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ABSTRACT

The extraction of harmonic information from musical

audio is fundamental for several music information re-

trieval tasks. In this paper, we propose novel harmonic

audio features based on the perceptually-inspired tonal in-

terval vector space, computed as the Fourier transform

of chroma vectors. Our contribution includes mid-level

features for musical dissonance, chromaticity, dyadic-

ity, triadicity, diminished quality, diatonicity, and whole-

toneness. Moreover, we quantify the perceptual relation-

ship between short- and long-term harmonic structures,

tonal dispersion, harmonic changes, and complexity. Be-

yond the computation on fixed-size windows, we propose

a context-sensitive harmonic segmentation approach. We

assess the robustness of the new harmonic features in style

classification tasks regarding classical music periods and

composers. Our results align with, slightly outperform-

ing, existing features and suggest that other musical prop-

erties than those in state-of-the-art literature are partially

captured. We discuss the features regarding their musical

interpretation and compare the different feature groups re-

garding their effectiveness for discriminating classical mu-

sic periods and composers.

1. INTRODUCTION

Over the last decades, music consumption has shifted from

physical media to streaming services comprising large dig-

ital collections [1]. Methods for organizing these collec-

tions are fundamental for user navigation, browsing, and

retrieval. In this context, a significant effort has been de-

voted to the automatic classification of musical audio sig-

nals into style or genre categories within Musical Infor-

mation Retrieval (MIR) [2–4]. While the traditional ap-

proach to such tasks is based on hand-crafted features and

classical machine learning, end-to-end deep-learning ap-

proaches have led to major improvements [4]. Neverthe-

less, strategies based on hand-crafted mid-level features are

still of relevance since they allow interpretable and control-

lable systems that focus on specific aspects of the music.
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Existing approaches for style classification mostly rely

on timbral or rhythmic mid-level features, which appear

suitable for discriminating top-level genres such as pop,

rock, jazz, and classical music [2, 5, 6] or sub-genres of

popular music [7, 8]. However, such features are less

suitable for discriminating sub-genres or historical peri-

ods within Western classical musicÐconsider, e. g., the

co-existence of solo piano music composed over several

centuries [9]. To address this challenge, harmonic features

have shown promising results [10–13]. Yet, existing har-

monic audio features exhibit two main limitations. First,

many of these features focus on low-level and short-term

properties, which do not explicitly capture the horizontal

or long-term structure of harmony, known to be relevant

to style classification. Second, these features do not ex-

plicitly consider perceptual qualities, such as the degree of

dissonance or the perceptual relationship of sonorities.

To account for the two limitations identified above, we

consider in this paper a set of harmonic features based on

the Tonal Interval Vector (TIV) space proposed in [14].

Multi-level pitch is mapped into a 6-dimensional complex

space whose distances capture perceptual relationships be-

tween sonorities. We make the following four main con-

tributions. (1) We consider the TIVs proposed in [14] for

style classification. (2) On the TIV space, we advance a set

of novel harmonic features for capturing long-term hierar-

chical harmonic relationships. (3) Moreover, we propose a

structural audio segmentation based on harmonic changes

and compare this approach to a fixed-window segmenta-

tion. (4) To assess the newly proposed harmonic features,

we perform experiments for style classification of Western

classical music, considering historical periods (eras) and

composers as sub-genre taxonomies.

The paper is structured as follows. Section 2 discusses

related work on the harmonic description of musical audio

and style classification. Section 3 presents novel harmonic

features based on the TIV space. Section 4 presents our

experimental results using TIV features for style classifi-

cation compared to the state-of-the-art. Finally, Section 5

presents the conclusions and future work.

2. RELATED WORK

The harmonic description of musical audio typically

adopts chroma vectors to represent the energy of pitch-

class content and to design higher-level harmonic features.

Several methods have been proposed for the extraction of
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chroma vectors [15–18]. The Non-Negative Least Squares

(NNLS) chroma reduces the impact of overtones and has

shown to be one of the most robust chroma vector repre-

sentations for audio transcription [17].

For describing harmonic properties based on chroma

vectors, Weiû et al. proposed a set of template-based

chord and interval features [10] as well as tonal complexity

features [11] for style period and composer classification

within Western classical music. Most of these features are

transposition-invariant and therefore do not depend on the

key of the piece. These two sets of features are detailed in

Sections 2.1 and 2.2. Furthermore, mid-level features for

capturing chord transitions over time using Hidden Markov

Models were proposed in [13].

2.1 Template-based Features

Motivated by the study on stylistic features from pitch-

class sets by Honingh and Bod [19, 20], Weiû et al. [10]

propose a set of template-based features (denoted as F)

studying the likelihood of a given complementary interval

or triad type in a chroma vector c = (c0, c1, ..., c11) ∈ R
12.

For example, the likelihood of a perfect fourth/fifth inter-

val, FIC5, results from multiplying c0 by c5. To make

these features transposition-invariant, the authors sum all

cyclic shifts of the same interval in a given chroma vec-

tor c. This calculation is simplified by applying a bi-

nary template I according to the desired type of inter-

val or triad. A perfect fourth/fifth interval template is

I = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤.

2.2 Tonal Complexity Features

Tonal Complexity features (denoted as G) aim to capture

musical attributes such as the amount of tonal variation in

musical content. In [11], a total of seven complexity fea-

tures are defined. For example, GCompEntr represents the

Shannon entropy of a chroma vector while GCompFifth de-

scribes the spread of a chroma vector over the circle of

fifths. Please refer to [11] for a thorough mathematical

definition and musical interpretation of these features.

2.3 Tonal Interval Vectors

TIVs represent multi-level pitch in a geometrical space

where vector distances relate to their perceived proxim-

ity [14]. The perceptual basis of the TIV space ad-

dresses three common limitations in preceding tonal pitch

spaces [21–24]. First, it allows the representation and com-

parison of pitch at multiple time scales, namely individual

pitches, chords, and keys. Second, prior knowledge of the

key center is not required when measuring pitch distances.

Third, it provides an indicator of consonance, lacking in

related spaces. Moreover, distances between TIVs capture

musical properties such as voice leading and shared inter-

val content. Similar to the approach used in [25], the 6-

dimensional complex TIV T ∈ C
6 is computed as the Dis-

crete Fourier Transform (DFT) to a chroma vector c ∈ R
N

k IC Harmonic Quality Intervals wk

1 IC1 Chromaticity m2/M7 3
2 IC6 Dyadicity Tritone 8
3 IC4 Triadicity M3/m6 11.5
4 IC3 Diminished Quality m3/M6 15
5 IC5 Diatonicity P4/P5 14.5
6 IC2 Wholetoneness M2/m7 7.5

Table 1. Harmonic quality and interval category associated

with each TIV coefficient magnitude
∥Tk∥
wk

.

as follows:

Tk = wk

N−1∑

n=0

c̄ne
− j2πkn

N , 1 ≤ k ≤ 6,

with c̄n =
cn∑N−1

n=0 cn
,

(1)

where N = 12 is the dimension of the chroma vec-

tor. We set 1 ≤ k ≤ 6 due to the properties of the

DFT by which the remaining coefficients are symmetric.

w = (3, 8, 11.5, 15, 14.5, 7.5) are weights adjusting the

contribution of each dimension Tk to improve the per-

ceptual basis of the space in representing musical audio.

They adjust the contribution of each coefficient Tk and pro-

mote the importance of the most relevant intervals within

tonal music, such as fourths/fifths and major and minor

thirds/sixths. These weights are derived from empirical

dissonance ratings of complementary intervals and triads

(major/minor, sus4, augmented, diminished). The adop-

tion of the weights w have shown to capture perceptual

distances between musical audio sonorities irrespective of

timbral differences to a greater degree than chroma vectors

or an unweighted DFT space [26].

2.4 TIV Basic Features

We now describe a group of features directly computed

from TIVs, referred to as TIV Basic (denoted as B). Musi-

cal interpretations are attributed to the magnitude ∥Tk∥/wk

of each of the six coefficients, evaluating the intervallic

content of pitch configurations and its associated harmonic

quality (see Table 1). For example, k = 5 corresponds

to the BDiatonicity feature. We establish a correspondence

between each coefficient magnitude and the six comple-

mentary interval categories defined in Western music the-

ory [20].

A TIV’s indicator of consonance is computed as its

magnitude (vector length) normalized to the norm of the

weight vector w, such that:

BDissonance = 1− ∥T∥/∥w∥ . (2)

3. FEATURE DESIGN IN THE TONAL INTERVAL

SPACE

Aiming to take full advantage of the properties of TIVs, we

now propose novel mid-level harmonic audio features that

consider the harmonic structure and long-term hierarchical

dependencies between audio segments.
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3.1 TIV Complexity Features

Our first feature group, denoted as Q, captures aspects of

tonal complexity and consonance, somehow mirroring the

features presented in Section 2.2.

3.1.1 Distance Between Audio Segments

Distances between TIVs relate to their perceived similar-

ity such that small distances equate to perceptually simi-

lar sonorities. To this end, Euclidean and cosine distance

metrics between TIVs, which measure different perceptual

characteristics of the signal, have been considered in the

literature [14, 27].

The cosine distance θ measures the phase difference

between two TIVs, capturing pitch class distances that

roughly correspond to voice leading parsimony. Smaller

values indicate a higher number of shared pitch classes.

The Euclidean distance metric d captures the phase φk

and magnitude ∥Tk∥ differences between TIVs. In addi-

tion to measuring the number of shared pitch classes be-

tween TIVs, it also accounts for shared interval content.

To exploit the musical properties of these two distance

metrics, we propose new features that measure the percep-

tual distance between consecutive musical audio segments.

Given the TIV Tn = (T0,n, . . . , T5,n) of the n-th seg-

ment, the Euclidean (d) and cosine (θ) distances between

two consecutive segments is defined as:

QEucDist = seucn = d{Tn,Tn+1},

QCosDist = scosn = θ{Tn,Tn+1}
(3)

The metrics can be applied at multiple hierarchies (or

time scales) by adopting musical audio segments of differ-

ent sizes. While short segments capture chord changes,

larger segments can capture the overall tonal structure

(e.g., key modulations).

3.1.2 Tonal Dispersion

The tonal dispersion of the n-th audio segment n is defined

as the distance of its respective TIV to the tonal center T:

QEucTonalDisp = ueuc
n = d{Tn,T},

QCosTonalDisp = ucos
n = θ{Tn,T}

(4)

The tonal center of a piece corresponds to the TIV of

the pitch-class distribution averaged across its entire du-

ration. The tonal dispersion indicates how much the har-

monic content of a given segment deviates from the tonal

center T and can indicate the degree of modulations across

the piece or the segments with non-diatonic pitch classes

(i.e., further away from the tonal center). This feature can

help discriminate later classical musical periods that typi-

cally have larger tonal dispersion [28]. To compute the dis-

tance of a given segment n from the tonal center, we adopt

both the Euclidean and cosine distance metrics to capture

the different harmonic aspects mentioned in Section 3.1.1.

3.1.3 TIV Entropy

Related literature has been adopting Shannon entropy to

capture the harmonic complexity within musical style [11,

Pitch class set TIV Entropy

Octatonic scale 0.3551
Diminished seventh chord 0.3552
Whole tone scale 0.5268
Diatonic scale 1.2444
Pentatonic scale 1.2972
Harmonic minor scale 1.4927
Minor seventh chord 1.5542
Single note 1.6767
Chromatic scale 1.6906

Table 2. TIV entropy of several pitch-class sets. For de-

tails on the elements of each set please refer to [30].

29]. Amiot [30] recently proposed the computation of har-

monic complexity from symbolic pitch-class distributions

as the Shannon entropy of its Fourier coefficients. Follow-

ing [30], we propose a TIV entropy feature to capture har-

monic complexity from musical audio. The TIV entropy is

high for random pitch-class distributions and low for pitch-

class distributions that exhibit some degree of organization

(i.e., periodicity or sparseness). We define the TIV entropy

feature as the entropy of the normalized coefficient magni-

tudes of a TIV T:

QTIVEntropy =
6∑

k=1

−pk log pk, pk =
∥Tk∥∑6

j=1 ∥Tj∥
(5)

While entropy has been shown to capture different

stylistic attributes depending on the time scale under anal-

ysis [29], we demonstrate in Table 2 the TIV entropy of

various pitch-class sets. Lower TIV entropy (i.e., denoting

greater organization) includes fairly common pitch-class

distributions such as diatonic scales, triads, and tetrads.

Higher TIV entropy denotes musical structures with less

common adoption in the tonal music lexica, such as the

chromatic set and its many subsets.

3.2 Harmonic Rhythm Features

Harmonic rhythm is the rate at which the chords change

in a musical piece. It can provide a prominent indicator

to distinguish style periods. For example, a fast harmonic

rhythm is a characteristic of the Baroque period [31] in

comparison with the large-scale structures of a Roman-

tic symphony. To this end, we advance new features (de-

noted as R) that study the rate and magnitude of harmonic

changes based on the Harmonic Change Detection Func-

tion (HCDF) proposed in [32]. The value ξn of the HCDF

at frame n is defined as the rate of change between the

TIVs Tn−1 and Tn+1 after Gaussian smoothing and is

computed using the Euclidean distance.

Let us now consider Ξm as the set of frame indices of

the peaks of the HCDF, considering all local maxima as

peaks. We define the inter-peak interval feature as the dif-

ference between the frame numbers of consecutive peaks

of the HCDF:

RHCDFPeakInterval = ∆m = Ξm+1 − Ξm (6)

As an additional feature, we consider the magnitude of

the peaks, RHCDFPeakMag, given by ξY , with Y = Ξm,

which captures the degree of the harmonic changes.
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3.3 Temporal Resolution of Tonal Interval Vectors

We detail two segmentation strategies for the feature ex-

traction process: multiple fixed-size segment resolutions

(Section 3.3.1) and variable-size segments resulting from

the analysis of harmonic changes (Section 3.3.2).

3.3.1 Fixed-size Segmentation with Multiple Resolutions

Fixed-size segments with equal duration are adopted at

multiple time scales or resolutions to capture the piece’s

different harmonic or tonal dimensions. Following [10–

12], we consider four time resolutions in our work: 100ms,

500ms, 10s, and global (i.e., the entire piece or excerpt

under analysis). Smaller time scales (e.g., 100ms and

500ms) capture finer musical elements such as individ-

ual notes, intervals, and chords. Larger time scales (e.g.,

10s and global) capture higher harmonic structures at the

level of structural parts or the overall piece, enhancing

the harmonic changes in the large-scale tonal structure of

the composition (such as key and modulations) and the

harmonic trajectories of the horizontal structure (such as

chord progressions).

3.3.2 Harmonic Structural Segmentation

We define a context-sensitive segmentation at the peaks

of the HCDF (see Section 3.2). This strategy consid-

ers prominent harmonic changes as segment boundaries,

therefore producing segments of varying duration accord-

ing to the specific harmonic changes in the audio content.

The use of context-sensitive segmentation in the feature

extraction process of musical analysis systems has been

shown to improve their accuracy compared to fixed seg-

mentation approaches, which are less aware of musical

structure [33, 34].

4. EXPERIMENTS AND RESULTS

To assess the degree to which the harmonic information

conveyed by TIV harmonic audio features in Section 3 dis-

criminate musical style, we evaluate the proposed features

in two classical music style classification tasks from mu-

sical audio: historical periods (e.g., Baroque or Romantic)

and composers. Furthermore, we compare the accuracy

of the above features to the state-of-the-art template-based

and complexity features described in Sections 2.1 and 2.2.

To study the accuracy of different groups of features, we

consider the two following sets: (template-based F and

tonal complexity G) and (TIV basic B, TIV complexity

Q, harmonic rhythm R). Finally, we inspect the impact of

different context-sensitive vs. fixed-window segmentation

strategies.

4.1 Experimental Procedure

For our experiments, we consider the Cross-Era 1 and

Cross-Composer 2 datasets, which include 1600 and 1100

pieces, respectively. In detail, the Cross-Era dataset has

1 https://www.audiolabs-erlangen.de/resources/MIR/cross-era
2 https://www.audiolabs-erlangen.de/resources/MIR/cross-comp

Dataset No. Classes (Z) Items per Class

Cross-Era-Full 4 400
Cross-Era-Piano 4 200
Cross-Era-Orchestra 4 200

Cross-Comp-11 11 100
Cross-Comp-5 5 100

Table 3. Balanced subsets obtained from the Cross-Era

and Cross-Composer datasets [12].

400 pieces per classical style period and features the fol-

lowing four periods: Baroque, Classical, Romantic, and

Modern. The Cross-Composer dataset includes 100 pieces

for each of the 11 featured classical music composers

across all style periods. These datasets are further divided

into the subsets presented in Table 3. The datasets pro-

vide pre-extracted NNLS chroma features at a resolution

of 100ms (10Hz) for each piece.

Based on [12], we employ the following classification

procedure. Using the subsets listed in Table 3, we com-

pute the features and calculate their piece-wise mean (µ)

and standard deviation (σ). Then, we perform a stratified

split into three cross-validation (CV) folds, one for testing

and two others for training the model. Next, we use the

two training folds to compute a Linear Discriminant Anal-

ysis (LDA) matrix to reduce the dimensionality of all three

folds to L = Z − 1 with Z being the number of classes

per task. We then perform a five-fold grid search on the

two training folds to train an SVM classifier while optimiz-

ing its hyperparameters. We conduct this procedure three

times, with each fold serving for testing once. To evaluate

the robustness of the model concerning the random distri-

bution into folds, we repeat the procedure ten times with

re-initialized folds to calculate the accuracy deviation be-

tween the different classes (i.e., inter-class deviation).

To counteract problems stemming from adopting tracks

from the same CD recording on the training and test folds

(known as the album effect [35]), we take additional mea-

sures to prevent the model from adapting to the acoustic

conditions of specific recordings. To this end, inspired by

[11], we apply a composer filter (for period classification)

or a performer filter (for composer classification) during

the CV procedure that forces pieces from the same com-

poser/performer to be placed within the same fold, thus

avoiding overfitting while making the task more challeng-

ing and closer to real-world application scenarios.

4.2 Influence of Different Types of Segmentation

We analyze the impact of different audio segmentation

strategies on the classification of classical music periods.

Table 4 displays the classification accuracy for the TIV

Basic (B), TIV Complexity (Q), and Harmonic Rhythm

(R) feature groups, as well as the combination of all the

above features (through concatenation), on the Cross-Era

dataset. As segmentation strategies, we consider fixed-

size segmentation with a single resolution of 100ms (FS),

fixed-size segmentation with multiple resolutions (MR)Ð

100ms, 500ms, 10s, and globalÐand harmonic structural
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FS MR HS MR + HS

Cross-Era-Piano

TIV Basic (B) 57.54% 66.84% 51.65% 65.64%
TIV Complexity (Q) 56.03% 57.99% 56.07% 57.67%
Harm. Rhythm (R) - - 21.26% -
Combined 62.61% 65.47% 48.97% 63.80%

Cross-Era-Orchestra

TIV Basic (B) 66.84% 74.80% 64.22% 75.34%
TIV Complexity (Q) 67.35% 69.87% 64.80% 70.00%

Harm. Rhythm (R) - - 28.31% -
Combined 73.80% 77.19% 68.89% 77.78%

Cross-Era-Full

TIV Basic (B) 60.41% 70.13% 57.24% 70.08%
TIV Complexity (Q) 55.97% 62.18% 57.35% 62.86%
Harm. Rhythm (R) - - 21.65% -
Combined 64.94% 71.63% 62.30% 70.99%

Table 4. Classification accuracy for different types of seg-

mentation: fixed-size (FS), fixed-window with multiple

temporal resolutions (MR), harmonic structural segmenta-

tion (HS), and a combination of the last two approaches.

segmentation (HS). Additionally, we consider combining

the two approaches presented in Section 3.3 (MR + HS).

For the Cross-Era-Piano and Cross-Era-Full datasets,

the MR strategy shows slightly higher accuracy than other

segmentation strategies. For other scenarios such as the

Cross-Era-Orchestra dataset, combining the MR and HS

approaches leads to similar or slightly better results. Over-

all, the MR strategy obtains the highest accuracy values in

most cases and is less computationally expensive than the

HS approach. Therefore, we opt for the MR strategy in all

subsequent experiments, using the HS strategy only for the

harmonic rhythm feature group R.

4.3 Style Period and Composer Classification

Using the MR strategy, we perform style period and com-

poser classification experiments on a larger set of feature

combinations and show the results in Table 5. We first

compare the template-based (F) and TIV basic (B) feature

groups, which capture similar harmonic aspects. Indeed,

we observe that these groups perform similarly on most

datasets, with accuracy differences of 2.98% and 4.74% on

the Cross-Era-Piano and Cross-Comp-5 datasets, respec-

tively. The tonal complexity (G) and TIV complexity (Q)

groups show a greater performance accuracy difference in

the Cross-Era-Piano dataset (7.85%) and a smaller differ-

ence in the Cross-Era-Full dataset (3.33%). Concerning

the two largest datasets (Cross-Era-Full and Cross-Comp-

11), the best feature groups result from combining TIV

features with those proposed in [10,11], achieving 74.04%

and 38.25% accuracy, which correspond to an improve-

ment of 2.88% and 4.74%, respectively, compared to using

only the features proposed in previous work.

From these findings, we draw two main conclusions.

First, conceptually similar feature groups lead to quite

similar classification accuraciesÐan encouraging finding,

which proves that our approach is valid (a kind of ªsan-

ity checkº against [10, 11]) and indicates that the features

exhibit the intended mid-level semantic properties (fea-

ture groups describing related harmonic properties behave

similarly for classification). Second, the novel features

at least partially capture complementary information such

that their combination improves upon individual groups.

Overall, we do not reach the state-of-the-art results on the

Cross-Era-Orchestra and Cross-Era-Full subsets, which

were obtained in [13] using chord transition features in

combination with template-based and complexity features,

surpassing our results by 6.01% and 4.16%. However,

since TIV-based features improve upon the ones of [10,11],

we hypothesize that, in combination with the chord transi-

tion features of [13], they might be able to reach even better

classification accuracies.

4.4 Harmonic Features Correlation

We adopt hierarchical clustering to assess the degree of in-

formation (and redundancy) of harmonic audio features.

Figure 1 shows the hierarchical clustering of all harmonic

features detailed in Sections 2.2, 2.1, and 3, which we

adopt in our experiments. Features are computed at a fixed-

size 100ms resolution with average and standard deviation

statistics.

Template-based (F) and TIV basic (B) features appear

strongly correlated, often ending up in the same cluster.

This suggests they may be capturing similar musical prop-

erties. For example, the two top-most features FIC5,σ and

BDiatonicity,σ are direct neighbours and are both based on

perfect-fifth relationships. Tonal Complexity (G) and TIV

Complexity (Q) features also appear correlated, albeit to

a slightly lower degree. For example, the green cluster is

mainly composed of features from these groups. On the

other hand, the red cluster contains several TIV Complex-

ity features and none from the Tonal Complexity group,

suggesting that those, in particular, describe different har-

monic characteristics. The adopted global statistics, mean

and standard deviation, tend to be grouped under the same

cluster, suggesting to capture complementary information.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel set of mid-level and

perceptually-inspired harmonic audio features based on

TIVs, which provide indicators for musical dissonance,

chromaticity, dyadicity, triadicity, diminished quality, di-

atonicity, and whole-toneness, as well as quantify percep-

tual relations of short- and long-term harmonic structures,

tonal dispersion, harmonic changes, and complexity. Fea-

tures are computed using context-sensitive harmonic struc-

ture segmentation and a fixed-size segmentation with mul-

tiple temporal resolutions.

Proposed TIV harmonic features were assessed in two

classical music style period and composer classification

tasks using five different datasets. The novel TIV harmonic

features have been compared to state-of-the-art harmonic

features proposed in [10–12] and showed similar results,

slightly outperforming in four out of the five datasets, with

an improvement of up to 4.74%. A high degree of re-
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Cross-Era-Piano Cross-Era-Orch Cross-Era-Full Cross-Comp-11 Cross-Comp-5

Tonal [10, 11]

Template-based (F) 69.82 ±13.45 75.25 ±12.16 70.51 ±11.57 37.41 ±19.96 50.01 ±19.77

Tonal Complexity (G) 65.84 ±12.80 71.68 ±14.09 65.51 ±13.26 29.74 ±21.33 43.32 ±25.68

Combined (F,G) 67.77 ±15.36 75.23 ±12.17 71.16 ±11.42 36.97 ±21.59 48.86 ±22.47

TIV

TIV Basic (B) 66.84 ±15.31 74.80 ±11.22 70.13 ±12.52 37.84 ±20.66 54.75 ±17.96

TIV Complexity (Q) 57.99 ±17.67 69.87 ±12.87 62.18 ±13.71 29.61 ±19.77 43.16 ±19.06

Harm. Rhythm (R) 21.26 ±28.06 28.31 ±21.51 21.65 ±26.44 7.77 ±17.64 16.47 ±19.35

Basic + Comp. (B,Q) 65.59 ±16.77 76.68 ±10.35 71.50 ±12.03 37.82 ±20.30 53.40 ±16.85

Combined (B,Q,R) 65.47 ±16.63 77.19 ±9.89 71.63 ±12.03 37.83 ±20.01 53.75 ±16.65

Combined F,G,B,Q,R 64.39 ±16.27 76.70 ±11.41 73.78 ±10.80 38.25 ±21.01 49.72 ±19.25

Combined, no R F,G,B,Q 64.78 ±15.80 76.56 ±11.29 74.04 ±10.7 37.89 ±21.57 50.44 ±18.72

Tonal+Transitions [13] 73.2 83.2 78.2 – –

Table 5. Classification results for several feature groups across the Cross-Era and Cross-Composer datasets. The values

on the table represent the mean classification accuracy and inter-class deviation, both expressed as percentages. For com-

parison, the state-of-the-art results for the Cross-Era dataset reported in [13] were also included.
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Figure 1. Hierarchical clustering of harmonic features computed at a 100ms resolution. The clustering is based on Spear-

man correlation distances using Ward’s linkage method.

dundancy with existing state-of-the-art features has been

found. However, the results suggest that new information

is captured in the proposed TIV harmonic features, namely

in what concerns the horizontal or long-term harmonic

structure, e.g., tonal dispersion and distance between au-

dio segments, and harmonic rhythm. While the context-

sensitive segmentation strategy introduced slight improve-

ments to classification accuracy, these do not seem to out-

weigh its higher computational cost.

Finally, for research reproducibility, we made the im-

plementation of the proposed system publicly available on-

line at github.com/fcfalmeida/style-ident.

In future work, we may consider optimizing the segmen-

tation strategy, expanding it to account for multiple time

scales, conducting classification experiments on other mu-

sical genres, and experimenting with different machine

learning approaches such as deep learning.
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