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ABSTRACT

The performance of machine learning (ML) models is

known to be affected by discrepancies between training

(source) and real-world (target) data distributions. This

problem is referred to as domain shift and is commonly ap-

proached using domain adaptation (DA) methods. As one

relevant scenario, automatic piano transcription algorithms

in music learning applications potentially suffer from do-

main shift since pianos are recorded in different acous-

tic conditions using various devices. Yet, most currently

available datasets for piano transcription only cover ideal

recording situations with high-quality microphones. Con-

sequently, a transcription model trained on these datasets

will face a mismatch between source and target data in

real-world scenarios. To address this issue, we employ a

recently proposed dataset which includes annotated piano

recordings covering typical real-life recording settings for

a piano learning application on mobile devices. We first

quantify the influence of the domain shift on the perfor-

mance of a deep learning-based piano multi-pitch estima-

tion (MPE) algorithm. Then, we employ and evaluate four

unsupervised DA methods to reduce domain shift. Our

results show that the studied MPE model is surprisingly

robust to domain shift in microphone mismatch scenarios

and the DA methods do not notably improve the transcrip-

tion performance.

1. INTRODUCTION

Recent advances in Automatic Music Transcription (AMT)

enable its practical application in musical education appli-

cations where students can record themselves while play-

ing a musical instrument and retrieve a performance feed-

back in near real-time. The underlying algorithms are

driven by deep learning and commonly trained on audio

data (source domain), which was gathered in specific and

ideal recording setups such as music studios with high-

quality microphones [1±3]. In real-life scenarios however,
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Figure 1. Illustration of the piano transcription process

including domain adaptation. Piano music is captured

with different recording devices (high-quality microphone,

mobile devices), adapted to the source domain, and tran-

scribed by an MPE model.

the recording setups may vary from user to user due to dif-

ferent recording devices, room acoustics, and music instru-

ment timbres (target domain). Due to the resulting distri-

bution discrepancy between both domains (domain shift),

AMT algorithms might exhibit performance degradation.

To overcome this issue, one approach would be to fine-

tune pre-trained transcription models using labeled data

recorded in real-world settings [4]. This comes with two

main drawbacks. First, this procedure would have to be

repeated for each user. Second, it requires a lot of ef-

fort to obtain perfectly aligned score annotations by man-

ually transcribing audio recordings. For this reason, do-

main adaptation (DA) methods are used to bridge the gap

between different data domains and ensure a good model

performance even on previously unseen data. These meth-

ods can align the target data distribution to the source data

distribution (or vice-versa) [5].

The contributions of the paper are as follows: We study

the task of piano multi-pitch estimation (MPE), i. e., the

estimation of simultaneously sounding note pitches, from

audio recordings captured with different mobile devices.

We first analyze and quantify the mismatch of recording

devices by comparing their frequency responses. Then, we

study the effectiveness of four different DA methods as a

pre-processing step to improve MPE algorithms. We do

this by investigating to what extent the microphone mis-

match impacts the performance of a deep learning-based
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MPE model with and without DA. We use the represen-

tation shift metric to assess whether the domain shift was

reduced by DA.

2. DOMAIN ADAPTATION

2.1 Application in Audio Domain

DA was successfully applied for various tasks in differ-

ent audio domains. Several acoustic scene classification

(ASC) algorithms were proposed during the Detection and

Classification of Acoustic Scenes and Events (DCASE)

challenge [6,7] to compensate domain shift caused by mis-

matched recording devices. Furthermore, Yang et al. [8]

proposed a two-stage domain adaptation approach to im-

prove the robustness of sound event detection (SED) mod-

els by aligning synthetic and real audio data distributions in

feature space during training. DA was also applied in Mu-

sic Information Retrieval (MIR) tasks, such as expressiv-

ity analysis in piano recordings [9], representation learning

for music processing [10], and instrument activity detec-

tion [11], and in automatic speech recognition, DA meth-

ods are employed to avoid overfitting of a model which was

trained on limited data by transferring knowledge from a

source model [12].

2.2 Selected Methods

2.2.1 Zero-mean Unit Variance (ZMUV) Normalization

A common pre-processing step for machine learning (ML)

models is the standardization of input features to zero

mean and a standard deviation of one. We implemented

four variants of the zero-mean unit variance (ZMUV) stan-

dardization process from [4] as unsupervised DA meth-

ods, which do not require data annotations. The statistics

used to standardize the target domain data (mean and stan-

dard deviation coefficients) are computed either from the

source dataset (global variants) or from the target dataset

(adaptive variants). As a consequence, global variants re-

quire access to the source domain data whereas adaptive

variants only need fractions of the target domain data.The

statistics can be computed either over all available files of

the selected domain or individually per file. Furthermore,

it is possible to have a finer resolution when computing

frequency-wise, i. e., by averaging over all time frames

and obtaining coefficients per frequency bin, or patch-wise

statistics, i. e., by averaging all frequencies within a patch

of 16 time frames. These methods are summarized in

Table 1. Finally, in addition to standardizing the target do-

main features, the source domain data will also be stan-

dardized before training the model.

2.2.2 Band-wise Statistics Matching (BWSM)

Band-Wise Statistics Matching (BWSM) is an unsuper-

vised DA method, which involves a band-wise alignment

of the first and second statistical moments of the target do-

main data to the ones of the source domain data [13]. Sim-

ilarly to standardization, the method is applied on the data

level and avoids a re-training of a ML model. First, the

Type Data Scope Resolution

Global Domain (all) Frequency

Adaptive Domain (all) Frequency

Adaptive File Frequency

Adaptive File Patch

Table 1. Overview of the implemented standardization

methods w.r.t. their type (global or adaptive), data scope

(whole domain or per file), and resolution (subdivision by

frequency bins or patches).

sample mean and standard deviation values are computed

over source and target domain data per frequency bands.

Then, a band-wise standardization is applied to the target

domain in a similar way as in the adaptive ZMUV normal-

ization per frequency as discussed in the previous section.

At the final stage, the adapted features in the target do-

main XT are aligned to the source domain XS, sharing

the same means and standard deviations. In contrast to

other assessed DA methods, source domain data remains

unchanged and the originally trained ML models can be

re-used.

2.2.3 Correlation Alignment (CORAL)

Sun et al. [14] proposed CORrelation ALignment

(CORAL) as an unsupervised DA method to align the sta-

tistical moments of source and target data. After whitening

the source domain data (i. e., removing correlation among

features), the covariance matrix of the target domain data

distribution CT is transferred to the source distribution (re-

coloring). Then, a new model needs to be trained on the

adapted source domain data.

Given that the distribution of target domain data varies

with each mobile device, room, and piano type in our

given scenario, it is not feasible to train a new MPE model

each time one of these parameters changes. In contrast

to the original publication, we implemented CORAL such

that the target domain data is adapted using the statistics

obtained from the source domain data. We follow [14]

and use a regularization parameter λ = 1 for traditional

whitening without a singular value decomposition (SVD).

The target domain data DT is whitened as in [14] and then

re-colored with the source domain covariance matrix CS

as DT ←− DT ∗C
−

1

2

T ∗C
1

2

S . This way, the source domain

data remains unchanged and the same classifier can be used

for all target domains. However, Sun et al. [14] observed a

lower performance with this approach and supposed that a

model trained on adapted source domain data may benefit

from the knowledge inherited by the target data distribu-

tion. This is not possible if only the target domain data

is modified by DA, as the model is trained on the original

source domain data independent of the target domain data.
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2.2.4 Feature Projection-Based Unsupervised Domain

Adaptation (FPDA)

Mezza et al. [15] proposed Feature Projection-based Unsu-

pervised Domain Adaptation (FPDA) to address the mis-

match between the distributions of training and test data

acquired under different recording conditions. FPDA is

based on the projection of both source and target domain

features onto a common subspace using a subset of the

eigenvectors of the sample covariance matrix of the source

domain data. After standardizing the spectrograms ex-

tracted from the source domain in a band-wise fashion,

the sample covariance matrix Vs of the source domain

data matrix and the respective eigenvectors and eigenval-

ues are calculated. The eigenvectors corresponding to the

L largest eigenvalues are retained as matrix V
(L)
s and us-

ing this matrix source domain and target domain data are

projected onto a common subspace as XS = S̄2DV
(L)
s and

XT = T̄2DV
(L)
s .

There are several differences between the application

of FPDA in Acoustic Scene Classification (ASC) [15] and

our application scenario for real-time piano transcription.

Firstly, in [15], source and target domain data contain

the same audio signal recorded simultaneously on differ-

ent recording devices with a constant length of ten sec-

onds, whereas the files contained in our source domain

data have entirely different musical content as compared

to the target domain data. Moreover, the number of sam-

ples varies greatly throughout both the source and target

domain dataset in our case. For this reason and for FPDA

to be applicable w.r.t. a real-time piano transcription sce-

nario, we chose L = 16, so that the DA can be applied

in a block-wise fashion, 16 frames at a time. To use the

domain-adapted features as input for the piano transcrip-

tion model, we project the features back to the original

feature space as Ŝ2D = XSV
(L)T

s as T̂2D = XTV
(L)T

s .

Then, the MPE model is trained on the resulting modified

source domain data.

3. MULTI-PITCH ESTIMATION

3.1 Recent Approaches

While traditional MPE methods mostly relied on spectral

decomposition techniques such as non-negative matrix fac-

torization (NMF) [16], modern methods are based on dif-

ferent neural network (NN) architectures [17]. Hawthorne

et al. [18] propose a general purposed piano transcription

model that combines two branches of convolutional recur-

rent neural networks (CRNNs), which jointly predict the

pitches and onset times of played piano notes. Kong et

al. [19] proposed a high-resolution AMT system consist-

ing of several CRNNs acoustic models dedicated to dif-

ferent tasks such as velocity, onset and offset regression.

More recently, generic encoder-decoder architectures such

as transformer networks have been used to remove the need

of custom NN design, as done by Hawthorne et al. [20].

3.2 Model Architecture

Following recent advances in the field of computer vision,

the U-net architecture is employed for different MIR tasks.

In particular, it was used for different AMT tasks such as

bass transcription [21], melody transcription [22, 23], as

well as polyphonic piano transcription [24]. The struc-

ture of a U-net resembles an autoencoder, but is extended

by skip connections between encoder and decoder blocks.

Input features are first processed by an encoder that se-

quentially reduces the time-frequency resolution. The in-

termediate features are then handed over to the decoder

part at the so-called bottleneck, where the compression is

strongest. In the decoder, the time-frequency resolution

is gradually restored by upsampling and interpolation. The

main goal is to train the U-net such that it learns a mapping

function from a spectrogram-like audio representation to a

piano roll representation. In this study, we consider MPE

as binary classification task, where each pitch can be ei-

ther active or inactive at a given time frame. The encoder

of our U-net model comprises three layers with alternat-

ing blocks of convolutional filter blocks and max pooling.

In the decoder, bilinear interpolation operations are used

for upsampling. Intermediate activations at similar levels

in the encoder and decoder are connected by skip connec-

tions. The model output lies in the same feature space as

the input features, but with a reduced frequency resolution

of 72 bins instead of 216 bins.

The model was trained for 300 epochs with the Adam

optimizer at an initial learning rate of 5 · 10−4, early stop-

ping patience of 20, and the binary crossentropy loss func-

tion.

3.3 Audio Representation

The MPE model expects input features as an harmonic

Constant-Q transform (HCQT) [25] Hh,f,t indexed by har-

monic ratio h, frequency f , and time t. For any har-

monic h > 0, we compute a standard Constant-Q trans-

form (CQT), where the minimum frequency is scaled by

the harmonic ratio h. For this MPE task, the HCQTs are

computed for the harmonic ratios h ∈ {0.5, 1, 2, 3, 4, 5},
that is, one sub-harmonic below the fundamental frequency

(h = 0.5), the fundamental frequency (h = 1) and four

harmonics above (h = [2, 3, 4, 5]). As the fundamental

frequency and the first harmonic often contain similar har-

monic patterns [25], one sub-harmonic below the funda-

mental is included to distinguish between the two.

Features are extracted with the librosa Python library

[26] with a hopsize of 512 samples, a sampling rate

fs = 22.05 kHz, a frequency resolution of 36 bins per

octave (bpo), and a minimum frequency for the CQT of

fmin = 32.7Hz. This results in input features of dimen-

sion X ∈ R
M×K×C , with the number of time frames

M = 16 for patch-wise processing, number of frequency

bins K = 216, and amount of channels C = 6.
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4. DATASET

4.1 Source Dataset

The U-net MPE model was trained and tested on subsets of

the MIDI Aligned Piano Sounds (MAPS) dataset [1]. We

used the dataset split labelled "Configuration 2" by Sig-

tia et al. [27], which divides MAPS into 210 synthesized

audio files for training and 60 real-world audio record-

ings for test data. The audio and aligned MIDI data used

for training were generated using synthesis software based

on high-quality sample libraries, whereas the test set con-

tains piano recordings from a MIDI-controlled Disklavier

which was recorded on two omnidirectional Schoeps mi-

crophones in a studio setting. We refer to the training data

as MAPS-train and test data as MAPS-test.

4.2 Target Dataset

To assess the selected DA methods, we require a dataset

of multiple transcribed piano recordings which cover dif-

ferent mobile devices as recording devices, recording lo-

cations with different acoustical properties, and various

acoustic piano models (upright and grand piano). Because

no openly available dataset fulfilled all our requirements,

we created a new dataset called IDMT-PIANO-MM [28].

IDMT-PIANO-MM contains a total of 432 audio files

(about 4 h 7 min) and 72 MIDI files corresponding to 72

unique piano performances recorded simultaneously on

five recording devices (3 smartphones, 2 tablets) and a

high-quality stereo microphone. The 72 MIDI files were

generated and aligned manually to match the actual pi-

ano performance. The recording environments range from

small rooms to large lecture halls. Three grand pianos,

four upright pianos, and one electronic stage piano of var-

ious age, brand and price segments were recorded. In each

room we recorded a human piano performance of a self-

composed swing pattern, chord progression, a chromatic

scale, as well as sections (between 24 s and 54 s) out of

five classical music pieces and one ragtime piece.

5. ANALYZING DOMAIN SHIFT

5.1 Investigation of Microphone Mismatch

To validate the microphone mismatch, we compute the

spectrum correction coefficients as described in [29] to

compare the acoustic characteristics of different recording

devices. We choose the high-quality stereo microphone as

reference device r. The frequency response of each mobile

device d is compared per frequency bin with the reference

to obtain a vector of multiplicative correction coefficients,

which allows to make the frequency response of the device

d equal to the one of the reference device r. Figure 2 illus-

trates the band-wise coefficients obtained for each mobile

device. The correction coefficients show that there are con-

siderable differences among the recordings associated to

the different devices and their microphones. This confirms

the microphone mismatch condition and suggests there is

a domain shift between the training data from MAPS and

the test data recorded with different mobile devices.

Figure 2. Frequency-dependence of the spectrum cor-

rection coefficients for all devices in respect to the

stereomic microphone.

5.2 Quantifying Domain Shift

Due to the observed differences in the acoustic character-

istics of the recording devices, we expect a measurable

domain shift, which we quantify using the representation

shift metric proposed by Stacke et al. [30]. The main idea

is to compute an abstract representation of source and tar-

get domain features from a latent representation within a

deep neural network and compare the data distributions be-

tween both domains in this latent feature space. In our ex-

periments, we computed the activations after the last con-

volutional layer of the encoder in the U-net MPE model to

measure domain shift, as we expect the highest degree of

abstraction here.

In [30], the layer activations at layer l and filter f are av-

eraged across the two spatial dimensions of a feature map.

Since we deal with audio instead of images, these dimen-

sions correspond to time frames and frequency bins. As the

convolutional neural network (CNN) structure used in [30]

is not directly comparable with the U-net architecture, we

assumed that the U-net only has one filter operation per

layer for simplicity. The mean value of a layer activation

ϕl(x) at layer l is denoted as

cl(x) =
1

N

1

K

N∑

i=1

K∑

j=1

ϕl(x)i,j (1)

with the number of time frames N , number of frequency

bands K, and i and j as time and frequency index of the

feature map, respectively. The mean values of layer acti-

vations are aggregated over all input features of a domain.

The probability density function (PDF) of all mean values

is approximated by computing a probability density his-

togram with 500 bins for each HCQT channel. The result-

ing PDFs are averaged over all HCQT channels. Finally,

we compute the representation shift r as the mean distance

between the distributions of the source and target domain.

We employ the Wasserstein distance, which is a symmet-

ric distance measure that can be seen as the least amount of
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Figure 3. Performance of the MPE model on IDMT-PIANO-MM. The average precision score is presented for different

DA methods grouped by recording devices.

Domain Pairs r

MAPS-train vs. IDMT-PIANO-MM 0.035

MAPS-train vs. IDMT-PIANO-MM-BWSM 0.029

MAPS-train vs. MAPS-test 0.029

Table 2. Representation shift r based on the Wasserstein

distance between source training data and source test data

(MAPS-train vs. MAPS-test), source training data

and target data (MAPS-train vs. IDMT-PIANO-MM),

source training data and with BWSM domain-adapted tar-

get data (MAPS-train vs. IDMT-PIANO-MM-BWSM).

effort required to align two distributions w.r.t. the amount

of data and the distance that has to be moved [30]. The

representation shift between the used datasets is given in

Table 2. The DA method BWSM was chosen as, in con-

trast to other DA methods, source domain data is not mod-

ified, which enables to directly compare the implementa-

tion with and without DA with identical MPE models.

6. IMPACT OF DOMAIN SHIFT ON

PERFORMANCE

The performance of the MPE model is tested by comparing

the estimated pitches with MIDI data as ground truth per

frame. We chose mean Average Precision (mAP), i. e., the

area under the precision-recall curve [31], as an evalua-

tion metric, which is denoted as Average Precision (AP) in

the following. Unlike other popular ML evaluation metrics

like F-score or accuracy, AP does not depend on a particu-

lar binarization threshold for the pitch activity predictions.

6.1 Effect of Domain Adaptation

Figure 3 shows the AP scores of the U-net MPE model on

the benchmark dataset separated by recording device. It

shows that the microphone mismatch has no significant

effect on the performance of the MPE model. Presum-

ably as a direct consequence, we observe only little vari-

ation in transcription performance caused by DA. ZMUV

adaptive performs consistently best, ZMUV global

and BWSM report a similar performance as using no DA,

and with FPDA and CORAL the AP scores are lowest

amongst all DA methods, including not applying any DA.

6.2 Impact of Musical Content and Acoustic Context

We also assessed the impact of other parameters on the

MPE performance, such as room acoustics and musical

pieces. Our results showed no significant influence of the

room and instrument characteristics towards the MPE per-

formance. In contrast, the musical content shows the great-

est impact on transcription performance. Figure 4 displays

the influence of music content on the AP score when no

DA or different DA methods are applied. Due to miss-

ing annotations of offsets, we assume that the MPE per-

formance is lower for beethoven1 and beethoven2

as these pieces involve the use of the sustain pedal. While

some of the DA methods vary in effectiveness for different

music content, like FPDA and CORAL, overall the results

of DA seem to be quite consistent and do not improve per-

formance significantly regardless of the musical content.

7. DISCUSSION

Although the examined DA methods reduced the do-

main shift between MAPS-train and our test dataset

IDMT-PIANO-MM (see Table 2), the MPE performance

could not be improved significantly by DA. We see sev-

eral possible explanations for this.

First, it should be noted that the applied method to quan-

tify domain shift assumes that each convolutional layer of

the MPE model contains only one filter, which is not given

with the U-net MPE model. Further research must investi-

gate how this discrepancy leads to a biased measurement.

Yet, we expect that the computed domain shift values can
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Figure 4. Performance of the MPE model on IDMT-PIANO-MM. The average precision score is presented for different

DA methods grouped by music pieces.

still provide a general tendency.

Second, the employed MPE model might already gen-

eralize well enough to the given task. In fact, the U-net

model itself can be considered as a reconstruction-based

deep DA implementation as defined in [5]. The encoding

procedure ensures that domain-specific features are disre-

garded, while the decoding part enables to attribute a fea-

ture within a domain. Therefore, it would be interesting to

examine the presented DA methods for MPE models with

other network architectures.

Third, the benchmark dataset IDMT-PIANO-MM does

not provide precise offset annotations, which can introduce

label noise to the frame-wise MPE evaluation.

Finally, there are further restrictions for particular DA

methods. Our implementation of FPDA involves cutting

the features after 16 time frames (about 0.372 s), whereas

the original approach [15] keeps 10 s of data for the trans-

formation matrix. As we reduced the size of the transfor-

mation matrix extremely, our implementation could be in-

accurate. Moreover, unlike in the original paper [15] it

was not possible to use recordings with identical content

(denoted as ªparallel dataº in [13]). This requires audio

data to be simultaneously captured using source and tar-

get domain devices, which is not applicable in this study.

Besides, CORAL is implemented as time-independent DA

since frequency patterns are only compared within one

time frame. The domain-specific knowledge of time is dis-

regarded due to buffer memory limits. As there is no ref-

erence implementation for CORAL in the audio domain to

our knowledge, we cannot compare this approach to other

findings. The effectiveness of adaptive ZMUV normaliza-

tion is restricted by the sole dependency on recorded target

data. Unlike in global ZMUV normalization, no source

domain data is used to modify target data. Hence, if the

amount of cached target data is too small, the DA may fail.

8. CONCLUSION

In this paper, we studied the influence of domain shift to

piano MPE under microphone mismatch conditions. As

our first contribution, we created and published a novel

benchmark dataset of piano recordings captured with var-

ious mobile devices. In our initial experiments, we ver-

ified differences in the used recording devices using the

spectrum correction coefficient method. As a second step,

we quantified the domain shift between the source domain

(MAPS-train) and different target domains of a novel

benchmark dataset (IDMT-PIANO-MM) using the repre-

sentation shift based on the Wasserstein distance between

distributions of intermediate activation map values of the

MPE model. We investigated in particular the performance

of an MPE model based on the U-net architecture. As ex-

pected, the domain shift was greater between source and

target data than between two subsets of the MAPS dataset

(0.035 vs. 0.029 respectively), possibly due to different

types of recording settings.

As a third step, we investigated the influence of domain

shift on the MPE performance and found that the U-net

model is surprisingly robust to domain shift conditions.

We assume the main reason for this is that spectral peaks

contain the main information for the MPE. Domain shift,

however, mainly causes deviations in the overall spectral

envelope of the signal, which are mostly irrelevant for the

given task. Finally, we evaluated four different unsuper-

vised DA methods in order to reduce the domain shift. The

DA method BWSM was able to reduce the measured do-

main shift from the initial 0.035 to 0.029.

In future research, we aim to evaluate additional MPE

models based on other neural network architectures, such

as CRNNs or transformer models, to assess the influence of

the network architecture on the robustness against domain

shift.
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