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ABSTRACT

Music mixing traditionally involves recording instruments

in the form of clean, individual tracks and blending them

into a final mixture using audio effects and expert knowl-

edge (e.g., a mixing engineer). The automation of mu-

sic production tasks has become an emerging field in re-

cent years, where rule-based methods and machine learn-

ing approaches have been explored. Nevertheless, the lack

of dry or clean instrument recordings limits the perfor-

mance of such models, which is still far from professional

human-made mixes. We explore whether we can use out-

of-domain data such as wet or processed multitrack music

recordings and repurpose it to train supervised deep learn-

ing models that can bridge the current gap in automatic

mixing quality. To achieve this we propose a novel data

preprocessing method that allows the models to perform

automatic music mixing. We also redesigned a listening

test method for evaluating music mixing systems. We val-

idate our results through such subjective tests using highly

experienced mixing engineers as participants.

1. INTRODUCTION

Music mixing is a highly cross-adaptive transformation

since the processing of an individual track depends on the

content of all tracks involved. Apart from artistic consid-

erations, it typically tries to solve the problem of unmask-

ing by manipulating the dynamics, spatialisation, timbre

or pitch of multitrack recordings [1]. This manipulation

is achieved through a set of linear and nonlinear effects,

which generally can be classified into five different classes:

gain, equalization (EQ), panning, dynamic range compres-

sion (DRC) and artificial reverberation [2].

Several methods have been investigated to automatize this

task [3]. For example, rule-based systems [4±6], cross-

adaptive audio mixing effects [7, 8] and data-driven meth-

ods [9, 10]. A black-box approach is introduced in [9],

where a Wave-U-Net is trained to perform automatic mix-

ing of drums. Conversely, neural proxies of audio ef-
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Figure 1: Our method uses data preprocessing by comput-

ing average features related to audio effects on an out-of-

domain dataset (MSS data). This allows normalization of

wet stems and supervised training of an automatic mixer.

At inference, the same preprocessing is applied to dry data.

fects are used as a fixed signal processing path within a

deep neural framework to perform automatic mixing of

songs [10]. However, the lack of dry or unprocessed multi-

track data has limited the performance of these deep learn-

ing approaches. Thus an unified approach has yet to be

found that achieves results close to or superior to the qual-

ity of professional human-made mixes [11,12]. It has been

hypothesized that the bottleneck of performance can be re-

solved with a large enough dataset [10]. Nevertheless, col-

lecting data is difficult, as it is unusual for musicians and

record labels to provide multitrack dry recordings.

In this work, we consider the use of out-of-domain data in

conjunction with a supervised deep learning approach to

close such performance gap. To achieve this, we propose

a novel method that performs a data normalization or aug-

mentation procedure on each of the audio effect classes.

Figure 1 depicts our method. We train deep neural net-

works to perform automatic loudness, EQ, panning, DRC

and reverberation music mixing. Thus we present 1) a

data preprocessing step that allows training with out-of-

domain data, 2) a new deep learning architecture, 3) an

exploration of stereo-invariant loss functions, 4) a design

of a perceptual listening test targeting highly skilled pro-

fessionals, and 5) listening test results showing that our

approach is indistinguishable from professional human-

made mixes. Audio samples and code can be found at

https://marco-martinez-sony.github.io/FxNorm-automix/.

2. METHOD

2.1 Effect normalization and augmentation

One of the main challenges of deep learning models for

automatic mixing is the lack of multitrack dry data. Since

411



collecting a large dry multitrack dataset is inherently dif-

ficult, we believe it is possible to reuse existing datasets,

such as music source separation (MSS) data. Music

source separation has been heavily researched in the last

decade [13] and a significant effort has been put into col-

lecting training data, such as the well-known MUSDB18

dataset [14]. However, direct application of such data is in-

feasible, since the mixture is a summation of the wet stems,

that is, mixing effects have already been applied.

Several methods have been shown to be capable of reverse

engineering the effect parameters [15±17], however such

approaches require the original dry multitrack recordings

and target mix. There are also data-driven methods for re-

moving effects [18, 19], although they only apply to spe-

cific effects and are prone to adding sound artifacts.

Instead of removing audio effects, we propose to normalize

each stem based on audio features related to each class of

audio effects. In this way, different data features are scaled

or transformed to make an equal contribution across the

dataset [20]. We propose normalization schemes for loud-

ness, EQ, panning, DRC and reverberation, thus ensuring

that all stems have been normalized to the same range of

audio features. During training, we expect the models to

learn how to undo or denormalize the input stems and thus

approximate the original mix. At inference, we also nor-

malize the real multitrack dry data thus allowing the model

to perform automatic music mixing. This Section intro-

duces how each effect is normalized and Section 2.2 the

full data preprocessing procedure.

LoudnessÐTo normalize loudness, we independently

compute the average loudness L(k) for the stem type k as

L(k) =
1

N

N∑

i=1

LUFS(x
(k)
i ), (1)

where LUFS is the integrated loudness level in dBFS in ac-

cordance to [21], x is the ith stem waveform of k type, e.g.

k=vocals, and N is the total number of available songs.

Then, based on L(k), each stem is loudness normalized us-

ing [22].

EqualizationÐEQ normalization is based on the average

frequency magnitude spectrum F (k) as

F(ω)(k) =
1

N

N∑

i=1

Γ(ω)
(k)
i , Γ(ω)(k) =

1

M

M∑

j=1

X(ω)
(k)
j ,

(2)

where Γ(k) corresponds to the individual stem mean fre-

quency magnitude, ω is the frequency index, X(k) is the

magnitude of the Short-Time Fourier Transform (STFT)

of each x(k) and M its total number of frames.

We then proceed to normalize each stem by performing EQ

matching with respect to F (k). EQ matching typically in-

volves finding the optimal filter settings by designing and

applying a filter based on the difference between the tar-

get and input frequency magnitudes [23]. The differential

frequency magnitude F(ω)
(k)
diff is computed as

F(ω)
(k)
diff = 10log10(F(ω)(k))−log10(Γ(ω)(k)). (3)

F(ω)
(k)
diff is further smoothed with a Savitzky-Golay filter

[24]. An FIR filter is designed using the window method

[25], and applied using forward-backward filtering [26] to

have a zero-phase response. Since forward-back filtering

squares the magnitude response, we apply a square root to

F(ω)
(k)
diff before designing the FIR filter.

PanningÐThe panning normalization is based on the

Stereo Panning Spectrum [27, 28], where we use the aver-

age panning as a reference then re-pan accordingly.

We compute the left and right channel similarity measure

Ψ(ω), to approximate the panning gains assigned during

mixing. We focus only in amplitude panning thus we cal-

culate Ψ(ω) using only frequency magnitude as

Ψ(ω) = 2
X(ω)LX(ω)R

X(ω)2L +X(ω)2R
, (4)

where X(ω)L and X(ω)R correspond to the left and right

channel STFT magnitudes. Ψ(ω) denotes whether a fre-

quency bin ω0 is panned to the center (Ψ(ω)ω0=1), or

whether is panned to either side (0≤ Ψ(ω)ω0
<1). The

stereo side can be determined with the difference ∆(ω) be-

tween partial similarities Ψ(ω)L and Ψ(ω)R as

Ψ(ω)L =
X(ω)LX(ω)R

X(ω)2L
,Ψ(ω)R =

X(ω)LX(ω)R
X(ω)2R

, (5)

thus ∆(ω) = Ψ(ω)L − Ψ(ω)R, where ∆(ω)>0 and

∆(ω)<0 correspond to signals panned left or right, respec-

tively. The panning gains, Φ(ω)L and Φ(ω)R, then can be

estimated by choosing a panning law to approximate the

panning coefficient α(ω). We empirically found that a lin-

ear panning law, Φ(ω)L=1-α(ω) and Φ(ω)R=α(ω), yields

better approximations. Thus we approximate the panning

gains based on ∆(ω) and assuming Ψ(ω)=2α(ω). We

compute the average similarity measure S(ω)(k) across all

Ψ(ω)(k) computed from N stems and their STFT frames

M . S(ω)(k) is also further smoothed with [24].

For each individual stem, re-panning is implemented by

1) computing Ψ(ω) and ∆(ω), 2) estimating Φ(ω)L and

Φ(ω)R, and 3) estimating the reference panning gains,

Φ̂(ω)L and Φ̂(ω)R, using S(ω)(k) and ∆(ω). Finally, we

calculate a gain factor based on the ratio of panning gains

which we apply to X(ω)L and X(ω)R as

X̂(ω)L =
Φ̂(ω)L
Φ(ω)L

X(ω)L, X̂(ω)R =
Φ̂(ω)R
Φ(ω)R

X(ω)R. (6)

Panning normalization is performed per frame and the nor-

malized audio is obtained with the inverse STFT of X̂(ω)L
and X̂(ω)R with their original channel phase.

Dynamic Range CompressionÐDRC usually alters the

transients of the input [29], thus we base our DRC normal-

ization on the onset peak levels which are linked to such

transient modification [30].
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We first perform onset detection based on the High Fre-

quency Content (HFC) method [31, 32]. HFC emphasizes

the energy variation that occurs in the upper part of the

spectrum which is typical of onsets [33]. We then select

the maximum peak for each of the detected onsets.

The average peak level P
(k)
µ and peak level standard de-

viation P
(k)
σ are defined as 1

N

∑N

i µ
(k)
i and 1

N

∑N

i σ
(k)
i ,

respectively. Where µ(k) and σ(k) are the channel mean

peak level and standard deviation in dB, which for a ro-

bust estimate are calculated from the top 75th percentile of

detected peaks.

DRC normalization consists in upper bounding the peak

levels of the audio. Thus, if µ(k) > (P
(k)
µ + P

(k)
σ ), we

apply a compressor to the input audio by performing an

incremental grid search of the ratio and threshold parame-

ters until µ(k) < (P
(k)
µ + P

(k)
σ ). Threshold is the level above

which compression starts, and ratio determines the amount

of compression [29]. This is done with fixed attack and re-

lease values, i.e. the start and stop timing settings.

Artificial ReverberationÐDue to the inherent character-

istics of reverberation [29], an attempt to similarly normal-

ize this effect is not trivial. Blind estimation of reverber-

ation features, such as reverberation time (RT) or direct-

to-reverberant ratio, is an open research area in itself, and

considering that most of the research has been done for

speech signals [34±36], its application to music is beyond

the scope of this paper.

We propose instead a data augmentation approach where

we stochastically add reverberation to already reverber-

ated stems. Reverberation is added using a mixing method

called the ’Abbey Road reverb trick’ [37], where a chain of

EQ and reverb effects is applied as a send effect, i.e. a copy

of the input is processed and added to the input. Naively

adding reverberation directly to the input audio has the po-

tential to clutter the low and low-mid frequencies. In this

manner, the process of learning how much reverberation

is required for a given mix is carried out by the network

by learning to filter out the additional reverberation that is

present in the input stems.

2.2 Data preprocessing

Since most mixing effects are interrelated, applying the

normalization methods separately yields inaccurate results,

e.g. EQ normalization modifies the dynamics of the audio,

thus modifying DRC features. To minimize this, we per-

form effect preprocessing progressively and based in the

following order: EQ, DRC, panning and loudness. Since

EQ and DRC normalization are done on a per channel ba-

sis, panning normalization is applied after the above to

avoid further modification of the stereo features.

Thus, for each stem type k, average feature computation

corresponds to 1) calculate F(ω)(k) and EQ normalize,

2) calculate P
(k)
µ and P

(k)
σ and DRC normalize, 3) calcu-

late S(ω)(k) and panning normalize, and 4) calculate L(k)

and loudness normalize.

We apply our reverberation preprocessing method after all

the average features have been calculated. Considering that

this procedure is based on a stochastic data augmentation

procedure, for consistency we treat the added reverberation

as noise for the normalization pipeline. The final data pre-

processing method corresponds to applying reverberation

augmentation followed by EQ, DRC, panning, and loud-

ness normalization methods.

2.3 Architecture

We propose a new architecture based on [38] and [39]. It

operates in the time-domain and processes raw waveforms

in a frame-wise manner. The model can be divided into

three parts: adaptive front-end, latent-space mixer and syn-

thesis back-end. The model is depicted in Figure 2 and its

architecture is summarized in Table 1.

The adaptive front-end is exactly the same as in [38],

with the only difference that now the input x̂ corresponds

to K stereo tracks of length A. In the front-end, time-

domain convolutions are applied to the input audio in order

to learn a latent representation Z and a filter bank which

output feature map X1 corresponds to a frequency band

decomposition of x̂. The latent-space mixer corresponds

to the temporal dilated convolutions (TCN) separator block

of [39], and to improve long-term dependencies learning,

the TCN is followed by stacked Bidirectional Long Short-

Term Memory (BLSTM) layers. Contrary to [39], the ob-

jective of the mixer is not to learn a mask for source sepa-

ration, but rather to learn a mixing mask Ẑ.

The synthesis back-end uses Ẑ to modify X1 based on

the given mixing task and its design is motivated by [38].

It upsamples the mixing mask using nearest neighbor inter-

polation and via an element-wise multiplication applies it

to each filter-bank channel source of X1 at each time step.

We hypothesize that this frequency-based transformation is

akin to the model learning and applying a dynamic equal-

ization effect [40] while also filtering out the extra rever-

berant content of the normalized input stems.

The resulting feature map X4 is further modified via a

Squeeze-and-Excitation (SE) block [41] implemented as

shown in [38]. The SE layers scale the channel-wise in-

formation of X4 by applying an adaptive gain sc, and

consequently, learning a loudness gain and panning trans-

formation for each filter bank channel. The modified fre-

quency decomposition X5 is then reconstructed using a

non-trainable transposed convolution as shown in [38].

Finally, the resulting 2K stereo tracks are channel-wise

summed into a stereo output and a hyperbolic tangent is

used to avoid clipping. All convolutions use a stride of 1

to avoid ringing and filtering artifacts [42]. BLSTMs and

SE layers are applied to the filter dimension.

2.4 Loss function

Based on the stereo-invariant loss function introduced

by [10], we explore two variations of such loss. First, due

to the perceptual nature of the mixing task and motivated
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Figure 2: Block diagram of the proposed model

Table 1: Summarized architecture of the proposed model.

Layer Output shape Output

Input stems (2K, A) x̂

Conv1D (N , A) X1

Conv1D-Local (N , A) X2

MaxPooling (N , A/64) Z

TCN (N , A/64) .

BLSTM (A/64, N ) Ẑ

Unpooling (N , A) X3

X3 ×X1 (N , A) X4

SE (Abs) (A, N ) .

SE (Global Avg) (1, N ) .

SE (FC) (1, 16N ) .

SE (FC) (1, N ) sc

X4 × sc (N , A) X5

Conv1D.T (2K, A) .

Summation (2, A) ŷ

by [43], we apply A-weighting pre-emphasis and low-pass

FIR filters (ρ) to the target and output audio frames y and

ŷ, respectively. Then we compute the sum and difference

signals ysum=ρ(yL)+ρ(yR) and ydiff=ρ(yL)-ρ(yR).

The first loss follows closely [10] and is based on the Spec-

tral Convergence (SC), magnitude-normalized Frobenius

norm, and the L1-norm spectral log-magnitude (L1Log) as

La = lSC(Ysum, Ŷsum) + lL1Log(Ysum, Ŷsum)

+lSC(Ydiff, Ŷdiff) + lL1Log(Ydiff, Ŷdiff),
(7)

where Y and Ŷ are the respective 4096-Fast Fourier Trans-

form (FFT) magnitude with a 25% hop size.

The second loss replaces the SC loss component with a less

penalizing normalization such as the widely used L2-norm

on the spectral magnitude (L2), defined as

Lb = lL2(Ysum, Ŷsum) + lL1Log(Ysum, Ŷsum)

+lL2(Ydiff, Ŷdiff) + lL1Log(Ydiff, Ŷdiff).
(8)

We empirically found the perceptual-based pre-emphasis

filter as vital when modeling a highly perceptual task such

as music mixing. We also found an easier convergence

during training when using a single frame-size loss rather

than a multi-resolution magnitude loss.

3. EXPERIMENTS

3.1 Dataset

We first conduct experiments with a small dataset (S)

which corresponds to the MUSDB18 dataset [14]. This

dataset consists of wet stems for vocals, drums, bass and

other (K=4), where the mixture is the summation of such

stems. There are a total of 150 songs, of which 86 are used

for training and 14 and 50 for validation and testing pur-

poses, respectively.

We also use a private large dataset (L) for music sepa-

ration which corresponds to 1,505 extra multitrack songs

created in the same manner as MUSDB18. We incorporate

the MUSDB18 training and validation sets into the large

dataset, thus obtaining a total of 1,455+86=1,541 training

songs and 50+14=64 validation songs. In both datasets,

most of the songs correspond to mainstream western mu-

sic, with rock and pop as the predominant genres.

To validate our method, we use a private set of 18 dry mul-

titrack songs, where all songs have been produced by dif-

ferent musicians and mixing engineers. From this data we

grouped the respective dry stems without applying any ef-

fect in the process.

3.2 Dataset preprocessing

We apply our preprocessing methods to both datasets in-

dependently. EQ preprocessing is computed with a 65,536

point STFT with hop size of 25% and a FIR filter of 1,001

taps. In order to avoid clipping, all audio stem channels are

loudness normalized to -30 dBFS prior to the EQ feature

computation and normalization.

For DRC preprocessing, to determine the timing settings

of the compressor used during the normalization, we av-

eraged the values found in mixing engineering best prac-

tices [8, 44]. Attack values correspond to 7.5, 10, 10 and

15 ms and release values to 400, 180, 500 and 666 ms,

for vocals, drums, bass and other, respectively. For the

incremental grid search we use ratio and threshold values

within {4, 20} and {-40, -10} db respectively. For the HFC

computation we use 128 mel bands of all stems with the

exception of bass where we found better onset detection

with 16 mel bands. Prior to the DRC preprocessing, all

channels are peak normalized to -10 dB.

Panning preprocessing is done with a 2,048 point STFT

with hop size of 50%. For all stems, frequency bins are re-

panned until 16 kHz, with the exception of drums, which is

re-panned until 16 kHz in order to avoid artifacts.

Reverberation augmentation is done by applying uniform

random sampling on a set of 130 different impulse re-

sponses (IR) whose RT is within {2, 4} seconds (s). The
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EQ used prior to the reverberation corresponds to a low-

shelf and high-shelf with a fixed gain of -30 dB whose cut-

off frequency is uniformly sampled within {500, 700} Hz

and {7, 10} kHz, respectively. At inference, to simulate

the reverberant characteristics of the training data, before

applying the aforementioned augmentation, a "pre-reverb"

is added in the same manner but from a different set of 400

IRs whose RT is within {1, 1.5}-s. A shorter RT is cho-

sen, as high reverberation levels has been shown to have a

more detrimental effect on subjective preference than low

levels [45]. Reverberation augmentation is applied only to

vocals and other stems. Reverberation and DRC effects are

implemented using the Python package from [10].

3.3 Hyperparameters

The convolutional layers on the front-end have N=128 fil-

ters of size 64 and 128 respectively, and a 64-point window

for max-pooling. In the mixer, the bottleneck layer has 256

channels, the skip connection paths have 64 channels, and

the convolutional blocks have 128 channels of kernel size

3. We use 4 stacks of 6 convolutional layers with a dilation

factor of 1,2,...,32. We stacked 3 BLSTMs with a hidden

feature map of 64 channels. The FC layers in the SE block

have 2048 (16N ) and 128 channels respectively.

The input consists of 2K channels, each channel consist-

ing of A=10-s audio frames at 44.1 kHz. The receptive

field of the mixer is 505 samples, and taking into account

the pooling operation, the overall network has a receptive

field of 32,446 samples. Thus, the loss function is only

calculated on a 8.52-s frame centered in the middle of the

10-s input. The network has in total 2.7M parameters. As

a baseline, we use the modified Wave-U-Net (WUN) intro-

duced by [9]. The same settings are used as in the original

work which yields a network of 2.5M parameters.

3.4 Training

Regarding on-the-fly data augmentation, we apply a ran-

domization of the order of the stereo channels, this is done

consistently across the stems and the target mix. For the

proposed network we use the pretraining from [38]. We

train both models using a batch size of 4, an initial learning

rate β=0.001, and the following learning rate schedule; β
for 300 epochs, β/3 for 100 epochs, β/10 for 100 epochs,

β/30 for 50 epochs, β/100 for 50 epochs and β/1000 for

25 epochs. An epoch consists of 1600 batches, L2 norm of

the gradient is clipped by 0.2 and we use 10−7 for weight

decay regularization. We select the model with the lowest

validation loss.

4. RESULTS & ANALYSIS

We trained both networks with the preprocessed datasets

S and L and the loss functions La and Lb, which yielded

Ours-S-La, Ours-S-Lb, Ours-L-La and Ours-L-Lb for our

proposed network, and WUN-S-Lb and WUN-L-Lb for

Wave-U-Net. Convergence during training for WUN with

La was unsuccessful, therefore it is excluded from the re-

sults.

dry test set MUSDB18 test set

model spectral panning dynamic loudness spectral panning dynamic loudness

Normalized 0.435 0.593 0.168 0.633 0.256 0.783 0.109 0.643

WUN-S-Lb 0.527 0.215 0.082 0.094 0.250 0.250 0.078 0.097

Ours-S-La 0.547 0.201 0.062 0.056 0.299 0.191 0.086 0.095

Ours-S-Lb 0.427 0.207 0.063 0.061 0.276 0.212 0.085 0.084

WUN-L-Lb 0.551 0.182 0.066 0.054 0.279 0.195 0.074 0.072

Ours-L-La 0.590 0.191 0.055 0.091 0.312 0.593 0.168 0.105

Ours-L-Lb 0.519 0.170 0.056 0.061 0.276 0.160 0.084 0.079

Table 2: Objective metrics correspond to the average mean

absolute percentage error by feature subgroup.

4.1 Quantitative evaluation

To measure how close the output mixes are to the refer-

ence mixes, we use the following audio features, spectral:

centroid, bandwidth, contrast, flatness, and roll-off [46];

panning: the Panning Root Mean Square (RMS) [27]; dy-

namic: RMS level, dynamic spread and crest factor [47];

and LUFS loudness level [21]. All features are computed

using a running mean of 0.5-s [27]. Table 2 shows the re-

sults for the dry test set and the MUSDB18 test set. As

expected, the overall error values are larger for the dry

test set. Also, the loudness, dynamics, and panning values

show a closer match to the reference mix when compared

to the Normalized mix, which is the sum of input stems af-

ter data preprocessing. Spectral values do not match in the

same way, which could indicate that the generated mixes

deviate in terms of EQ and reverberation.

4.2 Listening Test

We designed a the listening test using the Web Audio Eval-

uation Tool [48] and the APE interface [49]. The test is in-

tended for professional mixing engineers only and we ask

participants to rate the mixes based on Production Value,

Clarity and Excitement as shown in [50]. Perceptual tests

for mixing systems [9,10] often differ from MUSHRA [51]

tests, as the reference sample is omitted in order to encour-

age a direct comparison between mixes. However, based

on feedback from pilot tests, we decided to include the 4

dry stems in the test as references. In this way, the ratings

may reflect the quality of transformation on each stem as

applied by the mixing systems.

Fourteen participants with an average mixing engineering

experience of 11.6 years took part in the test. In total

there were six different songs and for each song six dif-

ferent mixes were presented. Each mix was 25-s taken

from the chorus-to-verse transitions of the full mixes. The

six mixes correspond to the Ours-S-Lb, Ours-L-La, Ours-

L-Lb, WUN-S-Lb and WUN-L-Lb models plus a profes-

sional Human mix. Ours-S-La was omitted from the test to

allow more songs to be tested while avoiding listening fa-

tigue [52]. A low-anchor was not used as it has been shown

to compress the other ratings at the higher end [1]. All

mixes were loudness normalized to -23 dBFS [53].

Figure 3 shows the results of the listening test and Table

3 shows the pairwise comparisons of mixes. For Produc-

tion Value, there is no statistically significant difference

between the Human mixtures and the models that were
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Figure 3: Listening test boxplots and violin plots for all individual six songs (S1 to S6) and all songs, respectively.

trained on the large dataset. For Clarity, Human mixes are

rated lower than Ours-L-La, Ours-L-Lb with a p-value of

0.008 and 0.013, respectively, indicating that our models

generate mixtures with less masking. For Excitement, the

null hypothesis is accepted, and therefore Human mixes

are considered no different than any other mixture system.

Although Ours-L-Lb was among the best among all crite-

ria, the null hypothesis is also accepted when compared to

WUN-L-Lb. Thus, a further analysis is needed among both

networks, e.g. in terms of long-term learned dependencies

and ability to generate full-length coherent mixes.

In general, models trained with large datasets received the

highest scores, which could confirm that lack of data has

been the bottleneck of data-driven mixing systems. How-

ever, for Clarity and Excitement, the mixes by WUN-S-Lb

are not considered different from the rest, which might in-

dicate that our data preprocessing method is both effective

for small and large datasets.

It should be noted that, in general, none of the mixes is con-

sistently considered as very good. This relates with other

findings, where even commercial mixes made by renown

engineers are not rated as high [1, 44]. This opens up a

new research direction for evaluating mixing systems, as

this type of test is too difficult for inexperienced partic-

ipants, and when experienced participants do participate,

they tend not to rate any mix as very good.

For individual songs, Human mixes have lower rates for

Jazz and Dance-Pop. For the latter, low ratings on all crite-

ria may be due to highly compressed drums. However, the

high ratings in terms of Excitement and Production Value

for the Human J-Rock mix might be due to hard-panned

guitars. In contrast, the models are conservative when it

comes to panning and are unlikely to hard-pan sources,

however a further analysis is required. Furthermore, al-

though we show the models successfully mixing multiple

genres, an in-depth analysis of the genre distribution of the

dataset with ratings by genre is needed.

Production Value WUN-S-Lb Ours-S-Lb WUN-L-Lb Ours-L-La Ours-L-Lb Human

WUN-S-Lb · o ⋆ o ∗∗ ⋆
Ours-S-Lb o · o o ∗∗ ⋆
WUN-L-Lb ⋆ o · o o o

Ours-L-La o o o · o o

Ours-L-Lb ∗∗ ∗∗ o o · o

Human ⋆ ⋆ o o o ·

Clarity WUN-S-Lb Ours-S-Lb WUN-L-Lb Ours-L-La Ours-L-Lb Human

WUN-S-Lb · o o o o o

Ours-S-Lb o · o ∗ ∗∗ o

WUN-L-Lb o o · o o o

Ours-L-La o ∗ o · o ∗

Ours-L-Lb o ∗∗ o o · ⋆
Human o o o ∗ ⋆ ·

Excitement WUN-S-Lb Ours-S-Lb WUN-L-Lb Ours-L-La Ours-L-Lb Human

WUN-S-Lb · o o o o o

Ours-S-Lb o · ∗ ⋆ ∗ o

WUN-L-Lb o ∗ · o o o

Ours-L-La o ⋆ o · o o

Ours-L-Lb o ∗ o o · o

Human o o o o o ·

Table 3: Post hoc Mann-Whitney test results of pairwise

comparison with Bonferroni Correction. o > 0.05, ⋆ < 0.05,

∗ < 0.01, ∗∗ < 0.001. E.g. when y-axis is compared to x-

axis, ∗̄ or ∗ indicate y-axis is significantly better or worse

than x-axis for a p-value < 0.01, respectively.

5. CONCLUSION

We present a novel data preprocessing approach that allows

us to train deep learning networks with existing wet or pro-

cessed multitrack data by reusing them to perform an au-

tomatic mixing task. During inference, we apply the same

data preprocesing to dry multitrack data and we tested the

generated mixes via objective and subjective tests. We in-

troduced a new deep learning architecture designed for the

proposed task, a perceptual-based loss function along with

a redesigned listening test aimed at experienced mixing en-

gineers. The results indicate that our approach successfully

achieves automatic loudness, EQ, DRC, panning, and re-

verberation music mixing. Resulting mixes compared to

professional mixes scored higher in terms of Clarity and

are indistinguishable in terms of Production Value and Ex-

citement. We believe that the proposed preprocessing can

be applied to other data-driven MIR tasks.
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