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ABSTRACT

Recent work in music structure analysis has shown the

potential of deep features to highlight the underlying struc-

ture of music audio signals. Despite promising results

achieved by such representations, dealing with the inher-

ent hierarchical aspect of music structure remains a chal-

lenging problem. Because different levels of segmentation

can be considered as equally valid, specifically designed

representations should be optimized to improve hierarchi-

cal structure analysis. In this work, unsupervised learning

of such representations using a contrastive approach op-

erating at different time-scales is explored. The proposed

system is evaluated on flat and multi-level music segmen-

tation. By leveraging both time and the hierarchical orga-

nization of music structure, we show that the obtained deep

embeddings can encode meaningful patterns and improve

segmentation at various levels of granularity.

1. INTRODUCTION

Common approaches for music structure analysis can usu-

ally be broken down into two main steps: segmentation

and structural grouping [1]. The segmentation task aims at

determining the boundary locations between consecutive

musical sections while the grouping step consists in assign-

ing labels to each of the retrieved segments based on cer-

tain musical similarities. Traditional algorithms for struc-

tural segmentation use different hand-crafted features [2]

and their combinations to detect abrupt changes of partic-

ular musical characteristics or repetitions of certain pat-

terns throughout the song. However, recent progress in

deep learning has given rise to new systems automatically

producing more robust representations which manage to

combine several acoustic characteristics to enhance the

recognition of musical sections [3±5]. While these rep-

resentations have consistently improved downstream seg-
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mentation methods, their performance is mostly evaluated

on flat structural annotations and metrics. However, mu-

sical structure naturally exhibits a hierarchical organiza-

tion where a variety of cues can trigger boundaries be-

tween segments of different length [6], depending on the

time scale at which they are observed [1]. At the lowest

temporal level, short segments might only last a few mea-

sures. Coarser annotation levels are generally composed

of longer segments, grouping various shorter fragments

into larger musically meaningful units (ex: chorus, verse

...). This nested organization of musical events at different

levels holds crucial information about music structure [7].

While the original task of music structure analysis is com-

monly performed at a pre-defined level of granularity (i.e.

flat segmentation), the problem of hierarchical structural

analysis consists in predicting a set of segmentation can-

didates called hierarchy, ordered by their amount of detail

(from the coarsest to the most refined level). Recent efforts

have been made to compile datasets with multi-level struc-

tural annotations [2, 8], which greatly facilitates the study

of musical structure in a hierarchical manner. Although a

few methods have been proposed for such task, the role

of hierarchy in music structure has never been explicitly

considered while building better-suited representations of

audio music signals prior to segmentation.

1.1 Our contributions

In this work, we propose a deep unsupervised hierarchical

metric learning approach for music structure analysis. We

show that leveraging both time information and the hierar-

chical structure of music can help building efficient repre-

sentations for music segmentation at different levels with-

out requiring any supervision from structural annotations.

We demonstrate the effectiveness of these representations

for both flat and multi-level segmentation and show that

they can accommodate structural annotations of varying

styles and levels.

1.2 Related work

The method proposed here builds upon recent work in mu-

sic structure analysis devoted to finding efficient represen-

tations using deep learning methods to improve already ex-

isting downstream algorithms. The work by McCallum [3]
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proposes an unsupervised method to learn deep features

using a triplet-based approach. It relies on the assumption

that frames temporally close to each other are more likely

to belong to the same musical section than those separated

by a certain amount of time. Therefore, triplets are sam-

pled in such a way that the temporal distance between the

anchor point and the positive example is smaller than the

distance separating the anchor from the negative example.

Wang et al. [4] adopt a similar approach by using struc-

tural annotations in a supervised fashion to mine informa-

tive sets of frames.

One of the main challenges in estimating the structure

of a musical piece is to account for the different temporal

levels at which it can be decomposed. Up to now, only a

few approaches have been proposed for the task of multi-

level segmentation. McFee and Ellis [9] use spectral clus-

tering to decompose an enhanced self-similarity matrix and

produce segmentations at different temporal levels. This

approach is later improved by Tralie and McFee [10] where

the input self-similarity matrix is obtained by combining

different features using Similarity Network Fusion. Sala-

mon et al. [5] further extend this method by employing two

types of deep embeddings along with CQT features. They

capture local timbral patterns with few shot-learning and

long-term similarities with disentangled deep metric learn-

ing [11]. While these works demonstrate the advantage

of combining multiple representations of a same signal to

extract meaningful structural patterns, our approach shows

instead that these can be directly encoded into the repre-

sentations using time proximity and the hierarchy of music

structure.

2. HIERARCHICAL REPRESENTATIONS

The method introduced here constructs deep representa-

tions which allow for structural segmentations at various

time-scales. To facilitate the decomposition of a song

at different levels, these representations should provide

strong discriminative capabilities for time frames belong-

ing to different musical sections and separated by a large

amount of time. Conversely, they should be more homoge-

neous for frames belonging to the same section and hap-

pening within a short time interval. As section lengths

might vary from one annotator to another due to the am-

biguity of the task [1], the aforementioned constraint is

imposed at different temporal scales. Additionally, most

datasets for music structure analysis come with only one

level of annotations, which motivates us to learn such rep-

resentations in an unsupervised fashion, taking advantage

of large quantities of unlabelled data. A base convolutional

neural network is used to output embeddings which are di-

vided into multiple sub-regions. Each of them is optimized

independently using specific triplets of frames efficiently

sampled to encode the temporal structure of the song at dif-

ferent levels. We show that each level of the final represen-

tations can model frames proximity with its own amount of

granularity.

2.1 Sampling

The objective of the sampling method introduced by Mc-

Callum [3] is to build triplets of frames where the an-

chor and the positive example belong to the same musi-

cal section, while the anchor and the negative example

are labelled differently. The method proposed here can

be viewed as its multi-level extension. A hierarchy is de-

fined as a set of L levels of structural segmentations or-

dered from the coarsest to the most refined. For each level

ℓ ∈ {0; . . . ;L− 1} in the hierarchy, triplets of beat indices

are sampled using a specific set of parameters δ = {δℓp,min,

δℓp,max, δ
ℓ
n,min, δ

ℓ
n,max}. Intuitively, they rule how "close"

or "far away" from the anchor the positive and negative ex-

amples will be sampled throughout the song. More specif-

ically, for a given anchor beat index ia, positive and neg-

ative examples respectively located at beat indices ip and

in are uniformly sampled from the interval Iℓp defined by

δℓp,min and δℓp,max and Iℓn specified by δℓn,min and δℓn,max.

An example for an arbitrary level ℓ is shown in Figure 1.

The δ parameters actually define a notion of temporal dis-

tance dℓ between frames at a given level of the hierarchy

(analogous to a notion of dissimilarity). Therefore, the set

of triplets Tℓ at level ℓ can be expressed as:

Tℓ = {(ia, ip, in; l) | dℓ(xa, xp) < dℓ(xa, xn)} (1)

where xk is the input feature patch observed at beat index

ik, iℓp ∼ U(Iℓp) and iℓn ∼ U(Iℓn).

Figure 1. Initial triplet sampling method at level ℓ.

In order for the learned hierarchy levels to remain con-

sistent with one another, monotonicity is encouraged by

modifying the initial triplet mining technique. In addition

to the time constraint imposed on triplets of the same level,

their probability of being sampled is restricted from one

level in the hierarchy to the next. For a randomly sampled

anchor index at level ℓ = 0, a complete triplet (ia0 , i
p
0, i

n
0 )

is built only using time proximity (i.e. δ parameters). Then
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for each level ℓ ∈ {1; . . . ;L − 1}, the positive example is

sampled closer and closer to the same anchor (i.e. δℓp,min

and δℓp,max decrease), whereas the negative is obtained by

selecting the positive example from level ℓ− 1. This way,

going deeper into the hierarchy means that the represen-

tations get more refined to detect short-term musical pat-

terns. The modified sampling method is summarized in

Figure 2. The process is then repeated by starting over

from level 0, going down the hierarchy with the same an-

chor index, transferring the negative example from the cur-

rent to the next level, and uniformly sampling the positive

ones using the right δ parameters. At the end, the whole

training set for all levels of the hierarchy is given by com-

bining every set of triplets Tℓ level-wise: T = {Tℓ}
L−1

ℓ=0
.

Figure 2. Modified triplet sampling, moving downwards

in the hierarchy.

2.2 Disentangled hierarchy levels

During training, the model is shown triplets sampled at

different hierarchy levels and should optimize the corre-

sponding sub-regions of the output embeddings. We adapt

the method introduced by Veit et al. [12], called Con-

ditional Similarity Networks. This method has already

proven to be efficient in the context of multi-dimensional

music similarity learning [11], where a joint model learns

compact representations of music audio signals comply-

ing with different similarity criteria, namely genre, mood,

instrumentation and tempo. We propose to extend it to the

hierarchical case: to model the different temporal distances

dℓ, a set of L masking functions mℓ ∈ {0, 1}n that are ap-

plied to the embedding space of size n is defined. Each

mask can be interpreted as an element-wise gating func-

tion selecting the relevant dimensions of the embedding

corresponding to a particular level of the hierarchy. For a

given triplet (xa, xp, xn) at level ℓ, the training objective

becomes:

L(xa, xp, xn) = [Dℓ(xa, xp)−Dℓ(xa, xn) + α]+, (2)

Dℓ(xi, xj) =∥ mℓ ◦ [f(xi)− f(xj)] ∥
2
2 (3)

where ◦ is the Hadamard product, [.]+ denotes the Hinge

loss, α the margin parameter and f(x) is the projection of x

into the embedding space by the convolutional neural net-

work. An example is illustrated in Figure 3, where L = 3
and ℓ = 1. Since going deeper into the hierarchy results in

triplets of frames getting temporally closer to each other,

it is unnecessary for the model to separate samples by the

Figure 3. Training pipeline for ℓ = 1 and L = 3. At each

iteration, the current hierarchy level defines the set of δ

parameters to sample the positive example. The mask here

conserves the sub-region corresponding to level ℓ = 1.

same distance margin at all levels. Therefore, margin val-

ues were evenly distributed within the range [0.05, 0.1] so

that for each level ℓ ∈ {0; . . . ;L−2}, we have αℓ > αℓ+1.

3. EXPERIMENTS

The evaluation of our method is divided into three distinct

parts. First, we consider the problem of boundary detec-

tion on flat annotations using the SALAMI dataset. Sec-

ond, we verify if the learned hierarchical representations

improve multi-level segmentation predictions on that same

dataset using the two-level structural annotations available.

We finally demonstrate the flexibility of our approach and

provide additional results on other commonly used datasets

for music structure analysis where their original flat anno-

tations have been automatically expanded beforehand [13].

3.1 Datasets

We use five different datasets in our evaluation:

SALAMI: the Structural Annotations for Large

Amounts of Music Information (SALAMI) [8] is the most

substantial dataset for music structure analysis. It contains

1, 359 tracks ranging from classical, jazz, popular to world

and live music. Each track is provided with two levels of

structural annotations. We use a subset of 884 songs la-

belled by two different annotators. Therefore, for each

track contained in this subset, we end up with a total of

4 segmentation ground-truths (2 annotators × 2 levels of

granularity). In the rest of this work, this subset is referred

as SALAMI.

BeatlesTUT: a revised version of 174 annotated Beat-

les songs, originally released in the Isophonics dataset [14]

and corrected by researchers from Tampere University of

Technology.

RWC-Pop: the Popular subset of the RWC dataset [15]

contains 100 songs with section annotations. Note that two

versions of these annotations are available online; here the

ones originally provided by the authors (AIST) are used.

RWC-Jazz: the Jazz subset of the RWC dataset [15] is

composed of 50 songs from various Jazz sub-genres such

as Vocal, Big Band, Modal, Funky, Free or Fusion Jazz.
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JAAH: the Audio-aligned jazz harmony dataset

(JAAH) [16] is composed of 113 tracks selected from

ªThe Smithsonian Collection of Classic Jazzº and ªJazz:

The Smithsonian Anthologyº, covering various perform-

ers, sub-genres and historical periods.

3.1.1 Obtaining multi-level annotations:

For all datasets but SALAMI, we apply automatic hierar-

chy expansion [13] before evaluating multi-level segmen-

tation. As can be seen in the descriptive statistics from

Table 1, both the distributions of section labels and seg-

ment durations vary from one dataset to another. This dif-

ference can either be explained by the style of annotations

(i.e. label taxonomy, desired level of detail...) or the music

genre. As a consequence, the average number of levels ob-

tained after automatic hierarchy expansion is dependent on

the repetition of section labels and their semantic structure,

which varies with the annotation process as well.

Dataset N Uni Seg Dur Levels

SALAMI0 (upper) 884 5.3 10.9 63.5 2.0

SALAMI0 (lower) 884 10.0 33.1 18.4 2.0

SALAMI1 (upper) 884 5.0 11.2 61.1 2.0

SALAMI1 (lower) 884 9.2 34.1 18.0 2.0

BeatlesTUT 174 5.6 10.1 36.1 2.5

RWC-Pop 100 8.9 16.4 28.5 2.9

RWC-Jazz 50 14.2 19.9 32.1 2.8

JAAH 113 6.2 8.0 63.1 2.0

Table 1. Datasets descriptive statistics. N: number of an-

notated songs. Uni: average number of unique section la-

bels per song. Seg: average number of segments per song.

Dur: average duration of each section per song (in beats).

Levels: average number of annotation levels per song after

automatic hierarchy expansion. SALAMIi: ith annotator.

3.1.2 Training data:

Since this work falls under the scope of unsupervised

learning, a non annotated external audio collection is used

for training. It is composed of 23, 725 tracks, spanning

various musical genres such as rock, popular, rap, jazz,

electronic or classical. These were retrieved from publicly

available playlists and the audio obtained from Youtube.

Care has been taken to discard any track from this external

collection also present in one of the testing datasets.

3.2 Evaluation metrics

3.2.1 Flat segmentation:

For boundary detection, we report the F-measure 1 of the

trimmed boundary detection hit-rate with a 3-second toler-

ance window (F3) on the original annotations. We also

report the F-measure of frame pairwise clustering [18]

(Fpairwise), which gives another view on flat segmentation

performance in terms of frame-wise section assignment.

1 All evaluations are done using the mir_eval package [17].

3.2.2 Multi-level segmentation:

The second part of the evaluation on multi-level segmen-

tation is carried out using the L-measure [7]. This metric

allows for comparing hierarchies of segmentations operat-

ing at different scales. First, the reference hierarchy HR

is decomposed into a finite number of time instants (i.e.

frames). Then, the set A(HR) of all triplets of frames

(i, j, k) such that i and j receive the same label deeper

in the hierarchy than i and k is retrieved. The same pro-

cess is repeated with the same set of time instants for the

estimated hierarchy HE to obtain A(HE). Finally, the L-

precision, L-recall and L-measure are derived by compar-

ing A(HR) against A(HE). As noted in previous work

[5, 10], hierarchies estimated with greater depth than ref-

erence annotations can make the L-precision metric unre-

liable. Therefore, our evaluation focuses on the L-recall,

indicating how much of the reference hierarchy is retrieved

in the estimated one. For this part of the evaluation, the ex-

panded version of each dataset is used except for SALAMI,

where for comparison purposes, the reference hierarchy

only comprises both of the original annotation levels pro-

vided by each annotator (upper and lower).

3.3 Input features

All tracks are resampled at 22.05 kHz. Previous work

has demonstrated that homogeneous regions and sharp

changes of timbral content can be a good indicator of sec-

tion transitions [19]. Therefore, we use log-scaled mel-

spectrograms, with a window and hop size of 2048 and 256
respectively. We compute 60 mel-bands per frame. Beats

are estimated for all tracks using the Librosa [20] imple-

mentation of the beat tracking algorithm from Ellis [21].

For both feature types, patches of 512 frames (≃ 5.94s)

are observed, centered at each detected beat location.

3.4 Implementation details

3.4.1 Network architecture:

We use a basic convolutional neural network architecture

composed of 3 convolutional blocks, each comprising a

convolutional and a max-pooling layer and Relu activa-

tion, followed by two fully-connected layers with Relu

activations and a third fully-connected layer with linear

activation. All convolutional layers use a kernel size of

(6, 4). A common practice in contrastive learning is to

constrain the learned representations to lie within the unit

hypersphere [22]. Therefore, the output embeddings are

L2-normalized prior to distance calculations. The models

were implemented with Pytorch 1.7.1 [23]. The RMSProp

optimizer with default parameters is used. All models are

trained on the non-annotated external audio collection de-

scribed in Section 3.1 for a maximum of 200 epochs. The

learning rate is set to 10−4 and dropout [24] is applied with

probability 0.1 after each convolutional block and 0.2 af-

ter each fully-connected layer. All models 2 return embed-

dings of dimension n = 128.

2 Code: github.com/morgan76/HE
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3.4.2 Masks design:

In previous work, it was found beneficial to learn the masks

during training to promote information sharing across sim-

ilarity dimensions [12]. As in the method proposed by Lee

et al. [11], we found that this did not bring any major im-

provement. Since information is already shared implicitly

among the different hierarchy levels by the sampling strat-

egy detailed in Section 2.1, the masks are kept disjoint

from one another with equal length. After some prelim-

inary experiments, the number of hierarchy levels L = 4
has been found as a good compromise between the diver-

sity of triplets at each level and the temporal scale between

the top and bottom ones.

3.4.3 Batch sampling scheme:

During training, mini-batches of size 120 are composed of

10 anchor points uniformly sampled from one song, and

from which 12 triplets are derived (3 for each level). To

choose good sampling parameters, we used both annota-

tion levels of the held-out subset of SALAMI and mea-

sured the amount of true positive and true negative exam-

ples while varying δp,min and δp,max of level ℓ = 0. It was

found that setting δp,min = 32 and δp,max = 64 provided a

good balance between the true positives rate at level ℓ = 0
and the true negatives rate at level ℓ = 1. For the case

where L = 4, the rest of the parameters were set such that

each level spans the same duration in beats (i.e. 16 beats)

under the maximum value of 64 beats. All sampling pa-

rameters δ used for each level are summarized in Table 2.

L ℓ δp,min δp,max δn,min δn,max

1 0 1 16 1 128

4 0 48 64 64 128

1 32 48 48 64

2 16 32 32 48

3 1 16 16 32

Table 2. Sampling parameters (in beats) used in our exper-

iments for L = 1 and L = 4 hierarchy levels.

3.5 Downstream algorithms and baselines

A common way of evaluating deep representations for mu-

sic structure analysis is to measure the improvement made

when combined with downstream segmentation methods.

While there exists a variety music segmentation algorithms

in the literature [1, 2], the one employed in these experi-

ments was chosen to facilitate comparison against previ-

ous work. Boundary detection and section grouping on

flat annotations as well as multi-level segmentation are

performed with spectral clustering [9], as it remains the

only unsupervised method that can output multiple levels

of segmentation while being competitive. Additionally, it

appears as a well-suited downstream method for hierarchi-

cal features since it operates on a graph decomposition of

the audio signal. The proposed triplet sampling method

forces the learned features to discriminate frames tempo-

rally close to one another at different levels in the hier-

archy. Consequently, each sub-region in the embeddings

learns one possible decomposition of the song. Applied

on each of these sub-regions, spectral clustering can take

advantage of the graph sub-structures proper to each level

in order to efficiently retrieve the overall structure of the

song. The original algorithm [9] takes two distinct au-

dio features as input (MFCC and CQT), here, both fea-

tures are replaced by the representations proposed in this

work. Results obtained with the whole embedding ma-

trices are denoted by HE (Hierarchical Embeddings). As

an upper-bound of the proposed system, section group-

ing and multi-level segmentation are also performed using

each individual sub-region of the embeddings (i.e. hier-

archy levels), and the best results obtained across levels

(denoted by HEbest) are reported. In a use case scenario,

this can be seen as selecting the most adapted level of rep-

resentation for each track in the testing set given a desired

amount of granularity. For SALAMI, boundary detection

is performed per annotator. For each, the scores obtained

on both annotation levels (upper and lower) are computed

both separately and combined together (best score between

both levels per annotator is kept, noted combined). As an

example, "HE0,best" corresponds to the score obtained for

the first annotator, selecting for each track the embedding

level which maximizes the metric considered. In addition

to results from previous work [5,9], those obtained here are

compared against the method proposed by McCallum [3]

(which comes down to setting L = 1 as described in Table

2), it is denoted as FE (Flat Embeddings).

4. RESULTS

4.1 Flat segmentation

Flat segmentation results on SALAMI are given in Table 3.

The representations proposed in this work yield competi-

tive results against the reported baselines on all the met-

rics considered. This trend is accentuated when the best

embedding sub-region is selected. For lower annotations,

the learned representations improve over traditional fea-

tures. However, they do not perform better than those from

McCallum [3], since this method uses sampling parame-

ters that are more adapted to this level of annotation. The

best-level scenario shows that the smallest temporal scales

used during training (levels ℓ = 2, 3) allow for the detec-

tion of very small regions of homogeneous timbral content,

which helps detecting section changes at this level of an-

notation. The higher pairwise clustering scores indicate

that these small detected regions are homogeneous enough

to be identically labelled with spectral clustering (k-means

step).

For the upper annotations, the results for boundary de-

tection and pairwise clustering constantly improve over

the reported baselines, indicating that for higher levels in

the hierarchy, the proposed representations improve homo-

geneity inside annotated sections. Long-term similarities

are implicitly captured by the highest embedding levels

(ℓ = 0, 1), yielding discriminative features able to sepa-

rate consecutive musical sections at that level.

Finally, for both annotation levels combined, all models
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perform better than when considering each level indepen-

dently. The fact that difficult examples at the lower level

are better managed at the upper one and vice-versa indi-

cates that the representations learned are not specific to any

particular annotation level. The very small performance

gap across annotators also shows that these same repre-

sentations capture relevant structure characteristics that are

shared between them.

Level Method F3 Fpairwise

lower LSD [9] 0.525± 0.19 0.561± 0.16
FE0 [3] 0.624± 0.14 0.561± 0.14
HE0 0.611± 0.16 0.580± 0.15
HE0,best 0.643± 0.15 0.580± 0.15
FE1 [3] 0.611± 0.14 0.563± 0.14
HE1 0.600± 0.15 0.581± 0.14
HE1,best 0.635± 0.15 0.580± 0.14

upper SNF [10] 0.456 0.567
DEF [5] 0.564 0.600

LSD [9] 0.579± 0.15 0.652± 0.13
FE0 [3] 0.568± 0.17 0.694± 0.14
HE0 0.597± 0.18 0.714± 0.14
HE0,best 0.627± 0.16 0.719± 0.14
FE1 [3] 0.559± 0.17 0.697± 0.14
HE1 0.595± 0.18 0.718± 0.14
HE1,best 0.625± 0.16 0.720± 0.14

combined HE0 0.665± 0.13 0.730± 0.14
HE0,best 0.711± 0.12 0.733± 0.14
HE1 0.662± 0.13 0.731± 0.14
HE1,best 0.707± 0.12 0.731± 0.14

Table 3. Boundary detection and section grouping results

on SALAMI.

4.2 Multi-level segmentation

The results obtained for multi-level segmentation are re-

ported in Table 4. When employing the full embedding

representation, the performance on multi-level segmen-

tation is competitive in terms of L-recall with previous

work. As well as for boundary detection, selecting the best

embedding sub-region leads to even further improvement.

The importance of keeping inter-annotator agreement as a

reference for comparison in multi-level segmentation has

previously been argued [10]. It is found that the pro-

posed representations result in multi-level segmentations

that adapt to both annotators, within the range of the inter-

annotator agreement reported by Tralie and McFee [10].

Method L-precision L-recall L-measure

Inter-annot 0.664 0.664 0.654

LSD [7] 0.419 0.636 0.498
SNF [10] 0.431 0.668 0.517
DEF [5] 0.435 0.673 0.520

FE0 [3] 0.412± 0.10 0.677± 0.13 0.505± 0.11
HE0 0.413± 0.11 0.680± 0.13 0.507± 0.11
HE0,best 0.432± 0.11 0.694± 0.13 0.527± 0.11
FE1 [3] 0.413± 0.10 0.663± 0.12 0.503± 0.10
HE1 0.418± 0.11 0.671± 0.13 0.509± 0.11
HE1,best 0.423± 0.11 0.686± 0.13 0.517± 0.11

Table 4. Multi-level segmentation results on SALAMI.

Inter-annot denotes the inter-annotator agreement.

4.3 Additional evaluation

In Table 5, the results obtained for boundary detection, sec-

tion grouping and multi-level segmentation on additional

datasets using the whole embedding matrices are summa-

rized. The boundary detection scores obtained for Beat-

lesTUT and RWC-Pop fall within the same range, where

more specifically, the score on RWC-Pop is higher than

the one obtained by Wang et al. [4] with representations

learned via supervised contrastive learning. However, a

significant drop is observed for the two remaining datasets:

RWC-Jazz and JAAH. If the music genre might play a

role in this performance gap, it is also worth considering

some statistics of these datasets summarized in Table 1.

For RWC-Jazz, the high number of unique section labels

compared to the total number of segments might cause

some errors during the section grouping step done at the

frame level with k-means (last step of the spectral clus-

tering method). Regarding the JAAH dataset, given the

low average number of segments per track, the segmen-

tation method returns more boundaries than those origi-

nally annotated, therefore reducing the hit-rate precision

and F-measure. For all metrics considered, other exper-

iments have shown that hierarchical representations also

performed better than their flat counterparts [3], of which

due to space constraints, the results are not reported here.

Dataset F3 Fpairwise L-P L-R L-M

BeatlesTUT 71.77 72.25 49.32 75.25 59.37
RWC-Pop 68.07 65.35 47.02 77.06 58.30
RWC-Jazz 55.05 58.51 32.89 81.80 45.76
JAAH 55.57 76.72 46.49 81.18 58.55

Table 5. Boundary detection, section grouping and multi-

level segmentation results on additional datasets (in per-

centage) with the whole embedding matrix. L-P: L-

precision, L-R: L-recall, L-M: L-measure.

The L-recall values obtained across datasets remain

within the same range, regardless of the performance

achieved on flat segmentation or section grouping. The

temporal notion induced during sampling helps adapting

to different musical genres or annotation sources. Even

though the learned representations may not always fit with

one specific level in the annotations, most of the reference

structure hierarchies are captured and more refined levels

of segmentation are discovered.

5. CONCLUSION

In this work, unsupervised contrastive learning of deep

representations for music structure analysis at different

time-scales has been explored. By leveraging time infor-

mation and the hierarchical aspect of music structure, the

resulting representations facilitate single and multi-level

segmentation while being robust against different types of

annotations. Future work includes searching for better-

suited architectures to detect musical patterns at different

time scales and automatically combine them to accommo-

date specific annotation styles or levels.
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