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ABSTRACT

We propose AccoMontage2, a system capable of doing

full-length song harmonization and accompaniment ar-

rangement based on a lead melody. 1 Following Ac-

coMontage, this study focuses on generating piano ar-

rangements for popular/folk songs and it carries on the

generalized template-based retrieval method. The novel-

ties of this study are twofold. First, we invent a harmoniza-

tion module (which AccoMontage does not have). This

module generates structured and coherent full-length chord

progression by optimizing and balancing three loss terms:

a micro-level loss for note-wise dissonance, a meso-level

loss for phrase-template matching, and a macro-level loss

for full piece coherency. Second, we develop a graphical

user interface which allows users to select different styles

of chord progression and piano texture. Currently, chord

progression styles include Pop, R&B, and Dark, while pi-

ano texture styles include several levels of voicing den-

sity and rhythmic complexity. Experimental results show

that both our harmonization and arrangement results sig-

nificantly outperform the baselines. Lastly, we release Ac-

coMontage2 as an online application as well as the orga-

nized chord progression templates as a public dataset.

1. INTRODUCTION

Accompaniment arrangement is a difficult music genera-

tion task involving structured constraints of melody, har-

mony, and accompaniment texture. A high-quality ar-

rangement could help with various downstream tasks and

applications, such as compositional style transfer [1], auto-

matic accompaniment [2], and score-informed source sep-

aration and music synthesis [3].

As one of the most promising arrangement systems,

AccoMontage [4] uses a generalized template-based ap-

proach to first search for roughly-matched accompaniment

phrases as the reference and then re-harmonize the selected

1 Codes and dataset at https://github.com/billyblu2000/accomontage2.
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reference via style transfer. It generates much more co-

herent results than purely learning-based algorithms, espe-

cially for full-length song arrangements.

However, AccoMontage is not yet a ªcompleteº accom-

paniment generation system in the strict sense, as it still

calls for chord input from users and cannot harmonize a

melody. To this end, we develop AccoMontage2, a system

capable of full-length song harmonization and accompani-

ment arrangement based on a lead melody by equipping

AccoMontage with two extra components: 1) a novel har-

monization module, and 2) a graphical user interface.

The main novelty of our system lies in the harmoniza-

tion module. We first collect a high-quality chord progres-

sion dataset and re-organize the phrases with respect to dif-

ferent styles to serve as reference templates. Then, we use

dynamic programming (DP) to generate structured and co-

herent chord progressions given a query lead melody with

phrase annotation. Specifically, the DP algorithm opti-

mizes a multi-level loss function consisting of three terms:

1) a micro-level loss for note-wise melody-chord match-

ing, 2) a meso-level loss for phrase-template matching,

and 3) a macro-level loss for the whole-piece coherency.

The first term evaluates the dissonance between the melody

and the candidate chords. The second term prefers chord

progressions with the same length as the target melody

phrases. The third term computes how well the candidate

phrases connect with each other to form an organic whole.

Experimental results show that both our harmonization and

arrangement results significantly outperform the baselines.

In addition, we develop a graphical user interface which

allows the user to select different styles of chord progres-

sion and piano texture. Currently, chord progression styles

include R&B, Dark, Pop-standard, and Pop-complex. Pi-

ano texture styles include several levels of voicing density

and rhythmic complexity.

We release the AccoMontage2 as an online applica-

tion 2 as well as the organized chord progression templates

as an open-source dataset.

In brief, the contributions of our paper are as follows:

• A complete system for full-length song harmoniza-

tion and accompaniment arrangement;

• An effective harmonization algorithm with state-of-

the-art performance;

2 Online GUI link at https://billyyi.top/accomontage2.
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• A graphical user interface for controllable piano ac-

companiment generation.

2. RELATED WORKS

2.1 Melody Harmonization

Melody harmonization refers to the task of generating a

harmonic chordal accompaniment for a given melody [5,

6]. It has been typically formulated as a prediction task,

i.e., to predict a sequence of chord labels conditioned on

the lead melody. Recent mainstream methods range from

hidden Markov models [7, 8] to deep neural networks [9±

11]. Such models are typically trained to fit a groundtruth

melody-chord mapping, but do not account for the fact that

one melody can be harmonized with various styles in terms

of genre, chord complexity, etc. In fact, the current state-

of-the-art models [10, 11] only support simple triads and

up to a few common seventh chords. Also, predictions are

made locally, where neither phrase-level progression nor

inter-phrase structures are explicitly considered.

In this paper, we re-formulate melody harmonization

with a novel template matching approach. The usage

of existing templates for music generation has been a

popular idea. Existing template-based methodologies in-

clude learning based unit selection [2,12], rule-based score

matching [13,14], and genetic algorithms [15]. In our case,

we match the lead melody with chord templates from a

library based on rule-based criterion and subject to user

control. Such an idea is inspired by the fact that music

producers tend to pick up off-the-shelf chord templates in-

stead of harmonizing from scratch. In addition, they also

have control on what style of the chords to use.

Existing template-matching attempts for harmonization

typically focus on half-bar level [16]. In contrast, our

model deals with phrase-level matching. We design three

loss terms that measure melody-chord fitness at note-wise,

intra-phrase, and inter-phrase levels, respectively. Our

chord library is finely organized, supporting up to ninth

chords with voice leading and various genres. Our model

can therefore generate structured and coherent full-length

chord progressions with different styles.

2.2 Accompaniment Arrangement

The task of accompaniment arrangement aims to generate

an accompaniment conditioned on a given lead sheet (i.e.,

a lead melody with chord progression). The quality of ar-

rangement is related to chordal harmony, texture richness,

and long-term structure. For this task, existing learning-

based models often do well in harmony and texture, but are

less capable of long-term generation [1, 17±21]. Previous

template-matching models can easily maintain long-term

structures, but suffer from fixed elementary textures and

often fail to generalize [13±15].

To break such a dilemma, the AccoMontage system

[4] introduces a generalized template-matching methodol-

ogy, where phrase-level accompaniment templates are first

searched by rule-based criterion, and then re-harmonized

via deep learning-based style transfer. The search stage

and the style transfer stage each optimize high-level struc-

ture and local coherency, thus guaranteeing the arrange-

ment of high-quality accompaniment.

In this paper, we integrate our harmonization module

with AccoMontage and upgrade it to a complete accompa-

niment generation model. An input melody is first harmo-

nized with stylistic chord progression and then arranged

with piano textures. With an additional GUI design, our

model offers a flexible degree of control, including har-

mony styles and texture complexity.

3. METHODOLOGY

The system diagram of our AccoMontage2 system is

shown in Figure 1. It can achieve full-length song har-

monization and accompaniment arrangement. The input

of the system is a query lead melody with phrase annota-

tion. The harmonization module will first harmonize the

melody. The generated chord progression will be sent into

AccoMontage together with the original melody to arrange

accompaniment. Lastly, a GUI is provided for users to ad-

just chord and accompaniment styles.

Chord Progression 

Dataset

Lead Melody

Arranger

GUI

Piano Accompaniment 

Dataset

HarmonizerHarmonizer

Chord Style Control

Texture Style  Control

AccoMontage

Figure 1: Diagram of AccoMontage2 system.

For the rest of this section, we first introduce the struc-

ture of the dataset and how we re-organize it in Section 3.1.

Then we describe the harmonization module in Section

3.2. After that, we provide an overview of the AccoMon-

tage system in Section 3.3. Finally, we show how the GUI

is constructed to enable style controllability in Section 3.4.

3.1 Dataset Curation

A self-collected chord progression dataset is used as the

reference templates for our harmonization algorithm. We

create the dataset based on an existing chord progression

collection [22] that contains 64,524 MIDI files, most of

which are chord progression tracks with different style la-

bels. The original dataset [22] cannot be adapted to our

model directly for several reasons. First, some tracks are

not pure chord progression, containing mixed melody seg-

ments. Second, many style labels are unnecessary. For

example, two different styles may have similar musical el-

ements that are hard to differentiate. Third, there are re-

dundant progressions only different in their keys.

To solve the problems above, we process and re-

organize the dataset as follows. First, we remove the MIDI

files that contain melody segments and complex rhythmic

textures. Second, based on our subjective assessment, we
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manually define a style mapping function to map the origi-

nal style labels to newly defined ones. 3 The newly defined

styles are: ªPop-standardº, ªPop-complexº, ªDarkº, and

ªR&Bº. While Pop-standard contains only triad chords,

Pop-complex contains seventh, ninth, and sometimes even

more chromatic ones. Note that some templates do not

have an original style label and are thus labeled as ªUn-

knownº. Third, we remove all the redundant progressions.

Figure 2: Statistics of the curated dataset.

The final curated dataset contains 5762 pieces of chord

progression templates. Each template has 3 additional la-

bels: 1) The length label. Templates are either of 4 bars

or 8 bars in length in our dataset. Figure 2 (a) shows a

distribution of the length of the templates. 2) The mode

label. We currently only label the mode of the templates

as either major or minor. 3) The style label. As mentioned

above, four styles in total are acquired. The distribution of

different styles among modes are shown in Figure 2 (b).

Finally, we represent the reference template space as a

collection of tuples:

r = {(rchord
m , rlabel

m )}Nm=1
, (1)

where rchord
m and rlabel

m are the chord progression and the

labels of the ith reference template; N is the volume of

the reference space. rchord
m can be seen as a sequence of

chords. We quantize and sample the chords at 8th notes

from the original chord progression track. Each chord is

represented as its root note and a label to indicate whether

the corresponding triad is a major triad or a minor triad.

3.2 Harmonization Module

We design a harmonization model that generates structured

and coherent full-length chord progression for a given lead

melody with phrase annotation. The model takes a multi-

phrase melody as input and outputs a list of optimal chord

progression identities. Each identity contains a group of

progressions that have the same Roman numeral sequence

(e.g., I-vi-ii-V) but different styles (e.g., Pop-standard or

R&B) and are up for the user to choose. The model con-

siders three levels of losses that involve melody-chord cor-

respondence and is optimized by a dynamic programming

(DP) algorithm. Specifically, the DP algorithm optimizes

a multi-level loss function consisting of three terms: 1) a

micro-level loss for note-wise melody-chord matching, 2)

3 A detailed description of style mapping is provided in our dataset.

a meso-level loss for phrase-template matching, and 3) a

macro-level loss for the full piece coherency.

3.2.1 Micro-level loss

The micro-level loss Lmic computes the level of dissonance

between a melody phrase and candidate progressions note

by note. We mainly consider the interval between a melody

note and the root of the chord in the corresponding posi-

tion. The more dissonant the interval is (tritone, minor sec-

onds, etc.), the higher the loss. On the other hand, the more

harmonious the interval is (unison, perfect fourth, perfect

fifth, etc.), the lower the loss. In addition, the mode of

the piece and the harmonic function of the chords will also

affect the dissonance level. We refer to the ªrank order

of consonances and their degree of recurrenceº [23] and

design the micro-level loss shown in Figure 3, where ma-

trix (a) is for major mode and matrix (b) is for minor. For

both matrices, each row represents the degree of the chord

(we only consider diatonic chords, e.g., 1 for tonic and 5

for dominant) and each column represents the interval be-

tween the melody note and the key center. In Figure 3, the

darker the shade, the more dissonant we consider the pair

of the melody note and chord is, in which case we set a

higher micro-level loss.

(a) Major (b) Minor

Figure 3: Micro-level loss indicating note-wise melody-

chord dissonance.

For the ith phrase, Lmic is computed by summing up

the micro-level loss note by note and then dividing it by

the length of the phrase. We further normalize Lmic to the

range of [0, 1].

3.2.2 Meso-level loss

The meso-level loss Lmes considers the integrity of a can-

didate. It encourages chord progressions with the same

length as the target melody phrases and penalizes the rest.

For a given phrase of melody, we consider chord progres-

sions of the same length and we also concatenate shorter

chord progressions to make them candidates. Here, we in-

troduce a transition score to penalize the concatenated can-

didates. We concatenate two progressions rchord
m and rchord

n

from the reference template space, and the transition score

considers the very two bars connecting them (i.e., the last

bar of rchord
m and the first bar of rchord

n ). In specific, we

count the occurrence of this two-bar chord progression in

the dataset and then normalize it by applying a logarithmic

function with N , the size of the reference template space
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as the base. Suppose the occurrence is c ∈ N, the transition

loss of this m → n concatenated candidate is defined as:

Tm→n := 1 + logN
1

c
(2)

Moreover, as we do not wish to penalize the non-

concatenated candidates, we introduce δ1 such that δ1 = 1
if the candidate is concatenated and δ1 = 0 otherwise. On

the other hand, we do not wish to consider candidates with

length not equal to the length of the phrase. Hence we

introduce δ2 such that δ2 = 1 if the candidate has equal

length as the melody phrase, and δ2 = e−10 otherwise.

The meso-level loss of the ith phrase is explicitly:

Li
mes := δ1Tm→n + (

1

δ2
− 1) (3)

3.2.3 Macro-level loss

The macro-level loss Lmac computes how well the candi-

date phrases connect with each other. We consider how

smooth the transition is from the previous progression to

the current progression using the same transition loss as in

Section 3.2.2. For the ith phrase and its corresponding pro-

gression candidate, Li
mac denotes the macro-level loss of

the ith phrase

Li
mac :=

{

0 i = 1

Tm′→n′ i = 2, · · · , p
(4)

Here, Tm′→n′ is the transition loss defined the same way as

in Section 3.2.2. m′ and n′ index progression candidates

to be connected. p is the total number of phrases.

Finally, we define the total loss of the sth candidate of

the ith phrase by a weighted sum

L
i,s

total = (β(1− L
i,s

mic) + (1− β)(1− Li,s
mes))

+ max
t

{Li−1,t

total + α(1− Li,s
mac)},

(5)

where α, β are parameters that we can tune between 0 and

1. Then we use DP to integrate the three levels of losses

and search for the optimal chord progressions which mini-

mize the total loss Li
total at i = p.

3.3 An Overview of AccoMontage

Based on the harmonization results from the last section,

we apply AccoMontage [4] to generate complete piano ac-

companiments in full length. The AccoMontage system

offers a hybrid search-style transfer methodology for ac-

companiment arrangement: given a lead melody together

with a chord progression inferred from Section 3.2, it first

searches for reference pieces of accompaniments by dy-

namic programming. It then re-harmonizes the reference

accompaniment to the given chord progression by deep

learning-based style transfer. Such a pipeline is inspired

by common practice that delicate music textures can often

be applied in bulk, instead of composing from scratch.

Specifically, reference accompaniment pieces are

searched phrase by phrase based on: 1) phrase-level fit-

ness to the melody, and 2) transition smoothness between

consecutive phrases. The overall searching process is opti-

mized by the Viterbi algorithm [24]. The re-harmonization

is implemented with a VAE framework which is capa-

ble of chord-texture disentanglement [1]. By varying the

chord representation, we can re-harmonize the accompani-

ment while keeping its texture. The whole pipeline of Ac-

coMontage secures a delicate accompaniment arrangement

with coherent and structured texture. We refer readers to

the original work [4] for more technical details.

3.4 Graphical User Interface for Controllability

AccoMontage2 provides a GUI for users to select styles

of harmonized chords and accompaniment textures. The

process begins with uploading a MIDI file with a melody

track and setting the original chord progression styles and

piano texture styles. Three labels have to be assigned man-

ually, including phrase boundaries, key, and mode (major

or minor in the current version of the system).

The system will then proceed to generation. When the

generation is finished, users are able to: 1) listen to and

download the generated audio; 2) select a new harmoniza-

tion style for each individual phrase or the whole; 3) reset

the texture style and re-generate the accompaniment. Fig-

ure 4 shows the GUI interface of AccoMontage2.

,

View Generation Process
Download MIDIs

,

, ,

Chord Style Controlling

,

Texture Style Controlling

Figure 4: A screenshot of the Graphical User Interface.

4. GENERATION RESULTS

In this section, we showcase one long-term generation re-

sult of the AccoMontage2 system. We set α = 0.1 and

β = 0.5 in the harmonization algorithm and test our model

on a 24-bar melody piece with phrase label A8A8B8. The

first track in Figure 5 shows the original melody piece and

the other two tracks are two different versions of accompa-

niment generation.

The result shows that AccoMontage2 is able to achieve

high controllability in chord style and texture style. On

the top of track two (I) and track three (II) in Figure 5,

we present using chord notations the harmonization results
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Complex chords generated

Chord style controllability

Chord notation: “Chord name: (root: [notes represented by the intervals between them and the root (relative MIDI pitches)])”

Repetitive patterns, but the voicings and chord tones variate each time, more human-like accompaniment rather than mechanic repetition.

Highly controllable accompaniment style,

based on different chord and texture styles

Chord style controllability

Figure 5: Harmonization and accompaniment arrangement results for Dinners 1 from the Nottingham Dataset. The 24-bar

melody has an A8A8B8 phrase structure, and the AccoMontage2 system achieves a high degree of style controllability.

of chord style ªPop-standardº and ªPop-complexº respec-

tively. Track two and track three are the whole accom-

paniment results. While track two (I) is based on ªPop-

standardº and a sparse texture style, track three (II) is based

on ªPop-complexº and a dense texture style. We see that

both results match with the melody in harmonicity and are

able to provide chord and texture variations.

5. EVALUATION

We conduct two comparative experiments to validate our

AccoMontage2 system, one for harmonization and the

other for accompaniment arrangement. We first show the

dataset and the baseline model in Section 5.1 and 5.2. Then

we present the experimental results in Section 5.3 and 5.4.

Audio examples of our proposed system and ablation stud-

ies are available via our GUI link.

5.1 Dataset

For the harmonization experiment, we use Nottingham

Dataset [25], which provides around 1000 pairs of the

query lead melody and the ground-truth chords. For ar-

rangement generation experiments, we use the POP909

Dataset [26], in which each piece contains a lead melody,

annotated chords, and a piano accompaniment. For both

data sources, we first select the pieces of meter 2

4
and 4

4

and then randomly sample 6 pieces for our experiment. We

manually annotate their phrase segmentation and only al-

low the phrase length of 4 bars and 8 bars.

5.2 Baseline Method

We apply the chord generation model [9] based on bidirec-

tional long short-term memory networks (BLSTM) [27] as

our baseline model. This model takes a symbolic melody
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with the information of time signature, measure, and key

as input, and outputs a harmonization result of a sequence

of major and minor triads. The BLSTM model considers

temporal dependencies by storing both past and future in-

formation, reflecting musical context in both forward and

backward directions, It is trained on a lead sheet database

provided by Wikifonia.org and has achieved reasonable re-

sults quantitatively and qualitatively.

5.3 Harmonization Results

We conduct a survey to evaluate the harmonization perfor-

mance of our model. Our survey has 6 groups of harmo-

nization results and each subject is required to listen to 3

(chosen randomly). Within each group, the subject first

listens to a single melody. Each melody is a full-length

song randomly selected from the Nottingham Dataset, with

an average length of 32 bars (64 seconds). We harmonize

the melody using our model and the BLSTM baseline, and

additionally acquire an original harmonization using the

ground truth chord labels. The subjects are then required

to evaluate all three versions of harmonization. The rating

is based on a five-point scale from 1 (very poor) to 5 (very

high) according to three criteria:

1. Harmonicity: How well do the melody and chords

stay in harmony with each other;

2. Creativity: How creative the harmonization is;

3. Musicality: The overall musicality.

Harmonicity Musicality Creativity

2.5

3.5

4.5

Ra
tin

g

Harmonization

Original 
Ours 
BLSTM

Figure 6: Subjective evaluation for melody harmonization.

A total of 15 subjects with diverse musical backgrounds

participated in our survey and we obtain 44 effective rat-

ings for each criterion. As shown in Figure 6, the height of

the bars denotes the mean values of the ratings. The error

bars stand for the mean square errors (MSEs) computed via

within-subject ANOVA [28]. For harmonicity, the original

receives the best rating, while our model performs signif-

icantly better than the BLSTM baseline. As for the over-

all musicality, our model is comparable with the original

harmonization. For creativity, our model reaches the best.

Note that our model supports complex harmonization with

voice leading and ninth chords, while the original and the

baseline support up to seventh chords in plain root posi-

tion. Such evaluation results demonstrate that our model

introduces tension to ªflavorº the music while the overall

musicality is not affected. For all three criteria, the rating

results are statistically significant (p-value p < 0.05).

5.4 Accompaniment Generation Results

We conduct another survey to evaluate our model in terms

of overall accompaniment generation. In our survey, each

subject still listens to 3 groups of generation results (ran-

domly chosen from 6 groups). Within each group, the sub-

jects first listen to a 32-bar melody randomly selected from

the POP909 Dataset. Our model generates piano accompa-

niment through the complete AccoMontage2 pipeline. For

the BLSTM baseline, we feed its harmonization results to

AccoMontage and obtain the baseline accompaniment. As

POP909 contains piano arrangements created by profes-

sional musicians for each song, we also have the original

accompaniment. The subjects are then required to evalu-

ate all three versions of accompaniment based on the same

scale and criteria as in Section 5.3.

Harmonicity Musicality Creativity

2.5

3.5

4.5

Ra
tin

g

Arrangement

Original 
Ours 
BLSTM

Figure 7: Subjective evaluation for accompaniment ar-

rangement.

We collect a total of 44 effective ratings for each cri-

terion. Figure 7 shows the evaluation results in the same

format as in Section 5.3. We report a significantly bet-

ter performance of our model compared with the BLSTM

baseline in harmonicity and musicality (p < 0.05), and a

marginally better performance than both the baseline and

the original in creativity.

6. CONCLUSION AND FUTURE WORK

In conclusion, we contribute a pipeline of algorithms to au-

tomatically harmonize and arrange piano accompaniments

for melodies of whole-piece popular and folk songs. The

system is named after AccoMontage2, built upon its origi-

nal version which uses a hybrid approach to select accom-

paniment candidates, edit the candidates using style trans-

fer, and then concatenate them into an organic whole. Ac-

coMontage2 contains two novel modules: a state-of-the-art

harmonizer and a GUI for controllable arrangement via in-

terfering in the harmonization and arrangement styles.

In the future, we plan to further optimize the arrange-

ment pipeline by: 1) automatically labeling the melody

phrase, 2) extending the model capability to deal with

triple meters, and 3) exploring full-band arrangement.
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