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ABSTRACT

Violin performance analysis requires accurate and ro-
bust f0 estimates to give feedback on the playing accuracy.
Despite the recent advancements in data-driven f0 estima-
tors, their application to performance analysis remains a
challenge due to style-specific and dataset-induced biases.
In this paper, we address this problem by introducing Vi-

olin Etudes, a 27.8-hours violin performance dataset con-
structed with domain knowledge in instrument pedagogy
and a novel automatic f0-labeling paradigm. Experimental
results on unseen datasets show that the CREPE f0 estima-
tor trained on Violin Etudes outperforms the widely-used
pre-trained version trained on multiple manually-labeled
datasets. Further preliminary findings suggest that (i) exist-
ing data-driven f0 estimators may overfit to equal tempera-
ment, and (ii) iterative re-labeling regularized by our novel
Constrained Harmonic Resynthesis method can simultane-
ously enhance datasets and f0 estimators. Our dataset cu-
ration methodology is easily scalable to other instruments
owing to the quantity of pedagogical data online. It also
supports a range of MIR research directions thanks to the
performance difficulty labels from educational institutions.

1. INTRODUCTION

Accurate f0 tracking is fundamental for violin performance
analysis due to the prime role of intonation in violin mas-
tery. Musicians regard intonation and pitch accuracy as
the most important criteria for assessing a string perfor-
mance [1], and most of the previous work on violin per-
formance analysis also focus on vibrato and intonation
[2±5]. A study on intonation patterns of artist-level vi-
olinists [4] found that highly-regarded musicians deviate
significantly from equal-temperament while remaining co-
herent in their intonation preferences in the close vicin-
ity of just-noticeable difference (95% confidence intervals
within just 6 cents). Another study found that violinists’
intonation can be better approximated by other tuning sys-
tems, e.g., Pythagorean, rather than the standard equal-
temperament [2]. From an engineering perspective, into-
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nation analysis is reliable only if the f0 estimates are more
precise than the intonation consistency of the player. Thus,
these studies imply that an f0 estimator suitable for vio-
lin performance analysis needs to conform to a frequency
precision higher than 6 cents and remain consistent irre-
spective of the player’s deviation from equal temperament.

Alongside frequency precision, an f0 estimator has to
fulfill two more requirements for reliable performance
analysis: (i) robustness to octave errors that result from
the complex frequency response of the violin body and (ii)
high temporal precision that can handle fast string cross-
ings common in violin performance. However, in the cur-
rent paradigm, there is a trade-off in complying with these
two necessities: Most of the f0 estimators leverage tempo-
ral post-processing stages in order to eliminate octave er-
rors at the expense of temporal precision (e.g., Viterbi for
the f0 estimator of PRAAT [6], pYIN [7], and CREPE [8];
a custom filtering for Melodia [9]). Moreover, the Viterbi
implementations of some f0 estimators are even more re-
strictive: pYIN does not allow a jump bigger than 2.5 semi-
tones between consecutive frames, and that number is 2.4
semitones for CREPE. These restrictions are detrimental
to violin performance analysis, as it is common to see very
fast and abrupt string crossings in violin repertoire (e.g., 21
semitone jumps in Figure 2).

Despite the above-mentioned problems, monophonic f0
estimation is considered a mature task in MIR literature,
mainly owing to the high accuracies reported in bench-
mark datasets. Data-driven f0 estimators claim 96-99%
accuracies in datasets such as MIR-1k [10] and MDB-
stem-synth [11], which are all highly restricted in terms
of performance virtuosity. Although these numbers seem
promising in theory, this is not what we found when we
use these f0 estimators in the real-life analysis of advanced-
level violin performances. In this paper, to better address
the real-world needs of performance analysis using data-
driven methods, we introduce the Violin Etudes 1 , a 27-
hour large-scale monophonic dataset comprised of peda-
gogical violin performances by professional violin play-
ers. We also provide our methodologies for dataset cu-
ration and automatic f0 labeling and show the strength of
our approach by outperforming the pre-trained version of
CREPE f0 estimator on its own train data.

1 Violin Etudes dataset is available for research purposes on
https://doi.org/10.5281/zenodo.6564408
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2. RELATED WORK

2.1 Monophonic f0 Estimation

F0 estimation is an essential step for many tasks in mu-
sic and speech processing. Early f0 estimators were hand-
crafted methods [6, 7, 12±19], but today data-driven meth-
ods [8, 20±24] are preferred following the general trend of
deep learning. Both in handcrafted and data-driven tech-
niques, f0 estimation literature can be classified into two
main approaches: time-domain and frequency-domain.
Time-domain approaches used to utilize techniques such
as auto-correlation during the times of handcrafted signal
processing [6, 7, 12±15], while nowadays end-to-end deep
learning methods directly use the time domain signal as
their input [8, 20, 23, 24]. Frequency-domain approaches,
on the other hand, were used to apply spectral analysis and
select spectral peaks with signal processing [16±19]; but
recently data-driven frequency-domain approaches require
a spectrogram derivative as their input signal [21, 22]. A
final important concept to mention here is self-supervised
f0 estimation, adopted by SPICE [22] and DDSP-inv [24].
Although the f0 estimation strategy used in this paper is
based on supervised learning, our combined procedure of
iterative f0-labeling is analogous to a self-supervision ap-
plied post-training.

2.2 Automatic f0-labeling

To guarantee the f0 label correctness for semi-
automatically labeled datasets, Salamon et al. created an
analysis-synthesis method [11] which forces the audio
to represent any f0 error in the annotation. The method
was used for creating the resynthesized MDB-mf0-synth
and Bach10-mf0-synth datasets. However, applying this
method to unlabeled datasets is yet to be explored.

2.3 Large Scale Performance Datasets

Collecting large-scale datasets from community platforms
has long been an important data source for research on ac-
tion recognition and multimodal learning. The data collec-
tion procedure most often involves searching for keywords
on YouTube, generally without collecting further metadata
other than the query term itself. To our knowledge, the
three main instrument performance datasets collected in
this fashion are aimed at self-supervised source separation
and spatial localization: MUSIC dataset [25] consists of
solo and duet performances spanning over 11 instrument
categories, including 53 solo violin performances. They
extended the dataset for the task of video-to-audio syn-
thesis with additional solo performances and constructed
the MUSIC-Extra-Solo dataset [26] which include 213
solo violin performances, some of which include backing
track. In a similar but more constrained scenario, the Solos
dataset [27] is formed by searching for 13 classical instru-
ments and the word ’audition’ on YouTube and includes
66 solo violin performances in approximately 400 minutes.
However, none of these datasets provide any label or meta-
data on the musical content: whether they are monophonic,
include different renditions of the same score, the player or

recording conditions, or the supposed difficulty of the per-
formance. The only label is the instrument name.

A more constrained and informed large-scale data col-
lection endeavor is the GiantMIDI-piano dataset [28]
where the authors queried YouTube with the piano reper-
toire they collected from International Music Score Library
Project (IMSLP) and later transcribed the audio into MIDI.
By including more meta-data such as the composers, work
titles, and style, the dataset is more suitable for musical
analysis. However, it is also susceptible to MIDI transcrip-
tion errors. The Violin Etudes dataset introduced in this
work has similarities to this controlled approach, but in an
even more restricted scenario: By collecting query words
from the pedagogical repertoire, we have control over the
performance difficulty. By keeping track of the performer
and providing multiple renditions for the same etudes, we
control the expressivity and recording conditions. Last but
not least, by manually curating and removing the works,
including double stops and chords, we ensure monophony
and control the timbre.

3. VIOLIN ETUDES DATASET

From the 16th century onwards, music pedagogy has been
creating teaching curricula that guide the students from the
very early stages of their journey to the professional level.
Inspired by how humans learn an instrument, we present
the Violin Etudes dataset, the first large-scale MIR dataset
rooted in instrument pedagogy. Etudes and caprices form
the backbone of the traditional violin method and are de-
fined as study pieces presenting "a technical problem or
challenge in the context of a musical setting" [29]. Along-
side being vital for education, these pedagogical materials
have an unparalleled potential as datasets for intelligent
systems, especially MIR applications. They most often
come with inherent difficulty labels and are organized in
human curricula, which can be used for autonomous learn-
ing. Composers often provide textual descriptions on the
purpose of the study and techniques involved (e.g., Fig-
ure 3), and they are still actively researched by instrument
pedagogues on their technical content e.g. [30±32]. They
are most often for solo instruments, which is favorable for
signal processing. And most importantly, there are hun-
dreds of instrument teachers actively recording their refer-
ence performances of their teaching material, which sup-
ports the much-needed data for deep learning applications.

3.1 Data Collection

While previous large-scale YouTube data collection en-
deavors mainly focus on data for self-supervision, we
opted for a more controlled approach in curating the mate-
rial and stored metadata that would be used as ground truth
in many topics such as expressive performance analysis
and performance difficulty analysis. The individual violin
methods are selected from the standard violin curriculum
by a trained violinist, but interested readers are encouraged
to search for ’violin (or flute/trumpet/piano...) etudes’ to
see how easily they can create similar lists, e.g., [33±36].
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method nunique nplayer nΣ tΣ
Suzuki, Vol. 1-5 40 4 158 248.8
Dancla, Op. 84 27 2 59 131.9

Wohlfahrt, Op. 45 41 6 357 458.1
Sitt, Op. 32 Vol. 1-3 34 2 60 140.1

Kayser, Op. 20 5 8 40 81.9
Mazas, Op.36 12 4 35 100.7
Dont, Op. 37 10 3 30 68.1

Kreutzer, Études 24 4 95 229.8
Fiorillo, Op. 3 13 3 34 72.1
Rode, Op.22 7 5 35 82.5
Dont, Op. 35 7 2 14 31.7

Gavinies, Matinées 6 2 8 24.6
Total 226 21 925 1670.2

Table 1. Pedagogical methods ordered in approximate dif-
ficulty. nunique: number of unique monophonic studies,
nplayer: number of distinct players, nΣ: recording count
per method, tΣ: recording duration in minutes per method.

The most effort was spent on curating a monophonic 2 sub-
set of these works by manually going through the scores
on IMSLP and discarding all the works that include even
a single double stop or chord, which corresponds to man-
ually removing 264 of 490 studies 3 . The remaining 226
monophonic pedagogical works are summarized in Table
1 in their usual order of use in the violin curriculum.

The videos of the selected works are collected from
YouTube by querying method/etude names followed by
manually identifying the most reliable content creators,
and then searching with queries including their names.
Some videos, especially in the beginner repertoire, in-
clude different studies as multiple chapters within the same
recording. These chapters are split and the audio record-
ings are extracted from the source videos with the highest
possible quality, resulting in 925 performances.

3.2 Metadata

For each recording, we provide metadata with player
ID, study No., which method/etude book it belongs to,
and piece-wise difficulty rankings from multiple sources.
Since difficulty is a subjective term, sources sometimes
disagree on the ranking of these materials, but there are
some common patterns: Suzuki Vol. 1-2 are always con-
sidered the easiest of all, with Dancla, Wohlfahrt, Suzuki
Vol. 3-5 being the next. Rode, Gavinies, Fiorillo, and
Dont Op. 35 form the hardest cluster. Whilst difficulty
grades change from source to source, the progressive or-
dering within each book is universally accepted, e.g. study
No. 30 from a method is always considered as harder than
No. 2. Hence, Violin Etudes can be considered as a perfor-
mance difficulty analysis dataset similar to [37].

The performers in the dataset are manually confirmed
to be highly-skilled violinists, mostly violin teachers cre-

2 Here monophonic simply refers to single note at a time, i.e. removal
of superposed notes, rather than the musicological definition.

3 Unlike the use of violin in popular music, the classical and pedagog-
ical violin repertoire exhaustively include double stops and chords.

Figure 1. Total performance duration (left) and number of
recordings (right) per PlayerID.

ating content for their students. As shown in Figure 1, our
dataset includes performances from 21 players and is also
quite skewed in favor of Players 01 and 02. Although this
is a limit of the dataset from one aspect, with more than 5
hours of monophonic recordings for Player02 and 7 hours
for Player01, these subsets include enough data to train vi-
olin synthesizers. In Table 1, we can see that we have a
total of 925 reference performances for 226 monophonic
violin studies. With some exceptions, each study has mul-
tiple renditions which allow high-level music research such
as expressive performance analysis (exemplified briefly in
Section 5.1), or low-level audio representation learning as
exemplified in the f0 estimation experiments in Section 5.2.

Despite its many strengths, the current state of Violin

Etudes has two main flaws. Although the scores are in-
cluded, only Mazas and Kayser etudes are in a machine-
readable format, and we do not have their aligned scores.
As repertoire gets harder, it gets harder to find non-
commercial reference recordings. Thus, recording distri-
bution in the dataset is limited by method popularity and
difficulty, e.g., Matinées in Table 1 is only 24 minutes.

4. AUTOMATIC F0 LABELING

The f0 labels in the Violin Etudes dataset are automatically
generated through a novel iterative f0-labeling strategy
based on two assumptions: (i) the recordings are mono-
phonic, i.e. we can apply harmonic analysis with respect
to an initial f̂0 estimate, and (ii) all the frames have a sim-
ilar harmonic structure, i.e. violin is the sole instrument.
After obtaining raw f̂0 estimates through a data-driven f0
estimator, we search for harmonic peaks around the f̂0:N

multiples of the f̂0 estimate for each frame through a mod-
ified version of Spectral Modeling Synthesis (SMS) [38].
We then force the harmonics to follow the f̂0 label similar
to the analysis/synthesis framework of Salamon et al. [11],
with additional novel constraints on instrument modeling
and harmonic consistency to silence low-confidence seg-
ments. The remaining data is smaller in amount, yet it is
more reliable to be used in the training of a new f0 estima-
tor. We then retrain the f0 estimator using these resynthe-
sized versions and extract new f ′0 estimates, and repeat the
process. Thus, as exemplified in Figure 2, both the f0 es-
timator’s performance and the dataset’s f0 label quality are
enhanced simultaneously by interacting with one another.
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4.1 Constrained Harmonic Resynthesis

First introduced by Serra et al. [38], Spectral Modeling
Synthesis (SMS) has had widespread adoption in audio
signal processing, including a recent revival with differen-
tial Digital Signal Processing (DDSP) [39]. We adopt the
harmonic model from SMS to create constrained f0 labels
where we force the synthesis to follow the label or simply
silence the frame if it does not satisfy the constraints.

4.1.1 Harmonic Analysis

Waveforms in 44.1kHz are analyzed with 1025-sample
Blackman-Harris windows and hop size of 128 us-
ing harmonicModelAnal function from the SMS-
tools [38]. The DSP-based f0 detection algorithm of
the harmonicModelAnal is replaced with our external
f̂0 estimates; and harmonic amplitudes, frequencies, and
phases are searched around the f̂0:39 with a harmonic devi-
ation slope of 0.001. We refer to [38] for further details.

4.1.2 Instrument-modeling Constraint (IC)

Instrument timbre defines the harmonic amplitudes A0:39

we see on top of an f̂0 estimate. Thus, if we know the in-
strument model, i.e. P (A0:39 |̂f0:39), we can assess the cor-
rectness of an estimate from harmonics. We use this idea as
an additional layer of regularization of the label quality and
removal of automatic-labeling artifacts. We learn an ap-
proximate model for violin resonance structure by linearly
dividing the violin frequency range into N regions and fit-
ting elliptic envelopes to the first 12 harmonic amplitudes
for each of these N regions, where we experimented with
N = 50 and 100. If this elliptic envelope model detects an
anomaly in the harmonic amplitudes, we silence the frame.

4.1.3 Harmonic Consistency Constraint (HCC)

As we will show in Figure 4, an f0 estimator is prone to
overfitting problems associated with its training set dis-
tribution. To remedy this and ensure a reliable spectral
distribution for our labels, we employed the Two-Way-
Mismatch (TWM) procedure [19] between harmonic peaks
f̂0:39 and f̂0 candidates around the initial f̂0 estimate. For
each voiced segment, 33 pitch candidates are selected in
the range (f̂0 − 16c, f̂0 + 16c) with 1 cent intervals. The
candidate with the lowest Two-Way-Mismatch-error is se-
lected to be the new f̂ ′0 estimate if its TWM-error is
smaller than 5.0, and if this Harmonic Consistency Con-
straint is not satisfied, the frame is silenced. Finally, the
constrained harmonic frequencies f̂ ′0:39 are set to the ex-

act multiples of this final f̂ ′0 estimate before resynthesis.

4.1.4 Sinusoidal Synthesis

The constrained harmonics are resynthesized using the si-
nusoidal model from SMS [38]. Any segments shorter than
50ms are muted before synthesis to reduce artifacts. Fur-
thermore, for each resynthesized recording, we also resyn-
thesize its replicate with pitch shifts: both harmonics and
f0 labels are shifted with random microtonal pitch shifts in
the range of 5-55 cents to ensure the statistical diversity of
our labels. We found that training f0 estimator with shifted

Figure 2. Iterative f0 labeling exemplified in Kreutzer
Etude No.30 performed by Players 02, 09, and 07. Con-
strained harmonic resynthesis acts as a barrier to wrong
f0 estimates and creates discrepancies in the initial f0 con-
tours (orange). Notice that most of these discrepancies are
filled after the first iteration of finetuning (blue), especially
in the highlighted string crossings.

versions of the recordings increases the stability of the es-
timator against equal temperament deviation.

4.2 Iterative Refinement of f0 Labels

Initial f0 tracks of the dataset are generated via the CREPE
[8] convolutional f0 estimator with 1 ms intervals and a
custom Viterbi decoding to incorporate some heuristics we
know about the violin repertoire. CREPE has 360 bins in
its final layer with 20 cents between consecutive bin cen-
ters, i.e., states. In their implementation, they apply Viterbi
with constant state observation probabilities without utiliz-
ing the confidences given by the algorithm. We replaced
this by decoding with CREPE confidences as posteriors,
similar to standard ANN-HMM posteriorgram decoding
[40]. Using our prior knowledge of violin repertoire, we
decided the Viterbi transition probabilities empirically as
a weighted sum of two Gaussians to allow for fast string
jumps while encouraging continuous f0 contours: Gaus-
sian with σ1 = 6 semitones in Equation 1 enables fast
string jumps, whilst continuous contours are encouraged
by weighting the other Gaussian (σ2 = 40 cents) with 9.

Pr(sj(t+1)|si(t)) =
1

30
√
2π

exp

(

−1

2

(

sj(t+ 1)− si(t)

30

)2
)

+
9

2
√
2π

exp

(

−1

2

(

sj(t+ 1)− si(t)

2

)2
)

(1)

After the initial f0 estimates are obtained, (audio, f0)
pairs go through the Constrained Harmonic Resynthesis
which silences out the wrong estimates as described in Sec-
tion 4.1. The remaining (constrained audio, constrained f0)
pairs are used for finetuning of the f0 estimator, which pro-
duces new estimates as exemplified in Figure 2. This iter-
ative labeling process can be thought of as an Expectation-
Maximization hybrid akin to ANN-HMMs [40].
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Violin Other Inst.
RPA50 RPA5 RPA50 RPA5

Pretrained [8] 96.4 68.3 96.2 68.1
HCC 96.3 83.8 95.2 76.4

HCC + IC50 96.7 84.0 94.6 76.5

HCC + IC100 96.7 84.2 94.8 75.7
Sawtooth 68.3 49.5 56.8 37.2

Table 2. The pre-trained CREPE compared with training-
from-scratch on different versions of Violin Etudes. Tests
are conducted on the unseen URMP dataset. HCC: Har-
monic Consistency Constraint. IC: Instrument-modeling
Constraint. Sawtooth: Single-timbre control group.

Figure 3. First line of Mazas Etude No. 8 with constrained
f0 labels of 4 performances. From the composer’s words,
we see that this etude targets teaching division of the bow

in the Cantilena. f0 tracks are automatically extracted with
the method described in Section 4. Highlighted hand posi-
tion changes are discussed in Section 5.1

5. EXPERIMENTS

5.1 Qualitative Performance Analysis

In this section, we give two brief examples of how Vio-

lin Etudes enable research on the pedagogically-motivated
analysis of reference performances. In Figure 3, Mazas
Op.36 No.8 with f0 tracks of 4 different renditions can be
seen: We can observe that both Players 05 and 01 have very
expressive slides at the position changes indicated with
green (E4-C5) and pink (D♯

4-B4), while Player02 landed
into these notes directly -note that such analyses are not
possible for corpora annotated with pYIN [7] or CREPE
[8] since their Viterbi implementations smooth every jump.
But, our method, too, has flaws: analysis of Player15 for
the same section is inconclusive due to our design choice
of removing unreliable automatic f0 estimates.

Having multiple reference recordings also enable the
analysis of performance tempo. In Figure 2, we see that
Players 09 and 07 agree on a considerably faster pace
for Moderato on Kreutzer Etude No.30, while Player02

play the same study a lot slower and sticks to this choice
throughout the performance. Although we did not include
it here, studying bowing technique analysis is also possible
in Violin Etudes. Following the textual descriptions, play-
ers record some etudes with bowing variations. The most
extreme case of this is the Player01 recording Wohlfahrt
etudes with all the bowing variations, resulting in a subset
of 171 recordings where some studies were repeated with
up to 15 bowing variations. Moreover, the dataset allows
for analyzing intonation and tuning patterns of professional
violin teachers thanks to the high frequency precision of
our f0 estimates, which we will discuss in the next section.

5.2 Monophonic f0 Estimation

Here we study the label quality of Violin Etudes in the
context of f0 estimator training. We train the commonly-
used CREPE [8] f0 estimator in our data, and compare
it with the pre-trained version 4 trained on the following
six manually-labeled and synthetic datasets: MIR-1k [10],
MedleyDB [43], MDB-STEM-Synth [11, 43], Bach10-
mf0-synth [11, 42], RWC-Synth [7], and NSynth [44].

We use Violin Etudes only for training and validation
with 80/20 split, and train with a batch size of 32 and early
stopping on validation accuracy. We conduct the tests on
two unseen datasets where we evaluate the raw pitch ac-
curacy (RPA, in %) with two thresholds: the conventional
RPA50 quarter-tone accuracy, and our benchmark RPA5
fine-grained accuracy. Owing to the high-frequency pre-
cision requirements for performance analysis, this second
metric considers the estimate accurate only if it is within 5
cents of the performance. We report frame-level accuracies
without Viterbi, and separately evaluate on violin and other
instruments for discussion. Since the models trained solely
on violin range do not see other pitch classes, we calculate
accuracies over violin range for the unseen instruments,
i.e., we compute a combined accuracy from all the other
instruments except violin, where the ground f0 ≥ 190Hz.

5.2.1 Effect of Instrument-modeling Constraints

In these experiments, we compare models trained on differ-
ent variants of Violin Etudes in order to study the effective-
ness of the constraints introduced in Section 4.1. Tests on
the unseen URMP dataset are provided in Table 2. We see
that all the three versions of Violin Etudes surpass the pre-
trained model decisively on fine-grained accuracy RPA5
by more than 15% improvements, and increasing the num-
ber of filters from 50 to 100 in Instrument-modeling Con-
straint (IC) leads to marginally better results. IC also re-
duces the RPA50 on unseen instruments, implying that the
estimator focuses excessively on the target instrument. In-
terestingly, one of the most conclusive results from these
experiments was in the Sawtooth synthesis of the Violin

Etudes f0 tracks: model trained with sawtooth performs
significantly better in violin compared to others, which
may be due to the similarity of violin timbre to sawtooth
or the effect of repertoire pitch distribution.

4 Full CREPE model weights are taken from https://github.

com/marl/crepe/raw/models/model-full.h5.bz2
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URMP Dataset Bach10-mf0-synth (from train set of [8])
Violin Others Violin Others

RPA50 RPA5 RPA50 RPA5 RPA50 RPA5 RPA50 RPA5
Pretrained [8] 96.4 68.3 96.2 68.1 98.9 89.5 99.1 87.4

Trained only on Violin Etudes 96.7 84.2 94.8 75.7 99.1 95.1 98.3 77.6
[8] finetuned on Violin Etudes 97.0 83.0 96.0 77.3 99.2 95.7 99.2 84.7

Table 3. Comparison of finetuning and training-from-scratch on Violin Etudes, tested on two instrumental datasets.
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Figure 4. Fine-grained f0 accuracy (RPA5) summarized on a grid. Music performance analysis requires precise f0 estimates
even if the player deviates from the equal temperament. However, training data-driven f0 estimators on standard MIR
datasets may induce an auto-tuning effect. Top: Violin-only tracks. Bottom: Over all the instruments. Left: URMP [41]
dataset unseen to all the models. Center: Bach-10-mf0-synth [11, 42] from train set of [8], yet unseen to ours. Right: The
conclusive experiment where we ensure the same statistics by applying microtonal pitch shifts to the Bach10 dataset.

5.2.2 Finetuning and Generalization

In Table 3, we study finetuning on Violin Etudes by test-
ing on two datasets: alongside URMP, this time including
Bach10-mf0-synth [11, 42], one of the 6 train sets of the
pre-trained CREPE. We tested the estimators on the en-
tirety of the datasets since they do not come with inher-
ent train/test splits. We see that the finetuned model per-
forms the best overall and remains reliable in all scenar-
ios, including other instruments. However, interestingly,
finetuning was generally more unstable and took longer to
train: while the models converge after seeing around 20%
of our dataset in training-from-scratch experiments, fine-
tuning took twice as long on average. As the most inter-
esting result of these experiments, Table 3 illustrates that
our model trained on only Violin Etudes outperforms the
pre-trained CREPE by 5.6% RPA5 on the violin tracks of
its own train set.

5.2.3 Equal Temperament and the Auto-Tuning Effect

In Figure 4, we show that the drastic gap between the RPA5
and RPA50 performances of pre-trained CREPE can be ex-
plained by equal-temperament deviation, even on its own
train data. On the other hand, our models are more robust,
especially for violin-only evaluation in Figure 4. To show
that this dependency is not caused by the annotation qual-
ity of the test datasets, we also experimented with micro-

tonal pitch-shifted versions using RubberBand 5 . Yet, all
our results show the importance of microtonal label distri-
bution while training data-driven f0 estimators. We name
this phenomenon dataset-induced auto-tuning effect.

6. CONCLUSION

In this paper, we present Violin Etudes, a large-scale, com-
prehensive dataset for f0 estimation and performance anal-
ysis. Our dataset curation method is easily extendable to
other instruments thanks to two main novelties: 1) Re-
liance on pedagogy and community-driven platforms en-
sure abundance of material and metadata suitable for many
high-level music research directions. 2) Our novel auto-
matic f0-labeling paradigm allows iterative refinement of
labels while significantly improving the data-driven f0 es-
timator as a by-product. Observing that the CREPE model
converges after seeing just 20% of the Violin Etudes and
still outperforms its pre-trained version, we argue that our
dataset curation method would allow training more com-
plex f0 estimators that can specialize better for the needs
of performance analysis. In the future, we are going to use
this dataset for learning accompaniment-aware f0 estima-
tors and synthesizers, while further extending the Etudes

dataset family with woodwind and brass instruments.

5 https://breakfastquay.com/rubberband/
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