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ABSTRACT

While generative adversarial networks (GANs) have been

widely used in research on audio generation, the training

of a GAN model is known to be unstable, time consum-

ing, and data inefficient. Among the attempts to amelio-

rate the training process of GANs, the idea of Projected

GAN emerges as an effective solution for GAN-based im-

age generation, establishing the state-of-the-art in different

image applications. The core idea is to use a pre-trained

classifier to constrain the feature space of the discrimi-

nator to stabilize and improve GAN training. This pa-

per investigates whether Projected GAN can similarly im-

prove audio generation, by evaluating the performance of

a StyleGAN2-based audio-domain loop generation model

with and without using a pre-trained feature space in the

discriminator. Moreover, we compare the performance of

using a general versus domain-specific classifier as the pre-

trained audio classifier. With experiments on unconditional

one-bar drum loop and synth loop generation, we show

that a general audio classifier works better, and that with

Projected GAN our loop generation models can converge

around 5 times faster without performance degradation.

1. INTRODUCTION

Generative adversarial networks (GANs) [1] are deep gen-

erative models that are composed of a generator and a

discriminator. The discriminator can be considered as a

classifier (or a ªcriticº) which judges whether its input is

a real sample, or a synthetic one created by the genera-

tor counterpart; the generator takes as input a random vec-

tor (sometimes plus additional conditional inputs [2]) and

aims to create a synthetic sample that ªfoolsº (i.e., appears

to be realistic to) the discriminator. During the GAN train-

ing process, the discriminator and generator are updated

in an iterative manner, fixing the parameters of one and

updating those of the other each time. After the training

converges, the generator can be used to generate original

© Y.-T. Yeh, B.-Y. Chen, and Y.-H. Yang. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: Y.-T. Yeh, B.-Y. Chen, and Y.-H. Yang, ªExploiting Pre-

trained Feature Networks for Generative Adversarial Networks in Audio-

domain Loop Generationº, in Proc. of the 23rd Int. Society for Music

Information Retrieval Conf., Bengaluru, India, 2022.

samples, leading to state-of-the-art (SOTA) results in im-

age generation [3±7] and many other domains.

GANs have been extensively applied to music genera-

tion as well, including symbolic-domain generation [8±17]

and audio-domain generation [18±28]. In particular, GAN-

based models represent the SOTA in audio-domain music

generation tasks such as single-note generation [18, 26],

drum track generation [21], and loop generation [27].

Despite its widespread applications, GANs are notori-

ously difficult to train [29±33]. This is partly due to the fact

that the generator and discriminator have opposite goals by

design, with the generator aiming to maximize the discrim-

inator loss and the discriminator aiming to minimize the

same loss in different iterations, making the training dy-

namics complicated. As the parameters of the discrimina-

tor are constantly being updated over the training process,

the generator has no single critic to improve its own per-

formance over time. And, while the parameters of the gen-

erator and discriminator are typically initialized randomly,

the GAN training process can be time-consuming. Using

a pre-trained feature network as part of the discriminator

has been shown to speed up the training process [34±36],

but some modifications of the pre-trained feature network

is needed to avoid the discriminator from being too strong

and causing the gradients of the generator to vanish.

Projected GAN [37] is a new approach that is shown

to effectively leverage the benefits of pre-trained feature

networks, leading to SOTA results in unconditional image

generation [7]. Projected GAN adds two random projec-

tion modules after the pre-trained feature networks, named

ªcross-channel mixingº (CCM) and ªcross-scale mixingº

(CSM), to prevent the discriminator from focusing only on

a subset of features and thereby avoid mode collapse. They

not only reduce the time of GAN training, but also improve

the quality of the generated images.

This paper studies whether Projected GAN can also im-

prove audio generation, by incorporating it to uncondi-

tional audio-domain loop generation [27] as a case study.

We note that there are well-studied pre-trained feature net-

works in the image domain [34±36]. There are also studies

on the choice of pre-trained network for retrieval and anal-

ysis of musical audio [38] and soundtracks [39]. However,

we are less sure which pre-trained feature networks to use

in the context of musical audio generation. Therefore, be-

sides pioneering the use of Projected GAN for audio gen-

eration, an interesting aspect of our research is that we in-
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Figure 1. Mel-spectrograms of examples of synth loops

generated by Projected GAN with a general classifier.

vestigate different types of pre-trained feature networks for

Projected GAN-based musical audio generation, including

general classifier and domain-specific classifiers.

Specifically, for the general classifier, we use the pre-

trained VGGish feature networks trained on YouTube-

100M [39], a huge collection of sounds and musical audio

from YouTube. For domain-specific classifiers, we use

short-chuck convolutional neural network (SCNN)-based

models [40], which have led to SOTA accuracy across mul-

tiple music auto-tagging datasets. We use two SCNNs,

one trained on the MagnaTagATune (MTAT) dataset [41]

for tagging music of a wide range of genres, and the other

trained on a collection of loops for genre classification of

loops, which are domain-wise even closer to our genera-

tion task. We elaborate on the datasets and classifiers in

Section 3, and then the usage of the classifiers as the pre-

trained feature networks for loop generation in Section 4.

We report objective and subjective evaluations in Sec-

tions 5 and 6 studying the influence of different pre-trained

feature networks for drum loop generation and synth loop

generation following the approach of Projected GAN, find-

ing that the use of a general classifier works consistently

better. Moreover, we find slightly better result can be

obtained if we ªfuseº general and domain-specific pre-

trained feature networks in our model. Objective and sub-

jective evaluations both demonstrate that Projected GAN

improves training speed and the final generation quality.

We share our code at https://github.com/

Arthurddd/pjloop-gan, and examples of the gen-

erated loops at https://arthurddd.github.io/

PjLoopGAN/. Illustrations of the Mel-spectrograms of

the generated synth loops and drum loops can be found re-

spectively in Figure 1 and later on in Figure 3.

2. BACKGROUND

Related Work. GANs have garnered great interest in re-

cent years, leading to models that generate high-fidelity au-

dio waveforms. WaveGAN [19] pioneers the use of GAN

for audio; it can synthesize one-second raw audio wave-

forms of speech and music with coherence. Follow-up re-

search applies GAN to other audio synthesis tasks. For

example, MelGAN [42] and Parallel WaveGAN [43] use

GAN to build neural vocoders that can reconstruct a wave-

form from the corresponding Mel-spectrogram. GAN-TTS

[44] applies GAN to convert text to natural human speech.

UNAGAN [23] uses GAN to synthesize singing voice.

GAN has also been used to synthesize audio samples of

musical materials, including percussive and harmony ones,

that can be used in music production. GANSynth [18]

can synthesize harmony music notes with diverse timbre

and controllable pitches. DrumGAN [24] can synthesize

one-shot percussion sounds, allowing for the use of condi-

tion perceptual features to intuitively control the timbre of

the percussion sounds. StyleWaveGAN [45] improves the

audio quality and inference time of DrumGAN. However,

the aforementioned models deal with only single notes or

one-shot samples instead of longer phrases such as musi-

cal loops, limiting their applicability to creating loop-based

music. In view of this need, Hung et al. [27] study the

task of one-bar drum loop generation and benchmark the

performance of UNAGAN [23], StyleGAN [4] and Style-

GAN2 [5] for this task over the FreeSound Loop dataset

[46], showing that the model based on StyleGAN2 [5] per-

forms the best. However, Hung et al. [27] do not consider

the training efficiency of their models. Moreover, while

they focus on drum loops only, we consider also the gener-

ation of synth loops to encompass not only percussive but

also harmonic musical materials in our work.

Specific to the GAN training technique, there are three

main approaches to improve the discriminator. First, mod-

ifying the architecture of the discriminator to improve the

discriminator’s ability [47±49]. Second, assembling mul-

tiple discriminators to capture more comprehensive fea-

tures, an approach that as been widely investigated in the

audio domain for building the vocoder [42, 50±52]. The

third approach introduces a pre-trained feature network

to the discriminator to avoid learning its parameters com-

pletely from scratch, which helps speed up the convergence

time and prevent model overfitting. Zhao et al. [34] use

the pre-trained network in the large-scale dataset, adapt it

to a small dataset, and propose adaptive filter modulation

to deal with domain shift. Grigoryev et al. [35] and Ku-

mari et al. [36] both find that pre-trained network selection

can largely influence performance and propose a recipe

to choose a suitable pre-trained network for a particular

image-domain task. Projected GAN [37] is a very recent

idea that combines the aforementioned approaches, using

multiple discriminators and employing pre-trained feature

networks simultaneously to improve the training stability

and efficiency of the GAN. However, to our best knowl-

edge, adapting Projected GAN to the audio-domain gener-

ation is still unexplored, for either speech or music.

Projected GAN. Projected GAN [37] introduces a set of

L = 4 feature projectors {Pl, l = 1, . . . , L}, each maps

either real samples x or fake samples G(z) to a fixed pre-

trained feature space. It aims to minimize the following

objective function to match the data distribution in the fea-

ture space, instead of matching data distributions directly:

min
G

max
{Dl}

∑L

l=1

exp
(

Ex[logDl(Pl(x))]

+Ez[log(1−Dl(Pl(G(z))))]
)

,

(1)

where {Dl, l = 1, . . . , L} denotes the set of independent

discriminators operating on different feature projections,
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and G denotes the generator that converts a random vec-

tor z into a fake sample. Each projector Pl consists of

three components: a pre-trained feature network Cl, the

CCM modules, and the CSM modules. First, we extract

features from L different layers of the feature network Cl,

leading to L set of feature maps in different scales. Sec-

ond, for each scale, the CCM mixes the features across

channels by random (i.e., not-learned) 1 × 1 convolutions

with an equal number of input and output channels, which

can be viewed as the generalization of random permuta-

tion. Third, CSM further mixes features across scales by

random 3 × 3 convolutions and bilinear upsampling lay-

ers, yielding a U-Net architecture that combines the fea-

ture maps of different scales. The features fused by CCM

and CSM in L different scales would then be fed to each

discriminator Dl. The random projections introduced by

CCM and CSM have the effect of encouraging each Dl to

take into account the entire feature space instead of over-

fitting to a sub-set of feature space, thereby avoiding mode

collapse. Without using gradient penalties and any sophis-

ticated training strategies, Projected GAN updates its loss

simply by summing the output of the L discriminators.

3. DATSETS & CLASSIFIERS

Our work is built upon the use of the following datasets.

Youtube-100M [39] is a private dataset of Google, con-

taining 100 million Youtube videos. Each video has on

average 5 manually assigned tags, out of 30,871 possible

labels. Hershey et al. [39] train a VGGish pre-trained net-

work for large-scale audio classification using the dataset.

While we are not able to have a copy of the dataset, we

can use the pre-trained weights Gemmeke et al. [53] share

publicly as our general audio classifier.

MagnaTagATune (MTAT) [41] is a dataset commonly-

used in research on music auto-tagging. It contains 25,863

music clips, each 29-seconds long. We use MTAT to train

one of our domain-specific pre-trained feature networks.

We follow the original data split [41] and use only the top

50 tags, including genre and instrumentation labels, as well

as decades (e.g., ‘80s’ and ‘90s’) and moods.

Looperman dataset is an in-house collection of loops

from https://www.looperman.com/, a website

hosting free music loops. We get the audio and uploader-

provided metadata of 23,983 drum loops and 22,625 synth

loops. According to the metadata, the drum loops and

synth loops can be categorized to 66 and 58 genres, respec-

tively. We use the Looperman dataset for not only building

a domain-specific pre-trained feature network but also for

building our audio-domain loop generation model.

Following the preprocessing steps of Hung et al. [27],

we first apply downbeat tracking via madmom [54] to split

every loop into single bars and then time-stretch each to

120 BPM (beats-per-minute) by pyrubberband [55] to

unify their length to be always 2 seconds per loop. After

this preprocessing, we have 128,122 and 42,570 one-bar

loops for drum and synth, respectively. We split the data

by 80/10/10 for training the loop genre classifier, and use

Figure 2. Diagram of the proposed discriminator architec-

ture. A Mel-spectrogram is divided into two chunks and

then fed to either a general or a domain-specific pre-trained

feature network, or both (for ªfusionº). Features computed

for both chunks are aggregated at each scale l before feed-

ing to the corresponding discriminator Dl.

the entire data for music loop generation.

3.1 Pre-trained Feature Networks for Music

General. As aforementioned, we use the VGGish network

trained on Youtube-100M [53] as the general pre-trained

feature network. Taking the Mel-spectrogram as input, the

model uses 2D convolutional blocks and 2D max-pooling

layers to compute 128-dimensional features at the output.

Domain specific. Short-Chuck CNN (SCNN) [40] has a

simple 2D CNN architecture with 3× 3 filters and residual

module but it has been shown to be remarkably effective

for music auto-tagging. We use in our implementation 6

layers of CNN blocks with a fully connected layer and the

residual module. Each CNN block comprises a 2× 2 max-

pooling layer. We use SCNN to train separate classifiers

for MTAT and Looperman from scratch, and then used the

trained classifiers as our domain-specific pre-trained fea-

ture networks. For MTAT, SCNN achieves 0.909 ROC-

AUC and 0.445 PR-AUC. For genre classification of the

looperman drum loops, the classification accuracy reaches

0.792. For synth loops, the accuracy attains 0.700.

Fusion. Fusing multiple pre-trained feature networks has

also been shown useful for Projected GAN-based image

generation [7]. Accordingly, we also experiment with a

simple fusion strategy that allows the discriminator to con-

sider both general and domain-specific features at the same

time, as depicted in Figure 2.

4. AUDIO GENERATION BY PROJECTED GAN

Following Hung et al. [27], we use StyleGAN2 [5] as the

backbone of our loop generation model. However, we im-

prove their model in a number of aspects, regarding to not
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only the discriminator (i.e., with Projected GAN) but also

the generator. We provide the details below.

Improving the generator. The generator G consists of a

mapping network Gm and a synthesis network Gs. We im-

plement Gm with only 6 fully-connected layers instead of

the 8 in the original StyleGAN2 architecture. Furthermore,

echoing the finding in the image domain [56], we find that

the length of the vectors z (i.e., the input of Gm) largely af-

fects the model performance. Setting the length of z to 512

as done in [27] leads to mode collapse in our preliminary

experiments, as shown in Figure 3(a). This may be related

to the so-called ªintrinsic dimensionº of the data [56]; an

overly large latent space of z introduces redundancy that

distracts the generator. As smaller z empirically works

better, we set its length to 32 in the experiments reported

below. We similarly set the length of the ªstyle codeº w

(i.e., the output of Gm) to a small value of 64.

Pipeline The training follows the procedure of the Pro-

jected GAN, but we use the following pipeline to match the

input shape expected by the pre-trained feature networks.

First, we compute the Mel-spectrogram with 512-point

window size and 160-point hop size for short-time Fourier

Transform (STFT) and 64 Mel channels. Second, we feed

a latent z to the mapping network Gm to generate style

codes that modulate the convolutions of the synthesis net-

work Gs, using four upsampling blocks to generate a Mel-

spectrogram that corresponds to a synthesized 2-second

loop. We note that our pre-trained feature networks are

on 1-second audio. To address the size mismatch, we split

the Mel-spectrogram into two chunks, with the first half

corresponding to the first second and the other the rest. As

illustrated in Figure 2, we feed the two chunks separately

to the discriminators, going through the pre-trained fea-

ture network, CCM and CSM. Moreover, we concatenate

the features with the same scales but in different chunks

to aggregate the features from individual chunks, yield-

ing L = 4 aggregated features {Fl, l = 1...L}. We feed

each of these features independently to the corresponding

discriminators Dl. Additionally, if we consider two pre-

trained feature networks simultaneously, referred to as ªfu-

sionº in Section 3.1, we have in total 2L aggregated fea-

tures and 2L discriminators. Eventually, we sum the loss

from these discriminators to update the network.

Similar to Hung et al. [27], at inference time, the Mel-

spectrogram generated by the generator would go through

a MelGAN vocoder [42] to become waveforms.

5. OBJECTIVE EVALUATION

We use the following objective metrics to evaluate the

quality and diversity of the generated loops.

Inception Score (IS) [58, 59] measures the quality of

the generated loops and detects whether there is a mode

collapse by using a pre-trained domain-specific classifier,

namely the loop genre classifier for each type of loops (i.e.,

drum or synth). It penalizes models whose samples cannot

be reliably classified into a single class or that only belong

to a few from all possible classes.

Figure 3. Mel-spectrograms of examples of drum loops

generated (a) by a failed case using an overly large latent

space for z, leading to mode collapse (see Section 4); (b)

Projected GAN with the MTAT domain-specific classifier;

(c) Projected GAN with the VGG general classifier.

Fréchet Audio Distance (FAD) [60] reflects both quality

and diversity as it measures the distance between continu-

ous multivariate Gaussians fitted to the embeddings of the

real and generated loops.

Density & Coverage (D&C) [57] are new metrics that

measure respectively the quality and diversity of the gen-

erated data. D&C are considered to be more robust against

the influence of outliers compared to older metrics such as

precision and recall (P&R) [61]. ‘D’ is the average number

of real-sample neighborhood spheres that contain each of

the fake samples. It may be greater than 1 depending on

the density of reals around the fakes. ‘C’ is the fraction

of real samples whose neighborhoods contain at least one

fake sample. In our implementation, we use the hyperpa-

rameters suggested by [57]. Moreover, following [57], we

calculate D&C with a randomly-initialized VGG16 model

that projects samples to VGG16 fc2 space whose dimen-

sion is deliberately set to a small value 64.

We evaluate the following models here:

• StyleGAN2: the SOTA for drum loop generation [27].

• StyleGAN2 (early-stop): the StyleGAN2 that stops

training at the same point when Projected GAN con-

verges, providing a reference demonstrating the possible

advantage of the training efficiency of Projected GAN.

• Projected StyleGAN2 with different pre-trained feature

networks, including 1) the general VGG classifier alone,

2) the domain-specific SCNN classifier trained on MTAT

alone (denoted as SCNNMTAT), 3) the SCNN classifier

trained on Looperman alone, using the drum or synth

classifier depending on whether it is for generating drum

or synth loops (denoted as SCNNLoop), 4) ªfusionº of
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Models
Drum loops Synth loops

IS ↑ FAD ↓ D ↑ C ↑ IS ↑ FAD ↓ D ↑ C ↑

A Real data 16.30 0.01 1.00 1.00 14.95 0.01 1.00 1.00

B StyleGAN2 [27] 5.58 2.50 1.01 0.89 4.80 3.60 1.19 0.91

C StyleGAN2 (early-stop) 5.21 3.40 0.56 0.43 4.55 7.97 1.01 0.75

D Projected StyleGAN2 (VGG) 5.87 3.03 1.06 0.70 4.70 2.34 1.31 0.82

E Projected StyleGAN2 (SCNNMTAT) 4.75 8.18 0.00 0.00 3.97 7.14 0.001 0.002

F Projected StyleGAN2 (SCNNLoop) 4.45 7.21 0.00 0.00 3.08 8.32 0.001 0.002

G Projected StyleGAN2 (VGG+SCNNMTAT) 6.22 2.45 1.11 0.74 4.73 3.13 1.67 0.85

H Projected StyleGAN2 (VGG+SCNNLoop) 6.31 2.34 1.08 0.73 4.82 2.56 1.70 0.85

Table 1. Objective evaluation result for the different settings of the Projected GANs trained on the Looperman dataset for

loop generation. ‘D’ and ‘C’ stand for Density & Coverage [57] (↓ / ↑: the lower/higher the better; the best in bold).

VGG, SCNNMTAT, and 5) ªfusionº of VGG, SCNNLoop.

Table 1 presents the objective evaluation results of mod-

els trained on drum loops and synth loops. Each model

generates 10,000 random loops to compute the scores. We

also compute the scores using the real data for setting a

high anchor of the objective scores.

We see that the best-performing configurations of Pro-

jected StyleGAN2 can achieve higher IS and lower FAD

than StyleGAN2 (i.e., row B). For drum loops, the IS can

be improved from 5.58 to 6.31 (row H) ; for synth loop the

FAD can be reduced from 3.60 to 2.34 (row D).

Interestingly and somehow surprisingly, when only a

single pre-trained feature network is used (i.e., rows D±

F), we find that only Projected StyleGAN2 (VGG) per-

forms nicely. The domain-specific pre-trained feature net-

works actually degrade the performance of loop gener-

ation; either Projected StyleGAN2 (SCNNMTAT) or Pro-

jected StyleGAN2 (SCNNLoop) obtains lower IS and higher

FAD, and even close-to-zero D&C. This suggests that a

general pre-trained feature network works much better

than a domain-specific pre-trained feature network in the

context of Projected GAN-based unconditional loop gen-

eration. This is likely because the discriminator employing

a domain-specific pre-trained feature network is too strong

compared to the generator, leading to gradient vanishing.

Figure 3(b) shows samples generated by Projected Style-

GAN2 (SCNNMTAT); we see that the model weirdly gener-

ates sparse samples most of the time.

Table 1 also shows that the ªfusionº of general and

domain-specific pre-trained feature networks (rows G & H)

performs slightly better in some metrics than using a gen-

eral pre-trained feature network alone (row D). In particu-

lar, we see that Projected StyleGAN2 (VGG+SCNNLoop)

achieves the highest IS score in both drum and synth loop

generation. It also reaches the lowest FAD for drum loops

and the second lowest FAD for synth loops. We show ex-

amples of its generated synth and drum loops in Figures 1

and 3(c), respectively.

Projected StyleGAN2 appears to have lower D&C com-

pared to StyleGAN2, suggesting that Projected Style-

GAN2 sacrifices a little diversity for higher quality of the

generated samples. This is presumably because the fea-

ture space has been constrained by the pre-trained feature

networks throughout the whole training process, making it

Figure 4. The FAD and IS as a function of training hours.

hard to capture the whole distributions. Future work can

be done to remedy this and further improve the diversity of

Projected StyleGAN2.

Figure 4 shows how the FAD and IS of four selected

models (rows B, D, F, H in Table 1) varies as a function

of training time, when all the models are trained separately

and independently on a single V100 GPU. For both drum

and synth loop generation, Projected GAN leads to lower

FAD much faster than the StyleGAN2 baseline. For synth

loops, Projected GAN with only 2-hour training reaches

lower FAD than the StyleGAN2 baseline with 12-hour

training. In general, Projected GAN converges at approxi-

mately 2 hours for both drum and synth loops, while Style-

GAN2 converges x5 times longer at about 10 hours. Echo-

ing the result in Table 1, using the epoch of StyleGAN2

corresponding to 2-hour training time (i.e., row C) obtains

worse scores than the models corresponding to rows B and

D in almost all the metrics for both drum and synth loops.

Overall, these results nicely demonstrate how Projected

GAN speeds up and improves GAN training.

6. SUBJECTIVE EVALUATION

To further assess the loops generated by the models, we

conduct a subjective listening test through an anonymous

online questionnaire. Each subject is presented with a

randomly picked human-made loop from the Looperman

dataset (i.e., ‘Real’) and a randomly-generated loop by

each of the following four models: StyleGAN2, Style-

GAN2 (early-stop), Projected StyleGAN2 (SCNNLoop)
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Figure 5. Subjective evaluation results. The performance difference between any pair of models in any metric is statistically

significant (p-value< 0.001) under the Wilcoxon signed-rank test, except for the pairs that are explicitly highlighted.

and Projected StyleGAN2 (VGG+SCNNLoop). The sub-

ject is then asked to rate each of these loops in terms of the

following metrics, all on a five-point Likert scale.

• Drummability or Harmony: Drummability (for drum

loops) means whether the sample contains percussion

sounds, and Harmony (for synth loops) means whether

the sample contains harmonic sounds.

• Loopability: whether the sample can be played repeat-

edly in a seamless manner.

• Audio quality: whether the sample is free of unpleasant

noises or artifacts.

• Preference: how much you like it.

To evaluate loopability, we repeat each sample four times

in the audio recording. Because the output of the mod-

els all goes through the MelGAN vocoder [42] to become

waveforms, we do the same for ‘Real’ to be fair.

Figure 5 shows the averaged results from 35 partici-

pants. The responses indicate an acceptable level of relia-

bility, Cronbach’s α = 0.721. The subjective evaluation

result aligns nicely with the objective evaluation result.

Projected StyleGAN2 (VGG+SCNNLoop) performs the

best and Projected StyleGAN2 (SCNNLoop) performs the

worst. Overall, Projected StyleGAN2 (VGG+SCNNLoop)

achieves results comparable to StyleGAN2 and even ‘Real’

for both types of loops. Somehow surprisingly, Pro-

jected StyleGAN2 (VGG+SCNNLoop) can even outper-

form ‘Real’ in audio quality and preference for both drum

and synth loops. We conjecture that this is because the

‘Real’ here actually stands for the ªMelGAN-vocodedº

version of the real data, whose quality may have suffered

from the artefacts introduced by the vocoder.

Almost all models lead to higher subjective scores for

drum loops than for synth loops, suggesting that synth

loop generation is more challenging. We note that, for

synth loops, Projected StyleGAN2 (VGG+SCNNLoop) ac-

tually obtains higher harmony scores than StyleGAN2 and

‘Real’, but its loopability scores is lower. To further im-

prove its performance for synth loop generation, future

work may be done to explicitly consider loopability in

model training.

7. LIMITATIONS

We only focus on one-bar loop generation with a specific

BPM of 120 in our study, which is ªconvenientº as it gives

us fixed-size Mel-spectrograms to be treated as images

by StyleGAN2. However, to be applicable to loop-based

music production, future work needs to consider variable

BPMs and loops with more bars. As the size of the Mel-

spectrogram would not be fixed when we consider variable

BPMs, future work may need to adopt generative models

other than StyleGAN2 as the backbone. Possible candi-

dates are UNAGAN [23] and VQGAN [62], both of which

may also benefit from the ideas of Projected GAN.

To apply Projected GAN, we need to take care of the

shape matching between the pre-trained networks and the

generative model. For example, in our work the pre-trained

networks (e.g., the VGGish one) is trained on 1-second au-

dio chunks, but our generator is to generate 2-second loops.

The size mismatch can be easily addressed by simply split-

ting the Mel-spectrogram into two chunks in our work, but

this is trickier if we consider BPMs other than 120.

8. CONCLUSION

In this paper, we have demonstrated that Projected GAN

can be used to improve the training efficiency and overall

performance of GAN-based models for audio generation,

specifically the generation of drum loops and synth loops.

Moreover, we demonstrated that using a domain-specific

pre-trained feature network alone does not work well; we

need to use either a general pre-trained feature network, or

the fusion of multiple pre-trained feature networks.

This work can be extended in many ways. First, we

can expand our work to generate variable-length loops, or

to other GAN-based audio-related tasks. Next, we can

explore unsupervised or self-supervised approaches (e.g.,

[63, 64]) to get the pre-trained feature network. Third, we

are also interested in using class conditions or attributes

for more controllable loop generation. Doing so may help

improve the diversity of the generated loops as well, ac-

cording to related work on image generation [7]. Finally,

using diffusion probabilistic models [65, 66] as the gener-

ative model for loop generation also worth trying.
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