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ABSTRACT

This paper presents an automatic lyrics transcription (ALT)

method for music recordings that leverages the framewise

semitone-level sung pitches estimated in a multi-task learn-

ing framework. Compared to automatic speech recogni-

tion (ASR), ALT is challenging due to the insufficiency of

training data and the variation and contamination of acous-

tic features caused by singing expressions and accompani-

ment sounds. The domain adaptation approach has thus re-

cently been taken for updating an ASR model pre-trained

from sufficient speech data. In the naive application of the

end-to-end approach to ALT, the internal audio-to-lyrics

alignment often fails due to the time-stretching nature of

singing features. To stabilize the alignment, we make use

of the semi-synchronous relationships between notes and

characters. Specifically, a convolutional recurrent neural

network (CRNN) is used for estimating the semitone-level

pitches with note onset times while eliminating the intra-

and inter-note pitch variations. This estimate helps an end-

to-end ALT model based on connectionist temporal classi-

fication (CTC) learn correct audio-to-character alignment

and mapping, where the ALT model is trained jointly with

the pitch and onset estimation model. The experimental

results show the usefulness of the pitch and onset informa-

tion in ALT.

1. INTRODUCTION

Automatic lyrics transcription (ALT) refers to a task that

aims to estimate the sung texts from music recordings, typ-

ically under the presence of accompaniment sounds. Since

music composition and sharing have become very popular

among non-professional people (e.g., YouTube), the num-

ber of non-annotated music data without lyrics transcrip-

tions has been increasing rapidly. ALT has thus gained a

lot of attention from the music information retrieval (MIR)

community because of its usefulness in karaoke subtitle

generation and text-based indexing.

Considering the similarity between ALT and automatic

speech recognition (ASR), most studies on ALT have at-
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Figure 1. The proposed lyrics transcription method that

estimates the pitches and onsets of singing voice and then

uses them for character-level lyrics transcription.

tempted to use ASR techniques, with some modifications if

necessary. The hybrid approach based on a hidden Markov

model (HMM) enhanced by a deep neural network (DNN),

for example, has been used, where only the acoustic model

was optimized for ALT [1]. Another way of ALT is to take

the end-to-end approach that directly learns a sequence-

to-sequence (audio-to-text) mapping. While the connec-

tionist temporal classification (CTC) [2] and/or the atten-

tion mechanism [3] have widely been used for ASR [4, 5],

the CTC has mainly been used for ALT [6, 7], in con-

junction with the attention mechanism [8]. One reason is

that the CTC considers only the monotonic audio-to-text

alignment, which is relatively easier to infer from a limited

amount of training data.

The audio-to-text alignment plays a key role in end-to-

end ALT and still remains a challenging problem. Firstly,

the acoustic characteristics of singing voice vary over time

in various ways according to the underlying sung notes and

singing expressions. While the phones of speech tend to

have particular durations and pitches specific to the speaker,

those of singing voice may have time-stretched durations

and semi-stepwisely time-varying pitches determined by

the singer and the score. Secondly, the acoustic features of

singing voice are contaminated by accompaniment sounds
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or distorted by singing voice separation. It is, however, dif-

ficult to collect as training data a sufficient amount of mu-

sic recordings with aligned lyrics annotations that cover a

wide variety of recording conditions and singing styles.

To solve these problems, we make effective use of the

framewise pitches and onset times of sung notes as acous-

tic features exclusive for ALT. In musical scores, lyrics are

typically described synchronously with notes, i.e., words

or characters tend to coincide with notes. This implies that

the note onset information can be used for guiding an end-

to-end ALT model to efficiently find the correct audio-to-

lyrics alignment from a limited amount of training data.

Multi-conditional training with the note pitch information

is also expected to make the ALT model robust against the

pitch variations.

In this paper, we propose an ALT method based on a

cascading multi-task architecture that estimates the pitches

and onset times of sung notes and then transcribes the lyrics

at the character level in a pitch- and onset-conditioned man-

ner (Fig. 1). More specifically, a convolutional recurrent

neural network (CRNN) is used for jointly estimating the

semitone-level pitches and onset times while eliminating

the intra- and inter-note pitch variations (e.g., vibrato and

glissando). Informed by this estimation, another CRNN is

then used with CTC for learning audio-to-character align-

ment and mapping. These two CRNNs are trained jointly

with backpropagation such that the sum of the pitch, onset,

lyrics estimation losses is minimized. To mitigate the data

insufficiency problem, we also use a domain adaptation

method that fine-tunes a baseline ASR model pre-trained

from huge speech data.

The main contribution of this paper lies in the first at-

tempt for joint lyrics and pitch transcription towards com-

prehensive singing voice analysis. We experimentally show

that the score information exclusive to music can be used

effectively for finding audio-to-text alignment in end-to-

end ALT with insufficient training data.

2. RELATED WORK

This section reviews related work on automatic lyrics tran-

scription (ALT) and singing voice transcription (SVT).

2.1 Automatic Lyrics Transcription

ALT for music recordings under the presence of accompa-

niment sounds is still a difficult task due to the contamina-

tion of acoustic features [6±8]. A standard way of mitigat-

ing the adverse effect of accompaniment sounds is to take

the two-step approach that performs singing voice sepa-

ration [9] and lyrics transcription in this order. Although

the remarkable improvement has been made in terms of

the pure signal processing performance typically measured

by the signal-to-distortion ratio (SDR) [10], the separated

singing voice, however, is hard to transcribe, i.e., the word

error rate (WER) might be low, because an ALT model

trained with clean isolated singing voice would suffer from

the distortion of acoustic features and the mismatch be-

tween the training and test conditions. Although even ALT

for clean singing voice [1] has much room for performance

improvement due to the considerable variation of acoustic

features caused by singing expressions, working directly

on music recordings without singing voice separation could

achieve better performance of ALT [7].

Inspired by the great success of the end-to-end approach

to ASR, several attempts have been made for directly learn-

ing the mapping between non-aligned input and output se-

quences (audio and lyrics) of different lengths [6±8]. At

the heart of the end-to-end learning is the audio-to-lyrics

alignment based on the connectionist temporal classifica-

tion (CTC) [2] and/or the attention mechanism [3]. The

CTC-based approach estimates the posterior probabilities

of labels (e.g., words and characters) at the frame level and

aims to maximize the total score obtained by efficiently ac-

cumulating the posterior probabilities of all possible mono-

tonic alignment paths between the estimated and ground-

truth label sequences. The attention-based approach is more

powerful in that it can consider non-monotonic alignment

and is thus useful for a wider variety of tasks (e.g., machine

translation). In general, however, the latter needs a larger

amount of training data for finding the correct alignment

and is thus hard to apply solely to ALT.

Some studies on audio-to-lyrics alignment have reported

the effectiveness of using pitch information [11, 12]. Con-

sidering the semi-synchronous relationships between notes

and characters, joint estimation of the pitches, onset times,

and lyrics of singing voice would help an end-to-end model

find the correct audio-to-lyrics alignment.

2.2 Singing Voice Transcription

The ultimate goal of SVT, a special case of automatic mu-

sic transcription (AMT), is to estimate a human-readable

vocal score underlying a given music recording. Towards

this goal, a lot of efforts have been made for estimating

the continuous fundamental frequencies (F0s) or discrete

semitone-level pitches of singing voice at the frame or note

level [13,14]. In particular, frame-level F0 estimation (a.k.a.

melody extraction) has conventionally been considered as

a subtask of SVT and intensively studied thanks to the

great advance of supervised deep learning [15, 16]. There

is, however, a big gap between melody extraction and gen-

uine SVT because accurate scores are hard to obtain just by

quantizing continuous F0 contours, typically at the tatum

level, due to the large fluctuations and smooth transitions

of F0s (e.g., vibrato or glissando).

The latest study on SVT attempted to directly estimate a

note sequence with discrete pitches and score positions [17].

This method is based on a hierarchical hidden semi-Markov

model (HHSMM) that represents the generative process of

observed singing spectra from a latent sequence of notes

whose pitches and onset positions are assumed to follow a

key-dependent Markov model and a metrical Markov model,

respectively. The emission model was implemented with a

CRNN that is pretrained to estimate the pitches of singing

voice at the frame level from music spectra such that the

intra- and inter-note F0 variations are eliminated. This

technique forms the basis of the pitch and onset estimators

used in our study.
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3. PROPOSED METHOD

This section describes the proposed ALT method based on

a cascading multi-task architecture.

3.1 Multi-task Learning Approach

Our method takes as input the mel-spectrogram of a mu-

sic recording and that of the singing voice extracted from

the recording with a DNN-based music separation method

called Open-Unmix [18]. Since the singing voice sepa-

ration is known to affect ALT, the original recording is

thus used as well as the separated singing voice. Let X ∈
R

C×F×T be the set of the input mel-spectrograms, where

C is the number of channels (C = 2 in this paper), F is the

number of frequency bins, and T is the number of frames.

We use as a basic building block a convolutional recur-

rent neural network (CRNN) consisting of a convolutional

neural network (CNN) working as an encoder and a recur-

rent neural network (RNN) working as a decoder. The en-

coder extracts latent features from the input spectrograms

and then the decoder estimates an output sequence while

considering the sequential dependency of the latent fea-

tures. The CRNN consists of residual CNN blocks with

skip connections and RNN blocks (Fig. 2). Each CNN

has a rectified linear unit (ReLU) and implemented with

instance normalization. In contrast, each RNN block is a

bidirectional LSTM (BiLSTM) [19] with layer normaliza-

tion.

As shown in Fig. 1, our method uses two CRNNs. One

CRNN is used for jointly estimating the posterior proba-

bilities of the semitone-level pitches and those of the onset

presence at the frame level. Given the estimated pitch and

onset probabilities, the other CRNN is used for transcrib-

ing the lyrics from the spectrograms. Specifically, the es-

timated pitch and onset probabilities are fed together with

the latent features extracted from the CNN into the RNN.

Both CRNNs are trained jointly such the sum of the frame-

wise pitch and onset estimation losses and the CTC-based

lyrics transcription loss is minimized.

3.1.1 Pitch and Onset Estimation

The goal of pitch and onset estimation (supplementary task)

is to estimate the framewise pitch and onset probabilities,

denoted by p(pitch|X) ∈ R
K×T and p(onset|X) ∈ R

1×T ,

respectively, from the input data X ∈ R
C×F×T , where K

is the number of the semitone-level pitches corresponding

to MIDI note numbers plus no-pitch (K = 128 + 1).

Specifically, X is first fed to the series of multiple resid-

ual CNN blocks as follows:

ZPO = CNN(X), (1)

where ZPO ∈ R
C

′
×F×T is the output of the CNN and C ′

is the number of channels. Note that the zero padding is

performed so that the output of each residual CNN block

retains the shape of X except for the number of channels.

Then ZPO is reshaped into Z
′

PO ∈ R
C

′
F×T and fed to the

RNN as follows:

YPO = RNN(Z′

PO), (2)

InstanceNorm

ReLU

Dropout

Conv

+
Residual CNN Block

LayerNorm

BiLSTM

Dropout

RNN Block

Figure 2. The residual CNN block and the RNN block.

where YPO ∈ R
C

′′
×T is the output of the RNN and C ′′ is

the number of channels. Finally, p(pitch|X) and p(onset|X)
are computed by feeding YPO to a fully-connected (FC)

layer and the softmax and sigmoid functions, respectively,

as follows:

[Ypitch,Yonset] = FC(YPO), (3)

p(pitch|X) = softmax(Ypitch), (4)

p(onset|X) = sigmoid(Yonset), (5)

where Ypitch ∈ R
K×T and Yonset ∈ R

1×T are the interme-

diate outputs from the FC layer.

3.1.2 Lyrics Transcription

The goal of lyrics transcription is to estimate the frame-

wise character probabilities, denoted by p(character|X) ∈
R

V×L from the input data X ∈ R
C×F×T , where V is the

number of characters (dictionary size) including a special

blank label used for CTC (V = 33 + 1 in this paper).

Specifically, in the same way as pitch and onset estima-

tion, X is first fed to the series of multiple residual CNN

blocks as follows:

ZL = CNN(X), (6)

where ZL ∈ R
C

′
×F×T is the output of the CNN. Then

ZL is reshaped into Z
′

L ∈ R
C

′
F×T , stacked with the esti-

mated pitch probabilities p(pitch|X) ∈ R
K×T and onset

probabilities p(onset|X) ∈ R
1×T , and fed to the RNN as

follows:

YL = RNN([Z′

L, p(pitch|X), p(onset|X)]), (7)

where YL ∈ R
C

′′
×L is the output of the RNN and C ′′ is

the number of channels. For computational simplicity, ZL

as well as p(pitch|X) and p(onset|X) are downsampled

to T/2 frames with a 2-dimensional max-pooling layer.

Finally, p(character|X) is computed by feeding YL to a

fully-connected (FC) layer and the softmax function as fol-

lows:

Ycharacter = FC(YL), (8)

p(character|X) = softmax(Ycharacter), (9)

where Ycharacter ∈ R
V×T is the intermediate output from

the FC layer.
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3.1.3 Joint Training with Domain Adaptation

The CRNN used for pitch and onset estimation and that

for lyrics transcription are mutually dependent and thus

trained jointly such that the sum of the framewise pitch

and onset estimation losses (cross-entropies) and the lyrics

transcription loss (CTC loss) is minimized. The CTC loss

is computed from the framewise estimate p(character|X)
by efficiently accumulating the costs of all possible charac-

ter sequences that can be reduced to the ground-truth char-

acter sequence by removing the blank labels. The pitch

and onset probabilities p(pitch|X) and p(onset|X) and the

underlying boundary information are considered to make

p(character|X) consistent with the ground-truth character

sequence.

To mitigate the insufficiency of music data with lyrics

annotations (DALI dataset [20]), we take the domain adap-

tation approach based on transfer learning [21]. Specif-

ically, the CRNN used for lyrics transcription is trained

using sufficient speech data (LibriSpeech corpus [22]) and

then fine-tuned using both speech and music data.

3.2 Decoding

At run-time, we aim to estimate a series of note events

with semitone-level pitches (MIDI note numbers) and on-

set times (frames) and transcribe the lyrics (Fig. 3). Specif-

ically, the pitches with the maximum probabilities are taken

from the estimated pitch probabilities p(pitch|X). The on-

set times are determined with a peak picking strategy [23]

with a window of 50 [ms] and a threshold of 0.4. A frame

is counted as the onset time if the onset probability at this

frame is maximal within 25 [ms] around this frame, where

frames whose probabilities are less than 0.4 are excluded.

The lyrics (best character sequence) are determined using a

CTC decoder based on beam search [24] with a beam size

of 25 frames and a 5-gram language model trained on the

LibriSpeech corpus with a vocabulary of 200K words.

4. EVALUATION

This section reports a comparative experiment conducted

for evaluating the effectiveness of the multi-task learning

with pitch and onset estimation in ALT.

Details about data selection and training conditions can

be found in the GitHub repository 1 of this paper.

4.1 Experimental Conditions

We explain the data used for evaluation, network configu-

rations, compared methods, and evaluation measures.

4.1.1 Data

We used the DALI dataset [20] consisting of 5358 pieces

of popular music in the English language along with fine-

grained lyrics and pitch annotations. This dataset was made

by collecting karaoke subtitle data and then searching for

the corresponding audio data on the Internet, where an au-

tomatic alignment method was used for obtaining aligned

1 https://github.com/TengyuDeng/

lyrics-transcription-with-pitch-onset/

(a) ground truth of pitch

(b) estimated pitch probability

(d) lyrics

(c) onset probabilities

There’s wind and the stars ~ and the rain bow

l et wi nd in the st a r   s and the r ai n b owthe

l et wi th i n the s t a r   s that the r i ght f o     rthe

ground truth of 
lyrics

estimated lyrics 
(multitask)

estimated lyrics 
(baseline)

probability

pitch

pitch

Figure 3. Example of estimations on a segment of a pop-

ular song from DALI. In (d), an estimated character is

placed where the CTC decoder responds with the peak

probability.

annotations. This dataset thus suffers from severe annota-

tion errors [25]. First, the original karaoke data contained

many problematic annotations such as global pitch shifts,

wrong spellings, and onset time errors. Second, the auto-

matic global alignment method often failed.

We thus filtered out music data with obviously wrong

lyrics annotations and/or global pitch shift errors. The data

selection procedure was based on the pitch estimation model

and RWC Popular Music Database [26, 27]. This dataset

contains 80 Japanese songs and 20 English songs, all of

which are original popular songs and are provided with

careful manual annotations. For simplicity, we used the

framewise error rate given by

1−
#{Frames Estimated Correctly}

#{Total Frames}
. (10)

We chose the 80 Japanese tracks of the RWC database and

split them into a training set of 64 tracks and a test set of

16 tracks. The CRNN-based pitch estimation was trained

on the training set, and attained 26.05% error rate on the

test set, which was considered as a standard level.

The model trained on the training set from the RWC

database was then exploited to test on the whole DALI

dataset. The annotation of each song was shifted by -12, -

11, ..., 0, ..., 11, and 12 semitones, and the predicted pitches

of the pre-trained model were compared to all 25 pitch-

shifted versions of annotations. The pitch shift value with

the minimal framewise error rate was considered as the

global pitch shift value of the annotation for a song, and
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the minimal framewise error rate was recorded. Finally,

the DALI dataset was filtered by the recorded framewise

error rates. Specifically, songs with framewise error rates

larger than a certain threshold were considered to be with

problematic annotations.

Of all 5358 songs in the DALI dataset, 3272 songs could

be accessed in our region and were in the English language.

We selected 2515 songs with the data selection procedure,

with a threshold of 50%. They were then split into a train

set of 2263 songs, a validation set of 125 songs, and a test

set of 126 songs. The total durations were 148.82 hours,

8.16 hours, and 8.47 hours, respectively.

For the transfer learning procedure, we used the Lib-

riSpeech corpus [22] that contains 1000 hours of reading

English speech sampled at 16 kHz. The CRNN described

in Section 3.1.2 was trained on the train-clean-360 and

train-other-500 sets of the LibriSpeech corpus, where all-

zero matrices were used as p(pitch|X) and p(onset|X) in

Eq. (7). This model was then fine-tuned with the training

set of the DALI dataset.

4.1.2 Configurations

As described in Section 3.1, the audio signals, sampled at

a rate of 48 kHz, were first separated into singing-voice-

only signals with model umxhq from open-unmix [18].

Then for computational simplicity, the separated signals

and the original mixed signals were resampled to 16 kHz,

before they were converted to mel-spectrogram features,

respectively. The audio signals were converted to mel-

spectrogram with a window size of 32 ms and a hop length

of 16 ms, and the resulted mel-spectrogram contained 80

mel-scaled features. We clipped the mel-spectrograms into

pieces of 1000 frames, with a duration of about 16 s. There-

fore, following the annotations in 3.1.1, we had C = 2, F =
80, T = 1000.

In the pitch and onset estimation network, 6 residual

convolution blocks were stacked. The kernel sizes were

(5,5), (5,5), (3,3), (3,3), (3,3), (1,1), and the numbers of

output channels were 64, 32, 32, 32, 32, 1, respectively.

After that, only 1 RNN block was applied to obtain the

pitch and onsest estimation results. The dropout probabil-

ity was set to 0 in each layer. In other words, we didn’t

adopt dropout in the pitch and onset estimation network.

In the lyrics transcription network, 6 residual convo-

lution blocks were stacked. The kernel sizes were (5,5),

(5,5), (3,3), (3,3), (3,3), (3,3), and the numbers of output

channels were 64, 32, 32, 32, 32, 16, respectively. After

that, 3 RNN blocks were stacked, and the number of hid-

den units in each LSTM was 512. The dropout probability

was set to 0.2 in each layer.

When training the model, the Adam optimizer was used,

and the parameters were β1 = 0.9, β2 = 0.999, and ϵ =
10−8. The model was trained with a learning rate of 5 ×
10−4, and a warming up strategy was used. The learn-

ing rate linearly increased from 0 to 5 × 10−4 for the first

100 batches. We used an early stop strategy to manage

the learning process. As mentioned in Section 4.1.1, the

dataset was split into a training, a validation, and a test

Method DALI-test Jamendo

Ours (baseline) 69.22 77.3

Ours (oracle) 64.41 /

Ours (multi-task) 68.29 76.2

[6] / 77.8

[7] / 87.9

Table 1. Comparison of WER (%) with different methods.

set. After training for an epoch, the model was tested on

the validation set, and the learning process was terminated

when the test statistics for the validation set stopped im-

proving for 10 epochs.

4.1.3 Compared Methods

In order to test the performance of our system, we com-

pared a couple of different settings. We also compared the

proposed system with previous related works.

For lyrics transcription, in addition to the multi-task

architecture, we also trained a model using zero dummy

pitch and onset probabilities as a baseline model. Besides,

a model was also trained using the ground truth pitches and

onset times as oracle information. In order to compare with

related works, the multi-task architecture was also tested

on the jamendo dataset [6], and the results were compared

with the end-to-end models in [6] and [7].

For pitch and onset estimation, we trained the model

in Section 3.1.1 without the lyrics transcription part as the

baseline model, and the results were compared with that

in the multi-task scenario. We also evaluated the test data

on VOCANO [28], a note-level vocal melody estimation

toolkit available in public.

4.1.4 Evaluation Measures

The lyrics transcription was evaluated using word error

rate (WER). The pitch and onset estimation was evaluated

using the method first proposed in [29]. We considered the

Correct Onset (COn) and the Correct Onset, Pitch (COnP)

measures.

4.2 Experimental Results

Before fine-tuning on lyrics data, the lyrics transcription

model was trained on LibriSpeech ASR corpus. The model

reached a WER of 6.56% on the test-clean dataset and

20.86% on the test-other dataset.

WERs on the DALI-test dataset and the jamendo dataset

are shown in Table. 1. On the DALI-test dataset, where

the ground truth of pitch and onset information was avail-

able, the model reached the best performance when pro-

vided with this ground truth information. This shows that

correct pitch and onset information can guide the system

to find the correct alignment, so that the performance can

be increased. In the multi-task architecture, the lyrics tran-

scription model was trained with joint pitch and onset es-

timation. Although not as good as the oracle-given situa-

tion, the performance still gained some improvement. On

the jamendo dataset, our multi-task architecture achieved

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

637



COn COnP

precision (%) recall (%) F value (%) precision (%) recall (%) F value (%)

Ours(baseline) 53.21 30.99 38.77 36.92 21.49 26.90

Ours(multi-task) 59.84 28.69 38.41 40.49 19.57 26.14

VOCANO [28] 18.78 20.45 19.07 7.46 7.71 7.40

Table 2. Comparison of pitch and onset estimation results.

a similar improvement compared with our baseline model

and beat main previous end-to-end ALT systems.

Table. 2 shows the pitch and onset evaluation results.

Compared to the baseline model, the pitch and onset esti-

mation jointly trained with the lyrics transcription model

remained the same performance. However, for both the

COn and COnP statistics, the multi-task scenario had a

higher precision but a lower recall value than the base-

line model. This shows that being jointly trained with the

lyrics transcription model, especially the onset estimation

was guided to be in favor of more confident onset posi-

tions. This lead to higher precision and lower recall val-

ues. It is notable that our models, both the baseline and

the multi-task scenario, also gained better results than the

results obtained when the VOCANO system was applied

to the same test dataset.

5. CONCLUSION

This paper has presented a neural ALT method based on a

multi-task learning architecture that estimates the pitch and

onset information jointly and then transcribes the lyrics at

the character level in a pitch- and onset-conditioned man-

ner. The experiment using the DALI dataset showed that

joint pitch and onset estimation can improve the perfor-

mance of lyrics transcription. Although no significant over-

all improvement was attained in pitch and onset estimation,

higher precision but lower recall rates were observed in

the multi-task learning scenario. Our future work includes

more comprehensive evaluation by gathering reliable data

with accurate aligned lyrics and pitch annotations and us-

ing a data augmentation technique.
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