as a func-

tion of the training time in the regular scenario for the

two singers. In Figure 2(i), SawSing converges faster than

the other models and reaches the lowest loss (i.e., 6.93),

followed by HiFi-GAN and PWG. While DDSP-add and

DWTS converge similarly fast as SawSing, they reach at

a slightly higher loss (around 7.50). In Figure 2(ii), Saw-

ing, HiFi-GAN and PWG perform comparably in the first

20 hrs. For both singers, PWG overfits when the training

time gets too long. Moreover, FastDiff converges the most

slowly, followed by NSF. Even with 60-hour training time,

the MSSTFT of FastDiff remains to be high (e.g., 14.5 for

the female singer), suggesting that our training data might

not be big enough for this diffusion-based model.4

Table 1 shows the scores in all the three metrics on

4In the original paper [21], FastDiff was trained on 24 hours of speech
data from a female speaker [38], using 4 NVIDIA V100 GPUs. We tried
DiffWave [20] but it converged similarly slow on our data.

the validation set for both scenarios, using the epoch (a)

at the lowest validation loss or (b) at 3h training. De-

spite having few trainable parameters, SawSing performs

the best in MSSTFT and FAD across both scenarios and

both singers, demonstrating its effectiveness as a singing

vocoder. For scenario (b), DDSP-Add obtains the second-

lowest MSSTFT and FAD across the two singers.

For MAE-f0, SawSing attains scores comparable to the

best baseline models. The average MAE-f0 of SawSing is

less than a semitone (100 cents). Future work can use a

specialized module (e.g., [50]) for the f0 prediction part in

fNN of SawSing to further improve the MAE-f0.

Table 1 also shows that the performance gap between

scenarios (a) and (b) in all the three metrics tend to be

greater for the diffusion- and GAN-based vocodoers than

for NSF and the DDSP-based vocoders. Besides, among

the evaluated models, the performance gap between (a) and

(b) is the smallest in the result of SawSing. In the resource-

limited scenario (b), the FAD of HiFi-GAN reaches only

3.50 and 10.5 for the female and male singers, respectively,

while the FAD of SawSing can be lower than 1.0. This

demonstrates that a strong inductive bias like those em-

ployed in NSF and the DDSP-based vocoders is helpful in

scenarios with limited training data and training time.

Table 1 also displays the real-time factor (RTF) of the

models when being tested on a single NVIDIA 3090 GPU.

We see that SawSing and DDSP-Add have the lowest RTF

(i.e., run the fastest), followed by HiFi-GAN.

According to Table 1, HiFi-GAN performs the best on

average among the first three vocoders across scenarios

and singers. NSF and the DDSP-based vocoders obtain

comparable scores, but DWTS is notably slower. Hence,

we pick HiFi-GAN, NSF, DDSP-Add and SawSing to be

further evaluated in the user study below.

7. SUBJECTIVE EVALUATION

We conducted an online study to evaluate the performance

of the 4 selected models. We had 2 sets of questionnaires,

one for the female and the other for the male singer. For

each singer, we prepared 8 clips from the 3 testing record-

ings (i.e., totally unseen at training/validation time), each

clip corresponding to the singing of a full sentence. We
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Figure 3: MOS with 95% confidence intervals for subjec-

tive evaluation of vocoders trained in the two scenarios.

let the vocoders trained in scenario (a) to reconstruct the

waveforms from the mel-spectrograms of 4 of the clips,

and those of (b) for the other 4 clips. A human subject

was requested to use a headset to listen to 5 versions of

each of the clip, namely the original ‘ground truth‘ record-

ing and the reconstructed ones by the 4 selected models,

with the ordering of the 5 versions randomized, the order-

ing of the 8 clips randomized, and not knowing the sce-

nario being considered per clip. The loudness of the audio

files were all normalized to ±12dB LUFS beforehand us-

ing pyloudnorm [51]. After listening, the subject gave

an opinion score from 1 (poor) to 5 (good) in a 5-point

Likert scale to rate the audio quality for each audio file.

Figure 3 shows the MOS from 23 anonymized partici-

pants for the female and 18 participants for the male singer.

In scenario (a), we see that the MOS of the vocoders, in-

cluding the SOTA HiFi-GAN, mostly reaches 2±3 only,

suggesting that training a vocoder on 3-hour data is already

challenging. As HiFi-GAN involves a complicated GAN

training and much more parameters, its MOS turns out to

be significantly lower than those of NSF and the DDSP-

based vocoders (p-value<0.05 in paired t-test). Interest-

ingly, while there is no statistical difference among the

MOS of NSF, DDSP-Add and SawSing for the male singer

in scenario (a), DDSP-Add unexpectedly outperforms both

NSF and SawSing by a large margin, with statistically sig-

nificant difference (p-value<0.05).

Listening to the result of SawSing reveals that its output

contains an audible electronic noise, or ªbuzzingº artifact,

notably when singers emphasize the airflow with breathy

sounds and for unvoiced consonants such as /s/ and /t/.

DDSP-Add is free of such an artifact. As shown in Fig-

ure 4, such artifact appears to due to redundant harmonics

generated by SawSing that ªconnectº the harmonics of two

adjacent phonemes at its harmonic signal xh for breathing

and unvoiced consonants. This may be due to the limited

capacity of the LTI-FIR filter of SawSing in distinguish-

ing between the nuances of voiced (V) and unvoiced (NV)

components during sound transients, modeling a transient

even as a harmonic signal. Unfortunately, it seems that

this artifact cannot be reflected in any training loss func-

tions (and objective metrics) we considered, so the network

fails to take it into account while updating the parameters.

Furthermore, human ears are sensitive to such an artifact,

contributing to the lower MOS of SawSing compared to

DDSP-Add, despite that SawSing might perform better in

Figure 4: The spectrograms of the harmonic signal xh and

noise signal xn generated by DDSP-Add and SawSing for

the same clip. The red rectangles highlight the moments

the buzzing artifact of SawSing emerges.

other phonemes and long utterances.

Figure 3 also shows that the DDSP-based vocoders do

outperform HiFi-GAN greatly in the resource-limited sce-

nario (b) with only 3 training recordings, nicely validating

the training efficiency of the DDSP-based vocoders. While

the MOS of either DDSP-Add or SawSing is above 2; that

of HiFi-GAN is only around 1, i.e., its generation is barely

audible. Moreover, SawSing outperforms DDSP-Add in

this scenario for both singers, with significant MOS differ-

ence for the male singer (p-value<0.05), though not for the

female singer. This shows that, despite the buzzing artifact,

the training efficiency of SawSing can give it an edge over

other vocoders in resource-limited applications.

Inspired by [5], we implement a postprocessing method

that uses Parselmouth [52] to get V/NV flags and sets the

harmonic synthesizer amplitudes to zero for the NV por-

tions. This removes much of the artifact (see the demo

page). We share the code on our GitHub repo. Future work

can incorporate the V/NV flags at the training phase.

8. CONCLUSION

In this paper, we have presented SawSing, a new DDSP-

based vocoder that synthesizes an audio via the summa-

tion of a harmonic component obtained from filtered saw-

tooth waves and a stochastic component modeled by fil-

tered noise. Moreover, we presented objective and sub-

jective evaluations complementing the lack of experiments

in the recent work of Alonso and Erkut [44], demonstrat-

ing for the first time that both SawSing and DDSP-Add

[23, 44] compare favorably with SOTA general-purpose

neural vocoders such as HiFi-GAN [15] and FastDiff [21]

for singing voices in a regular-resource scenario, and has a

great performance margin in a resource-limited scenario.

Future work can improve the harmonic filter of SawSing

to resolve the artifact, and use lighter-weight non-causal

convolutions [53] for fNN for real-time applications. We

can also implement SawSing as a VST audio plugin for

usages in creative workflows and music production [54].
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