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ABSTRACT

We propose Beat Transformer, a novel Transformer en-

coder architecture for joint beat and downbeat tracking.

Different from previous models that track beats solely

based on the spectrogram of an audio mixture, our model

deals with demixed spectrograms with multiple instrument

channels. This is inspired by the fact that humans perceive

metrical structures from richer musical contexts, such as

chord progression and instrumentation. To this end, we

develop a Transformer model with both time-wise atten-

tion and instrument-wise attention to capture deep-buried

metrical cues. Moreover, our model adopts a novel dilated

self-attention mechanism, which achieves powerful hierar-

chical modelling with only linear complexity. Experiments

demonstrate a significant improvement in demixed beat

tracking over the non-demixed version. Also, Beat Trans-

former achieves up to 4% point improvement in downbeat

tracking accuracy over the TCN architectures. We further

discover an interpretable attention pattern that mirrors our

understanding of hierarchical metrical structures.

1. INTRODUCTION

Music audio beat and downbeat tracking, which aims

to infer the very basic metrical structure of music, is a

long-standing central topic in music information retrieval

(MIR). A good beat estimation benefits various down-

stream MIR tasks, including transcription and structure

analysis [1±5]. Moreover, beat tracking can be applied to

human-computer interaction [6, 7], music therapy [8], and

more scenes, as beats echo with human perceptual and mo-

tor sensitivity to musical rhythms.

We see significant progress in beat tracking with the de-

velopment of deep neural networks. Current mainstream

methods utilize temporal convolutional networks (TCNs)

to extract frame-wise beat activations from an input spec-

trogram [9]. We further see successful efforts in boosting

beat tracking performance, including phase-informed post-

processing with dynamic Bayesian networks (DBNs) [10],

© J. Zhao, G. Xia, and Y. Wang. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: J. Zhao, G. Xia, and Y. Wang, ªBeat Transformer: Demixed

Beat and Downbeat Tracking with Dilated Self-Attentionº, in Proc. of

the 23rd Int. Society for Music Information Retrieval Conf., Bengaluru,

India, 2022.

multi-task learning for joint beat, downbeat and tempo es-

timation [11±13], and explicit beat phase modelling [14].

Recently, Transformer has demonstrated highly com-

petitive performances over a range of MIR tasks [15±21].

In this paper, we propose Beat Transformer, a novel Trans-

former encoder architecture for joint beat and downbeat

tracking. To better accommodate Transformer to our pur-

pose, we introduce two extra inductive biases. Firstly,

our model is constructed with short-windowed dilated self-

attention. An exponentially increasing dilation rate en-

ables our model to discern beats from non-beats in a hi-

erarchical manner. With a fixed window size, our model

maintains a linear complexity to the input sequence length.

Another inductive bias is demixed beat tracking. This

strategy is inspired by the fact that human beat tracking

is always accompanied by and enhanced by a deep under-

standing of the musical contexts. For example, the coor-

dination of instruments enforces the progression of chords

and bass notes, thus implying metrical accents, and such

cues can be easily identified by human listeners. To capture

this relation, we use Spleeter [22] to demix an input mu-

sic piece into multiple instrument channels, and our model

performs both time-wise and instrument-wise attention in

alternate Transformer layers to excavate metrical cues.

We evaluate Beat Transformer on a wide range of

beat- and downbeat-annotated datasets. Besides competing

with state-of-the-art works, we present a thorough ablation

study to illustrate the effectiveness of dilated self-attention

and demixing. Moreover, our model learns highly inter-

pretable representations. We demonstrate that our model

can be interpreted as a learner over finite-state Markov

chains, and we observe beat phase transition through vi-

sualization of the transition (attention) matrix.

In brief, the contributions of our paper are as follows:

• We propose Beat Transformer 1 , a novel Trans-

former encoder architecture for joint beat and down-

beat tracking in music audio.

• We devise dilated self-attention, which demonstrates

powerful sequential modelling with linear complex-

ity, potentially adaptable to more general MIR tasks.

• We make use of music demixing to complement and

enhance beat tracking, shedding light on future MIR

research towards universal music understanding.

1 Available at https://github.com/zhaojw1998/Beat-Transformer.
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2. RELATED WORKS

We review two topics related to our work: beat tracking,

and Transformer. For beat tracking, we focus on its devel-

opment with deep neural networks. For Transformer, we

address its application in MIR. For more general review of

both topics, we refer readers to [23] and [24], respectively.

2.1 Music Audio Beat Tracking

Beat tracking has been formulated as a two-stage sequen-

tial learning task. The first stage aims to determine the

likelihood of beat presence, or beat activation, at each

frame of an input spectrogram. The initial deep learning

approach for this purpose was based on long short-term

memory networks (LSTM) [25, 26]. To better pick up the

beat sequence from raw model output, at the second stage,

a dynamic Baysian network (DBN) is introduced to infer

tempo and beat phase transition from beat activation [10].

The current mainstream methods substitute the LSTM

with a TCN architecture [9, 12±15]. Specifically, the con-

volutional kernels have a dilation rate exponential to the

depth of layer. This hierarchical structure facilitates the

network to model various scales, functionally similar to

pooling, but maintains the same input and output size

[27]. Besides architecture, another breakthrough of beat

tracking is the formulation of multi-task learning [11±15].

Specifically, beat, downbeat, and tempo are strongly corre-

lated metrical features. Sharing model weights among all

three sub-tasks helps each to reach better convergence.

A recent trend of beat tracking is to deal with demixed

music sources. Chiu et. al. leverages demixed drum and

non-drum streams to enhance model adaptability to differ-

ent drum source conditions [28, 29]. In fact, humans can

track beats while switching their attention among different

instrument parts. Hence the coordination of instrumental

sources can be explored for useful metrical information.

In our work, we inherit the fashion of multi-task learn-

ing and the use of DBN, while proposing a novel Trans-

former encoder architecture to replace TCN. We formal-

ize dilated self-attention [30, 31] for efficient modeling of

long metrical structures. Moreover, we seek to enhance

beat tracking by introducing instrumental attention among

drum, piano, bass, vocal, and other demixed sources.

2.2 Transformer in MIR

Transformer has established itself de facto state-of-the-

art in natural language and symbolic music domain. Re-

cently, it has also demonstrated outstanding performance

over audio-based MIR tasks, including music transcription

[17±19], music tagging [20, 21], and other analysis [16].

For these tasks, a Transformer model is trained over short

spectrogram clips typically of 2-5 seconds as a compro-

mise to the quadratic complexity computing self-attention.

Transformer is first applied to beat tracking by Hung et.

al. [15] using SpecTNT blocks [16]. For each SpecTNT

block, a spectral Transformer encoder first aggregates

spectral information at each time step, and then a temporal

encoder exchanges information in time and pays attention

to beat and downbeat positions. Such a time-frequency

design makes an effective use of spectral features and

achieves the state-of-the-art performance.

Our work is also a Transformer-based architecture that

strives to enhance beat tracking with richer musical con-

texts. Instead of aggregating spectral features as in [15],

we resort to demixed instrumental attention as a more ex-

plicit inductive bias to exploring spectral information. Our

design of dilated self-attention is also a crucial step to ac-

commodate Transformer to beat tracking. With only linear

complexity, our model handles full-length songs at a time.

3. METHOD

The core of our method is a Transformer encoder based on

1) dilated self-attention (DSA), and 2) demixed instrumen-

tal attention, to extract a framewise beat activation from

input spectrograms. In this section, we first formalize DSA

in Section 3.1. We then present our design of demixed beat

tracking in Section 3.2. We further interpret our method

with Markov chain properties in Section 3.3.

3.1 Dilated Self-Attention (DSA)

3.1.1 Background of Self-Attention (SA)

We first recall that, for vanilla Transformer layers, self-

attention (SA) is computed via the scaled dot product:

Attention(Q,K, V ) = softmax(
QK⊤

√
df

)V, (1)

where Q1:T , K1:T , V1:T ∈ R
T×df are query, key, and value

sequences, each linearly mapped from input x1:T . T is the

sequence length, and df is the feature dimension.

The partial attention from position i to j is explicitly:

eij =
QiK

⊤
j√

df
, (2)

where 1 ≤ i, j ≤ T . Such computation leads to quadratic

complexity O(T 2) in terms of both time and space.

3.1.2 Dilated Self-Attention (DSA)

An illustration of DSA is shown in Figure 1. DSA is com-

puted over a short window of size lwin = m + n + 1,

where m and n are the length of non-causal and causal

components of the window (in Figure 1, m = n = 2).

Each Transformer layer has a dilation rate r ⩾ 1, and r

increases exponentially as the layer goes deeper.

Formally, given Q, K, and V ∈ R
T×df , DSA first com-

putes Q-K attention by:

eik =
QiK

⊤
i+rk√
df

, (3)

where 1 ≤ i ≤ T and −m ≤ k ≤ n. Specifically, i + rk

refers to the positions in K1:T that are attainable by Qi

under the dilated window of rate r. When i + rk exceeds

the sequence range [1, T ], we fill eik with −inf.
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Figure 1: Illustration of dilated self-attention (with a non-causal short window of size 5) over a three-layer Transformer.

Part (a) shows the hierarchical connectivity across layers, which shares the same pattern as TCN in [9]. Part (b) shows the

attention matrix at layer 2, with colours indicating relative position. The white colour indicates unattainable positions.
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Figure 2: Illustration of efficient DSA implementation,

with dilation rate r = 2 and window size lwin = 5.

Then, the Q-K attention eik is normalized via softmax:

pik =
exp(eik)∑n

k=−m exp(eik)
(4)

The output of DSA is a sequence z1:T , where zi is the

weighted average of V under the same dilated window:

zi =
n∑

k=−m

pik(Vi+rk) (5)

We apply DSA with exponentially increasing dilation

rates and relative positional embedding (RPE) [32] to a

stack of Transformer layers. Each layer consists of two

sub-layers: DSA, and a position-wise feed-forward layer.

We place residual connections across each sub-layer and

perform layer normalization [33] before each sub-layer.

3.1.3 Memory Efficient Implementation of DSA

A straightforward implementation of DSA is to mask SA.

Concretely, a square mask takes the same form as in Figure

1b, where all uncolored positions are filled with −inf, ren-

dering a rather sparse attention matrix. This way, however,

still requires quadratic complexity, because eij is explicitly

computed for all masked positions.

Our implementation takes a ªrollingº strategy to elimi-

nate redundant computation. As in Figure 2, lwin copies of

K1:T sequences are padded and rolled along the time axis,

and then concatenated on a new axis. In this way, each Qi

sees Kj directly and only at j = i+ rk for −m ≤ k ≤ n,

which is exactly the coverage of the dilated window.

Formally, given K1:T ∈ R
T×df , dilation rate r, and

window size lwin, the rolling strategy takes three steps:

Temporal Transformer Layer 

with DSA

⋯⋯

𝑇𝑇vocal
piano

drum
bass

Instrumental 

Transformer 

Layer with SA

other

Demixed

Transformer 

Block 

Figure 3: Demixed Transformer block. Two Transformer

layers are stacked ªorthogonallyº, each handling time-wise

dilated self-attention and instrument-wise self-attention.

1. Pad K1:T with ⌊ lwin

2 ⌋ × r steps on both sides;

2. Make lwin copies of padded K. Starting from 0, each

copy is cyclically rolled r more steps;

3. Concatenate each copy along a new axis and retrieve

the first T steps. The output has shape T × lwin×df .

The same procedure applies to V1:T as well. In this way,

computing DSA is essentially as simple as Equation (1).

Here, instead of Q,K, V ∈ R
T×df , we have Q ∈ R

T×1×df

and K, V ∈ R
T×lwin×df , with T treated as a batch dimen-

sion. The computation complexity is O(T × lwin), while

lwin is fixed and small enough to be left uncounted.

3.2 Demixed Beat Tracking

3.2.1 Demixed Transformer Block

We use Spleeter 5-stems model [22] to demix an in-

put piece into spectrograms with |C| instrument chan-

nels, where C = {vocal, piano, drum, bass, other}. As

shown in Figure 3, we stack two Transformer layers to per-

form time-wise and instrument-wise attention in turn. Let

the input at layer l be xl
1:T,1:|C| ∈ R

T×|C|×df , a temporal

Transformer layer (TTL) first takes xl
1:T,c for 1 ≤ c ≤ |C|:

xl+1
1:T,c = TTL(xl

1:T,c) (6)

Then, an instrumental Transformer layer (ITL), on the

orthogonal direction, takes xl+1
t,1:|C| for 1 ≤ t ≤ T :

xl+2
t,1:|C| = ITL(xl+1

t,1:|C|) (7)

A TTL followed by ITL forms a demixed Transformer

block. TTL consists of DSA as described in Section 3.1.2.
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Figure 4: Beat Transformer architecture. For conciseness, layer normalization and dropout layers are not shown.

For ITL, we use vanilla SA because there is only 5 in-

strument channels. As instruments are not sequentially or-

dered, we do not add any positional encoding to ITL.

Through demixed Transformer blocks, our model can

capture the rhythmic evolution of each instrument, as well

as the harmonic coordination among all instruments.

3.2.2 Partial Demix Augmentation

Spleeter may produce empty channels when a certain in-

strument does not present. To avoid potential effects of

such a situations, we develop a partial demix strategy for

data augmentation. Partial demix creates new stems by

summing up existing instrument channels of a default 5-

stem demixed input sample. For example, an augmented

data sample may have three channels corresponding to

C ′ = {vocal&piano, drum, bass&other}.

In our case, we randomly sum up 2, 3, or 4 instrument

channels of a 5-stem input with a probability 30%, 10%,

and 10% during training. In this way, our model is encour-

aged to pay attention to instrument-agnostic musical con-

tents and thus is less affected by empty channels where no

valid music content is present. As our augmentation strat-

egy also adds to the demix diversity and the data quantity,

we believe it brings general benefits to training as well.

3.3 Markov Chain Interpretation

In Equation (4), we formulate the attention matrix of DSA

as P = [pij ]1≤i,j≤T , where pij ≥ 0 if and only if j =
i + rk for −m ≤ k ≤ n. Here, r is the dilation rate, and

m, n are components of the attention window. Moreover,

P satisfies
∑T

j=1 pij = 1 for all i. Therefore, P can be

regarded as the transition matrix of a finite-state Markov

chain, where each state is a position of the input sequence.

For a stack of temporal Transformer layers (TTL),

where DSA is employed, layer l essentially learns a unique

one-step transition P l, by which our model can attend

to local neighbours covered by the attention window.

Through L layers, our model makes an L-step transition,

during which it attends to global positions hierarchically.

The overall L-step transition matrix P (L) satisfies:

P (L) =

L∏

l=1

P l (8)

Note that P l itself is a rather sparse matrix (due to short

attention window), while P (L) is densely connected. Its

components [p
(L)
ij ]1≤i,j≤T represent the hierarchical atten-

tion weights across the whole L layers, which can tell us

much richer attention patterns (more in Section 4.4).

3.4 Complete Architecture

A complete view of Beat Transformer is presented in Fig-

ure 4. The inputs are log-scaled spectrograms demixed by

Spleeter, with F = 128 mel-bins and |C| = 5 instrument

channels. Subject to Spleeter, our frame rate is 43.07 fps

and the frequency range is up to 11 kHz. We then use three

2D convolutional layers, shared by each demixed channel,

as a front-end feature extractor. The convolutional design

is the same as in [13] except that we employ more filters to

reach feature dimension dmodel = 256.

Beat Transformer comprises 9 temporal Transformer

layers (TTL) with DSA. Each TTL has 8 attention heads

with window size lwin = 5, four of which have skewed

window ranges, where m = 0, 1, 3, 4, respectively, and

n = 4 − m. The dilation rate grows exponentially from

20 to 28, stretching to a receptive field of 47.51 seconds.

Among the 9 TTLs, the middle three are expanded to

demixed Transformer blocks by interleaving ITLs. We

found it sufficient to perform instrumental attention only in

the middle layers, which has a proper scale of 1-5 seconds.

Each Transformer layer has 8 heads (df = 32) followed by

a feed-forward layer with hidden dimension dff = 1024.

We sum up the instrument channels of the output of the

last Transformer layer and obtain a frame-wise beat rep-

resentation of shape T × dmodel. Following multi-task

learning practice [11±14], we use a linear layer to map

the representation to beat and downbeat activations respec-

tively, and add a regularization branch predicting global

tempo via ªskip connectionsº [12]. We apply DBN in

Madmom package [34] as the post-processor to pick up

the beat and downbeat sequence from raw activations. For

DBN parameters, we set observation_lambda = 6,

transition_lambda = 100, and threshold = 0.2.

4. EXPERIMENTS

4.1 Datasets

We utilize a total of 7 datasets for model training and

evaluation: Ballroom [35, 36], Hainsworth [37], RWC

Popular [38], Harmonix [39], Carnetic [40], SMC [41],
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Beat Accuracy Downbeat Accuracy

Dataset Model F-Measure CMLt AMLt F-Measure CMLt AMLt

Ballroom

TCN+Demix 0.960 0.942 0.960 0.925 0.924 0.956
Ours w/o Demix 0.968 0.946 0.965 0.930 0.925 0.963
Ours w/o Aug. 0.967 0.949 0.967 0.928 0.931 0.958

Ours 0.968 0.954 0.966 0.941 0.944 0.969
Böck et al. [13] 0.962 0.947 0.961 0.916 0.913 0.960
Hung et al. [15] 0.962 0.939 0.967 0.937 0.927 0.968

Hainsworth

TCN+Demix 0.887 0.827 0.918 0.739 0.708 0.861
Ours w/o Demix 0.902 0.844 0.934 0.721 0.688 0.843
Ours w/o Aug. 0.892 0.831 0.908 0.742 0.703 0.837

Ours 0.902 0.842 0.918 0.748 0.712 0.841
Böck et al. [13] 0.904 0.851 0.937 0.722 0.696 0.872
Hung et al. [15] 0.877 0.862 0.915 0.748 0.738 0.870

Harmonix

TCN+Demix 0.954 0.903 0.956 0.901 0.866 0.923
Ours w/o Demix 0.954 0.902 0.958 0.887 0.846 0.916
Ours w/o Aug. 0.952 0.901 0.950 0.897 0.863 0.919

Ours 0.954 0.905 0.957 0.898 0.863 0.919

Böck et al. [13]∗ 0.933 0.841 0.938 0.804 0.747 0.873
Hung et al. [15] 0.953 0.939 0.959 0.908 0.872 0.928

SMC

TCN+Demix 0.596 0.455 0.625
Ours w/o Demix 0.589 0.448 0.621
Ours w/o Aug. 0.595 0.450 0.626

Ours 0.596 0.456 0.635
Böck et al. [13] 0.552 0.465 0.643
Hung et al. [15] 0.605 0.514 0.663

GTZAN

TCN+Demix 0.873 0.780 0.907 0.700 0.646 0.842
Ours w/o Demix 0.876 0.787 0.914 0.686 0.633 0.834
Ours w/o Aug. 0.881 0.797 0.921 0.703 0.653 0.845

Ours 0.885 0.800 0.922 0.714 0.665 0.844
Böck et al. [13] 0.885 0.813 0.931 0.672 0.640 0.832
Hung et al. [15] 0.887 0.812 0.920 0.756 0.715 0.881

Table 1: Testing results of beat and downbeat tracking under 8-fold cross-validation. GTZAN is unseen from training and

held out for test only. Böck et. al. [13] on Harmonix is reproduced by [15], as indicated by the ∗ symbol. We use underscore

to denote best results comparing with our ablation models and use boldface to compare with state-of-the-art models.

and GTZAN [42, 43]. We acquire Harmonix in mel-

spectrogram and invert each piece to audio using Griffin-

Lim Algorithm [44, 45] with Librosa package [46]. Fol-

lowing convention, we leave GTZAN for testing only and

use the other datasets in 8-fold cross validation [11±13].

4.2 Training

Our model is supervised in a multi-task learning fashion,

where beat, downbeat, and tempo are predicted jointly

[13]. Beat and downbeat annotations are each represented

as a 1D binary sequence that indicates beat (1) and non-

beat (0) states at each input frame. Following [13], we

widen beat and downbeat states to ±2 neighbours of an-

notated frames with weights 0.5 and 0.25. Following [12],

we derive tempo target from beat annotation for the tempo

prediction branch. We found the use of tempo branch gen-

erally beneficial to beat tracking, as it may serve as a regu-

larization term that helps reaching better convergence.

For training, we combine the binary cross entropy loss

over beat, downbeat, and tempo by weighing them equally.

We use a batch size of 1 to train on whole sequences with

different lengths. For excessively long songs, we split them

into 3-minute (8k-frame) clips. We apply RAdam [47] plus

Lookahead [48] optimizer with an initial learning rate of

1e−3, which is reduced by a factor of 5 whenever the val-

idation loss gets stuck for 2 epochs before being capped at

a minimum value of 1e−7. We use dropout [49] with rate

0.5 for the tempo branch and 0.1 for other parts of the net-

work. We apply partial demix augmentation described in

Section 3.2.2 as the only means of data augmentation. Our

model has 9.29M trainable parameters and is trained with

an RTX-A5000-24GB GPU. Each training fold generally

takes 20 epochs (in 11 hours) to fully converge.

4.3 Evaluation

4.3.1 Baseline Methods

We first compare three ablation models to validate our

module design. The first ablation model is Ours trained

without partial demix augmentation (Ours w/o Aug.). The

second model removes all ITL layers and tracks beat with a

single channel of non-demixed mixture (Ours w/o Demix).

The last model replaces each TTL layer with a TCN layer

[13] of the same dilation rate (TCN+Demix). We imple-
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Figure 5: Visualization of temporal attention matrix based on the product rule in Equation (8) for L-step transition on a

Markov chain. L = 1, 3, 5, and 9 from part (a) to (d), which model different hierarchies of the metrical structure.

ment TCN layers following [23] while setting the input and

output shape to be the same as our model. The resulting

model yields a comparable amount of 10.25M parameters

and is trained without augmentation.

In addition, we compare our model with two recent

works that have achieved state-of-the-art performance.

Specifically, Böck et al. [13] is based on TCN architectures

and Hung et al. [15] is based on SpecTNT.

4.3.2 Results and Discussion

In Table 1, we first observe Ours w/o Aug. yields gener-

ally better performance than TCN+Demix, especially on

the unseen GTZAN dataset. As both models share a com-

parable amount of parameters, this result demonstrates the

capability of Transformer (DSA) versus TCN (dilated con-

volution), which also corroborates with previous findings

on Transformer’s comparability to convolution on general

tasks [50±52]. Considering that Transformer is notoriously

data-inefficient to train, it is remarkable that our model is

well-trained with limited data without augmentation. We

owe this merit to DSA, which not only prevents redundant

computation but also makes musical sense in terms of the

hierarchical structure of music metrical modelling.

Comparing Ours w/o Demix to Ours w/o Aug., while

both models are highly competitive in beat tracking, the

latter demonstrates more superiority in downbeat tracking.

Downbeat tracking is generally more difficult than beat

tracking because it is involved with deeper musical knowl-

edge, such as chord and bass progression, behind the ap-

parent spectrogram energy. In our model, the instrumental

attention captures the instrumental coordination as hints to

the harmonic cues that are orthogonal to the temporal axis,

and thus acquires better metrical modelling.

Comparing Ours w/o Aug. to Ours, we observe a

consistent improvement across datasets brought by partial

demix augmentation, which indicates the general useful-

ness of this augmentation strategy to model training.

Compared to state-of-the-art models, our improvement

in downbeat accuracy is more significant than that in beat

accuracy. On the test-only GTZAN dataset, we obtain 4%

point gain in F-measure over Böck et al. [13] in down-

beat tracking. Compared to Hung et al. [15], which is

also based on Transformer, our model can be more flexibly

trained (owing to the efficient DSA mechanism) on a 24GB

GPU in contrast to four 32GB GPUs reported in [15].

4.4 Attention Matrix Visualization

We visualize the attention matrix that our model learns by

interpreting it as a multi-step Markov transition matrix as

defined in Equation (8). Specifically, the L-step matrix is

the product of L one-step matrices through L layers. Here

we only consider TTLs with dilated self-attention, as ITLs

work on an orthogonal axis. Figure 5 shows the attention

matrix P (L) for L = 1, 3, 5, and 9 of the drum channel, in-

ferred from the piece hiphop.00090 chosen from GTZAN.

Figure 5a shows a one-step transition. Each position Qi

can only attend to its neighbours covered by the attention

window. Still, we observe that beat positions (denoted by

bk) are likely to get more attention. In Figure 5b where we

step to the beat scale, most attention spots are aligned with

beats. Moreover, we observe that the attention at bk is typi-

cally prolonged after Qi leaves bk, and is formed before Qi

reaches bk for every k. This means that our model learns

to transition its attention from the offbeat phase following

the last beat to the upbeat phase preceding the next beat.

Figure 5c further stretches the view to the downbeat scale,

and we can see similar patterns aligned with downbeat po-

sitions (denoted by dk). Finally, in Figure 5d, the attention

reaches further positions and displays a structural pattern.

The above visualization demonstrates the inner logic

that our model exploits for beat and downbeat tracking.

We see that our model gathers information from both local

and global scales with an organized hierarchy.

5. CONCLUSION

In conclusion, we contribute a novel Transformer architec-

ture for audio beat and downbeat tracking. The main nov-

elty lies first in our design of dilated self-attention, which

brings down the computation complexity of Transformer

from quadratic to linear level. In addition, we successfully

enhance beat and downbeat tracking by utilizing off-the-

shelf progress in music demixing. Our model not only

captures deeper harmonic cues for better metrical inference

but also discerns beat and downbeat in a visualizable hier-

archical manner. Our model is efficient, interpretable, and

potentially generalizable with highly competitive sequen-

tial modelling power. We hope our model encourages fu-

ture MIR research toward universal music understanding.
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