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ABSTRACT

We propose a visual approach for interactive, AI-assisted

composition that serves as a compromise between fully au-

tomatic and fully manual composition. Instead of gener-

ating a whole piece, the AI takes on the role of an as-

sistant that generates short melodies for the composer to

choose from and adapt. In an iterative process, the com-

poser queries the AI for continuations or alternative fill-ins,

chooses a suggestion, and adds it to the piece. As listening

to many suggestions would take time, we explore different

ways to visualize them, to allow the composer to focus on

the most interesting-looking melodies. We also present the

results of a qualitative evaluation with five composers.

1. INTRODUCTION

Composing music is a challenging task, especially for be-

ginners. Complex music theory, different rules and pat-

terns in a wide range of genres, missing experience, or even

stagnating inspiration make it difficult to express intended

ideas and emotions. These aspects can result in frustration

and leave the composer unsatisfied or even unable to fin-

ish a piece. Artificial intelligence (AI) might potentially

mitigate such situations by generating music that provides

inspiration or even fits the composer’s needs directly.

Current AI-driven approaches for music generation al-

low creating parts or whole pieces in audio [1] or symbolic

form [2]. Although automatic composition can be useful,

for example as background music in videos or games [3], it

often lacks personality and structure [3, 4]. A fine-grained

steering of the generation process, beyond parameters such

as overall tempo and feel, is often not possible. There-

fore, a piece that is fully generated by AI might not satisfy

expectations [5]. Although AI-generated music can show

potential creativity [6], the current state of AI music will

most likely not replace human composers as a whole [5].

To address above problems, we propose a user-centered

approach for AI-assisted composing. Here, users have

more control, acting as a leading composer who always
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has the last word, while the AI serves as assistant that sup-

ports composers instead of replacing them [4, 5, 7]. When

assisted with suggestions for continuations, fill-ins, and re-

placements, users can iteratively elaborate on these and

make progress towards a personal creation. Composing

step by step often yields better results than selecting from

multiple completely generated ones and gives a greater

feeling of satisfaction and authorship [8].

To support the communication between AI and human,

we propose using interactive visualization. As it allows

to quickly spot and filter the most interesting suggestions,

visualization facilitates choice. This means users do not

have to spend time sifting through heaps of less interesting

suggestions and can spend their time more efficiently, for

example by only listening to a few melodies per group of

similar ones. Furthermore, visualization can improve un-

derstanding of how the underlying AI works [9], and allow

for a more effective usage and better steering of the AI.

We make two primary contributions: (1) We designed

four interactive visualizations to assist the user in choosing

and investigating AI-generated suggestions. The first two

represent a graph structure of suggestions [10±12], while

the third displays larger numbers of melody samples, by

encoding their similarities and characteristics. Our fourth

visualization shows the correlation between melody sam-

ples. (2) We evaluated our approach through a qualitative

study with five composers, who generally liked our ap-

proach and were curious in analyzing the AI and using vi-

sualizations to find interesting samples. Results show that

our representations were unfamiliar to most participants,

but made interaction with the AI more accessible.

Our supplemental material 1 contains a live version of

our prototype, the full source code, and additional details.

2. RELATED WORK

Briot et al. [13] surveyed deep learning for music gener-

ation and compare objectives, data representations, archi-

tectures, and the output that consists of audio [1] or sym-

bolic data [14]. They cover recurrent neural networks [2,

15], variational autoencoders [16±18], and generative ad-

versarial networks [19, 20]. Other work [14, 21] shows

combinations of above techniques for different tasks. Re-

cently, transformers [22±24] showed promising results and

there also exist agent-based or heuristic algorithms [25].

1 github.com/visvar/vis-ai-comp
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Figure 1. Overview of our design: (A) Piano roll to show/edit the composition. (B) Icicle plot and (C) node-link chart for

tree structures. (D) Similarity-based scatterplot as overview of all samples. Color encodes the AI’s temperature parameter.

A survey by Huang et al. [7] on usage and requirements

of AI for music co-creation found that users desire control,

authorship, and creative freedom and often create multi-

ple samples to choose from. Our approach addresses these

requirements and supports sample choice through visual

overviews of samples and second-level continuations. We

allow for fine-grained control and creative freedom by let-

ting the user replace parts with fill-ins and edit individual

notes. Suh et al. [26] found users to be more willing to

take risks and try different styles when using AI, but also

to be pushed to progress faster. Our approach uses AI as an

assistant to provide similar benefits with more user control.

Magenta Studio [27] allows generating music with dif-

ferent tools but limited steering options. Our design uses

similar options but allows generating many samples at

once and gives full control over note selection and adap-

tion. Bach Doodle [28] allows users to harmonize an in-

put melody in the style of Bach via CoCoNet [29] and

was later improved [30] in its usability for novice users.

Our approach focuses on creating the melody itself, which

could then later be harmonized through similar models.

SketchNet [31] gives users control in music generation, al-

lowing to roughly sketch melodies. For editing melodies,

Tsuchiya et al. [32] proposed a non-notewise method. In

contrast, we allow choosing and notewise editing sugges-

tions before combining them into a composition and could

integrate above work to make suggestions more relevant.

Steering interfaces (selecting from options part-by-part)

are often preferred over radio options (selecting from

longer options), as they allow for more control and effi-

cacy, giving a stronger sense of authorship [8]. Following

that idea, Huang 2 uses a tree structure of generated contin-

uations for interactive composition. We use a similar idea,

but additionally support cognition and control through vi-

sualization and more interaction.

There are many interactive tools that use AI to gener-

ate music [23, 33±35] or fill-in missing parts [36, 37] that

provide various ways of control, but lack exploration of

different choices and fine-grained editing. In contrast, we

provide visual exploration techniques and options, such as

single-note edits or overviews of many options at once.

Our visualizations make use of similarity metrics for

melodies. Such metrics have been studied in prior work,

for example recursive metrics [38] and edit distances [39]

for symbolic melodic similarity. Instead of comparing

complete pieces, we use our metrics to produce overviews

of a collection of short melodies by visually sorting or po-

sitioning them by these metrics. Abstractly, we follow the

idea of visual parameter analysis [40] by visualizing AI

output for different parameters to get insights about their

impact, which has not yet been explored systematically for

semi-automatic music composition. For example, we use

glyphs [41, 42] to show melody samples in a scatterplot,

similar to music collections [43]. We also use tree visuali-

sations such as icicle plots and node-link diagrams, which

have been used for event sequences before [12], but have

not yet been explored for a combination of music and AI.

3. DESIGN

With our approach, we target two primary user groups,

namely amateur composers and developers/analysts of

2 youtu.be/vnRrGCB04WE?t=1293
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composer AI models. We focused on amateurs as a start-

ing point, as we hypothesized that they could benefit most

from a continuous interaction with a composing AI. In our

approach, users query the AI for suggestions but make all

decisions, keeping the composition personalized.

The AI analyst, on the other hand, is interested in in-

vestigating a composing AI’s behaviour and the influence

of different input melodies and parameters on output sug-

gestions. Understanding this behaviour is crucial for the

user’s trust and leads to more efficient steering.

The main workflow of our approach looks as follows:

Users start with recording or generating a seed melody.

Based on it, they query the AI for multiple continuation

suggestions with chosen parameters. We then visualize

these samples to help users filter, listen to, select, and cus-

tomize the most interesting continuations for a personal

composition. Repeating these steps, or even creating mul-

tiple levels of continuations, results in a tree of melody

samples, where a sample’s children are the possible con-

tinuations for the remaining composition. Using the same

steps to replace an existing part (fill-in) splits the composi-

tion node in the graph and adds the fill-in samples as nodes

in between, resulting in a directed acyclic graph (Figure 2).

This approach is abstractly inspired by the idea of vi-

sual parameter space analysis [40], and also practically by

the artist MJx Music. He used an AI to create an album

by manually generating hundreds of samples, listening to

all, selecting the most interesting, and combining them into

songs 3 . In contrast to this brute-force workflow, we add

visualization to provide similar flexibility but more usabil-

ity, by showing overviews from which users then pick the

most interesting samples to further investigate.

To make this general idea possible, we needed to inves-

tigate metrics and aggregations to be able to relate differ-

ent samples to each other, as well as visualization designs

which allow users to interact with the space of samples.

3.1 Metrics and Aggregations

We designed a range of metrics that help our visualizations

arrange or summarize a collection of melody samples. A

user might have some idea of prioritization when looking

for samples with specific properties. Some of our visual-

izations therefore allow sorting by different aspects, such

as the variance of interval sizes as a statistical metric to

detect lively, varied, or monotone melodies. We can also

sort by two metrics at once, with a scatterplot that uses

each metric as one axis. As a starting point, we chose

the following metrics: mean note duration, variance of

interval sizes, similarity to composition, distinct pitches,

range of pitches, temperature (AI parameter affecting ran-

domness 4 ), and number of noteshapes from composition.

The latter indicates how often a shape of three consecutive

notes (intervals between them) occur in the composition.

The similarity between samples can also be used for

sorting, for example to focus on samples that are more sim-

ilar to parts from the composition. Furthermore, pairwise

3 magenta.tensorflow.org/mj-hip-hop-ep
4 magenta.tensorflow.org/performance-rnn

Figure 2. Node-link diagram with one fill-in and two

levels of continuations. Colors help differentiate between

melody samples. Here, nodes in the same level are sorted

by variance of intervals descending, which is also encoded

in the link width.

similarities between all samples can be used to place them

on a ªmapº where similar ones are closer to each other.

We designed a rather simple similarity metric that takes

both pitch and rhythm into account, and allows the user to

choose a weight for controlling the impact of both.

Above metrics can also be used to compactly repre-

sent samples, by only visualizing the metrics instead of all

notes, as we do in our glyphs and histograms.

Our example metrics are not necessarily complete or

optimal, but serve as a starting point for further research.

For some tasks, what is optimal can even be hard to define

at all or be subjective, such as sorting by ªhappinessº or de-

termining the degree of ªsimilar feelingº, possibly requir-

ing users to fine tune or train metrics by themselves. Our

main approach works with any kind of metric and could be

easily extended in the future.

3.2 Visualizations

Piano Rolls as Note Representation: Piano rolls serve

both as representation and editor for notes. We chose pi-

ano rolls over staff notation for multiple reasons: They

are more easy to read for beginners, represent each pitch

(MIDI note) in its own row, visually show rhythm and

breaks through block size and gaps, and are better read-

able when small, as there are less fine details. The central

view of our tool is a large piano roll at the top that shows

all melody samples and the composition at all time (Fig-

ure 1A). In this view, we allow adjusting pitch, start, and

duration of notes, as well as adding or deleting them.

Sample Relation Graphs: Users can create a tree struc-

ture of melody samples to see different continuation paths

for a given melody. Listening to all paths takes time, so

we want to make selection more efficient by extending and

supporting the sequential listening process with a parallel

visual approach. To this end, we visualize the tree structure

and its melody samples together (Figure 2).

Displaying all samples in a single piano roll at once

would lead to overlap and clutter. Therefore, we show the

tree structure in an icicle plot, using most space to dis-

play piano rolls (Figure 1B). Children (continuations) of a

sample are displayed on the right of its node, dividing its

height equally. All piano rolls share a common timeline

on the X-axis while the Y-axis is different for each. With

different color encodings, users can differentiate between

melodies or get additional information, for example about

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

153



Figure 3. Comparison of our glyphs on the same data. (A)

star glyph, (B, C) occurrences of intervals between consec-

utive notes, (D) chroma distribution, and (E) piano roll.

the parameters used to generate them. We allow listening

to single samples or selecting a whole path or parts of it.

Users can add a path to the composition and subsequently

adjust notes manually or generate new continuations.

Sorting all melodies of the same tree level, which are

alternatives for the same time span, could be useful when

focusing on some priority. Since an icicle plot already en-

codes relations through position, sorting would break this

encoding. Therefore, we added links between nodes to al-

low sorting melodies of each level while keeping relations

visible, resulting in a node-link graph (Figure 2). Besides

showing relationships, these links also encode the value of

the selected sorting metric in their width.

Similarity-Based Layout and Glyphs: A composer can

only use an AI efficiently if they roughly understand how it

behaves. In our case, this means knowing which parameter

values (e.g., temperature) to choose for an intended output.

Since there is usually some uncertainty in the results, more

than just a few samples are needed to draw conclusions.

Above visualizations do not scale to large numbers of

samples, as small piano rolls are hard to read. While sort-

ing and scrolling help, the overview gets lost. To provide

an overview for hundreds of samples at once, we visualize

them as dots in a scatterplot, placing similar once closer

together via dimensionality reduction (Figure 1D).

Using a circular brush, users can select a neighborhood

and take a look at its melodies, represented as piano rolls

and statistical aggregations of all selected samples. To in-

dicate the overall variety of the selection, we show two his-

tograms for the occurrences of pitches and note durations.

Because selecting neighborhoods at random is ineffi-

cient, the user needs an impression of melodies directly

inside the scatterplot. We therefore replaced the dots by

glyphs, small symbols showing some kind of data, such as

statistics or the melodic structure itself. Users can switch

between these glyphs at any time to visually filter inter-

esting melodies before looking at their neighbourhood in

detail. As overlapping glyphs are unreadable, we apply

gridification to produce a regular, occlusion-free layout.

We designed four types of glyphs to show different as-

pects of a melody (Figure 3): The first type shows multiple

Figure 4. Negative correlation between temperature and

similarity. Colors encode temperature (left) and correlation

(right).

metrics in a starglyph. As default, four metrics are shown

that convey both rhythm and melody: note count, mean

note duration, variance of intervals between two notes, and

similarity to notes in the current composition. Jumps be-

tween notes are often interesting for composers, for ex-

ample when looking for a climax or a calm section af-

ter it, inspiring us to show the occurrences of intervals

between two notes in a histogram glyph. Users can di-

rectly see when a melody mostly uses repeating notes and

small changes or has larger jumps in it. The third type of

glyph represents the tonality of melodies by a pie chart of

chroma occurrences, i.e., one slice for each of the twelve

notes. It helps selecting or investigating melodies based on

contained notes and therefore tonality, as well as looking

for outliers with unusual pitches. For example, a pie chart

showing mostly C, E, and G likely fits into a C major com-

position. Because above glyphs represent metrics that can

be hard to grasp for unfamiliar users, we added a fourth

type that shows melodies as small piano rolls. With these

glyphs, the rough contour of the melody is directly visible,

so users can look for those matching their intention.

Correlation Analysis: An analyst can use the above scat-

terplot and glyphs to investigate sample metrics, but could

also be interested in investigating correlation between met-

rics. We therefore provide a correlation matrix as overview

of pairwise correlations between all metrics, which en-

codes Pearson correlation as color (Figure 4). We show

negative, positive, and no correlation in red, blue, and

white, so users can quickly filter interesting pairs. After

choosing a pair of metrics by clicking, a 2D scatterplot

shows all samples as points, positioned based on their met-

ric values. One insight we made was a positive correlation

between temperature and pitch range, so higher tempera-

ture values often lead the AI to generate more outlier notes.

Attribution: A common problem when co-creating with

AI is authorship, as users are often hesitant to claim gen-

erated melodies as their own. To analyze this problem and

provide a feeling for how much authorship a composer has,

we added a coloring for the notes’ attribution (Figure 5).

We assign each note one of five attribution classes, cover-

ing the range between human- and AI-generated, and dis-

play the percentage of each class, to show composers how

much and what they contributed to the composition.
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Figure 5. Color indicates the attribution of notes, from

red (by user) to blue (by AI) along five steps: (1) com-

pletely human-created notes, (2) human-created but AI-

adapted notes (fill-in), (3) notes changed by both parties

multiple times, (4) AI-generated but user-updated notes,

and (5) AI-generated, unedited notes.

3.3 Implementation

We implemented our prototype as a web app build with

React, which allows publishing it as a website 1 . It works

completely inside the browser with an AI model 5 made by

Magenta 6 , which we chose due to easy access and usage,

but other models from any framework or language can be

hosted by others and integrated through plugins.

For our visualizations, we use D3 [44] for colormaps

and scales, DruidJS [45] and MDS [46, 47] for comput-

ing dimensionality reduction layouts, and Hagrid [48] to

avoid overlapping glyphs. Users can record melodies us-

ing MIDI [49] devices and export finished compositions as

MIDI files for further processing with other tools.

4. EVALUATION

As music composition is a complex and time-consuming

task without clear measures for efficiency and success, we

chose a qualitative study design with five domain experts

(P1 to P5). P1, P3, and P4 were pursuing a degree in

composition for experimental music, P2 holds a degree

in composition and studies performance, and P5 studied

a music instrument major and composes occasionally. Al-

though our approach primarily targets beginners, we chose

experts, as they are more familiar with composition work-

flows. We therefore expected more detailed, thorough, and

critical feedback from this group.

Our design brings potentially unfamiliar technology to

participants, such as machine learning, visualization, and

dimensionality reduction. To avoid them having to learn

using our design, we conducted pair analytics [50], where

domain experts and visualization designers jointly analyze

data, while the designers serve as technical assistants.

We recorded screen and voice throughout the study with

consent. The study concluded with a semi-structured inter-

view to further inquire about general thoughts. On average,

participants took 2.2 hours for the study. Due to space lim-

its, we only discuss the main findings here, full details can

be found in the supplemental material.

5 MusicRNN, magenta.github.io/magenta-js/music/classes/
6 github.com/magenta/magenta-js

Results: All participants started with recording and edit-

ing a short melody. They were interested in how the AI

would react to their melodies, especially P3: ªI was curi-

ous, so I put in some short and some long notesº. Next,

they generated some continuations for their melody.

Participants found our icicle plot helpful ªwhen gener-

ating many samples, [this] can help [to] see more quickly

which samples are interesting and which are notº (P4). We

found that the icicle plot led to a faster selection of sam-

ples by just looking at them: ªI can see that these [points

to two samples] are very interestingº (P5). Especially P4

and P5 liked this representation due to the miniature piano

rolls that helped P5 find certain intervals in melodies.

Participants used the node-link diagram to sort samples,

inspect them, and select continuations. They liked sorting

by metrics: ªI think it’s good to sort by intervals [... it is]

essential when selecting a melody with specific character-

isticsº (P1), and found it helpful to use different metrics:

ªI can imagine for complex music and many samples [...]

and having an rough idea, [sorting] can help using pa-

rametersº (P4), ª[When] composing with dissonance [...]

sorting by dissonance would helpº (P3).

While composing, P3 repeatedly asked where recently

added samples began within the composition. Our attri-

bution visualization showed the difference between notes

added by the AI and edited notes, which helped P3: ªwhere

was the last note? [switching to attribution] This visual is

very comfortableº (P3).

We were specifically interested in how participants

would select samples to interact with them. They often

had some idea for what they were looking for, such as set-

ting a contrast (P1), wanting ªto hear the most random-

nessº (P2), or variations and less randomness (P4), where

our visualization helped: ª[This] is the only one that goes

downº (P5). Participants sometimes did not like samples

(ªI liked the first part, but the second was not goodº (P2))

and edited them after adding to the composition (P5) or

even discarded all to ªchange something on my ownº (P3).

As we also wanted to evaluate AI analysis, participants

then generated 50 to 80 continuations to analyze with our

visualizations. P1 found all glyphs helpful and told us

these could ªextend the intuitive analysis of composers

[... and] lead to a different styleº in composing. The par-

ticipants were ªnot used to look at the dataº (P2, P3) and

these kinds of visualizations, but most learned quickly and

found the scatterplot ªvery interesting as an analysis tool,

even independent of the AIº (P1). Especially P1 was very

interested in all the analysis possibilities and mentioned

that to their knowledge, the lack of analysis is a drawback

to algorithmic composition that works with randomness:

ªI did see that really rarely and this is a huge shortcoming

[...] when composing with the computerº (P1).

Surprisingly, P1 told us how their professor answered

the question of ªhow to select the best samples?º: ªYou

could generate as often as you like and listen to all and de-

cide while listening intuitivelyº. P1 complained about this

strategy: ªYou would listen to all and have no overviewº.

Our scatterplot provides such an overview (P1).
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Figure 6. Similarity based scatterplot with piano roll

glyphs colored by temperature (left). Selected samples

are shown as piano rolls (center) and summarized as his-

tograms (right).

We evaluated how users select neighborhoods in the

scatterplot and found that the color (encoding temperature)

impacted their decision. For example, P2 ªclicked there

because of the color [...] ones with higher and lower tem-

peratureº and P3 investigated ªhow melodies varyº based

on temperature. Especially interesting to us was that P5

changed the similarity metric to rhythm only, to look for

samples in a cluster with the original rhythm. P5 then

clicked on an outlier sample: ªWhy is this separate?º.

The glyph representations were used by all partici-

pants. Piechart glyphs helped P3 select a melody sample,

when they were looking for something calm that contrasts

the composition. While analyzing, P5 searched for per-

fect fourths with the interval histogram glyphs, as their

melody contained a lot of these. ªI am interested in find-

ing melodies with perfect fourths [showing occurrences of

interval glyph]. We can directly see [...] there is almost

nothingº (P5). Other participants used this glyph to select

samples ªwhen I have a structure in mind [such as a ris-

ing line]º (P1), which showed more positive intervals than

negative, or to investigate the extreme melodies with many

larger intervals. All participants used piano roll glyphs to

compare melodic structures and find common pattern in

clusters: ªI can see the same musical structure (melodic

bows) [...] and further away it turns differentº (P1).

All participants found a relationship between tempera-

ture, shown through the color of piano rolls, and the struc-

ture (Figure 6): ªThe blue ones have clearer structure

while red ones are jumpier without that much connectionº

(P1), ªI can see the randomnessº (P2). We found the piano

roll to be more intuitive than other glyph types and there-

fore a good default, as it shows melodies directly: ªFor

me [the piano roll glyph] is very intuitive, I can directly

imagine how they approximately could sound likeº (P4).

Especially P5 found that ª[correlation visualization]

is fantastic [...]. This would make analysis much easier

even without using the AIº. After investigating some met-

ric combinations, P5 surprised us by finding a pattern re-

garding similarity and temperature, where the correlation

between an arbitrary metric and the similarity would al-

ways be the opposite to when combining the metric with

temperature (Figure 4).

Our study concluded with short semi-structured inter-

views, summarized below. None of the participants pre-

ferred our approach over their current workflow ± which

we expected, as experts learned their workflow over years

± but many could image using it for inspiration or certain

tasks. All participants found the visualizations helpful for

comparing, filtering, and selecting melody samples, espe-

cially for beginners, even when P2 had problems imaging

the sound of a melody by its visuals. Most mentioned that

it takes time to get used to the unfamiliar visualizations and

metrics. Despite general scepticism against AI, all partici-

pants saw potential value in an AI-assisted approach.

5. LIMITATIONS

The sample relation visualizations do not scale for larger

numbers of samples or levels, which could be addressed by

not showing all samples at once but using scrolling or fil-

tering. As alternative, the scatterplot can show many sam-

ples, but struggles with displaying similarities and com-

plete glyphs. Using a gridified layout poses a trade-off be-

tween overlap and inexact positions.

Our example metrics and glyphs might not be opti-

mal and miss some key characteristics. The current im-

plementation is limited to monophonic melodies, but can

be extended to polyphony through other AIs and metrics.

Some glyphs only represent one aspect of music, but com-

posers often need to consider multiple at once, such as

pitch and time. For sorting, we only used statistical metrics

of melodies, which are interesting for some experimental

composers, but could be hard to interpret for beginners or

other composers. These users would need more musical

characteristics like mood, which is harder to calculate.

Another limitation of our approach is learnability, as

users have to learn reading and interpreting a set of vi-

sual encodings. Based on our evaluation, we believe that

regular users of our design can quickly get an intuition by

looking at and listening to a range of samples.

6. CONCLUSION

As AI will likely not fully replace human composers in

the foreseeable future [5], we advocate for an approach in

which both, human and AI, cooperate. To this end, we pro-

pose a user-centered, interactive, and visual approach for

iterative, AI-assisted music composition aimed at hobby

musicians and experimental composers. We designed dif-

ferent visualizations as interface for interaction with gen-

erative models. Since these visualizations are AI-agnostic,

a composer could use any kind of AI or general algorithm

in combination with our approach.

In the future, we want to test different models [16, 22]

to generate polyphonic music, harmonize melodies, extend

metrics, and allow better steering. Analyzing the composi-

tion process could benefit from a history visualization that

shows which notes were added or changed when and by

whom. We further plan to explore aggregations and glyphs

for more compact representations and extend our evalua-

tion to more diverse composers, including beginners.
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