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ABSTRACT

In this work, we propose a permutation invariant lan-

guage model, SymphonyNet, as a solution for symbolic

symphony music generation. We propose a novel Multi-

track Multi-instrument Repeatable (MMR) representation

for symphonic music and model the music sequence us-

ing a Transformer-based auto-regressive language model

with specific 3-D positional embedding. To overcome

length overflow when modeling extra-long symphony to-

kens, we also propose a modified Byte Pair Encoding al-

gorithm (Music BPE) for music tokens and introduce a

novel linear transformer decoder architecture as a back-

bone. Meanwhile, we train the decoder to learn automatic

orchestration as a joint task by masking instrument infor-

mation from the input. We also introduce a large-scale

symbolic symphony dataset for the advance of symphony

generation research. Empirical results show that the pro-

posed approach can generate coherent, novel, complex and

harmonious symphony as a pioneer solution for multi-track

multi-instrument symbolic music generation.

1. INTRODUCTION

Symphony is one of the most complex and brilliant mu-

sical composition forms in human history, where many

instruments are intertwined to express rich human emo-

tions. The past decade has seen the rapid development

and tremendous success of the symbolic music generation

in both research and industrial field [1–3]. Most current

works follow conventional text modeling and generation

method by applying language model to sequences of sym-

bolic musical events [4–6]. However, symphony modeling
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and generation still constitutes in itself a considerable chal-

lenge since symphony music sequences differ from text se-

quences in various aspects.

Natural language could be modeled as a purely lin-

ear sequence constructed strictly by a sequential order of

words. Symphony scores, on the other hand, are usu-

ally viewed as two-dimensional symbolic sequences in

which many notes can be played concurrently. Notes in

a symphony score are semi-permutation invariant. More

specifically, as shown in Fig. 1, the blue box indicates the

musical instrument tracks, and the corresponding staves

on the right side are permutation invariant. Similarly, the

notes inside the red box are also permutation invariant. In

contrast, notes in the upper yellow box are permutation

variant since each note is played sequentially. Changes in

the order of notes will impair the music itself. The yel-

low box at the bottom is a more complicated situation: a

permutation variant note sequence in general containing

permutation invariant notes. Simply flattening the score

into a 1-D text-like sequence may damage the local struc-

ture of music [7]. To address this problem, we propose

the Multi-track Multi-instrument Repeatable (MMR) rep-

resentation with particular 3-D positional embedding in

Section 3 which fully considers the properties of semi-

permutation invariance in symbolic music scores.

Moreover, when comparing music scores with text, con-

ventionally notes could be considered as characters, while

intervals or chords are comparable to words. Modeling

musical events at note level is a common practice [5,6,8,9].

However, this may be confronted with similar problems

in char-level text generation, such as extremely long se-

quences and less meaningful individual tokens. Word-

level tokenization suffers from large vocabulary size and

out of vocabulary (OOV) problems. Byte Pair Encoding

(BPE) [10, 11] subword tokenization is a tradeoff between

word-level and character-level tokenization. Inspired by

BPE, we propose the Music BPE algorithm in Section 4,

which could automatically aggregate notes to intervals and

chords as subwords without a pre-defined vocabulary and

construct music sequences with richer semantics.

Generating symphony music with proper instruments

for different tracks is another challenging task. Recent

551



Figure 1: A simple example of Multi Instruments & Multi Tracks
& Repeat Instruments symphony score.

work like Arranger [12] focuses on instrumentation by

learning to separate parts from the mixture in symbolic

multi-track music. However, it does not incorporate mu-

sic generation task. In this paper, we present a unique lin-

ear transformer decoder architecture for instrument classi-

fication with joint-task training, which allows the model to

learn auto-orchestration rather than relying on instrument

information as an pre-defined input source. [5, 13–15].

The contributions of this paper are presented as below:

• We propose a novel Multi-track Multi-instrument

Repeatable (MMR) representation for symphony

music, including particular 3-D positional embed-

ding designed to address the semi-permutation in-

variant challenge in symphony generation. Our

method is also compatible with all existing symbolic

music ensembles, including but not limited to piano

solo, quartet and pop band music.

• We propose a novel algorithm, Music BPE, to model

the symbolic music at subword-level. Furthermore,

we found that our Music BPE algorithm could ag-

gregate notes to intervals and chords, which are con-

sistent with common chords summarized by human

musicians.

• We introduce SymphonyNet, a novel music gener-

ation model with joint-task training for instrument

classification based on our proposed MMR repre-

sentation and Music BPE. The model can learn the

proper orchestration according to the distribution of

the notes.

• We collect a symphony MIDI dataset, consisting of

46, 359 high-quality MIDI files with multiple in-

struments and tracks to advance researches on sym-

phony generation with deep learning.

2. RELATED WORK

We organize some existing works in Table 1 in terms of

five aspects of symbolic music modeling: time unit, rep-

resentation method, backbone model, music type and the

ability to model music with repeat instruments. Genera-

tion works are presented above and understanding works

are presented below. Pianoroll, MIDI event timeshift, and

Beat-based onset and duration are the mainstream time

units in music generation and understanding tasks. How-

ever, Pianoroll divides music into fixed-length grids, and

MIDI format provides overprecise timeshift events, both

suffering from sparsity problems, which raises another

handicap for applying deep learning models in this multi-

track generation. Pop Music Transformer [8] is the first

attempt to introduced the beat-based REMI representation

in music generation. It supports variable-length duration

of notes, which is more musically inspired. Compound

Word [6], derived from REMI representation, classifies

the sequence of REMI into note-related or metric-related

events, which are then aggregated, greatly decreasing the

sequence length.. This has engendered a new trend of beat-

based symbolic music generation.

Language models are now prevalent in natural language

processing tasks [18]. However, applying language mod-

els to the creation of multi-track music remains challeng-

ing. MuMIDI [5] and OctupleMIDI [9] models multiple

attributes of one note in one sequence step and also incor-

porates instrument tokens for multi-track representation.

However, if one musical piece contains more than one

track for the same instrument, their representation could

not distinguish them in different tracks. MMM [15] intro-

duced a MIDI-event-like representation, creating a time-

ordered sequence of musical events for each track and con-

catenating several tracks into a single sequence. However,

MMM adopts time-delta tokens and fixed positional en-

coding which weakens the note-level correlation and struc-

ture between tracks. MuseBert [7] proposes a permutation

invariant bert-like language model with generalized rela-

tive position encoding (RPE) which, however, is not com-

patible with multi-track music generation.

Though various symbolic music representation strate-

gies have been proposed, few are compatible with multi-

track music with repeatable instruments or tracks, such

as the symphony. Furthermore, permutation invariance of

music, as is discussed in Section 1, has scarcely been con-

sidered. To our knowledge, this work proposes the first

representation and tokenization method to encode music

with multiple repeatable instruments and multiple repeat-

able tracks and designs a universal and effective strategy

for generating symphony music with permutation invari-

ant language model.

3. MULTI-TRACK MULTI-INSTRUMENT

REPEATABLE REPRESENTATION

To further analyze the symphony generation task, it is cru-

cial to understand the difference between the symphony

format and other genres of music.

• Single Instrument in Single Track. No more than one

note is played at any timestep by one instrument. Also

called monophonic music. e.g., flute.

• Multi Instruments & Each in Single Track. Only one
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Name Time Unit Representation Backbone Model Type of Music Instruments

DeepBach [1] Fixed-length grid N/A Bi-directional RNN Chorales Fixed Ensemble

MuseGAN [16] Fixed-length grid N/A GAN Multi-track Fixed Ensemble

Music Transfor. [4] MIDI-event timeshift N/A Vanilla Transformer Piano N/A

Pop MT [8] Beat and note duration REMI Transformer-XL Piano N/A

CWT [6] Beat and note duration Compound Word Linear Transformer Piano N/A

Musenet [13] MIDI-event timeshift Token Aggregation GPT-2 Multi-track Not Repeatable

PopMAG [5] Beat and note duration MuMIDI Transformer-XL Multi-track Not Repeatable

LakhNES [14] MIDI-event timeshift Token Aggregation Transformer-XL Multi-track Fixed Ensemble

MMM [15] MIDI-event timeshift Hierarchical GPT-2 Multi-track Repeatable

This work Beat and note duration MMR Linear Transformer Multi-track Repeatable

PiRhDy [17] Fixed-length grid Fusion module RNN with attention Multi-track Not Repeatable

MusicBert [9] Beat and note duration OctupleMIDI Roberta Multi-track Not Repeatable

Table 1: An overview of time unit, representation, backbone model and music type in existing works, above for generation works and
below for understanding works.

note for each instrument is played at any timestep. e.g.,

quartet singing.

• Single Instrument in Multi Tracks. There are multiple

notes played in each timestep while only one instrument.

e.g., piano.

• Multi Instruments & Multi Tracks & No Repeat In-

strument. There are multiple notes played in each

timestep. No constraint on the number of instruments

and all instruments are unique. e.g., classical pop band

with only drum, electric guitar and bass.

• Multi Instruments & Multi Tracks & Repeat Instru-

ments. Instruments are not unique and multiple same

instruments can play different notes on different tracks,

e.g., symphony.

For the last case, it’s a common practice to merge the

same instruments into a single track in previous works.

However, it may damage the intrinsic structure of sym-

phony music. For example, this may cause a violin to play

polyphonic notes, or even intermingle multiple melody

lines. Our proposed Multi-track Multi-instrument Repeat-

able (MMR) representation models repeated instruments

separately, which could capture more heuristic musical in-

formation within a single track. Since our MMR represen-

tation is aimed at symphony modeling, it is also compatible

with all existing music ensembles.

3.1 Structural and Controlling Token

We consider that special tokens perform two primary func-

tions in a symphony music generation task: 1) To represent

the musical structures of notes. 2) To control the model

output during the inference phase.

Score We use a pair of [BOS] and [EOS] tokens to

designate the beginning and end of a symphony score.

Measure Different from [5, 8], we ascribe a pair of

[BOMi] and [EOM ] to indicate the beginning and end of

a measure, the character i to represent the total length of

the current measure. The length of a measure is calculated

by time signature, and we choose 32th note as the smallest

unit of time. For example, a 4/4 time signature indicates

four quarter notes length per measure, which is equal to

the length of thirty-two 32th notes. In that case, character i

equals 32, and the measure beginning token is [BOM32]

Chord The chord token is a valuable indicator of how

generally notes are arranged in the current measure. We

pre-define 132 common types of chord token and pre-

compute chord tokens with a rule-based algorithm pro-

posed in [6], such as C major seventh chord marked as

token [Cmaj7].

Track Unlike any previous works, we do not explicitly

encode the track and instrument transformation in a single

token. A change track token [CC] only signifies the start

of a new track for the latter controlling purpose. Section 5

will further explore the traits of tracks and instruments and

the approaches of differentiating tracks.

Position A position token stands for the onset of a note

within the measure, represented by the token [POSj ]. The

following event tokens are controlled by the current po-

sition token until another position token shows up. The

character j means the number of the current unit of time

position. For example, a [POS48] indicates the 48th unit

time position.

To summarize, structural and controlling tokens are de-

signed to specify the general time-spatial features of notes,

such as the time a note is to be played and the track it lo-

cates. In this work, these tokens are mandated with a se-

quential order, as a measure token shall be followed by a

chord token, which altogether represents in a explicit way

the measure order as shown in Fig. 3.

3.2 Note-Related Tokens

A note in music scores could be defined in five attributes:

pitch, duration, onset, track and instrument. Pitch and

duration are content-related and the others are position-

related. The latter will be discussed in Section 5. To avoid

the long-tail problem, we regard pitch and duration to be

distinct note properties and construct two separate vocab-

ularies for model input. Then we aggregate note pitches

with identical duration and onset by our proposed Music
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Figure 2: An example of MMR representation and illustration of Music BPE process

BPE algorithm, as will be described in the next section.

4. MUSIC BYTE PAIR ENCODING

As shown in Fig. 2, a complex chord is constructed by sev-

eral notes at the same position in a measure, which can

be deconstructed into two common and simple intervals.

Unlike natural language, notes played at the same position

are permutation invariant. Changing the order of notes in a

chord does not affect its sound or meaning. For instance, a

Chord C consists of (C4, E4, G4), which is equal to (G4,

C4, E4). This intrinsic property may conflict with the

typical natural language processing job, imposing a new

constraint on the use of conventional tokenization methods

such as standard BPE.

In this work, we propose a novel encoding approach,

Music Byte Pair Encoding (Music BPE), for multi-track

symbolic music sequence tokenization and preprocessing

to exploit the semantics of music events and minimise the

length of the input context from a representation stand-

point. Different from the original BPE algorithm, our pro-

posed Music BPE is based on concurrence of notes rather

than adjacency of characters.

Our implementation of Music BPE is shown in Algo-

rithm 1. As is mentioned in Section 1, a note has five at-

tributes: pitch, duration, position, track and instrument,

while the instrument depends utterly on track within the

same measure. Formally, in a piece of symbolic music, we

define a maximum set of two or more notes

{(pi, du, po, tr) | where du, po, tr is constant}

as a mulpi (multiple pitches), i.e., a maximum set of notes

that have the same duration at the same global position and

within the same track, equivalent to a "word" in the BPE

algorithm.

We collect notes with the same global position and the

same duration in the same track from each music piece to

construct a bag of mulpies. The vocabulary list is initial-

ized with 128 MIDI pitches, where each token represents a

pitch-set containing a single pitch. Every time we locate all

concurrent pairs of tokens in the bag of mulpies, merge the

most frequent pair (’P1’, ’P2’) into a new symbol P and

replace the pair with the new symbol in each mulpi until

the vocabulary size reaches the maximum limit. A further

discussion on the results of the Music BPE algorithm and

Algorithm 1 Music BPE

Input: A multi-set of mulpies B

Parameter: desired dictionary size n

Output: Merged dictionary V

1: Let V = {{p} | p ∈ [0, 128)}.
2: Let C be an empty multi-set

3: for all mulpi ∈ B do

4: mulpi← {{p} | p ∈ mulpi}
5: for all {P1, P2} ⊆ mulpi do

6: Insert (P1, P2) into C.

7: end for

8: end for

9: while |V | < n do

10: Let (P1, P2) be the most frequent pair in C.

11: V ← V ∪ {P1 ∪ P2}
12: for all mulpi ∈ B do

13: if {P1, P2} ⊆ mulpi then

14: for all Q ∈ mulpi− {P1, P2} do

15: Delete (Q,P1), (Q,P2) from C.

16: Insert (Q,P1 ∪ P2) into C.

17: end for

18: mulpi← (mulpi− {P1, P2}) ∪ {P1 ∪ P2}
19: end if

20: end for

21: end while

22: return V

its effectiveness on our symphony dataset will be presented

in Section 5.

5. SYMPHONYNET DETAILS

5.1 The 3-D Positional Embedding

Transformer [19] is the most used backbone for language

model, which is designed permutation invariant: if the po-

sitional encoding is not added, disrupting the order of the

inputs will yield the same output, for transformer model

treats inputs as a set during self-attention. Therefore, con-

sidering this property of Transformer, we design a partic-

ular 3-D positional embedding to represent such a semi-

permutation invariant feature as shown in Fig. 3. Event

tokens follow a semi-permutation variant order on both the

measure order and the note order axes. For example, notes

played on the same position share the same note positional
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Figure 3: A illustration of the spatial and structural attributes of MMR sequence (left) and the way it is compressed and organized as
model input (right).

embedding. In contrast, the track axis is entirely permu-

tation invariant since we only need track embeddings to

differentiate tracks other than a sequential order. We use

the red curves to illustrate the musical moving trajectory

of event tokens to better understand how we compress the

spatial and structural sequence of the event tokens into

one dimension and send them to the model. At last, we

add all constructed embeddings vertically as the model in-

put. To address the extraordinarily long symbolic music se-

quences challenge, we employ the linear transformer [20]

as the backbone of our model to satisfy the length con-

straint. The model follows a decoder-only fashion, and we

design different feed-forward heads for four attributes of

musical events, which are Instrument, Track, Duration,

and Event tokens as shown in Fig. 3.

5.2 Joint Task with Instrument Classification

We mask instrument information for every input token at

the input side, and anticipate that the model will learn in-

strumentation from the output side with instrument loss.

This will turn a succession of simple, blank notes into a

fully orchestrated piece of music, analogous to colouring

a black-and-white painting. This design is motivated by

two primary concerns. First, we investigate the possibil-

ity if other instrument may play a certain instrument’s note

track. Therefore, that is a case for the model to determine

to what degree the instrument fits the track’s notes and how

instruments interact with one another across tracks. For in-

stance, it is allowed to substitute the piano for the marimba

in some musical compositions. The intrinsic nature of a

pre-assigned instrument for notes reduces the diversity of

training data.

6. EXPERIMENTS AND RESULTS

This section introduces the novel symphony dataset we

propose and presents two stages in the training process 1 .

1 Our code, demos, dataset and further analysis can be accessed at
https://symphonynet.github.io

Secondly, we describe controllable methods to generate

music under certain condition before we provide findings

from Music BPE and compare them with the specific mu-

sical knowledge. Lastly, a human evaluation result analy-

sis and scoring on several excerpts generated by different

models will be presented.

6.1 Symphony Dataset

To tackle the obstacles of the symphony generation re-

search, we gather a big corpus of symphonic music from

multiple online sites and conduct a extensive data cleaning.

The average duration of the 46,359 MIDI files containing

multiple instruments and tracks, mostly symphony, is 4.26

minutes. The collection contains more than 279 million

notes and 567 million tokens in MMR forms. Our sym-

phony dataset is, to the best of our knowledge, the first

worldwide large-scale symbolic symphonic music dataset,

which might serve as a foundation for future work in multi-

track music production.

6.2 Training Details

In our experiment, the model adopts 4096 as the length

of input sequence. We set the embedding size for event

tokens, durations, instruments and 3-D positional embed-

ding to 512. The final size of event token vocabulary is

assigned to 1000 after running Music BPE algorithm and

the vocabulary size of durations, instruments, 3-D posi-

tional embeddings are derived from the dataset. The linear

transformer decoder contains 12 self-attention layers and

each layer consists of 16 attention heads. SymphonyNet is

trained with eight 2080 Ti GPU and we use a batch size of

128 and an AdamW [21] optimizer with a learning rate of

3× 10−4.

6.3 Music BPE Result

After constructing a vocabulary list of length 1, 000 with

Music BPE algorithm, the top-5 merged pairs shown in

Fig. 4 with the highest frequency are: (D4, F4), (C4, E4),
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Figure 4: The training and validation curves of different models
and the Music BPE note aggregation results.

(E4, G4), (D4, D5), and (G4, G5), which are usual inter-

vals occurring in symphony divisi passages. After applying

Music BPE on the whole music corpus, the average token

length of a mulpi shortens to half (from 2.28 to 1.13), also

reducing the burden of modeling ultra-long symphony se-

quences.

6.4 Ablation Study and Human Evaluations

We train a linear transformer decoder model with the

vanilla positional encoding of GPT-3 [18] as a baseline.

Then we train another model of the same architecture with

the training data processed by the proposed Music BPE al-

gorithm. Finally, we incorporate both 3-D positional em-

bedding and Music BPE algorithm, which achieves the

lowest training and validation loss after the same total

training steps, as is shown in Fig. 4. The objective met-

ric indicates that our permutation-invariant 3-D positional

embedding and Music BPE algorithm could significantly

improve model performance and generalization ability.

Also, we perform a human evaluation to compare the

quality of generated music excerpts from different models

with human composition. Participants include 25 profes-

sional musicians and 25 non-musicians. Each participant

receives 16 excerpts: four excerpts conditioned on a chord

progression, four excerpts conditioned on a given 4-bar

prime, and eight unconditioned excerpts. The music ex-

cerpts are rated in 5 dimensions: Coherence (C), Diversity

(D), Harmoniousness (H), Structureness (S), Orchestration

(O) and Overall Preference (P), in a 5-point Likert scale.

Model C D H S O P

Chord

Baseline 3.5 3.57 3.07 3.00 3.21 3.29

BPE 3.64 3.64 3.14 3.15 3.43 3.29

3D + BPE 3.71 3.72 3.21 3.07 3.5 3.5

Human 4.43 3.43 4.14 4.36 4.14 4.14

Prime

Baseline 3.79 2.79 3.21 3.43 3.36 3.36

BPE 3.86 3.5 3.5 3.5 3.64 3.86

3D + BPE 3.86 3.14 3.43 3.57 3.93 3.64

Human 4.36 3.57 4.36 4.00 4.36 4.36

Uncondi.

Baseline 3.52 3.46 3.04 3.07 3.11 3.07

BPE 3.79 3.64 3.25 3.11 3.25 3.29

3D + BPE 3.53 3.93 3.43 3.32 3.43 3.32

Human 4.39 3.89 4.18 4.21 4.11 4.29

(a) Trained on Symphony Dataset

Model C D H S O P

MMM
3.20 2.71 2.51 2.66 2.80 2.71

±0.13 ±0.12 ±0.13 ±0.12 ±0.13 ±0.11

Symph.
3.33 2.89 2.76 2.69 2.99 2.87

±0.15 ±0.13 ±0.12 ±0.13 ±0.12 ±0.13

(b) Trained on Lakh MIDI Dataset

Table 2: Human evaluation results from 25 musicians and 25
non-musicians, with mean opinion scores and 95 percent confi-
dence intervals reported.

As shown in Table 2a, the model with 3-D positional em-

bedding and Music BPE beats most of the approaches. It

is worth noting that excerpts generated by our models sur-

pass the human compositions in the indicator of diversity

marked by yellow color.

To further explore the model performance, we retrain

SympohyNet on Lakh MIDI Dataset [22] with the same

backbone model architecture as MMM [15], and carry out

another human evaluation to compare with MMM. Each

participant receives 10 excerpts: five generated uncondi-

tionally from MMM and the others generated uncondition-

ally from retrained SymphonyNet. The results are pre-

sented in Table 2b, which indicate that SymphonyNet sur-

pass MMM in all indicators. Overall, the human hearing

test suggests that SymphonyNet can construct coherent,

unique, complex, and harmonic symphonies.

7. CONCLUSION

In this work, we illustrate the properties of multi-track

and multi-instrument music, like symphony, and propose a

novel MMR representation with 3-D positional embedding

for modelling it. To tokenize the ultra-long symbolic mu-

sic sequence at sub-word level, we propose the Music BPE

algorithm. Besides, we design a joint task for the model to

learn auto-orchestration. Human evaluation results show

that our suggested technique produces competitive sym-

phonic music when compared to human compositions. In

the future, we will investigate modelling long-term musi-

cal structures, since complex music, such as symphonies,

often consists of numerous parts or movements.
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