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ABSTRACT

In this paper, we introduce LA-Chorus, a chorus detection

model based on Latent feature Augmentation and ResNet-

FPN architecture. We make three contributions. Firstly, we

propose a method for implicitly augmenting chorus data

in the latent space during the training stage. Compared

to augmentations on audio surfaces such as time stretching

and pitch shifting, latent augmentations indicate changes at

a higher level in original audio, thereby increasing the di-

versity and sufficiency in training. Second, we apply Fea-

ture Pyramid Network (FPN) to generate additional em-

beddings from low dimension to high dimension, conse-

quently achieving a multi-scale training paradigm. Lastly,

we release Di-Chorus, a new diversified dataset of 13 gen-

res and 14 languages for the community of music struc-

ture analysis. In conjunction with other public datasets, we

conduct comprehensive experiments to evaluate the perfor-

mance of our proposed method compared to other state-of-

the-art models, where LA-Chorus outperforms other SO-

TAs by a considerable margin, meanwhile the proposed la-

tent audio augmentation shows dominant advantages over

traditional augmentation methods.

1. INTRODUCTION

Chorus detection, aiming for identifying the most ªcatchyº

or ªmemorableº part of a song, is one of the fundamental

tasks in music structure analysis (MSA) [1]. Chorus de-

tection essentially helps better understand music composi-

tions with computational modelling methods and has var-

ious applications, such as automatic chorus preview func-

tions in music software that allow users to efficiently select

songs from a large library according to their preference [2].

Currently, chorus detection models are based on deep

neural network (DNN) architectures with a supervised

MSA method, where annotations of different segments are

used as target variables during the training stage [3±5]. The

common approach is to regard chorus detection as a binary

classification task, where each frame (or several frames) is

assigned with a class label according to the corresponding
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segment annotation, and the model is trained to classify

these labels [6].

To better perform this classification task, we identify

two critical questions: (1) how to locate chorus with high

precision as the resolution of feature maps decreases when

model goes deeper, and (2) how to learn sufficient vari-

ations of chorus characteristics. The first issue requires

incorporating chorus positional information into the latent

representations learned by models, resembling the task of

object detection in computer vision that aims to find the

boundaries of target objects [7]. Nevertheless, as the net-

work goes deeper, latent representations begin to lose posi-

tional meanings because of the reduced-sized feature maps

(i.e. the resolution decreases) [8]. To address the problem

of shrinking resolution in feature maps, previous chorus

detection methods first used neural network architectures

as backbones to generate audio embeddings, and then ap-

plied positional modifications on the networks. For ex-

ample, [3] introduced a multi-task model that jointly de-

tects chorus segments and their boundaries using convolu-

tional neural network (CNN) to increase positioning preci-

sion, and [5] proposed a multi-scale CNN model that up-

samples/down-samples the original audio features to better

capture both global and local information. In this paper, we

incorporate Feature Pyramid Networks (FPN) [8], a popu-

lar framework for object detection from computer vision,

into a standard ResNet [9] as our model’s backbone. It

is designed specifically to tackle the problem of feature

maps’ decreasing resolutions by appending a network of

reversed size order for each feature map with lateral con-

nection, which will be discussed in Section 3.

The second issue, as learning sufficient chorus charac-

teristics, can be addressed by using a diversified training

dataset to feed the model such that it will generalize well at

testing time. Nevertheless, despite the promising progress

of emerging music annotations such as Isophonics [10],

SALAMI [11], and Harmonics [12], the scarcity of la-

beled data (as they are costly to retrieve) and the deficiency

of data diversity have always been challenging for mu-

sic information retrieval (MIR) and other machine learn-

ing fields. To combat this problem, some traditional aug-

mentation techniques have been proposed on the original

inputs, such as rotating or flipping the images in computer

vision [13], or time stretching [14] and pitch shifting [15]

in audio signal processing. Recently, implicit augmenta-

tion methods, which focus on the augmentation in latent

space, have shown remarkable performance over the pre-
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Figure 1. Illustration for implicit audio augmentation in

MSA with two annotation types (verse and chorus) from

a constant Q transformation (CQT) spectrogram excerpt of

ªSmooth Criminalº in Isophonics [10]. The spectrogram is

first encoded into latent embeddings by frame, where cho-

rus embedding and verse embedding follow latent distri-

butions Pc and Pv respectively. Then latent augmentations

are sampled around embeddings of verse/chorus segments,

which correspond to augmented verse/chorus segments in

the input space (represented by dashed lines, meaning they

are NOT shown explicitly in the input space).

vious ªshallowº methods in computer vision [16, 17]. The

motivation is that latent representations may carry seman-

tic meanings of original images (e.g. human age, gender,

facial expressions) [18]. Such discoveries are also consis-

tent with some works in audio signal processing, where

latent audio representations have been found to capture

distinctive audio features [19]. For example, [20] inves-

tigated the latent spaces of timbre and pitch of various in-

strument sounds encoded by a GM-VAE model; [21] intro-

duced a Cycle-GAN based model for musical timbre trans-

fer; and [22] disentangled pitch and rhythm representations

to produce music analogies. According to these previous

works, the latent features of audio correspond to seman-

tic meaning of music and acoustic, such as timbre, rhythm

pattern, etc. Therefore, augmentations in the latent space

would correspond to changes of semantic features in the

input audio segments, which leads to more variations than

that of the augmentations in the shallow space. To our best

knowledge, there is currently no application of latent aug-

mentations in audio signal processing. In this paper, we

illustrate this intuition by an MSA example in Figure 1.

Thus, we propose LA-Chorus, a supervised chorus

detection model based on ResNet-FPN architecture that

leverages implicit audio augmentations on latent features,

which can better locate chorus positions and meanwhile

enrich variations in training samples with semantic mean-

ings. Moreover, since songs for most of the public datasets

are not easy to retrieve, we further release a diversified

collection of songs on YouTube for our MSA commu-

nity, namely Di-Chorus, which contains 237 songs from 13

genres in 14 languages with annotations by experts. The

rest of the paper is structured as follows: the next sec-

tion introduces related works in chorus detection and la-

tent augmentations, after which we discuss model structure

and inference method. The experiment section presents

LA-Chorus’s performance on public datasets as well as

Di-Chorus compared against other state-of-the-art models,

followed by an ablation study showing the effectiveness of

latent augmentations. Finally, the last section concludes

our findings and contributions.

2. RELATED WORK

2.1 Chorus Detection

The origin of chorus detection tightly relates to thumbnail-

ing, which aims to find a short preview (thumbnail) as a

meaningful representation of a song [23]. Common ap-

proaches for thumbnailing includes evaluating the repeated

sections of the audio waveform based on chroma trans-

formation [24], selecting segments with the most repeti-

tion [25], and detecting significant change points with self-

similarity matrix [26]. On the other hand, MSA assumes

that songs contain different types of segments (e.g. chorus,

verse, bridge, etc.) with certain structures [27]. Based on

the assumption, many chorus detection algorithms in MSA

took an unsupervised fashion in the early stage: [28] used

heuristics to predict segment labels based on a restricted

template for song structures; [29, 30] both applied Hidden

Markov Model to derive different song sections; and [31]

performed spectral clustering on the co-occurrence matrix

generated from k-nearest neighbors.

With the advancement of deep learning in computer

vision and natural language processing, DNN gradually

makes its presence in MIR, among which ResNet [9], a

CNN-based model with residual connections, becomes one

of the most popular DNN architectures in recent MIR lit-

erature [4,32]. At the same time, the emergence of labeled

databases such as SALAMI [11] and Harmonix [12] make

supervised learning gradually attractive for chorus detec-

tion, leading to the current paradigm of supervised chorus

detection based on deep learning: [33] introduced a hybrid

generative model with LSTM to directly predict segment

labels; [3] proposed a multi-task method that jointly de-

tects chorus segments and their boundaries; and [5] further

proposed a multi-scale network with self-attention convo-

lution to extract latent features of song segments, gener-

ating the current state-of-the-art results for chorus detec-

tion. In LA-Chorus, we will incorporate Feature Pyramid

Network (FPN) [8], a top-down network that dedicates to

the object positioning task, into ResNet as our model’s

backbone. The proposed framework is able to generate

latent features with rich positional information and seman-

tic meanings for later augmentation process, which will be

discussed in detail in Section 3.
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Figure 2. Model structure for LA-Chorus. The solid line represents the model generation processes in the forward pass,

while the dashed line represents the inference (i.e. not explicitly generated in the forward pass).

2.2 Audio Data Augmentation

To enhance the diversity and variation in original audio

features, traditional audio augmentation techniques such

as time stretching, pitch shifting, noise perturbing and

SpecAugment [34] are often implemented when trans-

forming audio signals into spectrograms [14, 15]. In this

paper, we take a different perspective: augmenting latent

representations instead of original audio signals, motivated

by the recent advancement of implicit augmentation meth-

ods in computer vision, represented by implicit semantic

data augmentation (ISDA) and its variants [16, 17]. The

ISDA model first used a backbone network to encode in-

put images into latent space with semantic meaning, and

then formulated a multi-variate Gaussian distribution for

latent features in each class, which was estimated by their

mean and covariance within the class via direct calculation.

Then augmentations were sampled from the estimated dis-

tribution, and the model was later optimized by a novel

cross-entropy loss tailored for latent augmentations. In this

paper, we will demonstrate how this implicit augmentation

method is utilized in audio to improve chorus detection.

3. PROPOSED METHOD

The structure of our proposed model is illustrated in

Figure 2. We first use ResNet architecture to encode au-

dio spectrograms into latent embeddings, Then, we apply

the latent augmentation by sampling from estimated la-

tent distributions for frames in the ªchorus" class and the

ªnon-chorusº (other) class respectively. Finally, the aug-

mented representations are sent to a fully-connected layer

to generate probability predictions. At learning and infer-

ence stages, we adopt a special cross-entropy loss that han-

dles infinite number of latent augmentations via an upper

bound, which saves the cost of sampling procedure.

3.1 ResNet-FPN

We first obtain the constant Q transform (CQT) spectro-

grams with F frequency bins and T frames in time domain

after padding. Then a ResNet-50 architecture is imple-

mented as the embedding extractor Gθ to extract latent em-

bedding. Specifically, the ResNet consists of four stages

that contains 3, 4, 6 and 3 residual CNN blocks respec-

tively, where 64 convolution filters of 7×7 kernel size and

a max-pooling layer of 3× 3 kernel size are designed prior

to these residual blocks to process the inputs.

With the size of each feature map reducing as CNN

goes deeper, semantic information in deep audio features

increases [8]. However, at the same time, the resolution of

the feature map decreases and undermines the precision

of chorus positioning. To solve this problem, we mod-

ify the backbone Gθ by incorporating a Feature Pyramid

Network (FPN) [8] into our ResNet architecture to con-

struct latent features of high resolution from latent fea-

tures with semantic information but of low resolution,as

shown in Figure 2. The FPN design, different from the

bottom-up ResNet part, takes a top-down approach that

comprises four 1×1 convolutional layers that corresponds

to four residual blocks of ResNet, which maps the low-

dimensional outputs of ResNet to high-dimensional latent

features with lateral connections.

As a result, the final latent representation A is of shape

T×D, where T is the number of frames and D is the num-

ber of latent dimensions. Because of the CNN and FPN de-

signs in our backbone, latent embeddings not only contain

both temporal and frequent information of the input audio,

but also integrate feature maps of multiple resolutions to

better locate chorus segments, further benefiting the latent

augmentations later.

3.2 Latent Augmentations on Audio Features

To enrich variations, we apply latent augmentations on

each representation ai ∈ R
D in the song, where ai denotes

the ith row in A. Similar to other latent variable models

such as VAE variants [35] and flow-based models [36], we

make a fundamental assumption that latent features within

the same class follow the same latent distribution. Specif-

ically, a latent augmentation ãi ∈ R
D for latent feature ai

follows a multi-variate Gaussian distribution N (ai,Σyi
),

where yi indicates the label class (ªchorusº or ªotherº) for

frame i, and Σyi
∈ R

D×D
+ represents the covariance ma-

trix for class yi. Then, we can sample from the distribution

regarding to each ai to get latent augmentations. In prac-

tice, a hyperparameter λ > 0 is imposed on the covari-

ance matrix Σyi
to control the deviation of augmentations,
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which leads to the final distribution of augmented latent

representation ãi:

ãi ∼ N (ai , λΣyi
). (1)

To estimate the covariance matrix Σ for different

classes, we mathematically calculate the covariance ma-

trix estimate Σ̂c for class c (c is either ªchorusº or ªotherº)

within the dataset:

Σ̂c =
1

Nc

Nc
∑

i=1

(ai − ā)(ai − ā)T , (2)

where ā = 1/Nc

∑Nc

i=1 ai is the mean of latent features in

class c, and Nc is the number of frames belong to class c.
This covariance estimate is updated at each iteration after

the generation of new latent features during training stage.

Finally, the augmented latent features Ã are sent to a

fully connected layer with weight W ∈ R
D×C and bias

b ∈ R
C to generate the probability predictions, with ã

being row-vectors in Ã:

ŷ = Fφ(Ã) = ÃW + b. (3)

In the next section, we will show an computationally ef-

ficient method for learning, which considers infinite aug-

mentations but requires no explicit calculation of the aug-

mented features Ã.

3.3 Inference and Learning

Given a dataset of size N , a basic approach to formulate

a loss function that treats each augmented latent features

as a new sample point, and sample M augmentations for

each latent feature, which results in an augmented dataset

of N × (M + 1) samples. Then we use cross-entropy loss

function to train the model. This method is effective when

M is relatively large, however, it is computationally expen-

sive as we need to compute extra loss values for N ×M
augmentations.

Instead of computing the loss function with discrete

augmentations, we adopt the loss function from [16] that

incorporates latent augmentations from the continuous do-

main. For the final fully-connected layer, we denote wc

as the column vector in W and bc as the bias element in b
for class c, then the limit of the cross-entropy loss for M
augmentations when M approaches to infinity equals:

lim
M→∞

−
1

N

N
∑

i=1

1

M

M
∑

j=1

log
( exp(wT

yi
a
(j)
i + byi

)
∑C

c=1 exp(w
T
c a

(j)
i + bc)

)

(4)

which is equivalent to calculating the expectation w.r.t. ãi:

L = −
1

N

N
∑

i=1

Eãi

[

log
( exp(wT

yi
ãi + byi

)
∑C

c=1 exp(w
T
c ãi + bc)

)]

(5)

=
1

N

N
∑

i=1

Eãi

[

log
(

C
∑

c=1

exp(ξ̃)
)]

(6)

where ξ̃ = (wc −wyi
)T ãi + (bc − byi

).

Since log() is a concave function, from Jensen’s in-

equality, we can show:

Lupper =
1

N

N
∑

i=1

log
(

Eãi

[

C
∑

c=1

exp(ξ̃)
]

)

(7)

≥ L. (8)

As ãi follows N (ai , λΣyi
) in Eqn. (1), and ξ̃ is a linear

transformation of ãi, then ξ̃ will also follow a Gaussian

distribution:

ξ̃ ∼ N
(

ξ ,∆
)

, (9)

where ξ = (wc −wyi
)Tai + (bc − byi

) and ∆ = λ(wc −
wyi

)TΣyi
(wc −wyi

).
Given the moment generating equation E[exp(tx)] =

exp(tµ + 1
2σ

2t2) for x ∼ N (µ, σ2), we can express Eqn.

(7) as follows:

Lupper =
1

N

N
∑

i=1

log
(

C
∑

c=1

exp(ξ +
1

2
∆)

)

(10)

= −
1

N

N
∑

i=1

log
( exp(wT

yi
ai + byi

)
∑C

c=1 exp(w
T
c ai + bc +

1
2∆)

)

,

(11)

which gives us a tractable upper-bound of Eqn. (6)

Therefore, we do not need to explicitly sample augmen-

tations from its distribution in Eqn (1). Instead, only the

covariance matrix Σc of latent features for each class re-

quires update at each iteration, which speeds up the con-

vergence compared to discrete estimation.

The algorithm for learning the embedding extractor Gθ
and the fully-connected layer Fφ is demonstrated in Al-

gorithm 1 below. Because the model is underfitted at be-

ginning epochs, the hyperparameter λ for controlling aug-

mentation deviation is set to be λ0 ×
epoch

total epoch
to alleviate

the impact of augmentation at the starting stage of training.

Algorithm 1 Algorithm for training LA-Chorus

Require: Padded CQTs batches; ResNet extractor Gθ; A

fully connected layer Fφ; Initial covariance matrix Σc for

each class; Initial λ0 for scaling augmentation

1: for epoch = 1, 2, ..., I do

2: for batch = 1, 2, ...,K do

3: Encode the CQT batch into latent features

4: {ai}
T
i=1 via ResNet-FPN extractor Gθ

5: Update Gθ and Fφ by computing:

6: ∇θ,φ Lupper from Eqn (11)

7: end for

8: Update Σc across all batches with Eqn. (2)

9: λ← λ0 × epoch/I
10: end for

11: return Gθ and Fφ

4. EXPERIMENTS

In this section, we conduct comprehensive experiments to

evaluate LA-Chorus’s performance against other state-of-
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Dataset #Songs #Genres #Lang. #Quality

Di-Chorus 237 13 14 3

Table 1. Key statistics of Di-Chorus.

the-art (SOTA) methods in chorus detection. We first intro-

duce the experimental setups, where details of our newly

released dataset Di-Chorus and hyperparameter settings in

LA-Chorus are discussed. Then we present the results

of chorus detection by LA-Chorus and other methods on

popular public datasets, followed by an ablation study that

demonstrates the effectiveness of different modules in our

proposed method.

4.1 Experimental Setup

For a fair comparison purpose, we conduct our experi-

ment under the same settings in [5] with a cross-dataset

paradigm (i.e. testing on different datasets that are not used

in training). Specifically, we use 890 songs that contain

chorus segments in Harmonix [12], along with 38 songs

of Michael Jackson and 83 songs of The Beatles in Iso-

phonics set [10] for training and validation. At testing

time, we use three public datasets and our released dataset

Di-Chorus to evaluate our model and other methods. The

public datasets used for testing are: 100 ªPopularº songs

from RWC [37, 38], 210 ªPopularº songs (denoted as SP)

and 198 ªLiveº songs (denoted as SL) from SALAMI [11],

which are chosen in consistence with the testing sets in [5].

Our newly released dataset, Di-Chorus 1 (denoted as

DC), contains 237 music annotations of songs on YouTube

labeled by experts. Compared to previous datasets men-

tioned above, songs in Di-Chorus are more easy-to-access

from the appended YouTube URLs, and are more diversi-

fied since it consists of musics tracks in 14 languages as op-

posed to other existing datasets that are mostly in English

(e.g., Harmonics) or just two or three languages (e.g., RWC

and SALAMI). In addition, we also include three different

recording qualities to improve the variation within dataset:

Studio, Live and Original Sound Track (OST) which con-

tains non-music segments. The key statistics are summa-

rized in Table 1 below.

To demonstrate the performance of our proposed model

on the above datasets, we compare LA-Chorus against the

following methods:

• CNMF [39]: an unsupervised matrix factorization

method from MSAF [40].

• SCluster [31]: a spectral clustering method based on

frame co-occurrence matrix from MSAF [40].

• Highlighter [41]: an CNN model that takes an un-

supervised approach to detect emotional highlights as

chorus segments.

1 We provide some demos of Di-Chorus in the supplementary material.
Di-Chorus will be made publicly available upon acceptance for retrieval.

Models
AUC on Different Datasets

RWC SP SL DC

CNMF .526 .543 .478 .488

SCluster .533 .545 .551 .568

Highlighter .804 .703 .671 .553

Multi2021 .819 .675 .633 -

DeepChorus .842 .780 .765 .811

LA-Chorus .906 .887 .831 .872

Table 2. AUC results for chorus detection in various mod-

els.

Models
F1-score on Different Datasets

RWC SP SL DC

CNMF .403 .422 .340 .332

SCluster .427 .448 .392 .603

Highlighter .407 .303 .251 .283

Multi2021 .643 .473 .380 -

DeepChorus .675 .611 .501 .662

LA-Chorus .728 .619 .526 .707

Table 3. F1-score results for chorus detection in various

models.

• Multi2021 [3]: a CNN model based on a multi-task

learning objective that jointly predicts chorus segments

and their boundaries.

• DeepChorus [5]: a CNN model based on multi-scale

networks and self-attention, which is the current state-

of-the-art method for chorus detection.

Then, we validate the prediction results by AUC score

(Area Under Curve) and F1 score. To evaluate these two

metrics, we first create a sequence of the song length from

the original annotation, with each element indicating the

class of the corresponding segment. Then we can calculate

AUC and F1 score for each song independently and take

the average over them as the final result.

For the training details, we resample the audio at 22050

Hz and use CQT as our input feature with 12 bins per oc-

tave, where Han windowing function is applied with a hop

size of 512 for extraction. The model is trained for 100

epochs with a batch size of 32 and a learning rate of 10−4

with a cosine decay scheduler. The code is implemented in

PyTorch and run at a Tesla-V100-SXM2-32GB GPU.

4.2 Chorus Detection

We retain the experiment results for the chosen SOTAs

on RWC, SP and SL from [5], and test them on Di-

Chorus with the default settings in their papers, as shown

in Table 2 and Table 3 by AUC score and F1-score respec-

tively. Note we do not test Multi2021 [3] on Di-Chorus,

since their code is not open-sourced.

For AUC metric, LA-Chorus outperforms other SOTAs
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on all datasets by a big margin. Compared to DeepCho-

rus [5], which is considered as the current best method for

chorus detection, our method improves the performance

by over 0.06 across all datasets. The performances on

F1-score also exhibit a similar pattern, where LA-Chorus

generates better predictions over other models with a con-

siderable improvement on each dataset. In particular, our

model performs exceptionally well on the widely used

RWC dataset that reaches to an AUC score of 0.906 and

an F1-score 0.728. We give most of the credits to the im-

plicit augmentation design in our model, and we illustrate

this perspective in the ablation study section.

4.3 Ablation Study

To analyze the effectiveness of FPN and latent augmen-

tation, we test our LA-Chorus by separate modules: 1)

ResNet backbone only, 2) ResNet with FPN, and 3) ResNet

with latent augmentation (denoted as + LA). To demon-

strate the efficacy of applying latent augmentations over

traditional audio augmentation techniques in the input

space, we further show the results of applying 4) time

stretching (denoted as + TS) and 5) pitch shifting (denoted

as + PS) to the ResNet backbone, with the results summa-

rized in Table 4 for AUC and Table 5 for F1-score below

(Note we do not apply TS or PS in our proposed method).

From the results, we can observe that by incorporating

FPN, we improve the vanilla ResNet backbone by a re-

markable increase of over 0.05 on most of the datasets un-

der both AUC and F1-score metrics, expect for SALAMI-

Live where the result remains the same. Such findings in-

dicate that FPN is an effective method to locate music seg-

ments by increasing the resolution of feature maps, which,

without any augmentation, can already generate predic-

tions that are comparative to DeepChorus.

On the other hand, when we apply implicit augmen-

tations to latent features generated by ResNet (without

FPN), significant improvements of over 0.10 are witnessed

for both AUC and F1 scores on most datasets. The re-

sults are even notably better than that of the ResNet+FPN

combination who contains important positional informa-

tion, implying the dominant role of latent augmentation in

the strong performance of LA-Chorus. The results from

ResNet+TS and ResNet+PS further corroborate the ben-

efit of leveraging latent augmentations for chorus detec-

tion. Although there are some effects after adopting these

two traditional augmentation methods, their improvements

on the original model seem incremental compared to that

of ResNet+LA. Instead, the implicit augmentation method

outperforms traditional augmentation methods by a signif-

icant margin for both metrics on each dataset, which im-

plies a clear advantage for adopting latent augmentations.

4.4 Discussion of Limitation

Despite of the prominent performance of LA-Chorus, we

believe there are still some potential limitations for future

explorations. First, further investigation is needed to verify

that the latent augmentations are realistic to human when

transforming them back to input domain. One possible

Ablations
AUC on Different Datasets

RWC SP SL DC

ResNet .801 .773 .767 .751

ResNet + FPN .865 .830 .767 .807

ResNet + LA .882 .854 .824 .847

ResNet + TS .818 .787 .765 .762

ResNet + PS .822 .777 .789 .766

LA-Chorus .906 .887 .831 .872

Table 4. AUC results for ablation study.

Ablations
F1-score on Different Datasets

RWC SP SL DC

ResNet .592 .415 .418 .588

ResNet + FPN .648 .473 .478 .608

ResNet + LA .692 .540 .516 .687

ResNet + TS .576 .394 .365 .553

ResNet + PS .590 .378 .395 .545

LA-Chorus .728 .619 .526 .707

Table 5. F1-score results for ablation study.

way is to train a reversed model (such as a decoder or flow-

based model) that reconstructs latent features to the orig-

inal inputs. Second, the AUC and F1 metrics might not

measure whether the output is overfragmented or under-

fragmented. It’s needed to design metrics that are more

perceptually relevant for chorus detection task. Finally,

we only focus on detecting chorus segments in this pa-

per, whereas in MSA, there are other annotation types (e.g.

verse, bridge, etc.) to be modeled [4, 33]. We believe LA-

Chorus only requires minor modifications in the class di-

mension of latent augmentations (i.e. augmenting chorus,

verse, bridge, etc.) before being applied to predict other

label types in music structure analysis.

5. CONCLUSION

In this paper, we introduced a novel chorus detection

model based on ResNet-FPN architecture with latent aug-

mentations on audio features. The proposed method, dif-

ferent from traditional augmentation algorithms focusing

on the input space, augments audio features in the latent

space to explore semantic changes in audio data. Be-

sides, we released a new diversified dataset, Di-Chorus,

with expert annotations, which contains songs with 13

genres in 14 languages and 3 qualities. Comprehensive

experiments have been conducted on public datasets and

Di-Chorus, where LA-Chorus shows superior performance

against other methods. Lastly, the effectiveness of different

modules in LA-Chorus are validated by an ablation study.

In the future, we plan to investigate more details on the se-

mantic changes of audio data via latent augmentations and

the extensibility of LA-Chorus to other MIR tasks.
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