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ABSTRACT

Standard evaluation metrics such as the Inception score

and Fréchet Audio Distance provide a general audio qual-

ity distance metric between the synthesized audio and ref-

erence clean audio. However, the sensitivity of these met-

rics to variations in the statistical parameters that define an

audio texture is not well studied. In this work, we provide

a systematic study of the sensitivity of some of the existing

audio quality evaluation metrics to parameter variations in

audio textures. Furthermore, we also study three more po-

tentially parameter-sensitive metrics for audio texture syn-

thesis, (a) a Gram matrix based distance, (b) an Accumu-

lated Gram metric using a summarized version of the Gram

matrices, and (c) a cochlear-model based statistical fea-

tures metric. These metrics use deep features that summa-

rize the statistics of any given audio texture, thus being in-

herently sensitive to variations in the statistical parameters

that define an audio texture. We study and evaluate the sen-

sitivity of existing standard metrics as well as Gram matrix

and cochlear-model based metrics in response to control-

parameter variations for audio textures across a wide range

of texture and parameter types, and validate with subjective

evaluation. We find that each of the metrics is sensitive to

different sets of texture-parameter types. This is the first

step towards investigating objective metrics for assessing

parameter sensitivity in audio textures.

1. INTRODUCTION

Audio textures are rich and varied sounds that are pro-

duced by a superposition of multiple acoustic events. Un-

like the sound of an individual event, such as a footstep, or

the complex spectrotemporal structures and sequences of

speech or music, an audio texture is defined by properties

or parameters that remain constant over time [1] despite

statistical variation in the sound over time or between in-

stances. For parametric audio texture synthesis, the goal is

to generate novel sounds with descriptive parameters that
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match those of a target texture. Standard objective evalu-

ation metrics for audio texture synthesis include diversity

and quality based measures such as the Inception score [2],

and Fréchet Audio Distance (FAD) [3]. However, the ex-

isting metrics have not been studied for their sensitivity to

systematic variation in the parameter values that define the

synthesized audio textures.

Various audio texture synthesis algorithms have been

applied to modeling a wide range of natural audio tex-

ture types including rhythmic (eg. drums, tapping), pitched

(eg. windchimes, churchbells) and other natural sounds

(eg. rain, wind), but with different degrees of success.

Evaluation of parametric variation textures has typically

been through human listening experiments [4, 5].

ªDeep featuresº (activation patterns across layers of

neural networks) have been explored for various evaluation

tasks such as out-of-distribution detection in audio clas-

sification [6], perceptual image similarity evaluation [7],

audio distortion assessment [3] and audio texture synthe-

sis [1, 5, 8]. In this work we study several existing objec-

tive metrics and also explore deep features and cochlear

channel model statistics for potential evaluation metrics

sensitive to parameter variations. We make use of a con-

trolled audio texture dataset [9] to study these metrics for a

wide range of audio textures - rhythmic, pitched, and non-

rhythmic non-pitched under systematic parametric varia-

tion. We present a comparative study of the parameter sen-

sitivity of the metrics and validate their reliability through

human listening tests.

2. RELATED WORK

2.1 Why is a parameter sensitive metric needed?

McDermott and Simoncelli [1] developed a set of statis-

tics based on a cochlear model to describe the perceptually

relevant aspects of a given audio texture. To synthesize a

new audio texture, a random input is iteratively perturbed

until its statistics match those of a target. This algorithm

produces convincing audio for many natural textures such

as insect swarms, a stream, or applause. However, hu-

man listeners give low scores on realism for resynthesized

pitched and rhythmic textures, such as wind chimes, drum

break, walking on gravel, and church bells. Besides the au-

dio quality, the statistical parameters associated with these
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sounds can fail to be faithfully preserved in the synthe-

sized sounds [4]. Moments derived from the time-averaged

scattering coefficients when used for resynthesis of audio

textures have also shown similar performance but using

fewer coefficients [10, 11]. An objective metric for pre-

dicting these human evaluations of texture synthesis fail-

ures would be valuable.

Gatys et al. [12] did seminal work on image texture

synthesis that replaced hand-crafted statistics with Gram

matrix statistics computed as the correlation between hid-

den feature activations from layers of a trained convolu-

tional neural network (CNN). Iteratively perturbing a ran-

dom input to match Gram matrices produces compelling

and novel image textures. Similarly, Ulyanov et al. [8]

improved the quality of synthetic textures based on the

dataset from McDermott and Simoncelli [1]. Antognini

et al. [5] extended Ulyanov’s work by modifying the archi-

tecture with 6 parallel single-layered untrained CNNs each

with a different convolutional kernel size, and computed

autocorrelation and diversity losses in addition to the orig-

inal Gram matrix loss. They demonstrated some improve-

ments, but found failure modes similar to that of McDer-

mott and Simoncelli [1] using a combination of objective

and subjective evaluation. Caracalla and Roebel [13] also

relied on human listening tests to show the improvement in

sound quality achieved in this kind of iterative texture syn-

thesis using a complex spectrogram audio representation.

The key take-away from these previous studies is that

there is a need for evaluating the preservation of statistical

parameters in synthesised audio texture but a lack of an

objective metric for that purpose.

2.2 The existing audio synthesis evaluation metrics

The evaluation of generative models in terms of perceptual

realism is challenging. However, various objective metrics

have been formulated for assessing the quality of synthe-

sized audio textures. For example, L2 distance, cosine dis-

tance, and signal-to-distortion ratio use a clean reference

signal to compare with the modified or enhanced synthetic

signal. Such signal-level metrics are agnostic to the type

of audio that is being enhanced. However, these metrics

may not always correlate with human perception. FAD [3]

takes a different approach as a reference-independent met-

ric that, instead of looking at individual clips, computes

the distance between the distribution of embedding statis-

tics generated on a large set of clips.

The Inception score [2, 14, 15], passes generated exam-

ples through a pre-trained classifier. The mean KL diver-

gence between the conditional output class probabilities

and the marginal distribution of the same are then calcu-

lated. The Inception score penalizes models whose exam-

ples are not easily classified into a single class, as well as

models whose examples collectively belong to only a few

of the possible classes. However, the Inception score is not

the right tool for evaluating a model’s sensitivity to param-

eter differences between sounds within a class.

The goal of most of these audio quality assessment

metrics has been to quantify the degradation of an en-

hanced/modified audio signal. However, to the best of our

knowledge, there is a lack of a systematic study of the sen-

sitivity of these metrics to parameter variations in synthe-

sized audio. Such a study is particularly challenging for

audio texture synthesis because of the inherent variations

that correspond to a particular parametric description.

3. METRICS

We study two standard metrics and three Gram matrix met-

rics for sensitivity to parametric changes to audio textures.

3.1 Existing Metrics

3.1.1 Fréchet Audio Distance (FAD)

FAD [3] is a reference-independent metric for audio qual-

ity assessment that computes the Fréchet distance [16] be-

tween the multi-variate Gaussian distributions of the em-

beddings of train and test set audio data. These 128 dimen-

sional embeddings are extracted from a VGG-ish model

[17] pre-trained on clean audio data for classification.

FAD = ||µb − µt||
2 + tr(Σb +Σt − 2

√

Σb · Σt) (1)

where the training and test data embeddings are assumed

to have multivariate Gaussian distributions N (µb,Σb) and

N (µt,Σt), respectively. We used the open-source model

and FAD computation code [3].

3.1.2 L2 Distance

As another standard metric for our study, we compute the

Euclidean distance between the two matrices XA and XB ,

representing the spectrograms of the two input audio sig-

nals to be compared, xA and xB respectively.

3.2 Gram matrix based Metrics

3.2.1 Gram matrix Metric (GM)

Following Ulyanov and Lebedev [8] and Antognini et

al. [5], we use 2D spectrogram representations of audio

for iterative updates through the CNNs used to compute a

summary statistic in the form of a Gram matrix. Two audio

textures sound similar if the computed Gram matrices are

similar. Here, we leverage on this property of Gram matrix

to develop a metric designed to be sensitive to parameter

variations. We define the Gram matrix metric as the mean

squared error between the Gram matrices of two textures.

We hypothesize that this metric would be sensitive to para-

metric variations in the statistics of the same texture type

such as different rates of flowing water.

Formally, we define the Gram matrix metric GM as,

GM =
1

N

N
∑

n=1

1

D
||Gn

A −Gn

B ||
2

2
(2)

where, Gn

A
and Gn

B
are flattened Gram matrices derived

from audio clips A and B respectively for the nth CNN in

an ensemble of N CNNs, and D is the total number of el-

ements in the Gram matrix. In this work, we adopted the
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Figure 1. Gram matrix param-sensing metric computation

block diagram consisting of an ensemble of six 1 layer 1d-

CNNs, with different kernel sizes, k. Each CNN has 512

filters, and the weights are randomly initialized.

architecture used by Antognini et al. [5] for the Gram ma-

trix computation, as shown in Figure 1. It consists of an en-

semble of 6 (N=6) single-layered CNNs. We used spectro-

grams of the audio texture clips as the input to the network

computed with 512 FFT bins and hop-size of 128 sam-

ples. Unlike images, we consider the spectrograms as one-

dimensional input features with the frequency bins as the

number of channels. We therefore use a one-dimensional

convolution, where each CNN has a convolutional kernel

kn with a different width, in particular 2, 4, 8, 16, 64, 128.

The different kernel sizes capture statistics over multiple

time scales. We used F = 512 filters randomly initialized

from a normal distribution (with no training) thus produc-

ing six 512×512 dimensional Gram matrices. Details are

available in Supplementary Material 1 .

3.2.2 Gram matrix Cos Metric (GMcos)

We compute the cosine distance between the Gram matri-

ces (instead of mean square error) as,

GMcos = 1−
Gn

A
·Gn

B

T

||Gn

A
||2||Gn

B
||2

(3)

where, Gn

A
and Gn

B
are flattened Gram matrices of audio

clips A and B respectively for the nth CNN in an ensemble

of N CNNs.

3.2.3 Accumulated-Gram Metric (AGM)

Gram matrices for audio textures are usually sparse (see

Supplementary Material (Section 1.) for more info). Neto

et al. [18] used a compact version of the Gram matrices to

predict the class label of a given sample. Similarly, for a

metric that captures the essence of the Gram matrices gen-

erated from an audio texture clip, we compute a Gram vec-

tor corresponding to the clip by accumulating the values

from its six Gram matrices, and then aggregating the rows

over all the Gram matrices to get a compact one dimen-

sional summarizing vector of length 128. For more details,

please refer to Supplementary Material.

1 https://animatedsound.com/ismir2022/metrics/

supplementary/main.html

We define Accumulated-Gram metric (AGM) as the dot

product of the difference of the two Gram vectors gA and

gB corresponding to the two audio clips A and B as

AGM = (gA − gB) · (gA − gB)
T (4)

3.3 Cochlear Param-Metric (CPM)

McDermott and Simoncelli [1] use a 3-step texture model

to generate a set of statistics of an audio texture as synthe-

sis parameters. A filterbank with a set of cochlear filters

is first applied on the incoming sound to decompose the

sound to many sub-bands. Then, sub-band envelopes are

computed and compressed. And finally a filterbank with

a set of modulation filters is applied on each compressed

subband envelope. They use seven sets of time-average

statistics of nonlinear functions of either the envelopes

or the modulation bands as a representation of textures,

which includes marginal statistics, variance, and correla-

tions. During synthesis, a white noise signal is iteratively

modified to minimize the distance between the synthesised

and target sound statistics. Our experiments are based on

McWalter’s implementation [4] of the [1] algorithm. An

overview of the method, implementation details, and sta-

tistical parameters are summarized in Supplementary Ma-

terial (Section 2.).

We use the statistical parameters calculated by this al-

gorithm as a representation for the Cochlear Param-Metric

(CPM). For each sound x, we calculate the seven sets of

statistics Si where i = [1...7], and compute CPM as

CPM =

7
∑

i=1

D(Si

A, S
i

B) (5)

where Si

A
is a flattened vector of the ith statistics set of

sound clip A, and D(x1, x2) calculates the cosine distance

between two vectors.

4. EXPERIMENTAL SETUP

4.1 Dataset

We use a subset of audio textures from [9] as summarized

in Table 1. There are 13 texture types, each of which has

a collection of examples that are determined by a set of

variable control parameters. For example, various wind-

chimes sounds are determined by parameters chimesize and

strength. For our experiments only one control parameter

varies at a time. For example, for the set of audio tex-

tures windchimes-strength, we generate 11 audio files with

a varying strength parameter, with the first file having the

lowest strength parameter value and the 11th file having

the highest strength value. We generate 10 files for each

these 11 setting, where all the 10 versions have the same

parameter settings but are different instances. All the audio

files being used are between 1.5 and 2 seconds long.

The pitched sound group consists of the frequency mod-

ulation, windchimes, chimes (without the wind sound),

and feedback noise (FB noise). FB noise has the param-

eter ‘pitchedness’ that changes the texture from a noisy
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Group Texture Type Parameters

FM modulation frequency (FM-mf)
carrier frequency (FM-cf)
modulation index (FM-mi)

Pitched Windchimes chimesize (windchimes-size)
strength (windchimes-strength)

Chimes chimesize (chimes-size)
strength (chimes-strength)

FB Noise pitchedness (fbnoise-pitchedness)
Nsynth brass pitch (nsynth-pitch)

Pops rate (pops-rate)
center freq (pops-cf)

irregularity (pops-irreg)
Chirps rate (chirps-rate)

Rhythmic center freq (chirps-cf)
irregularity (chirps-irreg)

Tapping rate (tapping-rate)
relative phase (tapping-relphase)

Drum break tempo (drum-tempo)
reverb (drum-rev)

Wind gustiness (wind-gust)
howliness (wind-howl)
strength (wind-strength)

Others Waterfill fill-level (water-fill)
Bees center frequency (bees-cf)

busy-body (bees-busy)
Applause rate (applause-rate)

no. of clappers (applause-clappers)

Table 1. Dataset overview

signal to a pitched sound. Under the rhythmic group are

pops, chirps, tapping, and drum-break. The tapping sound

is similar to the ªtapping 1-2º sound in the collection of

sounds in [1], and the drum break sound set is recorded

and then processed with varying tempo and reverb param-

eters. The others group includes wind, water filling a con-

tainer, buzzing bees, and applause. Most sounds are syn-

thesized 2 , except the waterfill, Nsynth brass, and drum-

break textures, which are recorded or are manipulated ver-

sions of a real recording.

4.2 Subjective Evaluation

Listening tests were conducted to quantify listeners’ sen-

sitivity to control parameter changes based on their ability

to identify the order and proximity of audio samples w.r.t

two selected reference samples as well as each other. This

evaluation was done to provide a perceptual baseline for

our objective metrics comparison. Each audio trial con-

sisted of 7 audio samples - 2 references and 5 test samples.

The 2 references were selected for each texture with the

control parameters (as in the Parameters column in table

1) set to 0 (left endpoint) and 1 (right endpoint). The 5

test samples are from the same texture selected with pa-

rameters between 0 and 1. A total of 9 such texture-trials

were created, each with a different combination of con-

trol parameter settings for the 5 test audio samples. This

was done to ensure that all the 9 control parameters val-

ues between 0 and 1 are included and are uniformly dis-

tributed across trials. The references, test samples, and the

sequence of the individual texture-trials were randomized

while conducting the test.

An interface was developed specifically for this test

with the goal to intuitively convey the task details to the

listeners. First they listened to the two references and then

to the individual samples in the test. Then they were asked

2 Dataset Appendix: https://animatedsound.com/

ismir2022/metrics/appendix_dataset/index.html

Figure 2. Correlation of perceptual distances with control

parameters used to generate the textures. Grey bars indi-

cate textures with no significant correlation.

to create an arrangement by positioning thumbs on a slider

corresponding to each test sample depending on how they

perceived the order and distance of each sample w.r.t. the

two references. Adjustments could be made by listening to

their arrangement until they were satisfied. The listening

test interface can be viewed on our webpage 3 . Amazon

Mechanical Turk (AMT) was used to collect 30 responses

per trial from a total of 348 unique participants.

5. EXPERIMENTS AND RESULTS

In this study, we experimentally address two main ques-

tions: 1) Are the objective metrics consistent for texture in-

stances generated with the same parameters (Section 5.2)?

2) Are the objective metrics sensitive to parameter varia-

tions (Section 5.3)? We evaluate each metric by comparing

them with the subjective responses.

5.1 Subjective tests

Figure 2 shows the correlation coefficients for the subjec-

tive perceptual distance captured w.r.t the synthesis con-

trol parameters. Parametric variations for chimes-strength,

pop-irreg, wind-gustiness and windchimes-chimesize did

not result in significant correlations primarily due to wide

variance in human ratings, and are excluded from further

comparison with objective metrics. Based on the distance

measures, we derive rank ordering for the audio samples

along the parametric dimension to compare with metrics.

See the Supplementary Material for summary rank-order

plots obtained from the listening tests for all textures un-

der consideration in this paper. A selection of sounds used

in our listening tests can be auditioned on our webpage.

5.2 Metric Consistency

Metric consistency means that the distance between two

texture instances with the same parameter settings is small.

We analyse consistency in terms of relative mean for three

texture types - FM, pops, and water filling. The metric val-

ues are computed over one hundred comparisons between

two parametrically identical textures. Relative mean is the

single parameter mean with respect to the maximum aver-

age mean value of comparisons across different parameter

settings for the texture as computed in Section 5.3.

3 https://animatedsound.com/ismir2022/metrics/
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Text-Param L2 FAD CPM GM GMcos AGM

FM-cf 54.04 5.69 8.05 0.07 0.02 0.12

pops-rate 21.36 5.27 3.44 6.81 2.46 4.28

water-fill 61.09 40.60 23.09 16.19 7.83 12.17

Table 2. Metric Consistency in terms of relative mean in %

for three texture types - FM, pops, and water filling. Lower

is better. The best two in every row are highlighted in bold.

Figure 3. Gram vectors and AGM values of anchor for ap-

plause sounds with an increasing number of clappers from

(a) to (f) compared to the anchor sound of a single clapper.

The results are shown in Table 2. The L2 metric shows

a high relative mean value for all three texture types which

confirms the understanding that a spectrogram-based dis-

tance measurements does not capture the statistics that de-

fine a texture. It is too sensitive to the "irrelevant" varia-

tions between similarly parameterized textures.

Although the relative mean of FAD is not as high as

that of L2, it is higher than the Gram matrix based metrics,

because the embeddings extracted from VGGish provide a

holistic representation of the audio including both the over-

all statistics and temporal structure. The effect of the exact

temporal structure of the sound on the metric is reduced but

still present. The statistical metrics (CPM and GM-based)

exhibit low relative mean values (good consistency), es-

pecially GMcos. The waterfill texture shows higher rela-

tive mean values across all metrics. This is at least in part

because for real recordings, even for short durations, the

fill-level is never constant while filling a container.

5.3 Metric Sensitivity to Parameter Variation

To further investigate the sensitivity of the objective met-

rics to parameter variations, we fix one texture example

to a low parameter value (0), called the anchor, and com-

pare it with nine test clips of the same texture-type but in-

creasing parameter values (1-9). We compute this over 10

versions of the same anchor and test parameter settings,

and average over them for the metrics L2, CPM, GM, GM-

cos, and AGM. However, to calculate FAD, we compute

Fréchet distance between normal distributions of embed-

dings of the 10 versions, instead of between the embed-

dings of individual audio files (Eq. 1). An example of the

sensitivity of the 1×128 dimensional AGM Gram vector to

parameter variations is shown in Figure 3. The Gram vec-

tors of a reference (anchor) applause audio texture clip that

has the number of clappers parameter set to 1, is compared

with six test audio clips of applause textures with increas-

ing number of clappers. The divergence between the Gram

Texture-Param L2 FAD CPM GM GMcos AGM

Pitched

FM-mf 0.99 0.94 0.99 1.00 0.99 0.64

FM-cf 0.99 0.71 0.99 1.00 0.99 0.97

FM-mi 0.99 0.75 0.94 0.99 1.00 0.99

windchimes-strength 0.97 0.97 0.82 0.95 0.95 0.62

chimes-size 0.28 0.88 0.92 0.20 0.20 0.07

fbnoise-pitchedness 1.00 0.75 0.98 1.00 0.99 1.00

nsynth-pitch 0.09 -0.45 0.73 0.23 0.09 -0.50

Rhythmic

pops-rate 0.98 0.85 0.80 0.79 0.89 0.94

pops-cf 0.98 0.96 0.99 0.99 0.99 0.98

chirps-rate 0.97 0.94 0.94 0.84 0.88 0.89

chirps-cf 0.99 0.98 0.98 0.98 0.98 0.97

chirps-irreg 0.81 0.95 0.94 0.90 0.92 0.90

tapping-rate 1.00 0.90 0.91 0.64 0.94 0.76

tapping-relphase 0.88 0.96 0.98 0.94 0.95 0.76

drum-tempo 0.08 0.82 0.97 0.97 0.63 0.81

drum-rev 0.93 0.85 0.81 0.90 0.81 0.94

Others

wind-howl 0.92 0.92 0.92 0.80 0.92 0.86

wind-strength 0.96 0.86 0.88 0.87 0.88 0.56

water-fill 0.39 0.32 0.41 0.75 0.73 -0.27

bees-cf 0.97 0.90 0.98 0.97 0.98 0.80

bees-busy -0.21 0.89 0.89 -0.34 -0.43 0.92

applause-rate 0.66 0.83 0.86 0.66 0.78 0.90

applause-clappers 0.97 0.94 0.93 0.99 0.99 0.99

Table 3. Pearson’s Correlation between the avg human

rank orders and the distance from the anchor computed by

the objective metrics. The best two values in every row are

in bold. Correlation values >=0.5 are green, <0.5 orange.

vectors of the anchor and test sounds grows as the number

of clappers is increased.

Figure 4 shows the plots of all the metric values for

three textures compared with human responses in terms

of average rank order. The Pearson’s correlation between

the objective metrics and the subjective responses are pre-

sented for all textures in Table 3, and their corresponding

plots are available in the Supplementary Material.

5.3.1 Metric Performances

The L2 metric is again a poor performer. This is partic-

ularly clear for drumbreak-tempo textures as can be ob-

served in the L2 column in Figure 4(b). FAD performs

better than Gram matrix based measures for chimes-size,

but shows worse performance for FM-cf, FM-mi, FBnoise-

pitchedness, and waterfill (Table 3). FAD performs well

for most of the rhythmic textures except pop-rate, drum-

tempo, and drum-rev. Since FAD preserves some infor-

mation about exact spectro-temporal structure, the result is

variable sensitivity to parameters (Figure 4, FAD row).

The statistics designed by [1] are known to synthe-

size good quality sounds for natural textures such as bees

and wind which is clearly reflected in our results. How-

ever, these statistics are also known for low realism scores

for synthesized pitched sounds such as windchimes, and

rhythmic sounds such as drum break. Compared to the

Gram matrix based metrics, CPM performs well except for

windchimes-strength, pop-rate, drum-rev, and water-fill.

When an event rate varies, the features captured by the

Gram matrix may reflect some individual events, espe-

cially for shorter kernel sizes. In such cases, AGM cap-

tures the summary of those statistics instead of individual

events, thereby showing a higher parameter sensitivity than

metrics based on the entire matrix. This trend can be seen
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Figure 4. Trends of human responses and objective met-

rics to parameter variations for three texture-param com-

binations, (a) FM with carrier frequency variable parame-

ter, (b) Drum-break with tempo a variable parameter, and

(c) Waterfill with fill-level parameter, along with the Pear-

son’s correlation between the objective metric values and

the subjective responses.

in applause-rate, pop-rate, tapping-rate, chirp-rate, as well

as bees-busy (increase in busy body parameter sounds like

increase in the rate of buzzing vibrations), where AGM

outperforms GM.

The cases where GM outperforms AGM are FM-

mf, bees-cf, windchimes-strength, waterfill, and wind-

strength, where the parameter variation occurs in the fre-

quency domain, i.e. the center frequency in bees-cf, wind

and windchimes-strength, modulation frequency in FM-

mf, and resonant frequencies in water-fill. AGM summa-

rization loses information about the statistics in the fre-

quency domain, and this suggests a future study where

methods such as eigenvalue decomposition might be bet-

ter for extracting key information from the Gram matrix.

5.3.2 Some curious cases

Water-fill shows an interesting trend in most of the metrics,

where there’s a gradual increase, and then a decrease in

the metric values (Figure 4(c)), possibly because the reso-

nances of the container wrt changing water and air column

heights cause the audio textures of an almost full container

to have some statistical similarities with that of an almost

empty container. That is, the high-level fill-level parame-

ter has a non-linear affect on the resonant frequencies of

the system. For a sound such as water-fill where multiple

perceptual dimensions are varying, GM and GMcos show

higher correlation with humans than others.

Nsynth-pitch is a curious example where none of the

metrics perform well except CPM. The sustained portion

of musical tones are atypical as textures because of the lack

of temporal variation. Each spectrogram frame is almost

exactly the same. Also, as the pitch of the brass instrument

increases, the harmonics also change. The Gram matrix

summarizes the temporal statistics through the 1D audio

representations, but not the frequency statistics, thereby

showing a noisy performance.

6. DISCUSSION

We explore a variety of metrics for use with audio tex-

tures for their sensitivity to controlled parametric varia-

tion. However, in a realistic situation, there may effec-

tively be multiple simultaneous dynamic parameters. One

such example in our dataset was the waterfill texture-type,

where the fill parameter maps to both rising and falling res-

onant frequencies. We saw that most of the metrics were

responding to a combination of fill parameter and reso-

nances. Further investigation is required to understand how

metrics behave in such complex realistic situations.

The systematic parameter variation we used creates tex-

tures perceptually close to each other. Further study is re-

quired to understand the behavior of these metrics for cross

texture-type comparisons, for example, bees compared to

water. Such a study would help in mapping audio textures

to a perceptual space, the way musical instrument space

has been mapped in previous work [19, 20].

Our perceptual study involved placing textures within a

1D space between two reference textures, but there is an in-

herent lack of an absolute perceptual frame of reference for

the meaning of control parameter variation. A systematic

study is needed to understand perceptual ªjust noticeable

differencesº in parameter variations for complex sounds.

Different parametric variations could then be compared on

a unified scale.

7. CONCLUSIONS

We present a comprehensive study on the parameter

change sensing property of various existing audio evalu-

ation metrics as well as three potential audio statistical and

deep-feature based metrics 4 . CPM and FAD emerge as

the best metrics, while GM based metrics show promising

results. This shows the potential of these deep-features for

the purpose of evaluation of audio textures. This study is

a fruitful first step towards understanding audio textures,

metric design for audio textures, building better synthesis

models of this rich and complex class of sounds, and gen-

erally toward mapping the space of audio textures.

4 Code base: https://github.com/chitralekha18/

ParamSensitiveMetrics
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