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ABSTRACT

Creating a pop song melody according to pre-written lyrics

is a typical practice for composers. A computational model

of how lyrics are set as melodies is important for automatic

composition systems, but an end-to-end lyric-to-melody

model would require enormous amounts of paired train-

ing data. To mitigate the data constraints, we adopt a

two-stage approach, dividing the task into lyric-to-rhythm

and rhythm-to-melody modules. However, the lyric-to-

rhythm task is still challenging due to its multimodality. In

this paper, we propose a novel lyric-to-rhythm framework

that includes part-of-speech tags to achieve better text-

setting, and a Transformer architecture designed to model

long-term syllable-to-note associations. For the rhythm-to-

melody task, we adapt a proven chord-conditioned melody

Transformer, which has achieved state-of-the-art results.

Experiments for Chinese lyric-to-melody generation show

that the proposed framework is able to model key charac-

teristics of rhythm and pitch distributions in the dataset,

and in a subjective evaluation, the melodies generated by

our system were rated as similar to or better than those of

a state-of-the-art alternative.

1. INTRODUCTION

Setting lyrics to a melody is a common but complex task

for a composer. The form, articulation, meter, and symme-

try of expression in lyrics can inspire, or set constraints on,

the melodic arrangement. Given the importance of melody,

it is unsurprising that the decades-long history of Music

Metacreation systems includes countless melody-creation

systems (see [1] for a review). However, less attention

has been paid to the lyric-to-melody generation task (i.e.,

generating a melody for given input lyrics). The task is

challenging for many reasons, including but not limited to:

the need to handle the prosody of the text correctly (e.g.,

one should avoid setting an unstressed word like ‘the’ on a

stressed note in the melody); the need to reflect the struc-

ture of the lyrics in the melody; and the need to create a

good melody to begin with.
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Figure 1: Diagram of the proposed system.

With the rapid growth of deep learning tools, this task

has gained more attention, and there are many recent ex-

amples of lyric-to-melody creation systems, most using an

end-to-end approach [2±5]. Modeling the relationship be-

tween lyric syllables and musical notes is a complex, cross-

modal task, but it is hoped that we can succeed with a large

amount of paired examples (i.e., lyrics aligned to their cor-

responding melodies). However, acquiring such data is ex-

pensive, and using unsupervised learning has shown lim-

ited performance gains [3]. All the systems mentioned

here are trained on fewer than 200,000 examples of song

lyrics; by contrast, the text-to-image system DALL-E has

12 billion parameters and involved hundreds of millions of

paired text-image training data [6].

One alternative, suggested in [7], is to pick an interme-

diate representation and adopt a two-stage approach: one

model to convert lyrics to the chosen representation, and

a second to convert that to a melody. The motivation is

that there is sufficient data to train each model separately,

without the paired lyrics-melody data required by the end-

to-end approach.

We choose ‘rhythm’ as the intermediate step because,

if we disregard melismas and expressive singing tech-

niques, we can assume there is a one-to-one correspon-

dence between syllables and onsets, and between onsets

and melody pitches. Also, there is plenty of data to model

each step: first, from karaoke-style scrolling lyrics data,

we can obtain an alignment between syllables in lyrics and

note onsets in music, and thus note durations and metrical

positions, too. Second, there are multiple public datasets

from which to learn to assign pitches for each note given

their duration. Our goal is then to solve two sub-tasks,

namely lyric-to-rhythm and rhythm-to-melody, with an as-
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sumption that the rhythm generation process is indepen-

dent of the pitch generation one [7].

There are many recent melody generation models [8±

11], but lyric-to-rhythm modeling is rarely attempted. In

this paper, we introduce a novel framework for convert-

ing lyrics to rhythms using an encoder-decoder Trans-

former architecture [12]. The proposed system is outlined

in Fig. 1: given an input set of lyrics, a lyric-to-rhythm

module assigns onset times and durations for each sylla-

ble. This rhythm, along with a user-provided chord pro-

gression, is fed into a Chord-conditioned Melody Trans-

former (CMT) [13], a state-of-the-art melody generation

system, to predict the pitch for each note. The details of

the lyric-to-rhythm module and the CMT are provided in

Sections 3.3 and 3.2, respectively.

2. BACKGROUND

Lyrics and melody are not arbitrarily combined; common

sense suggests and prior analysis [14] indicates that pat-

terns in lyrics and melodies are related and can be mod-

eled, in part, with features of the melody (e.g., note dura-

tion) and lyrics (e.g., syllable stress). One of the earliest

lyric-to-melody systems was designed to handle Japanese

prosody [15]: first, the input text was segmented into

phrases; next, a set of pre-composed rhythms was searched

for one that fit the syllable count and matched the accent

pattern of the text; finally, pitches were assigned using

dynamic programming to optimise the interval directions

with the natural prosody of the words. An earlier lyric-to-

rhythm system also leveraged a dataset of pre-composed

rhythms that were scored based on their match to the input

syllable-stress and word-rarity patterns [16]. Although our

system has little in common with these works, we do share

the use of rhythm as an intermediate representation.

Algorithms for automatic music generation are a sub-

set of Music Metacreation systems [1], which have been

present in Western music in many forms, including being

used for the creation of standalone pieces and, either of-

fline or in real-time, as part of the human composition pro-

cess. With the help of machine learning and deep learning

architectures, many such systems have shown to be capa-

ble of generating a plausible outcomes that match the mu-

sical characteristics of given datasets. Supervised gener-

ative models aim to learn a representation of the underly-

ing characteristics of a training set distribution. Depending

on the model, this representation can be either explicitly

depicted or implicitly used to generate samples from the

learned distribution [17].

Some systems aim to generate a part of a musical piece

with the aid of another given part (including melody-

to-lyrics creation [18], the inverse of the task we con-

sider). Conditioning the choice of parameters in a gen-

erative model on data from other modalities, such as a bass

line or a structure, can yield controllable generation sys-

tems [19][p.82-83]. For the case of using chords to condi-

tion melody generation, a recent system adjusting a general

adversarial network architecture has been presented in [20]

with the option of generating melody lines over a given

Figure 2: A two-stage structure of CMT, where ⊕ repre-

sents concatenation. Stage 1: chord-to-rhythm. Stage 2:

rhythm+chord-to-pitch based on the result of Stage 1.

accompaniment. The Chord-conditioned Melody Trans-

former (CMT) [13] is the most recent effort in this area;

we adapt much of the design of this system, extending it

to accept both lyrics and chords as input. Details of this

system, and how we adapt it, follow in Section 3.

3. METHODOLOGY

3.1 System Overview

Our system design is motivated by the Chord-conditioned

Melody Transformer (CMT) [13]. The authors of CMT

proposed a two-stage system, assuming a hierarchy that the

process of generating melodies is two-phase, as depicted

in Fig. 2: Stage 1, generating the rhythm of notes from

chord progressions; Stage 2, generating the pitch for each

note depending on the chord progressions and generated

rhythm. Our proposed system augments CMT by replac-

ing chord-to-rhythm (i.e., Stage 1) with a novel lyric-to-

rhythm module. As a result, users can input the lyrics and

chord progression of a full song in our system (see Fig.

1). Then, the lyric-to-rhythm module generates the MIDI

(with empty pitches). Second, CMT processes the MIDI

and chord progression to generate the melody. As a result,

the rhythm is generated with a global view of the lyrics,

while the melody is generated with a causal view of the

rhythm and chords.

In the following subsections, we will first review CMT

and explain the difficulties of modifying it to handle the

lyric-to-melody task in Section 3.2. Then, we will detail

our solution in Section 3.3.

3.2 Chord-Conditioned Melody Transformer (CMT)

CMT adopts a pianoroll-like representation [13, 21] that

includes chord, rhythm, and pitch (CRP) information. It

splits the timeline into semiquaver-length frames (1/4 of

a beat), each described by three vectors: a 12-dimensional

binary chord vector (pitch classes in the chord get a 1); a 3-

dimensional one-hot rhythm vector (onset, hold state, rest

state); and a 22-dimensional one-hot melodic pitch vector

(for this part we restrict MIDI pitches to between 48 and

67, plus a hold state and a rest state, giving a total dimen-

sion of 22). Please refer to [13][Fig. 1] for an illustration.

CMT contains three main modules: Chord Encoder

(CE), a bidirectional LSTM [22]; Rhythm Decoder (RD),

a stack of self-attention blocks; and Pitch Decoder (PD),

another stack of self-attention blocks. In Stage 1, given

an input chord progression, the chord embedding encoded
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Figure 3: The proposed lyric-to-rhythm framework.

by CE is autoregressively sent into RD to output the

rhythm embedding, followed by a fully-connected layer

(ªFC Layerº in Fig. 2) to predict the sequence of rhythm

vectors for the entire song. In Stage 2, the concatenation

of the chord and rhythm embeddings is autoregressively

fed into PD, followed by a fully-connected layer to predict

the sequence of pitch vectors. Finally, rhythm and pitch

vectors are combined and converted to the melody.

However, to leverage CMT for the lyric-to-melody task,

we face three problems. (1) Multimodality: CMT was de-

signed to take the input of a chord progression to generate

the melody. However, it is non-trivial to directly add a lyric

encoder for lyrics input, as lyrics are more complicated se-

quential data than chords. (2) Representation: CMT uses a

pianoroll-like (i.e. CRP) representation to encode melody,

where the time axis is evenly scaled (e.g., 1/16 beat), so

a note may require multiple tokens to carry the duration.

This makes it difficult to create a one-to-one mapping that

ties a syllable (or character) to a single note token. (3) Con-

straint on length: in CMT, the CE generates the melody on

a segment-to-segment basis (e.g., 8 bars at a time) with-

out exploiting the global context of a full-song chord pro-

gression. However, we believe the structural information

carried in the input lyrics is crucial to determine the repet-

itive pattern for the output melody. The next subsection

details how we address these problems: (1) is addressed

with a POS tagger that compactly encodes useful lyrics

information; and (2) and (3) are addressed by adapting a

Compound Word representation.

3.3 Lyric-to-Rhythm Framework

Fig. 3 shows our lyric-to-rhythm framework, which is anal-

ogous to a language translation task: i.e., an input sequence

of lyrics is translated into an output sequence of notes. In

this work, we assume that each syllable (or character) is

mapped onto one note as a simplification; handling melis-

mas remains a future challenge. To this end, we adapt

an encoder-decoder Transformer architecture [12]. To en-

hance the repetitive coherence modeling in note sequences,

we incorporate relative self-attention [23, 24].

To extract the features of lyrics, we employ part-of-

speech (POS) tagging with a Transformer encoder. Fol-

lowing prior works [25, 26], we characterize the rhythmic

features of a note with a tuple of (bar_shift, position,

duration, onset_shift), and model the sequence of tu-

Token Name Vocab. Description

bar_shift 0, 1, 2 Time shift in bar to current bar
onset 0 ± 15 Onset in 1/4 beat in current bar
duration 0 ± 31 Duration in 1/4 beat

onset_shift 0 ± 15
Time shift in 1/4 beat to previous
note’s onset

Table 1: Rhythmic features for a note.

ples using the Compound Word (CP) Transformer decoder

[27]. The lyric-to-rhythm module generates the t-th note

based on the full context of lyrics and the previously gen-

erated notes (from the first to (t-1)-th) in an auto-regressive

manner, with the future notes being masked. We describe

the POS tag representation and CP Transformer in the next

subsections.

3.3.1 Part-of-Speech (POS) Tagging

In natural language processing, POS tagging refers to the

process of labeling every word in a text with its part of

speech. The taxonomy of POS tags varies by language, but

commonly includes ‘noun,’ ‘verb,’ ‘adjective,’ ‘adverb,’

and others. POS tags can augment the text information by

indicating the structure of sentences [28], and thus plays

an important role in tokenizing the input words in conven-

tional text-to-speech (TTS) systems [29, 30].

POS are word-level descriptors, but we want syllable-

level descriptors in order to align the lyrics with the

rhythm. (When dealing with Chinese lyrics, we can also

say ‘character-level’ since each Chinese character is one

syllable.) Thus, we combine each POS tag with the

syllable index to create a POS ’token’: e.g., the input

English sentence ªWhy not tell someone,º would result

in: [‘adverb-0’, ‘adverb-0’, ‘verb-0’, ‘noun-0’, ‘noun-1’],

where the two syllables in ªsomeoneº are represented by

[‘noun-0’, ‘noun-1’].

3.3.2 Compound Word Transformer

In contrast to the CP proposed in [27], we do not distin-

guish between note- and metre-related events. Instead, we

include four tokens in every compound word (see Table

1), so that we can have one set of tokens per syllable.

From karaoke scrolling lyrics data, we can obtain the onset

and duration of each syllable, and by tracking the down-

beats, we can obtain the metric position in the bar. Fol-

lowing [27], each of the four tokens is converted into an

embedding, and then the embeddings are concatenated be-

fore being sent to the Transformer decoder. Each of the

four output embeddings is linearly projected to predict the

value for the associated token of the t-th note.

Once all the notes are ready, we convert them to MIDI

(with unspecified pitch) with the following steps:

1. Place an empty note at bar 0 and position 0.

2. Determine the onset by shifting (bar_shift×16+
onset_shift) units from the previous onset.

3. Set the duration by min(duration, next note’s

onset_shift).

4. Repeat 2 and 3 until all the notes are processed.
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We note that onset is not used for generating MIDIs. In-

stead, we use the position shifted to determine the onset

so that notes are placed in an incremental order. Neverthe-

less, we suspect that onset can help regularization in train-

ing. Using the CP representation addresses the ªconstraint

on lengthº issue mentioned in Section 3.2, as it permits a

more compact sequence of tokens that can model a longer

duration, such as a full song.

4. SYSTEM CONFIGURATION

This section describes how we trained the lyric-to-rhythm

and rhythm-to-melody models. For each model we explain

what data were used and how they were collected. We

focus on Chinese pop songs to validate our system, but

the framework could be adaptable to other languages since

parts of speech and syllables are broadly useful concepts.

4.1 Lyric-to-Rhythm Model

We collected data for 45K Chinese pop songs using a sim-

ilar pipeline as [31] and [7][Appendix A]. That is, we

crawled online to obtain paired lyrics and audio, with

timestamps indicating the onset of each line of the lyrics.

Then, for each song, we performed the following steps: (1)

isolate the vocal audio using source separation; (2) convert

lyrics to phoneme sequences; (3) estimate the phoneme on-

set timestamps using forced phoneme alignment; and (4)

estimate the time signature and beat and downbeat times.

From the phoneme and beat data, we can derive the sylla-

ble onsets and thus the bar-shift, onset, duration and onset-

shift attributes required by the model. The steps were

performed using in-house tools comparable to those used

in [7]: Spleeter [32], Phonemizer [33], Montreal Forced

Aligner [34], and Madmom [35], respectively.

We kept songs with a detected time signature of 4/4

(around 90%), and quantized the timestamp of each sylla-

ble in quarter beats. Errors in automatic lyrics alignment,

in beat tracking, and in the detected time signature can all

degrade the model quality, so we selected 330 songs to

manually adjust the timestamps. This subset was used to

fine-tune the model.

For POS tagging, we adopted Jieba 1 , an open-source

tool that supports 56 tags commonly used in Chinese.

Without POS tags, the vocabulary size for our dataset was

5,368 unique characters. Reducing to POS and then adding

the syllable index resulted in a vocabulary of 123 unique

POS tokens. In Sec. 5.2, we will compare a model using

this 123-dimensional POS vector to an ablated version of

the system that encodes the raw characters index in a 5368-

dimensional vector.

In Chinese pop songs, symmetric expression of text

structure is commonly reflected in melody repetition.

Fig. 4 shows one example: the chorus melody of ªGood-

bye Kissº 2 by Jacky Cheung. The two phrases outlined in

solid boxes are identical in melody, and nearly identical in

text; but even where the lyrics are different (in the dotted

1 https://github.com/fxsjy/jieba
2 https://www.youtube.com/watch?v=bJRkEmrkIO4

Figure 4: The melody-lyrics-POS example in the chorus

section of ªGoodbye Kissº. POS abbreviation key: {‘r’:

pronoun, ‘c’: conjunction, ‘v’: verb, ‘p’: preposition, ‘a’:

adjective, ‘n’: noun, ‘uj’: auxiliary}.

boxes), they have the same POS tags. With the POS tag-

ging representation, we believe the lyric-to-rhythm model

can learn to generate similar rhythms for two text phrases

if they have a common structure.

We use the following parameters for the encoder-

decoder Transformer: the input length is 1000; the num-

bers of heads, encoder-layers, and decoder-layers are 8, 6,

and 6, respectively; the embedding sizes of lyrics, bar_-

shift, onset, duration, and onset_shift are 512, 32, 128,

128, and 128, respectively; dropout is 0.1; batch size is

16; and learning rate is 1e-5 with Adam optimizer. Using

a single Tesla-V100-SXM2-32GB GPU to train a satisfac-

tory model takes ∼10 hours on the automatically aligned

dataset plus 1.5 hours on the manually annotated subset. In

both cases we use 10 percent of the dataset for validation.

4.2 Rhythm-to-Melody Model

To train the rhythm-to-melody model, we used POP909

[36] and Lead-Sheet-Dataset [37]. POP909 contains data

on 909 Chinese pop songs including chords, melody in

MIDI format, and other information not used here. Lead-

Sheet-Dataset (LSD), a collection of symbolic content

sourced from HookTheory, 3 contains lead-sheets (i.e.,

melodies and chords) of 16K song segments in MIDI for-

mat. We used the songs in 4/4 time (dropping roughly 10%

of the data) and transposed all pieces to the key of C major

or A minor. This resulted in about 30K bars of music from

POP909 and about 40K from LSD.

We followed [13] to train the model, setting the input

length to be 8 bars but reducing the pitch range from 48

to 20; any pitches outside the range were octave-shifted to

lie within the range. After obtaining the rhythm MIDI of

a full song from the lyric-to-rhythm module, pitches were

generated for 8 bars autoregressively, with a 4-bar sliding

window, i.e., the model composes the next 4 bars given the

previous 4 bars already composed.

5. EVALUATION

We would like to answer two questions: first, does our

system succeed in emulating basic musical qualities of the

training data? And second, does it produce pleasing, viable

3 https://www.hooktheory.com/
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settings of lyrics? To answer the first, we compare the out-

put melodies of our model (denoted ‘pop-melody’) to the

held-out training data and discuss their similarity. For the

second, we conducted a listening test in which participants

rated the quality of the lyric settings of our model as well

as those of a state-of-the-art alternative, TeleMelody [7].

5.1 Objective Results

We analyze the melodies created by our system in two ob-

jective evaluation strands. The first one is to demonstrate

how similar the rhythms generated by our model are to the

original data (see Fig. 5); the second is to look for and char-

acterize the differences between the melodies produced by

the two models (see Fig. 6). We compare statistics over

several musical quantities computed on the dataset and

compositions generated by both systems. For this com-

parison, we have generated 400 scores from each system

and used the same amount of scores from the dataset.

Most of the musical quantities we compute are adapted

from [38] and [39]. These symbolic descriptors have been

shown to enhance melodic expectation when embodied in

a cognitively plausible system for music prediction. Ex-

pectation and memorability have been shown to be impor-

tant characteristics for identifying a plausible melody, and

surprise and repetition are measurable elements that relate

to these charactertistics. (For more background on such

descriptors and on the concepts of predictability and un-

certainty in the pleasure of music, see [40, 41].)

We showcase two sets of descriptors, one for each eval-

uation strand. The first contains: the duration of the

melody notes; their inter-onset intervals (IOIs; the distance

between the start of a note to the start of the preceding one);

and their metrical position in bar. Fig. 5 shows the distri-

butions of these descriptors for the dataset and for the out-

puts of our system (tagged as ªpop-melodyº) before and

after fine-tuning (see Section 4.1). Note that we exclude

TeleMelody from this comparison since it was trained on

a different dataset (of around 110K samples), so it is not

meaningful to compare it to our training data.

Judging from the distributions, the outputs of both mod-

els are broadly similar to the melodies in the dataset. How-

ever, there is clearly a surfeit of short notes (0.25 crochets,

or sixteenth notes) in the generated melodies, which skews

the distribution of IOIs as a result. Also, regarding note

position in the bar, there is a subtle variation of the likely

onset positions in the dataset that is not reflected in the

generated data, which, prior to fine-tuning, has an almost

uniform distribution.

The other set of descriptors contains: the pitch con-

tour, which gives the likelihood that the next note in the

melody will be lower (descending), higher (ascending) or

the same; note sparsity, which gives the fraction of the

timeline which has no note in the melody (a value of 0

indicates no rests in the melody); and the pitch-in-chord-

triads ratio, a kind of ‘consonance’ metric, calculated as

the fraction of notes in the melody that belong to the ac-

companying chord triad.

These descriptors are illustrated in Fig. 6, comparing

Figure 5: Distributions of descriptors values derived from

melodies from the dataset and melodies generated by the

proposed pop-melody system.

the melodies from our fine-tuned system (ªpop-melodyº)

with TeleMelody. Here, the purpose is not to compare the

systems to the dataÐthey were trained on different data,

and may each reflect their training set wellÐbut to assess

how the melodies of the systems differ. From the con-

tour descriptors, it is clear that TeleMelody is more likely

to generate many consecutive notes with the same pitch,

whereas melodies from the proposed system have more

variation. The melodies from our system also tend to have

fewer rests, and tend to include more notes that appear in

the underlying chord. The latter can be interpreted as a

tendency to stay in consonance and limiting the space of

ªdissonantº or ªunexpectedº moments.

5.2 Subjective Results

We conducted a subjective listening test using a similar

design as [3, 7, 42]: we selected lyrics from ten random

songs from the test portion of the dataset of 45K songs and

used these as input to three systems to generate melodies:

ªTeleMelodyº; ªPop-melodyº, the proposed system; and

ªBaselineº, an ablated version of our system that does not

use POS tokens (see Sec 4.1). This resulted in 30 full

songs: ten triples with the same lyrics, chords, and tempo.

We rendered the lyrics and melodies to audio with an in-

house singing voice synthesis comparable to Xiaoice [42]

and rendered a simple accompaniment with the chords.

We had 20 participants, all of whom had some musical

background and could read musical scores and play an in-
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Figure 6: Distributions of descriptor values derived from

melodies generated by TeleMelody [7] and by the pro-

posed pop-melody system.

strument. Participants listened to a triple at a time, where

the system identities were masked and the order is at ran-

dom. Then, they rated each song on four criteria on a Lik-

ert scale from Bad (1) to Excellent (5):

1. Rhythm: is the timing of notes suitable for the

lyrics?

2. Harmony: do the pitches fit the chords and key?

3. Melody: does the melody line sound natural with

the lyrics?

4. Overall: what is the overall quality of the melody?

After rating each triple, listeners also rated their familiarity

with the original song of the input lyrics on a 5-point Lik-

ert scale. The average rating here was 1.5: somewhere be-

tween ª1. Never heard the title or melodyº and ª2. Heard

the song title, but not the melodyº.

The results of the study are shown in Table 2. Over-

all, listeners gave the three systems similar average ratings:

all lie within 3.6 ± 0.25. However, Wilcoxon signed-rank

tests reveal small but consistent differences between the

systems; see Table 3 for the p-values of all comparisons.

First, we see that the proposed system is consistently bet-

ter than Baseline, suggesting that POS-based tokenization

is effective. Second, we find that the proposed system

also matches or outperforms TeleMelody; the difference

is greatest for rhythmic quality. Despite the broadly posi-

tive ratings, mostly between Fair (3) and Good (4), com-

ments from the participants mostly cited shortcomings of

the output. TeleMelody and Pop-melody both earned com-

ments that the ªmelody is a little weirdº and sometimes

ªtoo repetitiveº, but only the TeleMelody outputs earned

comments that the ªrhythm is a little weirdº and ªfrag-

mentedº.

System Rhythm Harmony Melody Overall

Baseline 3.42(.93) 3.67(.86) 3.46(.93) 3.42(.82)
TeleMelody 3.58(.96) 3.69(.90) 3.38(.85) 3.57(.73)
Pop-melody 3.84(.87) 3.87(.81) 3.64(.89) 3.68(.72)

Table 2: Subjective result and comparison.

Comparison Rhythm Harmony Melody Overall

Pop vs Tele 0.0006 0.007 0.001 0.1
Pop vs Baseline 1.1e-08 0.002 0.006 1.8e-05
Tele vs Baseline 0.01 0.89 0.22 0.02

Table 3: P-values of the subjective result comparison.

Figure 7: Output examples (a) above and (b) below.

Two output examples from our system are shown in

Figs. 7(a) and 7(b). In both cases the melodies follow

the input chord progressions and we find parallelism and

variation in the melody when the lyric structure recurs.

E.g., in Fig. 7(a), the similar lyrics begin with the same

two melody notes (dashed boxes), and the remainders have

similar rhythm and contour (solid boxes). Similarly, in

Fig. 7(b), the similar lyrics are given identical openings

(dashed boxes) with rhythmically identical continuations

(solid boxes).

6. CONCLUSION AND FUTURE WORK

In this paper we proposed a new approach to generate

melody for a given lyric by combining lyric-to-rhythm and

rhythm-to-melody modules. We found that listeners rated

the long-term text-settings provided by our system as ac-

ceptable, and at least as good as a competing system.

In order to achieve a cross-modal mapping from sylla-

bles to onsets to melody notes, we made the simplifying

assumption that each syllable is sung on one note. There is

a clear way to improve this in the lyric-to-rhythm module

by adding a syllable-state token to the Compound Word,

indicating whether we are at the onset of a syllable, or

the continuation of one. However, allowing a one-to-many

syllable-to-note mapping would also complicate the auto-

matic syllable alignment step, making the hand-corrected

data even more precious.

We also found that POS tags were valuable text tokens;

using them led to a boost in text-setting quality. Given this

success, we ought to leverage more linguistic information,

such as syllable stress and word frequency, as in [15, 16].

Music structure labels (e.g., verse and chorus) could also

prove valuable. This is an under-explored area, but may

become feasible with the introduction of more datasets, or

with automatic labelling systems [43] to further augment

existing data. if more datasets become available.
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