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ABSTRACT

Work on musical gesture and embodied cognition suggests
a rich complementarity between audio and movement in-
formation in musical performance. Pose estimation algo-
rithms now make it possible (in contrast to traditional Mo-
tion Capture) to collect rich movement information from
unconstrained performances of indefinite length. Vocal
performances of Indian art music offer the opportunity to
carry out multimodal analysis using this information, com-
bining musician’s body movements (i.e. pose and gesture
data) with audio features. In this work we investigate raga
identification from 12 s excerpts from a dataset of 3 singers
and 9 ragas using the combination of audio and visual rep-
resentations that are each semantically salient on their own.
While gesture based classification is relatively weak by it-
self, we show that combining latent representations from
the pre-trained unimodal networks can surpass the already
high performance obtained by audio features.

1. INTRODUCTION

In this article we explore the potential for multimodal anal-
ysis of Hindustani classical vocal performance. It is well
known that Hindustani vocalists use a wide range of man-
ual gestures to accompany their singing: the relationship
between their hand movements and the acoustic content
of their music has been compared to that between gesture
and speech [1-5]. Empirical studies have related gesture
to perceived effort and apparent manipulation of imagined
objects by singers [6], and have demonstrated the increase
of coordinated head movement between soloists and ac-
companists at cadential moments [7]. The sound-gesture
relationship has also been explored in the related Carnatic
(South Indian) music tradition [8, 9]. These studies have
been based on both empirical analysis and observation of
gestures, together with the ethnographic enquiry: empiri-
cal study of movement is made possible by various com-
binations of motion-capture and video-based tracking of
individual body parts.
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Figure 1. Video stills of singers, from left to right:
Apoorva Gokhale (AG), Chiranjeeb Chakraborty (CC),
and Sudokshina Chatterjee (SCh).

With raga serving as the melodic framework in In-
dian art music, raga characteristics have been extensively
explored via melodic features computed from the pre-
dominant pitch contour extracted from performance au-
dio [10, 11]. There has not been any work that has simi-
larly employed the visual data of performances, let alone
the combination. In their survey paper [12], Duan et al.
reviewed past research categorised by type of instrument
and analysis task; no work was found on audiovisual anal-
ysis for singing. The nearest instrument task they reviewed
was automatic transcription aided by visual analysis such
as hand and finger tracking, helping play/non-play detec-
tion and note onset localization [13].

In the case of motion capture, the difficulty of data col-
lection, particularly in natural contexts, limits the scope
of research. Capture of full-body position information
from video, such as is now possible using pose estima-
tion algorithms, significantly increases the potential scope
of multimodal analysis, with the possibility of collecting
movement data from natural performance contexts extend-
ing over long durations. This makes it possible to ex-
plore sound-movement relationships of many kinds. Many
different aspects of hand movement have been linked to
musical sound and structure: for example, the tapping or
beating of hands against knees may indicate the tempo
and serve to instruct and coordinate performers; continu-
ous hand movements seem to match aspects of the flow
and organisation of sung phrases; some gestures seem to
indicate analogies with the manipulation of physical ob-
jects such as elastic bands, or to describe dimensions of the
sound (an open hand shape is understood to be linked to an
open-throated voice production; hands gradually moving
apart match an increase in volume). Gesture is observed
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Raga Bag Marwa Bahar Kedar

Shree

Nand MM Jaun Bilas Sum

Sum 9 10 8 10

9

8 11 10 11 86

Table 1. Number of pieces from each raga in our dataset.

to be idiosyncratic, and yet there may be common features
of the sound-movement relationship: Leante argued that
specific gestures such as the deliberate vertical raising of
a hand linked melodic aspects to visual imagery in Shree
Rag [2]. Each of these possibilities suggests different em-
pirical multimodal studies. The study presented here in-
vestigates the possibility that manual gesture is sufficiently
closely related to the melodic movement of Hindustani ra-
gas (melodic modes) that movement data may be used to
help predict the identity of the raga being sung. We achieve
this with suitable deep learning models applied to pose data
and, further, to the audio and combined audio and visual
streams.

In the next section, we present the data set. This is fol-
lowed by a description of the audio, visual and combined-
modality methods explored in this work. Experiments that
compare the distinct approaches in terms of raga predic-
tion performance for two different training conditions are
discussed next, followed by the presentation of the results
and key insights.

2. DATASET AND PROCESSING

We exploit a dataset comprising solo recordings of a com-
mon set of 9 Hindustani ragas recorded by 3 Hindustani
singers [14]. For each singer and raga, we have 2 dis-
tinct takes of alap singing (duration of a take ranges from
165-221 s, with a median duration of 187 s) for 55 record-
ings in all (for one combination we have only one take,
and for two combinations we have three takes). An alap is
the improvised opening section of a concert and introduces
the raga. We also have a set of 31 pakad (catch phrases)
recordings (duration ranging from 18-96 s with a median
duration of 19 s). Table 1 shows the raga distribution of
the 86 pieces across the 3 singers combined. The ragas, as
listed in Table 2, offer a cross-section of raga features in
aspects such as the mood or character with which they are

Raga Scale

Bageshree (Bag) SRgmPDn
Bahar SRgmPDnN
Bilaskhani Todi (Bilas) SrgmPdn
Jaunpuri (Jaun) SRgmPdn
Kedar SRGmMPDN
Marwa SrGMDN
Miyan ki Malhar (MM) SRgmPDnN
Nand SRGmMPDN
Shree SrGMPdAN

Table 2. The pitch sets employed by the nine ragas. Lower
case letters refer to the lower (flatter) alternative and upper
case to the higher (sharper) pitch in each case.
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associated (serious, joyful, etc.), typical speed and com-
plexity of melodic movement, and predominant melodic
range (i.e. favouring the upper or lower tetrachord). The
singers, as captured in Figure 1 are all professional per-
formers, two female (Apoorva Gokhale and Sudokshina
Chatterjee, here abbreviated AG and SCh) and one male
(Chiranjeeb Chakraborty, CC). The pose of the singer’s
upper body skeleton is estimated for each frame in the cor-
pus using the OpenPose system [15] for skeleton extraction
from the video at 25 frames per second. The selected 11
key-points are from the upper body as shown as video in-
put in Figure 2.

The recordings are split into clips of 12 s each with
starting times separated by a randomly chosen value in
the interval [0.8, 2.4] s. The 12 s duration was set in or-
der to encompass the typical duration of vocal phrases in
this music. We then investigate the task of raga identifica-
tion for each clip — first with each modality separately and
then with combining the audio and video modalities using
different methods to test whether this can enhance overall
classification accuracy. This task is attempted under two
conditions. In the first (termed ‘seen singer’), each singer
contributes to both the training and test data, as explained
later; in the second (termed ‘unseen singer’), we attempt
classification of one singer’s clips based purely on train-
ing using the other singers’ clips. Table 3 summarises the
number of examples (clips) in the training and validation
sets which are distributed almost equally across the 9 ragas
for each singer.

3. METHODS

Figure 2 depicts our overall system for raga classification
from the audiovisual data. As discussed next, each of the
multiple pathways from the input data to the final pre-
diction represent distinct approaches that differ in which
modality is exploited or in how the two are brought to-
gether.

3.1 Audio Features

Melodic aspects that distinguish ragas include the tonal
material, the hierarchy of notes and their sequences lead-
ing to characteristic phrases [10]. Phrases and motifs are
recognised by their melodic shape which can be repre-
sented by the computed pitch contour. Melodic phrases
cannot be regarded simply as sequences of the distinct
pitch classes, since raga also helps determine features such
as oscillations around certain pitches and distinctive pitch
transitions (i.e. slides): thus, the pitch contours contain
rich information. Our dataset of alap and pakad pieces
comprises solo singing with drone. We apply source sep-
aration [16] followed by pitch and voicing detection at
10 ms intervals using short-time autocorrelation analysis
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Figure 2. Proposed system for multimodal classification from pose and audio time series extracted from 12s video exam-
ples. This diagram shows 5 such configurations. A and B represent unimodal classification for video and audio streams
respectively. C and D represent multimodal classification using data fusion at different layers. E represents model fusion

using unimodal classification results.

[17,18]. An important analysis parameter (that also dic-
tates the window size) is the pitch search range, limiting
which can help minimize octave errors. The tonic, auto-
matically detected and manually verified [19,20], was ob-
tained for each performance and used to achieve the needed
tonic-normalization of the extracted pitch contours. The
detected tonic is also used to define the expected 2 octave
pitch range for each piece. The voicing is a binary variable
per frame that is set to zero in detected silence frames cor-
responding to singing pauses. Brief unvoiced regions (less
than 500 ms) arising from short silences and consonant ut-
terances are filled in via cubic spline interpolation to ob-
tain the continuous pitch contours associated with melodic
movements. The resulting time series from each clip thus
comprises of 1200 samples (12s x 100/s).

3.2 Video Features

Real-time skeleton data, such as that obtained via Open-
Pose, can be handled by a graph model such as Graph
CNN. We treat it instead as multivariate time-series data,
each time series corresponding to one of the position co-
ordinates of a tracked joint, similar to the processing of
data from body-worn sensors in human activity recogni-
tion tasks. The 2D positions of the 11 keypoints of the up-
per body (eyes, nose, neck, shoulders, mid-hip, elbows and
wrists) are recorded and used to obtain normalised (X,y)
coordinates for each of the two wrists at the frame rate of
25/s. The position data for the singer’s two wrists alone
is retained for the analysis since (a) these points are more
reliably estimated by OpenPose than others such as the el-
bows or shoulders, and (b) hand gestures most clearly re-
late to raga expression, and this data is most likely to con-
tribute to raga classification. We thus have 4 time-series
representing the x,y positions of each wrist. Any missing
data are interpolated and each of the wrist position time se-
ries is low-pass filtered to remove any jitter. The length of
each of the time series is 300 samples (12s x 25 fps).

3.3 Network Architectures and Hyperparameters

Given that our music audio and video time series data em-
bed information at multiple time scales, we choose an in-
ception network for its multiple kernel sized filters [21,22].
Inception networks have been previously used for multi-
variate time series classification [23,24]. We empirically
observed that preceding the inception block with two con-
volutional layers led to superior audio performances while
a single convolutional layer worked best for the video in-
put. The relatively high frame rate of audio also necessi-
tated greater stride choices through the convolutional lay-
ers that helped reduce the time series dimension to 200 at
the input to the inception block. The convolutional lay-
ers help in learning audio features which may be relevant
for processing via the inception network which further has
a range of receptive fields for the convolution. A simi-
lar approach to use prior convolution layers with inception
blocks was adopted in the original work introducing the
inception network for image classification [21]. We fur-
ther exploit these prior convolutional layers learned for the
individual unimodal (audio and video) channels in our la-
tent representation fusion model described in the following
section. The inception block is followed by pooling and
softmax layers.

Figure 3 shows the architecture of the inception block.
Overall, the hyperparameters tuned include the kernel size
and number of filters in the convolution layers, the com-
mon kernel size, number of filters, pool size and pool type
in the inception block and the pool type in the final pool-
ing layer. Hyperparameter tuning was carried out with
sweeping across the chosen ranges using Bayesian opti-
mization [25,26].

3.4 Multimodal Analysis

It is widely believed that integrating features from multi-
ple modalities can lead to more robust classification due
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Figure 3. Structure of the inception block. ‘k Conv (n), S’
indicates a convolution layer with n k-sized kernels and a
stride S. ‘p’ indicates the pooling size of the pool layer and
‘P’ the type of pooling. k, p, P and the number of filters
were determined by hyperparameter tuning. S=1 for the
video and combined models and S=2 for the audio model.

to potentially complementary information across the dif-
ferent modalities, all observing the same phenomenon.
Multimodal classification has been an active research area
in machine learning [27] where the precise approaches
to combining information have been broadly categorised
as early (feature-based), late (decision-based) and hybrid
(their combination). While late fusion builds on combining
the decisions of the individual unimodal predictors, early
fusion can potentially exploit the low-level correlations be-
tween features across modalities. In our task, we have
audio and video time series that actually co-vary as the
singer makes continuous movements with her hands while
singing. This relationship between melodic pitch variation
and wrist movements makes it attractive to investigate the
combination of the time series for classification.

In Figure 2, the flow-graphs labeled A and B depict
the individual video and audio classification paths respec-
tively. While the basic audio-only and video-only mod-
els differ only in the number of convolutional layers em-
ployed before the inception block, the hyperparameters as-
sume values that are influenced by the time resolution of
the corresponding time series with their different sampling
rates. Early fusion is then obtained by first downsampling
the pitch and voicing time series to the lower rate of 50/s
and interpolating the wrist position data from its original
25/s to 50/s. The six time series form a 6-channel input
to the convolutional layers thus realizing a form of source
fusion. This is shown in position C in Figure 2 and a sep-
arate convolutional layer is used to learn the joint features
before passing them onto the inception block.

Late fusion is achieved at the point labeled E (decision
stage) in Figure 2 by combining the softmax outputs of the
ensemble of the best model for each modality. We use soft
voting [28] between the two classifiers by averaging the
softmax outputs and then choosing the class with the max-
imum average as the predicted class. In addition, we learn
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Data Seen split Unseen split
split AG CC SCh AG CC SCh
Train 5590 5487 5588 4715 4105 4304

Validation 972 1075 974 1847 2457 2258

Table 3. Number of 12 s duration examples in each
singer’s train-validation data split

classifiers using the concatenated softmax outputs of the
best models of each modality. This is a common approach
in model stacking [29,30] and has been used in multimodal
fusion earlier [27,31]. We try multiple models for stacking
viz. Random Forests [32,33] and logistic regression [34]
and hyperparameter tune each of them using scikit-learn’s
GridSearchCV routine [35].

While decision fusion is the most straightforward ap-
proach to combining modalities, we also consider fusion
at an intermediate stage given that the dynamic correspon-
dence between the movement in the video and the aligned
audio is expected to persist in the ealier convolutional lay-
ers. We achieve this by fusing the latent representations
from each of the subnetworks where each has been opti-
mised for a simpler task, viz. audio-only or video-only
classification. Here we use the pre-trained weights of the
convolutional layers of the best models of each modal-
ity and freeze the weights. This ensures that the features
learnt for the individual modalities are maintained and the
following inception block is tuned to amplify the inter-
relations between the two modalities. We call this novel
method of fusion as latent fusion and depict it by D in
Figure 2. Given that the input audio and video streams are
at different effective temporal rates (Ilengths of 200 and 300
respectively) due to their original sampling and/or the dif-
ferent convolutional layer strides, we need to do a pooling
on each individual modality convolutional output to bring
the number of steps in the output sequence of the frozen
models in sync. In addition, post the fusion we apply a
convolution with filter size of 1 and learn the number of
required filters via hyperparameter tuning thus letting the
model learn the number of channels needed for the incep-
tion network.

4. EXPERIMENTS AND RESULTS

The training and validation sets are designed separately for
the two tasks. We report experimental results for different
model architectures (including one or both modalities) for
each singer. In the seen singer task, we create training and
validation data splits for each singer. Raga classification
accuracies are reported for each method on the validation
dataset of each singer and also averaged across the singers.
For a given singer, the validation set comprises the set of
examples from one of the singer’s alap takes for each raga.
The corresponding training dataset is then all the remain-
ing pieces by the singer plus all the pieces of the other 2
singers. We have thus a validation and train set for each
of the 3 singers. The similar exercise is carried out for the
unseen singer task. Here, all the pieces by a given singer
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are placed in the validation set and the pieces sung by the
other two singers in the training set. Table 3 summarises
the number of 12 s examples in each split as used in the
experiments presented next.

For each task, we carry out model hyperparameter tun-
ing on each individual singer’s train-val dataset to obtain
3 sets of hyperparameters in all. These 3 hyperparameter-
tuned models next have their weights recomputed on the
training data of a given singer (say, AG) to obtain 3 trained
models. Finally, the evaluation of Singer AG validation
data is obtained via the ensemble of the three models. Sim-
ilarly, we obtain the ensembled models for each of the
singers CC and SCh and evaluate the methods on their re-
spective validation datasets.

Our first set of experiments tests separately the per-
formances of the audio modality and the video modality
for the seen and unseen singer raga classification tasks.
Table 4 presents the obtained validation accuracies. We
observe that the unseen singer task is more challenging
as expected. The audio based accuracies are significantly
higher than those from video data on both tasks. The
video based accuracies in the unseen singer task are close
to chance (in the 9-way raga classification) indicating that
the association between raga identity and gesture is highly
singer dependent.

Our next set of experiments involve different ap-
proaches to multimodal classification. Given the non-
informative nature of video cues in the unseen singer
task, we restrict our attention here to the seen singer task.
Table 5 presents the obtained validation accuracies across
the different classification methods for each singer and
the resulting mean across singers. We observe that early
fusion is on the average at the performance level of the
weaker modality. This is similar to the observations of
Oramas [36] where the learning over very unequal modal-
ities can be overwhelmed by either one. The results of late
fusion appear in the final two rows and we find that they
fall slightly short of the audio performances, all pointing to
the challenge of actually realizing the benefits of the com-
plementary information.

We look for another opportunity to combine audio and
video information streams at the output of the convolu-
tional layers. The latent representations at this stage are
generated from convolutional layers that are frozen in pre-
trained unimodal classification tasks. Rather than simple
concatenation of the two representations, we use pooling
to first align the representations along the time axis reduc-
ing both audio and video to a length of 100 from 200 and
300 respectively. We obtain a performance that is slightly,
but consistently, superior to that from audio alone (D vs B
in Table 5) for every one of the 3 singers, indicating that
the combination of aligned latent representations success-
fully exploits the joint information. This is also borne out
by the histogram summary provided in Figure 4.

5. DISCUSSION

As expected, prediction accuracy is significantly higher for
the audio modality than the video, and higher in the ‘seen

Data Seen Singer Unseen Singer
Split Audio Video Audio Video

AG 92.1 36.3 76.9 14.3
CC 79.4 31.8 60.4 13.8
SCh  77.0 39.2 67.2 10.0

Table 4. Validation accuracy (%) of only audio and only
video modalities on seen/unseen singer train-val splits.

Model Model Name AG CC SCh Mean
Type

A Video 36.3 31.8 392 358
B Audio 92.1 794 77.0 82.8
C Source fusion 30.1 424 358 36.1
D Latent fusion 93.3 827 79.2 85.1
El Equal voting 859 737 679 758
E2 Stacking classifier —RF  81.9 742 763 77.5

Table 5. Validation accuracy (%) from each singer’s split
for different model architectures in the seen singer task.

singer’ than the ‘unseen singer’ condition. Prediction ac-
curacy is increased slightly when audio and video data are
combined in comparison with audio data alone (from 82.8
to 85.1 %). It should be noted that some extracts score
much more highly than others: SCh’s Shree scores highly
for prediction accuracy in both modalities; CC’s MM is un-
usual in that video prediction seems more accurate than the
audio; some extracts score very poorly on prediction from
video only, such as AG’s Kedar and SCh’s Bahar. Some
of the wrong predictions can probably be attributed to lack
of data: for example, if the singer is silent for a significant
part of the 12 second clip, or their hands do not move sig-
nificantly. Other mismatches may be explained by features
of either the melodic movement or the singers’ gestures.
We present confusion matrices for the audio, video and
the latent fusion bimodal classification in Figure 5. The
video-only matrix has significant off-diagonal dispersion.

60 -
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A 2 ol 1

o e 5. B 0
000 001 010 011 100 101 110 111
Correctness of Audio/Video/Audio+Video Prediction
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Figure 4. Histogram indicating percentage of the 3021 val-
idation data examples predicted correctly (1) or incorrectly
(0) by audio, video and the latent fusion based methods.
For example, 011 indicates incorrect prediction by audio
but correct predictions by video and bimodal classifiers.
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Figure 5. Confusion matrices of predictions made from audio, video and audio-video modalities. Numbers are represented
in percentages of the total number of test examples across the three singers combined.

On the other hand, the multimodal matrix visibly improves
upon the audio-only by further moving examples into the
diagonal. The similar behaviour was noted in the individ-
ual singer confusion matrices. We also observe that the
most common mis-predictions in the audio modality oc-
cur when the scale is the same or similar, and particularly
where both pitch material and melodic movements are sim-
ilar, as is the case between Miyan ki Malhar (MM) and
Bahar. The main differences between these two closely-
related ragas is that Bahar favours a higher pitch range
and faster movement [37]: qualitative review of the pre-
diction results shows that these factors are at play (e.g.,
in the faster portions of the extracts MM is more likely
to be mis-classified as Bahar, at least for the two female
singers). Other confusions are observed between Kedar
and Nand (same scale), between Bageshree and Bahar (the
latter uses one additional note), or between Jaunpuri and
Bageshree (one note is different). Relatively few cases oc-
cur where the pitch material is very different (e.g. in SCh
between MM and Nand or Kedar), which are harder to in-
terpret. Some prediction errors seem to be related to the
use of a low pitch (below Pa, the fifth degree, in the lower
octave), as for example CC’s Shree between 38-53s: this
can be explained by the fact that the pitch extraction was
constrained to a range of two octaves, with the low Pa as
its limit. We find in this case clear instances of video and
multimodal predictions doing well.

Confusion matrices for the video prediction are harder
to read, given the lower accuracy overall, but some pat-
terns can be observed. The Bahar/MM confusion is also
present in the video domain (for the female singers), per-
haps related to the fact that these two ragas share not only
a scale but also many aspects of their melodic movement.
Bahar can sometimes be confused with Nand and Marwa.
The Bahar/Nand confusion is not surprising, since both
are associated with lively, complex melodic movement and
a joyful mood. The confusion between these two ragas
and Marwa is less expected, since Marwa’s mood contrasts
strongly (being serious and often described as unsettled or
restless). It may be that there is a similarity in the singers’

Supplementary material:
supplementary/.

https://dap-lab.github.io/multimodal-raga-
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hand movements between Bahar and Nand’s liveliness and
Marwa’s restlessness. MM, Kedar and Bilaskhani seem
to get confused when the singers make rounded, bimanual
gestures, as when the hands seem to be moving round each
other. These gestures are associated with specific melodic
movements, an andolan (slow oscillation) on the Ga (3) in
MM and distinctive crooked (vakra) pitch movements in
the other two ragas. For SCh, several ragas are wrongly
predicted as Shree when she makes a direct upward hand
movement, which is often distinctive of this raga [2]. Such
qualitative observations suggest that the video prediction
system may be classifying the hand movements in mean-
ingful ways even when the predictions are wrong, pointing
to similarities between the ways each singer gestures in
different ragas.

When we look at the proportion of clips correctly iden-
tified in at least one of the two modalities in Figure 4, the
most common result is to be correctly classified from the
audio but incorrectly classified from the video. The small
percentage of clips for which the opposite is true (c. 6.6
%) suggests there is some scope for the video information
to improve the prediction accuracy achieved through au-
dio alone, although this seems like a difficult challenge as
the audio prediction accuracy is already high. Even so,
we note that the 6.6 % where the audio is incorrect but
video correct, the multimodal condition actually recovers
about a third of this. Further, we have 2.5 % of the to-
tal set of clips (75/3021) correctly predicted only in the
multimodal condition (i.e. audio and video data are com-
bined using latent fusion). This amounts to a quarter of all
clips that were wrongly classified in both audio-only and
video-only conditions. It is interesting to note that of the
75 clips correctly predicted only in the multimodal condi-
tion, the most common ragas represented were Bahar (19)
and MM (14), which as noted above share the same scale
and many melodic movements. This study suggests that
the combination of coordinated audio and gesture features
can improve the classification of ragas from short clips.
This approach could be extended to other musicological
investigations such as the musical expression of mood or
character, melodic phrase segmentation, and interpersonal
coordination.
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